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Abstract

The proliferation of knowledge-sharing communities like Wikipedia and the advances in automated information
extraction from Web pages enable the construction of large knowledge bases with facts about entities and their
relationships. The facts can be represented in the RDF data model, as so-called subject-property-object triples,
and can thus be queried by structured query languages like SPARQL. In principle, this allows precise querying
in the database spirit. However, RDF data may be highly diverse and queries may return way too many results,
so that ranking by informativeness measures is crucial to avoid overwhelming users. Moreover, as facts are
extracted from textual contexts or have community-provided annotations, it can be beneficial to consider also
keywords for formulating search requests. This paper gives an overview of recent and ongoing work on ranked
retrieval of RDF data with keyword-augmented structured queries. The ranking method is based on statistical
language models, the state-of-the-art paradigm in information retrieval. The paper develops a novel form of
language models for the structured, but schema-less setting of RDF triples and extended SPARQL queries.

1 Motivation and Background

Entity-Relationship graphs are receiving great attention for information management outside of mainstream
database engines. In particular, the Semantic-Web data model RDF (Resource Description Format) is gaining
popularity for applications on scientific data such as biological networks [14], social Web2.0 applications [4],
large-scale knowledge bases such as DBpedia [2] or YAGO [13], and more generally, as a light-weight repre-
sentation for the “Web of data” [5].

An RDF data collection consists of a set of subject-property-object triples, SPO triples for short. In ER
terminology, an SPO triple corresponds to a pair of entities connected by a named relationship or to an entity
connected to the value of a named attribute. As the object of a triple can in turn be the subject of other triples,
we can also view the RDF data as a graph of typed nodes and typed edges where nodes correspond to entities
and edges to relationships (viewing attributes as relations as well). Some of the existing RDF collections contain
more than a billion triples.

As a simple example that we will use throughout the paper, consider a Web portal on movies. Table 1
shows a few sample triples. The example illustrates a number of specific requirements that RDF data poses for
querying:
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Subject (S) Property (P) Object (O)
Ennio Morricone hasType Composer
Ennio Morricone hasWonPrize Academy Award
Ennio Morricone composedSoundtrack C’era una volta il West
Henry Fonda actedIn C’era una volta il West
Henry Fonda hasWonPrize Academy Award
Claudia Cardinale actedIn C’era una volta il West
Claudia Cardinale hasWonPrize Golden Berlin Bear
El Laberinto del Fauno hasType Movie
El Laberinto del Fauno hasTag Fantasy
El Laberinto del Fauno hasTag Franco Regime in Spain
Guillermo del Toro directed El Laberinto del Fauno
Guillermo del Toro hasWonPrize Academy Award
Javier Navarette createdFilmMusic El Laberinto del Fauno
Javier Navarette nominatedFor Grammy Award

Table 1: SPO triples in the RDF data model

1. Despite the repetitive structure in some parts of the data, there is often a high diversity of property names
across the entire dataset. Thus, we need a flexible query language to search and explore schema-less data.
The W3C-endorsed SPARQL language offers the equivalent of select-project-join queries, but in contrast
to SQL, allows wildcards for property names.

2. While this is a powerful feature for schema-less data, it would still be a Boolean-match evaluation. There-
fore, SPARQL queries may often produce empty results when queries are too specific, or overwhelm the
user or application program with huge result sets. This calls for meaningful ranking of search results,
based on statistics about the data and user queries.

3. While ranking is desired for structured query conditions, we should also consider that RDF triples of-
ten come with additional textual components. For example, movie portals also contain user comments,
knowledge bases that are automatically built by information extraction from Web sources should also in-
clude the source texts, and biological data collections are often annotated by expert users or may reference
PubMed articles. To tap on these potentially valuable texts, an RDF query language should also support
text search with keywords and phrases.

This paper gives an overview on how these three requirements can be addressed. It is based on recent and
ongoing research on IR-style ranking for RDF data [9, 8]. In Section 2, we discuss how to extend the SPARQL
language with keyword search. In Section 3, we show how to compute principled rankings for search results
in a schema-less but structured data setting. In Section 4, we sketch experimental studies, as evidence for the
viability of the proposed model. We conclude with an outlook on open issues.

2 Extending the SPARQL Query Language

The SPARQL language is the W3C standard for querying RDF data. A query consists of conjunctions of elemen-
tary SPO search conditions, so-called triple patterns. For example, a question about prize-winning composers
who have composed music for movies that feature prize-winning actors, with results consisting of composer-
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movie pairs, can be expressed in SPARQL as follows:

Select ?x, ?m Where { ?x hasType Composer . ?x hasWonPrize ?p .
?x composedSoundtrack ?m . ?m hasType Movie .
?a actedIn ?m . ?a hasWonPrize ?q }

Each triple pattern has one or two of the SPO components replaced by variables such as ?x , the dots between
the triple patterns denote logical conjunctions, and using the same variable in different triple patterns denotes
join conditions. For the example data of Table 1, this query returns Ennio Morricone and C’era Una Volta il
West (which stars Henry Fonda). However, the query would miss results about movies whose directors won an
award or with actors or directors nominated for an award (which often is a major honor already). Moreover, as
there is no prescriptive schema for property names, there are a variety of ways for expressing the appearance
of musical compositions in movies; referring only to the composedSoundtrack property is unduly restrictive.
Fortunately, SPARQL allows relaxing the query by having variables for property names. This way, the query
could be re-phrased into the more liberal form:

Select ?x, ?m Where { ?x hasType Composer . ?x hasWonPrize ?p .
?x ?p ?m . ?m hasType Movie . ?a ?r ?m . ?a hasWonPrize ?q }

This is still a highly structured query, with typed entity variables, join conditions, etc. But it is now so
relaxed that we would obtain a large number of results on a realistically sized movie collection. This too-many-
results situation thus calls for a ranked result list, in the IR spirit, rather than a result set merely based on Boolean
matching. We will discuss our approach to ranking in the next section.

As mentioned before, RDF triples may have associated text passages, e.g., the text from which a fact was
automatically extracted or user-provided comments from a Web2.0 community. In this case, that text provides
extra information that we can consider in formulating queries. For example, suppose we search for film-music
composers who have also written classical music and whose compositions appear in dramatic movie scenes such
as gunfights in westerns or battles in easterns. This is difficult if not impossible to express by structured query
conditions alone. To overcome this problem, we would prefer to simply specify keywords – but keywords within
the context of a more precise triple pattern:

Select ?x, ?m Where { ?x hasType Musician {classical, composer} .
?x composedSoundtrack ?m . ?m hasType Movie {gunfight, battle} }

Here, two of the triple patterns are augmented by keyword conditions. The query should return results such
as Tan Dun composedSoundtrack Hero. Similarly, we could ask for rock musicians whose music is used in love
scenes in movies (as mentioned in descriptions of the movie plot or discussed in fan communities), or we could
refine our earlier condition about awards by specifying that the award citation should include certain keywords,
and so on.

It is important to note that the query still has a rich structure with several triple patterns and that the associa-
tion of keywords with individual triple patterns is crucial. The keyword parts have to be matched by facts whose
associated text contains the specified keywords. This imposes a semantic grouping on the total set of query
keywords. Without this structure, we would get different, possibly inappropriate, matches: for example, movies
about classical composers such as Mozart with music composed by rock stars that were involved in gunfights
and their personal battle with drugs (to give an outrageous example).

The outlined approach is close in spirit to languages like XQuery Full-Text [1] - except, and this is crucial,
that we are dealing with RDF-style graph data and not with XML trees. The semantic grouping of keywords
is impossible to express with today’s Internet search engines. Separate phrase conditions such as “classical
composer” and “gunfight battle” return very different results based on exact matching of consecutive words, and
would miss good results such as “composer of the opera . . . a masterpiece for classical orchestra”.
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3 Ranking with Statistical Language Models

Whenever queries return many results, we need ranking based on the informativeness of the answers. Users
prefer prominent entities and salient facts as answers. For example, the query about award-winning composers
for movies with award-winning actors or directors should return prominent results such as “El Laberinto del
Fauno” or “Hero” rather than matches such as “The Muse” (which features music by Grammy winner Elton
John but is not a well-known movie).

State-of-the-art ranking models in IR are based on statistical language models, LMs for short. They have
been successfully applied to passage retrieval for question answering, cross-lingual search, ranking elements in
semistructured XML data, and other advanced IR tasks [7]. An LM is a generative model, where a document
d is viewed as a probability distribution over a set of words {t1, ..., tn} (e.g., a multinomial distribution), and a
query q = {q1, ..., qm} with several keywords qi is seen as a sample from this distribution. The parameters of the
distribution d are determined by maximum-likelihood estimators in combination with advanced smoothing (e.g.,
Dirichlet smoothing). This is not unlike tf ∗ idf -style frequency-based models, but LMs are more principled
and the smoothing method is often decisive for good results. Now one can estimate the likelihood of query q
for different candidate documents, and the one document that maximizes this likelihood should be the highest-
ranked result. Alternatively, we can also associate queries with LMs: a query is a probability distribution over
keywords, derived from the query itself and, for example, a general user-interest profile or other sources for
smoothing. Then, the query-likelihood model is equivalent to ranking based on the Kullback-Leibler divergence
(KL-divergence for short) of the query LM with regard to the candidate document LMs [16]. KL-divergence
is an information-theoretic measure (aka. relative entropy) for comparing two probability distributions. It is
always non-negative and zero only for identical distributions.

3.1 Entity-Relationship Ranking

Recently, extended LMs have been developed for entity ranking in the context of expert finding in enterprises
and Wikipedia-based retrieval and recommendation tasks [10, 11, 12, 15]. These models are limited to entities
– the nodes in an entity-relationship graph. In contrast, general knowledge search needs to also consider the
role of relations – the edges in the graph – for answering more expressive classes of queries. Moreover, the
discussed work on entity IR is still based on keyword search and does not consider structured query languages
like SPARQL. Ranking for structured queries has been intensively investigated for XML [1], and, to a small
extent, for restricted forms of SQL queries [6]. Ranking has also been studied in the context of keyword search
on relational graphs (e.g., [3]). However, these approaches do not carry over to the graph-structured, largely
schema-less RDF data collections and the expressive queries discussed before.

What we need for RDF knowledge ranking is a generalization of entity LMs that considers relationships
(RDF properties) as first-class citizens. Recent work on the NAGA search engine [8, 9] has addressed these
issues and developed full-fledged LM-based methods for ranking the results of extended SPARQL queries.

In IR, typical LM-based ranking for documents, passages, or entities are associated with informative distri-
butions over words (or phrases or N-grams) and queries have straightforward LMs (essentially just the words
in the query). In contrast, our LMs for structured RDF search are probability distributions over facts (RDF
triples). Our approach is to construct a query LM for the query and result LMs for each potential result. The
KL-divergence between the query LM and a result LM gives a measure of relevance with the results being
presented to the user in increasing order of KL-divergence.

3.2 Estimating the Query LM

The LM for a triple pattern, the basic unit of a structured query, considers all possible substitutions of its variables
by matching triples from the underlying RDF data collection. Consider the pattern ?x directed ?y. This is
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satisfied by all director-movie pairs from directed triples in the data. The LM for this triple pattern is a probability
distribution over these triples (with smoothing by giving a small amount of probability mass to all other triples).

The probability of a given triple in the LM of a triple pattern can be viewed as the probability that the user
is interested in this particular triple as an answer to her question. As discussed above, some triples are more
informative than others, because they refer to important directors, important movies, etc. We can incorporate
this aspect into the LM by using statistical weights for different triples in order to construct a non-uniform
distribution. To this end, we consider the witnesses of a given triple: how often, on the Web or in the news, do
we see this triple. Alternatively, if we construct the RDF data collection by automatic information extraction
from Web sources, the witnesses of a triple are the distinct sources from which we have extracted the triple.
In our implementation, we issued keywords queries for each triple against a major search engine and used the
reported result sizes as estimates for witness counts. These counts are pre-computed and stored in indexes.

# Triple (ti) c(ti) PQ(ti)
t1 Ivana Baquero actedIn El laberinto del fauno 200 200/1000 = 0.2
t2 Henry Fonda actedIn C’era una volta il West 250 250/1000 = 0.25
t3 Holly Hunter actedIn The Piano 200 200/1000 = 0.2
t4 Robert Duvall actedIn Apocalypse Now 350 350/1000 = 0.35

Table 2: Triples matching ?a actedIn ?m with witness counts

Let q̂i be the set of triples which match the triple pattern qi and c(ti) be the number of witnesses of triple ti.
The probability PQ(ti) is then estimated as follows:

PQ(ti) =
c(ti)∑
t∈q̂i c(t)

For the triple pattern ?a actedIn ?m, Table 2 shows a very simple LM over four actedIn triples (smoothing over
all triples is ignored here for simplicity).

Now consider a query with two or more patterns, for example, [?x directed ?y . ?x hasWonPrize Academy Award]
asking for movies whose directors have won the Academy Award. For queries with N triple patterns, we now
define the query LM to be a probability distribution over N -tuples of triples. For tractability of both parameter
estimation and query-time computation, we assume probabilistic independence among pairs of triple patterns
and compute the entire query LM as:

PQ(T ) =
∏
i

PQ(ti)

where PQ(T ) is the probability of the N -tuple (t1, . . . , tN ) in the query LM and PQ(ti) is the probability of
triple ti. PQ(ti) is computed as previously described.

The Query LM for Keyword-Augmented Structured Queries. For estimating the query LM of keyword-
augmented queries, each triple in the RDF collection is conceptually extended by an associated keyword taken
from textual annotations or witness documents. The same triple is repeated with different words if it has multiple
words associated with it. c(ti;wk) is the number of witnesses for triple ti occurring with word wk.

We now need to compute the probability of keyword-augmented triple patterns of the form qi = q{w1, ..., wm}
where q is a simple triple pattern and wk is an associated keyword. As before, we need to estimate PQ(ti), the
probability of a triple ti in the query LM. However, since now we have a context, in the form of words w1, ..., wm,
we actually need to estimate the probability PQ(ti|w1, ..., wm). That is, the probability of the triple ti, given the
context w1, ..., wm. Assuming independence between keywords, we calculate the triple probability as
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PQ(ti|w1, ..., wm) =
m∏
k=1

[αPQ(ti|wk) + (1− α)P (ti)] (1)

where PQ(ti|wk) is the probability of ti given the single-keyword context wk, P (ti) is the smoothing component,
and the parameter α controls the influence of smoothing. Note that it is crucial to smooth the probabilities, since
otherwise PQ(ti|w1, ..., wm) = 0 if ti is not associated with at least one word wk in the context. We use uniform
smoothing (i.e, a uniform probability distribution for P (ti)). Now, let q̂i be the set of triples which match the
triple pattern q. Then,

PQ(ti|wk) =


c(ti;wk)∑
t∈q̂i

c(t;wk)
if ti ∈ q̂i

0 otherwise
(2)

The necessary count values c(ti;wk) are precomputed and stored in indexes (indexed on triple identifier and
keyword identifier).

3.3 Result LM and Ranking

For query Q with N triple patterns, let G be a result. Now, the LM of G, denoted PG, is estimated over all
N -tuples as: PG(T ) = βP (T |G) + (1 − β)P (T |C), where β is another smoothing parameter. If G is the N -
tuple T , then P (T |G) = 1, otherwise, P (T |G) = 0. For the smoothing component, probabilistic independence
is assumed: P (T |C) =

∏N
i=1 P (ti|C) where P (ti|C) is estimated given the entire corpus or data collection:

P (ti|C) = c(ti)∑
t∈KB

c(t)

Given the query and candidate-result LMs, the KL-divergence between the query LM PQ of query Q and a
result LM PG of result G is computed as follows:

KL(Q||G) =
∑
i

PQ(Ti)log
PQ(Ti)

PG(Ti)

The results are returned to the user in ascending order of KL-divergence.

4 Experimental Studies

We conducted a user study with relevance assessments collected on the Amazon Mechanical Turk platform.
Our dataset was derived from a subset of the Internet Movie Database (IMDB) and consisted of around 600,000
RDF triples. In addition, each triple was augmented with keywords derived from the data source where it was
extracted from. In particular, all the terms in the plots, tag-lines and keywords fields were extracted and stored
with each triple.

We constructed 10 structured queries and 10 keyword-augmented queries. We presented the top-10 results
for each query to 7 different evaluators who judged the results based on a 6-point scale ranging from “highly
relevant” (5) to “irrelevant” (0). To measure the ranking quality, we used the Discounted Cumulative Gain
(DCG) [7], which is a measure that takes into consideration the rank of relevant documents and allows the
incorporation of different relevance levels. Dividing the obtained DCG by the DCG of the ideal ranking we
obtained a Normalized DCG (NDCG) which accounts for the variance in performance among queries.

Table 3 shows the 10 evaluation queries and their NDCG values for the case of purely structured SPARQL
queries. On average, we achieved a high NDCG value of 0.88. Similarly, Table 4 shows the 10 keyword-
augmented SPARQL queries we used to evaluate the quality of the result ranking in the case where the queries
contained keyword conditions. The third column gives the corresponding NDCG value for each query. On
average, we obtained an NDCG value of 0.866. For both types of queries, the NDCG results are excellent (1.0
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would be perfect). Note that the keyword-augmented queries cannot be expressed at all in purely structured
form. If we dropped the keyword conditions and merely used the structural conditions, we would obtain much
weaker if not useless results.

ID SPARQL Query NDCG
1 ?a actedIn ?m . ?a hasWonPrize ?p . ?m hasWonPrize Academy Award 0.834
2 ?a hasWonPrize ?p . ?a actedIn ?m1 . ?a actedIn ?m2 0.891
3 ?d directed ?m . ?d actedIn ?m 0.901
4 ?a1 isMarriedTo ?a2 . ?a1 actedIn ?m . ?a2 actedIn ?m 0.905
5 ?d hasWonPrize Academy Award for Best Director . ?d directed ?m .

?a actedIn ?m . ?a hasWonPrize Academy Award for Best Actor 0.869
6 ?m hasGenre Comedy . ?a actedIn ?m . ?a directed ?m 0.956
7 ?m hasGenre Comedy . ?a1 actedIn ?m . ?a2 actedIn ?m 0.894
8 ?a hasWonPrize Academy Award for Best Actress. ?a actedIn ?m .

?a diedOnDate ?t 0.912
9 ?d directed ?m . ?d hasWonPrize ?p1 . ?m hasWonPrize ?p2 0.818
10 ?m1 hasGenre Family . ?m1 hasProductionYear 1995 . ?a actedIn ?m1 .

?m2 hasGenre Comedy . ?a actedIn ?m2 0.821

Table 3: NDCG for Purely Structured Queries

ID SPARQL Query NDCG
1 ?a actedIn ?m {spielberg} . ?a hasWonPrize ?p 0.745
2 ?m hasGenre Comedy {christmas} . ?a1 actedIn ?m . ?a2 actedIn ?m 0.846
3 ?a1 hasWonPrize Academy Award for Best Actor . ?a1 actedIn ?m {relationship} .

?a2 hasWonPrize Academy Award for Best Actress . ?a2 actedIn ?m {love} 0.873
4 ?d hasWonPrize Academy Award for Best Director . ?d directed ?m {new, york} .

?a actedIn ?m . ?a hasWonPrize Academy Award for Best Actor 0.872
5 ?m hasGenre Comedy {school, friends} 0.939
6 ?m hasGenre Comedy {police} . ?a actedIn ?m . ?a directed ?m 0.933
7 ?d directed ?y {true, story} . ?d hasWonPrize ?p 0.921
8 ?a hasWonPrize Academy Award for Best Actress . ?a actedIn ?m {paris} .

?a diedOnDate ?t 0.920
9 ?d directed ?m {love} . ?d hasWonPrize ?p1 . ?m hasWonPrize ?p2 0.849
10 ?m1 hasGenre Family {wedding} . ?m1 hasProductionYear 1995 . ?a actedIn ?m1 .

?m2 hasGenre Comedy {serial, killer} . ?a actedIn ?m2 0.762

Table 4: NDCG for Keyword-augmented Queries

In Table 5 we show some example purely-structured queries. For each query, the top-5 results are given.
Due to space limitations, we just show the bound entities (i.e., matches to the variables in the queries). Next to
each result, we also show the average relevance value given by the evaluators (column Rel.). Recall that each
result was given a relevance value between 0 and 5, with 5 corresponding to highly relevant results.

For Query 3 in Table 3, asking for a movie directed and acted in by the same person, the top-5 results are all
well-known movies (see Table 5). Similarly, for Query 5 in Table 3, asking for a director who won an Academy
award and directed a movie that an Academy-awarded actor acted in, we also obtain very prominent movies,
directors, and actors.

For the case of keyword-augmented SPARQL queries also, our result ranking is superior. For instance,
consider Query 2 in Table 4, asking for comedy movies about “Christmas” and their directors. The top-5 movies
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Q. ID Rank Result Rel.

3

1 Sylvester Stallone, Rambo 3.29
2 Mel Gibson, Braveheart 3.71
3 Clint Eastwood, Million Dollar Baby 3.71
4 Woody Allen, Annie Hall 3.71
5 Ben Stiller, Zoolander 4.14

5

1 Martin Scorsese, Robert De Niro, Casino 3.43
2 Milo Forman, Jack Nicholson, One Flew Over the Cuckoo’s Nest 3.29
3 William Wyler, Gregory Peck, Roman Holiday 3.29
4 Robert Zemeckis, Tom Hanks, Forrest Gump 3.00
5 Sydney Pollack, Dustin Hoffman, Tootsie 2.86

Table 5: Top-ranked results for some example purely-structured queries

Q. ID Rank Result Rel.

2

1 Miracle on 34th Street, Maureen O’Hara, Edmund Gwenn 2.86
2 Love Actually, Liam Neeson, Alan Rickman 3.14
3 Bad Santa, John Ritter, Billy Bob Thornton 2.86
4 Jingle All the Way, James Belushi, Arnold Schwarzenegger 3.29
5 Christmas in Connecticut, Sydney Greenstreet, Barbara Stanwyck 3.14

4

1 Martin Scorsese, Robert De Niro, Mean Streets 3.29
2 Elia Kazan, Marlon Brando, On the Waterfront 3.29
3 James L. Brooks, Jack Nicholson, As Good as It Gets 3.14
4 Spike Jonze, Nicolas Cage, Adaptation. 3.29
5 John Schlesinger, Dustin Hoffman, Midnight Cowboy 3.57

Table 6: Top-ranked results for some example keyword-augmented queries

(see Table 6) are all well-known comedies that have christmas as a theme. Query 4 in Table 4 asks for a director
that won an Academy award, and directed a movie that an Academy-awarded actor acted in, and in addition the
movie should be related to “New York”. The top answers, shown in Table 6, are all salient movies featuring
New York.

5 Future Directions

In our current work, the text-search conditions are limited to keywords. However, IR systems usually offer
a richer repertoire of predicates: phrase matching (i.e., several contiguous keywords), proximity search (i.e.,
several non-contiguous keywords within short distance), negated conditions (i.e., taboo words that must not
appear in a result), query expansion (i.e., adding related words that are not explicitly given in the query), and
more. Our LM-based framework is geared for this, and can compute meaningful rankings even for such richer
queries with a structured “backbone”. However, efficient indexing and query processing pose major challenges.

Personalizing and diversifying search results are also open issues in the extended-SPARQL setting. For
example, consider a question about Oscar winners from Europe. In the standard setting, we would rank people
like Bruce Willis, Anthony Hopkins, Roman Polanski, or Ingrid Bergman as top results. But suppose the user has
previously expressed strong interest in music, e.g., by browsing information on contemporary composers. Then
the personalized search result should prefer people like Ennio Morricone, Hans Zimmer, or Javier Navarrete (all
of whom won Oscars for film music). Now consider that the query should also return salient movies by these
European Oscar winners. Returning only movies with Ennio Morricone’s music on the top ranks would be rather
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monotone, even if this is the user’s favorite composer. Instead, it is highly desirable to have more diversity in
the top-ranked results.

The querying and ranking models presented in this paper have shown very good results so far. The next step
will be to extend our framework to address the above open issues.
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