
RSEARCH: Enhancing Keyword Search in Relational Databases
Using Nearly Duplicate Records

Xiaochun Yang Bin Wang Guoren Wang Ge Yu
Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education

School of Information Science and Engineering, Northeastern University, China
{yangxc,binwang,wanggr,yuge}@mail.neu.edu.cn

Abstract

The importance of supporting keyword searches on relations has been widely recognized. Different
from the existing keyword search techniques on relations, this paper focuses on nearly duplicate records
in relational databases due to abbreviation and typos. As a result, processing keyword searches with
duplicate records involves many unique challenges. In this paper we discuss the motivation and present
a system, RSEARCH, to show challenges in supporting keyword search using nearly duplicate records
and key techniques including identifying nearly duplicate records and generating results efficiently.

1 Introduction

RDBMSs are very popular to store a huge amount of data due to their rigid schema specifications and mature
query processing techniques. Conventional RDBMSs provide SQL interfaces and require users to understand
how data is stored in it. However, some users might not know how to write an SQL to get what they are interested
in, instead, they hope RDBMSs provide IR-style facilities that allow users to access the database using a set of
keywords. Many recent work have studied the problem of keyword search in relational databases [1, 2, 5, 6, 7,
11, 12, 13, 14]. They mainly focus on the mapping between keywords and data in relations and explore different
semantic meanings to explain the query results without considering correlations among data.

In relational databases, duplication among tuples is one of typical data correlation. Informally, we say two
records are nearly duplicate if they identify the same real-world entity. Nearly duplicate records exists in many
databases due to data was collected from heterogenous sources. Figure 1 shows part of records in a real database:
Science Citation Index Expanded (SCI-E)1. The data was collected from different publishers who use different
format of author names and journal/conference names in their reference list. It is not surprising to see many
nearly duplicate records appear as individual tuples in relations, since a real-world entity might be expressed
using different values due to abbreviation, type errors, and etc.

For instance, in Figure 1, relation Source contains two duplicate records s4 and s5. Although journal names
are different, we can easily find the journal name of s4 is an abbreviation of s5. The situation becomes a little
complex in relation Author: three records a2, a3, and a4 contain the same author name, however, if we examine

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1http://isiknowledge.com

1

Author Write Source
id name email id aid pid id name ISSN
a1 Alon Y. Halevy alon@cs.washington.edu w1 a1 p6 s1 Communication of the ACM 0001-0782
a2 Halevy A alon@cs.washington.edu w2 a2 p7 s2 IEEE Intelligent System 1541-1672
a3 Halevy A avinoams@clalit.org.il w3 a3 p5 s3 Journal of Child Neurology 0883-0738
a4 Halevy A w4 a4 p1 s4 VLDB J. 1066-8888
a5 Halevy Alon halevy@google.com w5 a4 p2 s5 VLDB Journal 1066-8888
a6 Halevy AY halevy@google.com w6 a4 p4

a7 Dong XL lunadong@research.att.com w7 a5 p2

w8 a6 p3

w9 a7 p2

Paper

id title sid year vol(number) page citation-times

p1 Data integration with uncertainty s5 2009 18(2) 469-500 0
p2 Representing uncertain data... s5 2009 18(5) 989-1019 0
p3 The Claremont Report on Database Research s1 2009 52(6) 56-65 0
p4 The Unreasonable Effectiveness of Data s2 2009 24(2) 8-12 0
p5 ... Complex Visual Hallucinations s3 2009 24(8) 1005-1007 0
p6 Schema mediation ... semantic data sharing s4 2005 14(1) 68-83 11
p7 MiniCon: ... answering queries using views s4 2001 10(2-3) 182-198 33

Figure 1: Sample database in Science Citation Index Expanded (SCI-E).

(a) Input Halevy A and 2009. (b) Input Halevy AY and 2009.

Figure 2: Keyword search results.

their published paper manually, we found a2 and a4 represent the same author Alon Y. Halevy in a1, whereas a3
does not. Such phenomenons result in the following two problems:

(i) users might retrieve wrong search results, or
(ii) users might miss some information that they are really interested in.

We use Example 1 to illustrate the problems.

Example 1: We used a 2-keyword query, Alon Y. Halevy and 2009 to search the SCI-indexed paper of Alon
Y. Halevy published in 2009 in the Science Citation Index Expanded database, unfortunately we got nothing.
Instead, when using Halevy A and 2009 we could get 5 results, 3 of them were written by Alon Y. Halevy
(marked by “

√
” in Figure 2(a)), and the other two results were not correct. When we used Halevy AY and

2009, we got a different result shown in Figure 2(b).

Ideally, we want to exclude irrelevant results and collect all correct results from relational databases to
increase both precision and recall. In this paper, we present a system, RSEARCH, to analyze data between tuples
in a relation and identify nearly duplicate records to enhance the keyword search ability.

2

Node

Locator

Keyword Nodes &

Shadow Nodes

Result

Generator

Result

Ranker

User Interface

An m-Keyword

Query Result

RDB
Nearly Duplicate

Records Identifier

Database Graph
Indexer

Indices

Users

Figure 3: Architecture of RSEARCH.

In the remaining part of this paper, we introduce the architecture of RSearch in Section 2. In Section 3 we
study several challenges that arise naturally when considering nearly duplicate records in the keyword search
processing, and introduce the basic idea of our techniques. Finally, we discuss future directions in Section 4.

2 The RSEARCH System: Architecture

Figure 3 shows the system architecture of RSEARCH. It mainly consists of five modules: Nearly Duplicate
Records Identifier, Indexer, Node Locator, Result Generator, and Result Ranker. We describe the process fol-
lowed by a brief overview of the various modules.

• Nearly Duplicate Records Identifier. The Nearly Duplicate Records Identifier analyzes data correlation in
relations, identifies nearly duplicate records, and generates a database graph.

A relational database can be modeled as a database graph G = (V,Ef , Ed). Each tuple in the database
corresponds to a vertex in V , and the vertex is associated with all attribute values in the tuple. An edge
e ∈ Ef from one vertex to another one represents a foreign-key relationship. Different from the existing
graph-based approaches [2, 5, 9, 13], we use Ed to express another type of edges, which we call duplicate
edges to express the relationship between two nearly duplicate records. For simplicity, the graph can also
be modeled as an undirected graph. The graph can have weights based on different semantics [2, 13]. For
example, Figure 4 shows the database graph of the database tuples in Figure 1. The dotted edges represent
duplicate edges.

• Indexer. The Indexer constructs indices based on database graph G = (V,Ef , Ed). In addition, the
Indexer maintains nearly duplicate records in indices. The index structure is a trie. Any token of string
type in the relational database can be expressed as a path from root to a leaf in the trie. We use a node to
express each of values of other data types, like integer, float, date, and etc.

• Node Locator. Once a user issues a query, the Node Locator accesses Indexer and retrieves matches to
each token in the given keywords in the database graph G = (V,Ef , Ed). We call such nodes keyword
nodes. Besides locating keywords nodes, the Indexer uses duplicate edges Ed in the database graph G to
locate nodes that donot contain keywords but are regarded as the same entities with the keyword nodes.
We call them shadow nodes. There is an duplicate edge in between a keyword node and a shadow node.

3

w4 w6

p1 p4

s5

a1 a2

w1 w2

p6 p7

s4

a3

w3

p5

s3

a4

w5

p2

s2

a6

w8

p3

s1

a5

w7

a7

w9

Figure 4: The database graph of the database tuples in Figure 1.

• Result Generator. Based on the two kinds of located nodes: keyword nodes and shadow nodes, the Result
Generator decides how to connect them to generate results. Notice that, a search result might not contain
any keyword nodes, but is also interested by users. For example, the path a2 − w2 − p7 − s4 in Figure 4
should be an interested result to the 2-keyword query Alon Halevy and VLDB Journal, although the
result does not contain any keyword nodes. Here, both a2 and s4 are shadow nodes. Without considering
duplicate edges in the database graph, the system could not generate this result.

• Result Ranker. The Result Ranker ranks the results generated by the Result Generator based on different
ranking functions, such as variants of term frequency, the number of keyword matches, query result size,
weight in the database graph, and etc. For simplicity, in this paper, let the weight of duplicate edges
be 0. Notice that, when using the number of keyword matches, a shadow node is also a match to its
corresponding keyword.

3 Key Modules in RSEARCH

In this section, we discuss key modules in RSEARCH and address several challenges of keyword search in
relational databases with nearly duplicate records.

3.1 Identifying Nearly Duplicate Records

Two nearly duplicate records might look similar, for example, in Figure 1 records s2 and s3 in relation Source
are similar in name and ISSN columns. In fact, only partial attributes in a record could identify duplicates. For
example, the attribute email in Author, ISSN in Source, and the combination of attributes sid, vol(number), and
page in Paper could be used to identify duplicates. We call such attributes duplicate identifiers.

Duplicate identifier can help us to discriminate most of the nearly duplicate records. For instance, email is a
typical duplicate identifier to distinguish a person from others. Using email in Author, we know a1 and a2 are
duplicate, and the two records a5 and a6 are also duplicate.

Formally, given a relation R with a set of attributes U = {id, A1, . . . , An}, a similarity function δ, and
a similarity threshold λ. A subset of attributes X ⊆ U − {id} is a duplicate identifier on a relation R, if
the following statement holds: “If for any two tuples ti and tj of R agree on X (i.e. ti[X] = tj [X]), their
corresponding values ti[A1, . . . , An] and tj [A1, . . . , An] are similar (i.e. δ(ti[A1, . . . , An], tj [A1, . . . , An]) ≤
λ).” We say X approximately determines R, denoted X R.

Many similarity functions have been used to evaluate the closeness of two records, such as edit distance,
jaccard similarity, cosine similarity, and etc [3, 4]. However, it is hard to determine which similarity function(s)
and threshold value(s) should be used to evaluate similarity for different attributes.

4

In addition, we cannot use duplicate identifier to discriminate all nearly duplicate records. For example, we
donot know whether a4 and a5 are duplicate since a4 has no corresponding email address. In this case, we need
more complex way to do the discrimination. For example, Halevy A is the abbreviation of Halevy Alon, and
both of them write the same paper p2. Therefore, we infer that a4 and a5 are also duplicate.

The above observations show that automatically identifying duplicates is technically very nontrivial, how-
ever a manually solution is labor intensive and obviously undesirable.

RSEARCH provides a smart way to identify nearly duplicate records using following steps.

(1) Finding candidate duplicate identifers. For each relation R, the Nearly Duplicate Record Identifier firstly
finds possible duplicate identifer X (if any) in R by extracting X R. Obviously, an id attribute of R is
not a duplicate identifer. Because the number of possible duplicate identifers is exponential in the number
of remaining n attributes A1, . . . , An in R, efficient search techniques and pruning heuristics are essential
ingredients of these approaches. Different from the soft key discovery algorithm developed in [8], we
examine each attribute Ai in R and prune attributes based on the following two heuristic rules:

(i) If at least one distinct value in an attribute Ai is frequent, then Ai should not be a duplicate
identifer. For example, neither attribute year nor citation-times in Figure 1 could be a duplicate
identifer.

(ii) If the cardinality of an attribute Ai is approximately equals to the cardinality of R, then Ai could
not be a duplicate identifer. For example, title of papers is not a duplicate identifer.

All these operations can be done easily using SQLs inside the RDBMS. For example, we can easily use the
expression COUNT(DISTINCT Ai) to count the number of distinct values in Ai and determine whether
Ai should be pruned according to the maximum count number.

(2) Verification of duplicate identifers using single attribute. For the remaining attributes in R, we verify
Ai Aj (i ̸= j) by computing similarity between values in Aj . If Ai Aj does not hold, we prune
Ai from the candidate set of duplicate identifers. The basic idea is to partition values in Ai firstly. For
each partition in Ai, we find the corresponding values in Aj and adopt our approximate string matching
approaches [10, 15] on them to verify whether these values are similar. If they are not similar, we then
conclude Ai Aj does not hold.

Notice that, as we mentioned in the above, it is hard to choose a suitable similarity function and a threshold
to determine whether two records on Aj are close enough. RSEARCH begins with a “Show me more
similar samples” and learns a good similarity function and threshold based on the samples.

If Ai approximately determines each attribute in U − {id}, we say Ai is the duplicate identifier. We
conclude records in each partition of Ai are duplicates.

3.2 Result Generator: Propagation along Duplicate Edges

There are many approaches to generate results in a database graph without duplicate edges. L. Qin et al. in [12]
summarizes those approaches into three types of semantics: connected tree semantics, distinct root semantics,
and distinct core semantics.

Duplicate edges make the database graph more complicated and we need traverse the graph along these
duplicate edges. We use connected tree semantics [2, 7, 11] to explain the problem2. Consider a 3-keyword
query, Luna, Alon Halevy, and uncertain. Figure 5 shows the query results. Figure 5(a) is a result without
considering any duplicate edges, which means Luna and Alon Halevy coauthored a paper p2 on uncertain.
When considering duplicate edges, RSEARCH generates the other four results. The result in Figure 5(b) shows

2Notice that our approach is orthogonal to the existing graph-based keyword search approaches, which can be adopted easily by
considering duplicate edges in the database graph.

5

p2

a5

w7

a7

w9

luna

uncertain

Halevy

Alon

(a)

w5

p2

a7

w9

luna

uncertain

Halevy A

a4

(b)

w4

p1

s5

a4

p2

a7

w9

luna

uncertain

Halevy A

uncertain

(c)

s5

a1

w1

p6

s4

p2

a7

w9

luna

uncertain

Alon Y.

Halevy

(d)

s5

a2

w2

p7

s4

p2

a7

w9

luna

uncertain

Halevy A

(e)

Figure 5: Query results.

the same meaning with the one in Figure 5(a) but using a keyword node a7 and a shadow node a4, which is
propagated from the keyword node a5. The result in Figure 5(c) means Luna and Halevy A write paper p2 and
p1 separately. The title of these two papers contain uncertain. The result in Figure 5(d) means Luna published
a paper about uncertain in a journal, meanwhile the journal publishes another paper wrote by Alon Y. Halevy.
The result in Figure 5(e) has the similar meaning with the fourth result.

Different from the existing approaches, when a database graph contains duplicate edges, a critical problem
is to decide when and how to propagate along duplicate edges. In RSEARCH, the Node Locator firstly locates
all keyword nodes and traverses the database graph G using its foreign-key edges Ef . The Result Generator
finds all results using keyword nodes, if any. For each result T , it expands it by propagating along duplicate
edges. It uses a shadow node ns to replace the corresponding keyword node nk in T through a duplicate edge
e. If ns is reachable to the result through foreign-key edges Ef , we say it is a valid propagation. The Result
Generator then generate another results using Ef . If the Result Generator could not generate a result using
keyword nodes and Ef , it needs use duplicate edges Ed to generate more results by using the same policy of the
existing approaches.

4 Conclusions and Future Work

We motivated our work by considering nearly duplicate records in relational databases and show challenges
in developing a keyword search system for RDBMSs. We introduce RSEARCH system that can provide key-
word search results with higher precision and recall when considering nearly duplicate records in relations. We
briefly present two key techniques in RSEARCH including automatically identifying nearly duplicate records
and generating query results efficiently.

Future research directions include further analyzing effects on search results of rich data correlations inside
relational database. Besides nearly duplicate records, there are many types of data correlations, such as mutual
exclusive of tuples, association rules in relational database. Such data correlations will greatly affect the preci-
sion and recall of search results, as well as the search efficiency. However, none of the existing approaches on
relational keyword search considers data correlations. Another critical issue is to evaluate relational database
search systems. So far, there are many approaches and semantics of generating search results for given key-
words. The quality of a relation keyword search system greatly depends on users preference. We expect to allow
maximum flexibility for using different semantics according to different preferences.

6

5 Acknowledgment

The work is partially supported by the National Nature Science of China (Nos. 60828004, 60973018) and the
Center Education Fundamental Scientific Research (No. N090504004).

References
[1] S. Agrawal, S. chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational databases. In

ICDE, pages 5-16, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing in databases
using banks. In ICDE, pages 431-440, 2002.

[3] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW Conference, pages 131-140, 2007.

[4] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491-500, 2001.

[5] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In SIGMOD, pages 305-316,
2007.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword search over relational databases. In
VLDB, pages 850-861, 2003.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword search in relational databases. In VLDB, pages 670-681,
2002.

[8] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. CORDS: Automatic discovery of correlations and soft
functional dependencies. In SIGMOD, pages 647-658, 2004.

[9] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB, pages 505-516, 2005.

[10] C. Li, B. Wang, and X. Yang. Vgram: Improving performance of approximate queries on string collections using
variablelength grams. In VLDB, pages 303-314, 2007.

[11] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in relational databases. In SIGMOD, pages
115-126, 2007.

[12] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases: the power of RDBMs. In SIGMOD, pages 681-694,
2009.

[13] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying communities in relational databases. In ICDE, pages 724-735, 2009.

[14] A. Simitsis, G. Koutrika, and Y. E. Ioannidis. Précis: from unstructured keywords as queries to structured databases
as answers. VLDB J., 17(1): 117-149, 2008.

[15] X. Yang, B. Wang, and C. Li: Cost-Based Variable-Length-Gram Selection for String Collections to Support Approx-
imate Queries Efficiently. In SIGMOD, pages 353-364, 2008.

7

