
Keyword Search in Relational Databases: A Survey

Jeffrey Xu Yu, Lu Qin, Lijun Chang
Chinese University of Hong Kong

{yu,lqin,ljchang}@se.cuhk.edu.hk

1 Introduction

The integration of DB and IR provides flexible ways for users to query information in the same platform [2, 3,
5–7,28]. On one hand, the sophisticated DB facilities provided by RDBMSs assist users to query well-structured
information using SQL. On the other hand, IR techniques allow users to search unstructured information using
keywords based on scoring and ranking, and do not need users to understand any database schemas.

We survey the developments on finding structural information among tuples in an RDB using an l-keyword
query, Q, which is a set of keywords of size l, denoted as Q = {k1, k2, · · · , kl}. Here, an RDB is viewed as a
data graph GD(V,E), where V represents a set of tuples, and E represents a set of edges between tuples. An
edge exists between two tuples if at least there is a foreign key reference from one to the other. A tuple consists
of attribute values and some of them are strings or full-text. The structural information to be returned for an
l-keyword query is a set of connected structures,R, where a connected structure represents how the tuples, that
contain the required keywords, are interconnected in a database GD. R can be either all trees or all subgraphs.
When a function score(·) is given to score a structure, we can find the top-k structures instead of all structures in
GD. Such a score(·) function can be based on either the text information maintained in tuples (node weights),
or the connections among tuples (edge weights), or both.

In Section 2, we focus on supporting keyword search in an RDBMS using SQL. Since this implies making
use of the database schema information to issue SQL queries in order to find structures for an l-keyword query,
it is called the schema-based approach. The two main steps in the schema-based approach are how to generate
a set of SQL queries that can find all the structures among tuples in an RDB completely, and how to evaluate
the generated set of SQL queries efficiently. Due to the nature of set operations used in SQL and the underneath
relational algebra, a data graph GD is considered as an undirected graph by ignoring the direction of references
between tuples, and therefore a returned structure is of undirected structure (either tree or subgraph). The
existing algorithms use a parameter to control the maximum size of a structure allowed. Such a size control
parameter limits the number of SQL queries to be executed. Otherwise, the number of SQL queries to be executed
for finding all or even top-k structures is too large. The score(·) functions used to rank the structures are all
based on the text information on tuples.

In Section 3, we focus on supporting keyword search in an RDBMS from a different viewpoint, by material-
izing an RDB as a directed graph GD. Unlike an undirected graph, the fact that a tuple v can reach to another
tuple u in a directed graph does not necessarily mean that the tuple v is reachable from u. In this context, a
returned structure (either steiner tree, distinct rooted tree, r-radius steiner graph, or multi-center subgraph) is
directed. Such direction handling provides users with more information on how the tuples are interconnected.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

67

On the other hand, it requests higher computational cost to find such structures. Many graph-based algorithms
are designed to find top-k structures, where the score(·) functions used to rank the structures are mainly based
on the connections among tuples. This type of approach is called schema-free in the sense that it does not request
any database schema assistance.

2 Schema-Based Keyword Search on Relational Databases

Consider a relational database schema as a directed graph GS(V,E), called a schema graph, where V represents
the set of relation schemas {R1, R2, · · · , Rn} and E represents the set of edges between two relation schemas.
Given two relation schemas, Ri and Rj , there exists an edge in the schema graph, from Ri to Rj , denoted
Ri → Rj , if the primary key defined on Ri is referenced by the foreign key defined on Rj . There may exist
multiple edges from Ri to Rj in GS if there are different foreign keys defined on Rj referencing the primary

key defined on Ri. In such a case, Ri
X→ Rj is used, where X is the foreign key attribute names. We use

V (G) and E(G) to denote the set of nodes and the set of edges of a graph G, respectively. In a relation schema
Ri, we call an attribute, defined on strings or full-text, a text attribute, to which keyword search is allowed. A
relation on relation schema Ri is an instance of the relation schema (a set of tuples) conforming to the relation
schema, denoted r(Ri). We use Ri to denote r(Ri) if the context is obvious. A relational database (RDB) is
a collection of relations. An RDB can be viewed as a data graph GD(V,E) on the schema graph GS . Here,
V (GD) represents a set of tuples, and E(GD) represents a set of edges between tuples. There is an edge between
two tuples ti and tj in GD, if there exists a foreign key reference from ti to tj or vice versa (undirected) in the
RDB. In general, two tuples, ti and tj are reachable if there exists a sequence of connections between ti and tj
in GD. The distance dist(ti, tj) between two tuples ti and tj is defined as the minimum number of connections
between ti and tj .

An l-keyword query is given as a set of keywords of size l, Q = {k1, k2, · · · , kl}, and searches inter-
connected tuples that contain the given keywords, where a tuple contains a keyword if a text attribute of the
tuple contains the keyword. To select all tuples from a relation R that contain a keyword k1, a predicate
contain(A, k1) is supported in SQL in IBM DB2, ORACLE, and Microsoft SQL-SERVER, where A is a text
attribute in R. The following SQL query, finds all tuples in R containing k1 provided that the attributes A1 and
A2 are all and the only text attributes in relation R. We say a tuple contains a keyword, for example k1, if the
tuple is included in the result of such a selection.

select * from R where contain(A1, k1) or contain(A2, k1)

An l-keyword query returns a set of answers, where an answer is a minimal total joining network of tuples
(MTJNT) [1, 16] that is defined as follows. Given an l-keyword query and a relational database with schema
graph GS , a joining network of tuples (JNT) is a connected tree of tuples where every two adjacent tuples,
ti ∈ r(Ri) and tj ∈ r(Rj) can be joined based on the foreign key reference defined on relational schema Ri and
Rj in GS (either Ri → Rj or Rj → Ri). An MTJNT is a joining network of tuples that satisfy the following
two conditions, total and minimal. By total, each keyword in the query must be contained in at least one tuple
of the joining network. By minimal, a joining network of tuples is not total if any tuple is removed.

Because it is meaningless if two tuples in an MTJNT are too far away from each other, a size control
parameter, Tmax, is introduced to specify the maximum number of tuples allowed in an MTJNT.

Given an RDB on the schema graph GS , in order to generate all the MTJNTs for an l-keyword query, Q,
keyword relation and Candidate Network (CN) are defined as follows. A keyword relation Ri{K ′} is a subset
of relation Ri containing tuples that only contain keywords K ′(⊆ Q)) and no other keywords, as defined below:

Ri{K ′} = {t|t ∈ r(Ri) ∧ ∀k ∈ K ′, t contains k ∧ ∀k ∈ (K −K ′), t does not contain k}

68

where K is the set of keywords in Q, i.e. K = Q. K ′ can be ∅. In such a situation, Ri{} consists of tuples
that do not contain any keywords in Q and is called an empty keyword relation. A candidate network (CN) is a
connected tree of keyword relations where for every two adjacent keyword relations Ri{K1} and Rj{K2}, we
have (Ri, Rj) ∈ E(GS) or (Rj , Ri) ∈ E(GS). A candidate network must satisfy the following two conditions,
total and minimal. By total, each keyword in the query must be contained in at least one keyword relation of the
candidate network. By minimal, a candidate network is not total if any keyword relation is removed.

A CN can produce a set of (possibly empty) MTJNTs, and it corresponds to a relational algebra that joins
a sequence of relations to obtain MTJNTs over the relations involved. Given a keyword query Q and an RDB
with schema graph GS , let C = {C1, C2, · · · } be the set of all candidate networks for Q over GS , and let
T = {T1, T2, · · · } be the set of all MTJNTs for Q over the RDB. For every Ti ∈ T , there is exactly one Cj ∈ C
that produces Ti.

For an l-keyword query over an RDB, the number of MTJNTs can be very large even if Tmax is small. It is
ineffective to present users a huge number of results for a keyword query. In order to handle the effectiveness,
for each MTJNT, T , for a keyword query Q, it also allows a score function score(T,Q) defined on T in order to
rank results. A top-k keyword query retrieves k MTJNTs T = {T1, T2, ..., Tk} such that for any two MTJNTs
T and T ′ where T ∈ T and T ′ /∈ T , score(T,Q) ≤ score(T ′, Q).

Ranking issues for MTJNTs are discussed in many papers [14, 22, 23]. They aim at designing effective
ranking functions that capture both the textual information (e.g., IR-Styled ranking) and structural information
(e.g., the size of the MTJNT) for an MTJNT. There are two categories of ranking functions, namely, the attribute
level ranking function and the tree level ranking function. Given an MTJNT T and a keyword query Q, the
attribute level ranking function first assigns each text attribute for tuples in T an individual score and then
combines them together to get the final score [14, 22]. In other words, in the attribute level ranking functions,
each text attribute of an MTJNT is considered as a virtual document. Tree level ranking functions consider the
whole MTJNT as a virtual document rather than each individual text attribute [23].

In the framework of RDBMS, the two main steps of processing an l-keyword query are candidate network
generation and candidate network evaluation.

1. Candidate Network Generation: In the candidate network generation step, a set of candidate net-
works C = {C1, C2, · · · } is generated over a graph schema GS . The set of CNs shall be complete and
duplication-free. The former ensures that all MTJNTs are found, and the latter is mainly for efficiency
consideration.

2. Candidate Network Evaluation: In the candidate network evaluation step, all Ci ∈ C are evaluated.

We will introduce the two steps one by one in the next two sections.

2.1 Candidate Network Generation

In order to generate all candidate networks for an l-keyword query Q over an RDB with schema graph GS , algo-
rithms are designed to generate candidate networks C = {C1, C2, ...} that satisfy the following two conditions:

• Complete: For each solution T of the keyword query, there exists a candidate network Ci ∈ C that can
produce T .

• Duplication-Free: For every two CNs Ci ∈ C and Cj ∈ C, Ci and Cj are not isomorphic to each other.

The complete and duplication-free conditions ensure that (1) all results (MTJNTs) for a keyword query will
be produced by the set of CNs generated (due to completeness); and (2) any result T for a keyword query will
be produced only once, i.e., there does not exist two CNs Ci ∈ C and Cj ∈ C such that Ci and Cj both produce
T (due to the duplication-free condition).

The first algorithm to generate all CNs was proposed in DISCOVER [16]. It expands the partial CNs gener-
ated to larger partial CNs until all CNs are generated. As the number of partial CNs can be exponentially large,

69

arbitrarily expanding will make the algorithm extremely inefficient. In DISCOVER [16], there are three pruning
rules for partial CNs.

• Rule-1: Duplicated CNs are pruned (based on tree isomorphism).

• Rule-2: A CN can be pruned if it contains all the keywords and there is a leaf node, Rj{K ′}, where
K ′ = ∅, because it will generate results that do not satisfy the condition of minimality.

• Rule-3: When there only exists a single foreign key reference between two relation schemas (for example,
Ri → Rj), CNs including Ri{K1} → Rj{K2} ← Ri{K3} will be pruned, where K1, K2, and K3 are
three subsets of Q, and Ri{K1}, Rj{K2}, and Ri{K3} are keyword relations.

The Rule-3 reflects the fact that the primary key defined on Ri and a tuple in the relation of Rj{K2} must refer
to the same tuple appearing in both relations Ri{K1} and Ri{K3}. As the same tuple cannot appear in two
sub-relations in a CN (otherwise, it will not produce a valid MTJNT because the minimal condition will not be
satisfied), the join results for Ri{K1} → Rj{K2} ← Ri{K3} will not contain any valid MTJNT.

The algorithm in [16] can generate a complete and duplication-free set of CNs, but the cost of generating
the set of CNs is high. S-KWS [24] proposes an algorithm (1) to reduce the number of partial results generated
by expanding from part of the nodes in a partial tree and (2) to avoid isomorphism testing by assigning a proper
expansion order.

2.2 Candidate Network Evaluation

After generating all candidate networks (CNs) in the first phase, the second phase is to evaluate all candidate
networks in order to get the final results. DBXplorer [1], DISCOVER [16], S-KWS [24], KDynamic [27] and
KRDBMS [25] compute all MTJNTs upon the set of CNs generated by specifying a proper execution plan.
DISCOVER-II [14] and SPARK [23] compute top-k MTJNTs.

2.2.1 Getting all MTJNTs in a relational database

In RDBMS, the problem of evaluating all CNs in order to get all MTJNTs is a multi-query optimization problem.
There are two main issues: (1) How to share common subexpressions among CNs generated in order to reduce
computational cost when evaluating. (2) How to find a proper join order to fast evaluate all CNs. For a keyword
query, the number of CNs generated can be very large. Given a large number of joins, it is extremely difficult to
obtain an optimal query processing plan, because one best plan for a CN may slow down others, if its subtrees
are shared by other CNs. As studied in DISCOVER [16], finding the optimal execution plan is an NP-complete
problem.

In DISCOVER [16], an algorithm is proposed to evaluate all CNs together using a greedy algorithm based
on the following observations: (1) subexpressions that are shared by most CNs should be evaluated first; and (2)
subexpressions that may generate the smallest number of results should be evaluated first. In S-KWS [24], in
order to share the computational cost of evaluating all CNs, Markowetz et al. construct an operator mesh. In a
mesh, there are n · 2l−1 clusters, where n is the number of relations in the schema graph GS and l is the number
of keywords. A cluster consists of a set of operator trees (left-deep trees) that share common expressions. When
evaluating all CNs in a mesh, a projected relation with the smallest number of tuples is selected to start and to
join. In KDynamic [27], a L-Lattice is introduced to share computational cost among CNs. Given a set of CNs,
C, it defines the root of each CN to be the node r such that the maximum length of the path from r to all leaf
nodes of the CN is minimized. There are three main differences between the Mesh and the L-Lattice. (1) The
maximum depth of a Mesh is Tmax − 1 and the maximum depth of an L-Lattice is ⌊Tmax/2 + 1⌋. (2) In a
mesh, only the left part of two CNs can be shared (except for the leaf nodes), while in an L-Lattice multiple
parts of two CNs can be shared. (3) The number of leaf nodes in a mesh is O((|V (GS)| · 2l)2) because there

70

are O(|V (GS)| · 2l) clusters in a mesh and each cluster may contain O(|V (GS)| · 2l) leaf nodes. The number of
leaf nodes in an L-Lattice is O(2l).

After sharing computational cost using either the Mesh or the L-Lattice, all CNs are evaluated using joins
in DISCOVER or S-KWS. In KRDBMS [25], the authors observe that evaluating all CNs using only joins may
always generate a large number of temporary tuples. They propose to use semijoin/join sequences to evaluate a
CN.

Besides evaluating all CNs in a static environment, S-KWS and KDynamic focus on monitoring all MTJNTs
in a relational data stream, where tuples can be inserted/deleted frequently. In this situation, it is necessary to
find new MTJNTs or expire MTJNTs in order to monitor events that are implicitly interrelated over an open-
ended relational data stream for a user-given l-keyword query. In other words, it reports new MTJNTs when
new tuples are inserted, and, in addition, reports the MTJNTs that become invalid when tuples are deleted. A
sliding window (time interval), W , is specified. A tuple, t, has a lifespan from its insertion into the window
at time t.start to W + t.start − 1, if t is not deleted before then. Two tuples can be joined if their lifespans
overlap.

2.2.2 Getting top-k MTJNTs in a relational database

A naive approach to answer the top-k keyword queries is to first generate all MTJNTs using the algorithms
proposed in Section 2.2.1, and then calculate the score for each MTJNT, and finally output the top-k MTJNTs
with the highest scores. In DISCOVER-II [14] and SPARK [23], several algorithms are proposed to get top-k
MTJNTs efficiently. The aim of all the algorithms is to find a proper order of generating MTJNTs in order to
stop early before all MTJNTs are generated.

In DISCOVER-II, three algorithms are proposed to get top-k MTJNTs, namely, the Sparse algorithm, the
Single-Pipelined algorithm, and the Global-Pipelined algorithm. All algorithms are based on the attribute level
ranking function, which has the property of tuple monotonicity, defined as follows. For any two MTJNTs
T = t1 on t2 on ... on tl and T ′ = t′1 on t′2 on ... on t′l generated from the same CN C, if for any 1 ≤ i ≤ l,
score(ti, Q) ≤ score(t′i, Q), then we have score(T,Q) ≤ score(T ′, Q). With the tuple monotonicity, the
algorithms are designed to stop early where possible.

In SPARK [23], the authors study the tree level ranking function which does not satisfy tuple monotonicity.
In order to handle such non-monotonic score functions, a new monotonic upper bound function is introduced.
The intuition behind the upper bound function is that, if the upper bound score is already smaller than the score
of a certain result, then all the upper bound scores of unseen tuples will be smaller than the score of this result
due to the monotonicity of the upper bound function. Two new algorithms are proposed in SPARK: Skyline-
Sweeping and Block-Pipelined.

2.3 Other Keyword Search Semantics

In the above discussions, for an l-keyword query on an RDB, each result is an MTJNT. This is referred to as
the connected tree semantics. There are two other semantics to answer an l-keyword query on an RDB, namely
distinct root semantics and distinct core semantics.

Distinct Root Semantics: An l-keyword query finds a collection of tuples that contain all the keywords and that
are reachable from a root tuple (center) within a user-given distance (Dmax). The distinct root semantics implies
that the same root tuple determines the tuples uniquely [9,13,15,21,25]. Suppose that there is a result rooted at
tuple tr. For any of the l keywords, say ki, there is a tuple t in the result that satisfies the following conditions:
(1) t contains keyword ki, (2) among all tuples that contain ki, the distance between t and tr is minimum1, and
(3) the minimum distance between t and tr must be less than or equal to a user given parameter Dmax.

1If there is a tie, then a tuple is selected with a predefined order among tuples in practice.

71

Distinct Core Semantics: An l-keyword query finds multi-center subgraphs, called communities [25]. A com-
munity, Ci(V,E), is specified as follows. V is a union of three subsets of tuples, V = Vc∪Vk∪Vp, where, Vk is a
set of keyword-tuples where a keyword-tuple vk ∈ Vk contains at least a keyword and all l keywords in the given
l-keyword query must appear in at least one keyword-tuple in Vk; Vc is a set of center-tuples where there exists
at least a sequence of connections between vc ∈ Vc and every vk ∈ Vk such that dist(vc, vk) ≤ Dmax; and Vp is
a set of path-tuples that appear on a shortest sequence of connections from a center-tuple vc ∈ Vc to a keyword-
tuple vk ∈ Vk if dist(vc, vk) ≤ Dmax. Note that a tuple may serve several roles as keyword/center/path tuples
in a community. E is a set of connections for every pair of tuples in V if they are connected over shortest paths
from nodes in Vc to nodes in Vk. A community, Ci, is uniquely determined by the set of keyword tuples, Vk,
which is called the core of the community, and denoted as core(Ci).

In [25], the authors showed tuple-reduction approaches to process different semantics using SQL in RDBMSs.

3 Graph-Based Keyword Search

A data graph GD can be considered as materialization of an RDB. In this section, we show how to answer
keyword queries using graph algorithms. We consider a weighted directed graph in this section, GD(V,E).
Weights are assigned to edges to reflect the (directional) proximity of the corresponding tuples, denoted as
we(⟨u, v⟩). A commonly used weighting scheme [4,10] is as follows. For a foreign key reference from tu to tv,
the weight for the directed edge ⟨u, v⟩ is given as Eq. 4, and the weight for the backward edge ⟨v, u⟩ is given as
Eq. 5.

we(⟨u, v⟩) = 1 (4)

we(⟨v, u⟩) = log2(1 +Nin(v)) (5)

where Nin(v) is the number of tuples that refer to tv, which is the tuple corresponding to node v. Nodes can
have weights. But, because the algorithms that deal with edge-weighted graphs can be easily modified to handle
additional node-weights, below we assume that only edges have weights. We denote the number of nodes and
the number of edges in graph, GD, using n = |V (GD)| and m = |E(GD)|.

There are different structures of tuples to be returned: (1) a reduced tree that contains all the keywords, that
we refer to as tree-based semantics; (2) a subgraph, such as r-radius steiner graph [21], and multi-center induced
graph [26], we call this subgraph-based semantics. In the following, we focus the tree-based semantics, and we
will discuss the subgraph-based semantics in Section 3.3.

In the tree-based semantics, an answer to Q (called a Q-SUBTREE) is defined as any subtree T of GD that
is reduced with respect to Q. Formally, there exists a sequence of l nodes in T , ⟨v1, · · · , vl⟩ where vi ∈ V (T)
and vi contains keyword term ki for 1 ≤ i ≤ l, such that the leaves of T can only come from those nodes,
i.e. leaves(T) ⊆ {v1, v2, · · · , vl}, the root of T should also be from those nodes if it has only one child, i.e.
root(T) ∈ {v1, v2, · · · , vl}.

The Q-SUBTREE is popularly used to describe answers to keyword queries. Two different weight functions
are proposed in the literature to rank Q-SUBTREEs in increasing weight order, and two semantics are proposed
based on the two weight functions, namely steiner tree-based semantics, and distinct root-based semantics.

Steiner Tree-Based Semantics: In this semantics, the weight of a Q-SUBTREE is defined as the total weight of
the edges in the tree; formally,

w(T) =
∑

⟨u,v⟩∈E(T)

we(⟨u, v⟩) (6)

where E(T) is the set of edges in T . The l-keyword query finds all (or top-k) Q-SUBTREEs in weight increasing
order, where the weight denotes the cost to connect the l keywords. Under this semantics, finding the Q-
SUBTREE with the smallest weight is the well-known optimal steiner tree problem which is NP-complete [11].

72

Distinct Root-Based Semantics: Since the problem of keyword search under the steiner tree-based semantics
is generally a hard problem, many works resort to easier semantics. Under the distinct root-based semantics, the
weight of a Q-SUBTREE is the sum of the shortest distance from the root to each keyword node; more precisely,

w(T) =
l∑

i=1

dist(root(T), ki) (7)

where root(T) is the root of T , dist(root(T), ki) is the shortest distance from the root to the keyword node ki.
There are two differences between the two semantics. First is the weight function as shown above. The other

difference is the total number of Q-SUBTREEs for a keyword query. In theory, there can be exponentially many
Q-SUBTREEs under the steiner tree semantics, i.e., O(2m) where m is the number of edges in GD. But, under
the distinct root semantics, there can be at most n, which is the number of nodes in GD, Q-SUBTREEs, i.e. zero
or one Q-SUBTREE rooted at each node v ∈ V (GD). The potential Q-SUBTREE rooted at v is the union of the
shortest path from v to each keyword node ki.

3.1 Steiner Tree-Based Keyword Search

In this section, we show three categories of algorithms under the steiner tree-based semantics. First is the
backward search algorithm, where the first tree returned is an l-approximation of the optimal steiner tree. Second
is a dynamic programming approach, which finds the optimal (top-1) steiner tree in time O(3ln + 2l((l +
log n)n+m)). Third is enumeration algorithms with polynomial delay.

3.1.1 Backward Search

BANKS-I [4] enumerates Q-SUBTREEs using a backward search algorithm searching backwards from the nodes
that contain keywords. Given a set of l keywords, they first find the set of nodes that contain keywords, Si, for
each keyword term ki, i.e. Si is exactly the set of nodes in V (GD) that contain the keyword term ki. This
step can be accomplished efficiently using an inverted list index. Let S =

∪l
i=1 Si. Then, the backward search

algorithm concurrently runs |S| copies of Dijkstra’s single source shortest path algorithm, one for each keyword
node v in S with node v as the source. The |S| copies of Dijkstra’s algorithm run concurrently using iterators.
All the Dijkstra’s single source shortest path algorithms traverse graph GD in reverse direction. When an iterator
for keyword node v visits a node u, it finds a shortest path from u to the keyword node v. The idea of concurrent
backward search is to find a common node from which there exists a shortest path to at least one node in each
set Si. Such paths will define a rooted directed tree with the common node as the root and the corresponding
keyword nodes as the leaves.

The connected trees computed by BANKS-I are approximately sorted in increasing weight order. Comput-
ing all the connected trees followed by sorting would increase the computation time and also lead to a greatly
increased time to output the first result. A fixed-size heap is maintained as a buffer for the computed connected
trees. Newly computed trees are added into the heap. Whenever the heap is full, the top result tree is output and
removed. With BANKS-I, the first Q-SUBTREE output is an l-approximation of the optimal steiner tree, and
the Q-SUBTREEs are computed in increasing height order. The Q-SUBTREEs computed by BANKS-I is not
complete, as BANKS-I only considers the shortest path from the root of a tree to nodes containing keywords.

3.1.2 Dynamic Programming

Although finding the optimal steiner tree (top-1 Q-SUBTREE under the steiner tree-based semantics) or group
steiner tree is NP-complete in general, there are efficient algorithms to find the optimal steiner tree for l-keyword
queries [10,19], because l is small. The algorithm [10] solves the group steiner tree problem. Note that the group
steiner tree in a directed (or undirected) graph can be transformed into steiner tree problem in directed graph.

73

Let k,k1,k2 denote a non-empty subset of the keyword nodes {k1, · · · , kl}. Let T (v,k) denote the tree
with the minimum weight (called it optimal tree) among all the trees rooted at v and containing all the keyword
nodes in k. We can find the optimal tree T (v,k) for each v ∈ V (GD) and k ⊆ Q. Initially, for each keyword
node ki, T (ki, {ki}) is a single node tree consisting of the keyword node ki with tree weight 0. For a general
case, the T (v,k) can be computed by the following equations.

T (v,k) = min(Tg(v,k), Tm(v,k)) (8)

Tg(v,k) = min
⟨v,u⟩∈E(GD)

{⟨v, u⟩ ⊕ T (u,k)} (9)

Tm(g,k1 ∪ k2) = min
k1∩k2=∅

{T (v,k1)⊕ T (v,k2)} (10)

Here, min means to choose the tree with minimum weight from all the trees in the argument. Note that, T (v,k)
may not exist for some v and k, which reflects that node v can not reach some of the keyword nodes in k, then
T (v,k) = ⊥ with weight∞. Tg(v,k) reflects the tree grow case, and Tm(v,k) reflects the tree merge case. An
algorithm called DPBF for Best-First Dynamic Programming is proposed in [10]. Consider a graph GD with n
nodes and m edges, DPBF finds the optimal steiner three containing all the keywords in Q = {k1, · · · , kl}, in
time O(3ln+ 2l((l + n) log n+m)) [10].

DPBF can be modified slightly to output k steiner trees in increasing weight order, denoted as DPBF-k, by
terminating DPBF after finding k steiner trees that contain all the keywords.

3.1.3 Enumerating Q-SUBTREEs with Polynomial Delay

Although BANKS-I can find an l-approximation of the optimal Q-SUBTREE and DPBF can find the optimal
Q-SUBTREE, the non-first results returned by these algorithms can not guarantee their quality (or approximation
ratio), and the delay between consecutive results can be very large. In [12, 18], the authors show three algo-
rithms to enumerate Q-SUBTREEs in increasing (or θ-approximate increasing) weight order with polynomial
delay: (1) an enumeration algorithm enumerates Q-SUBTREEs in increasing weight order with polynomial de-
lay under the data complexity, (2) an enumeration algorithm enumerates Q-SUBTREEs in (θ + 1)-approximate
weight order with polynomial delay under data-and-query complexity, (3) an enumeration algorithm enumer-
ates Q-SUBTREEs in 2-approximate height order with polynomial delay under data-and-query complexity. The
algorithms are adaption of the Lawler’s procedure [20] to enumerate Q-SUBTREEs in rank order.

3.2 Distinct Root-Based Keyword Search

In this section, we show approaches to find Q-SUBTREEs using the distinct root semantics, where the weight of a
tree is defined as the sum of the shortest distance from the root to each keyword node. As shown in the previous
section, the problem of keyword search under the directed steiner tree is, in general, a hard problem. Using the
distinct root semantics, there can be at most n Q-SUBTREEs for a keyword query, and in the worst case, all the
Q-SUBTREEs can be found in time O(l(n logn+m)). The approaches introduced in this section deal with very
large graphs in general, and they propose search strategies or indexing schemes to reduce the search time for an
online keyword query.

3.2.1 Bidirectional Search

BANKS-I algorithm can be directly applied to the distinct root semantics. It would explore an unnecessarily
large number of nodes in the following two scenarios. First, the query contains a frequently occurring keyword.
In BANKS-I, one iterator is associated with each keyword node. The algorithm would generate a large number
of iterators if a keyword matches a large number of nodes. Second, an iterator reaches a node with large fan-in

74

(incoming edges). An iterator may need to explore a large number of nodes if it hits a node with a very large fan-
in. BANKS-II [17] is proposed to overcome the drawbacks of BANKS-I. The main idea of bidirectional search
is to start forward searches from potential roots. The main differences of bidirectional search from BANKS-I
are as follows. First, all the single source shortest path iterators from the BANKS-I algorithm are merged into
a single iterator, called the incoming iterator. Second, an outgoing iterator runs concurrently, which follows
forwarding edges starting from all the nodes explored by the incoming iterator. Third, spreading activation is
proposed to prioritize the search, which chooses incoming iterator or outgoing iterator to be called next. It also
chooses the next node to be visited in the incoming iterator or outgoing iterator.

3.2.2 Bi-level Indexing

BLINKS [13] is proposed as a bi-level index to speed up BANKS-II, as no index (except the keyword-node
index) is used in BANKS-II. A naive index precomputes and indexes all the distances from the nodes to key-
words, but this will incur very large index size, as the number of distinct keywords is in the order of the size of
the data graph GD. A bi-level index can be built by first partitioning graph, and then building intra-block index
and block index. Two node-based partitioning methods are proposed to partition a graph into blocks, namely,
BFS-Based Partitioning, and METIS-Based Partitioning.

In [13], in a node-based partitioning of a graph, a node separator is called a portal node (or portal). A block
consists of all nodes in a partition as well as all portals incident to the partition. For a block, a portal can be
either “in-portal”, “out-portal”, or both. A portal is called in-portal if it has at least one incoming edge from
another block and at least one outgoing edge in this block. And a portal is called out-portal if it has at least one
outgoing edge to another block and at least one incoming edge from this block.

For each block b, the intra-block index (IB-index) is built.
In BLINKS [13], a priority queue Qi of cursors is created for each keyword term ki to simulate Dijkstra’s

algorithm by utilizing the distance information stored in the IB-index. Initially, for each keyword ki, all the
blocks that contain it are found by the keyword-block list, and a cursor is created to scan each intra-block
keyword-node list and put in queue Qi. When an in-portal u is visited, all the blocks that have u as their
out-portal need to be expanded, because a shorter path may cross several blocks.

3.2.3 External Memory Data Graph

Dalvi et al. study keyword search on graphs where the graph GD can not fit into main memory [9]. They build a
much smaller supernode graph on top of GD that can resident in main memory. The supernode graph is defined
as follows:

• SuperNode: The graph GD is partitioned into components by a clustering algorithm, and each cluster is
represented by a node called the supernode in the top-level graph. Each supernode thus contains a subset
of V (GD), and the contained nodes (nodes in GD) are called innernodes.

• SuperEdge: The edges between the supernodes called superedges are constructed as follows: if there is
at least one edge from an innernode of supernode s1 to an innernode of supernode s2, then there exists a
superedge from s1 to s2.

A supernode graph is constructed that fits into main memory, where each supernode has a fixed number of
innernodes and is stored on disk.

A multi-granular graph is used to exploit information presented in lower-level nodes (innernodes) that are
cache-resident at the time a query is executed. A multi-granular graph is a hybrid graph that contains both
supernodes and innernodes. A supernode is present either in expanded form, i.e., all its innernodes along with
their adjacency lists are present in the cache, or in unexpanded form, i.e., its innernodes are not in the cache.

75

The innernodes and their adjacency lists are handled in the unit of supernodes, i.e. either all or none of the
innernodes of a supernode are presented in the cache.

When searching the multi-granular graph, the answers generated may contain supernodes, called supernode
answer. If an answer does not contain any supernodes, it is called pure answer. The final answer returned to
users must be pure answer. The Iterative Expansion Search algorithm (IES) [9] is a multi-stage algorithm that is
applicable to multi-granular graphs. Each iteration of IES can be broken up into two phases.

• Explore phase: Run an in-memory search algorithm on the current state of the multi-granular graph. The
multi-granular graph is entirely in memory, whereas the supernode graph is stored in main memory, and
details of expanded supernodes are stored in cache. When the search reaches an expanded supernode, it
searches on the corresponding innernodes in cache.

• Expand phase: Expand the supernodes found in top-n (n > k) results of the previous phase and add them
to input graph to produce an expanded multi-granular graph, by loading all the corresponding innernodes
into cache.

The graph produced at the end of Expand phase of iteration i acts as the graph for iteration i+1. The algorithm
stops when all top-k results are pure.

3.3 Subgraph-Based Keyword Search

The previous sections define the answer of a keyword query as Q-SUBTREE, which is a directed subtree. We
show two subgraph-based notions of answer definition for a keyword query in the following, namely, r-radius
steiner graph, and multi-center induced graph.

3.3.1 r-radius steiner graph

Li et al. in [21] define the result of an l-keyword query as an r-radius steiner subgraph. The graph is unweighted
and undirected, and the length of a path is defined as the number of edges in it. The definition of r-radius steiner
graph is based on centric distance and radius. The centric distance of v in G, denoted as CD(v), is the maximum
among the shortest distances between v and any node u ∈ V (G), i.e. CD(v) = maxu∈V (G) dist(u, v). The
radius of a graph G, denoted as R(G), is the minimum value among the centric distances of every node in G,
i.e. R(G) = minv∈V (G)CD(v). G is called an r-radius graph if its radius is exactly r.

Given an r-radius graph G and a keyword query Q, node v in G is called a content node if it contains some
of the input keywords. Node s is called steiner node if there exist two content nodes, u and v, and s in on the
simple path between u and v. The subgraph of G composed of the steiner nodes and associated edges is called
an r-radius steiner graph (SG). The radius of an r-radius steiner graph can be smaller than r.

The result of an l-keyword query, with a given radius, is a set of r-radius steiner graphs. The approaches to
find r-radius steiner graphs are based on finding r-radius subgraphs using the adjacency matrix, M = (mij)n×n,
with respect to GD, which is a n×n Boolean matrix. An element mij is 1, if and only if there is an edge between
vi and vj , mii is 1 for all i. M r = M ×M · · · ×M = (mij)n×n is the r-th power of adjacency matrix M . An
element mr

ij is 1, if and only if the shortest path between vi and vj is less than or equal to r. N r
i = {vj |mr

ij = 1}
is the set of nodes that have a path to vi with distance no larger than r. Gr

i denotes the subgraph induced by the
node set N r

i . We use Gi EGj to denote that Gi is a subgraph of Gj . The r-radius subgraph is defined based on
Gr

i ’s. The following lemma is used to find all the r-radius subgraphs [21].

Lemma 1: [21] Given a graph G, with R(G) ≥ r > 1, ∀i, 1 ≤ i ≤ |V (G)|, Gr
i is an r-radius subgraph, if,

∀vk ∈ N r
i , N r

i * N r−1
k .

76

Note that, the above lemma is a sufficient condition for identifying r-radius subgraphs, but not a necessary
condition. [21] only considers n = |V (G)| subgraphs, each is uniquely determined by one node in G.

An r-radius subgraph Gr
i is maximal if and only if there is no other r-radius subgraph Gr

j that is a super graph
of Gr

i , i.e. Gr
i E Gr

j . [21] considers those maximal r-radius subgraphs Gr
i as the subgraphs that will generate

r-radius steiner subgraphs. All these maximal r-radius subgraphs Gr
i are found, which can be pre-computed and

indexed on the disk, because these maximal r-radius graph are query independent.

3.3.2 Multi-Center Induced Graph

In contrast to tree-based results that are single-center (root) induced trees, query answers can be multi-centered
induced subgraphs of GD. These are referred to as communities [26]. The nodes of a community R(V,E),
V (R) is a union of three subsets, V = Vc ∪ Vl ∪ Vp, where Vl represents a set of keyword nodes (knode), Vc

represents a set of center nodes (cnode) (for every cnode vc ∈ Vc, there exists at least a single path such that
dist(vc, vl) ≤ Rmax for any vl ∈ Vl, where Rmax is introduced to control the size of a community), and Vp

represents a set path nodes (pnode) that include all the nodes that appear on any path from a cnode vc ∈ Vc to a
knode vl ∈ Vl with dist(vc, vl) ≤ Rmax. E(R) is the set of edges induced by V (R).

A community, R, is uniquely determined by the set of knodes, Vl, which is called the core of the community.
The weight of a community R, w(R) is defined as the minimum value among the total edge weights from a
cnode to every knode; more precisely,

w(R) = min
vc∈Vc

∑
vl∈Vl

dist(vc, vl). (11)

Algorithms are proposed in [26] to compute communities by adopting the Lawler’s procedure [20].

4 Conclusion Remarks

In this article, we surveyed some main results on finding structural information in an RDB for an l-keyword
query. The current work focus on identifying primitive structures as answers and efficiently computing all and/or
top-k of such answers. One future work is how to compute more general structural information by making use
of the primitive structures. More information can be found in [5, 7, 28].

Acknowledgment: We acknowledge the support of our research on keyword search by the grant of the Research
Grants Council of the Hong Kong SAR, China, No. 419109.

References
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational databases. In

Proc. 18th Int. Conf. on Data Engineering, pages 5–16, 2002.

[2] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and G. Weikum. Report on the db/ir panel at sigmod
2005. SIGMOD Record, 34(4):71–74, 2005.

[3] S. Amer-Yahia and J. Shanmugasundaram. Xml full-text search: Challenges and opportunities. In Proc. 31st Int.
Conf. on Very Large Data Bases, page 1368, 2005.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In Proc. 18th Int. Conf. on Data Engineering, pages 431–440, 2002.

[5] S. Chaudhuri and G. Das. Keyword querying and ranking in databases. Proc. of the VLDB Endowment, 2(2):1658–
1659, 2009.

77

[6] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating db and ir technologies: What is the sound of one hand
clapping? In Proc. of CIDR’05, 2005.

[7] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on structured and semi-structured data. In Proc. 2009 ACM
SIGMOD Int. Conf. On Management of Data, pages 1005–1010, 2009.

[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2001.

[9] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on external memory data graphs. Proc. of the VLDB
Endowment, 1(1):1189–1204, 2008.

[10] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost connected trees in databases. In
Proc. 23rd Int. Conf. on Data Engineering, pages 836–845, 2007.

[11] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. In Networks, 1972.

[12] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in complex data graphs. In Proc. 2008 ACM
SIGMOD Int. Conf. On Management of Data, pages 927–940, 2008.

[13] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In Proc. 2007 ACM SIGMOD
Int. Conf. On Management of Data, pages 305–316, 2007.

[14] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style keyword search over relational databases. In
Proc. 29th Int. Conf. on Very Large Data Bases, pages 850–861, 2003.

[15] V. Hristidis, H. Hwang, and Y. Papakonstantinou. Authority-based keyword search in databases. ACM Trans.
Database Syst., 33(1), 2008.

[16] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational databases. In Proc. 28th Int. Conf.
on Very Large Data Bases, pages 670–681, 2002.

[17] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 505–516, 2005.

[18] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword proximity search. In Proc. 25th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 173–182, 2006.

[19] B. Kimelfeld and Y. Sagiv. New algorithms for computing steiner trees for a fixed number of terminals. In
http://www.cs.huji.ac.il/ bennyk/papers/steiner06.pdf, 2006.

[20] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization problems and its application to
the shortest path problem. Management Science, 18(7), 1972.

[21] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In Proc. 2008 ACM SIGMOD Int. Conf. On Management of Data, pages 903–
914, 2008.

[22] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational databases. In Proc. 2006 ACM
SIGMOD Int. Conf. On Management of Data, pages 563–574, 2006.

[23] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in relational databases. In Proc. 2007 ACM
SIGMOD Int. Conf. On Management of Data, pages 115–126, 2007.

[24] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on relational data streams. In Proc. 2007 ACM SIGMOD
Int. Conf. On Management of Data, pages 605–616, 2007.

[25] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases: The power of rdbms. In Proc. 2009 ACM SIGMOD
Int. Conf. On Management of Data, pages 681–694, 2009.

[26] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying communities in relational databases. In Proc. 25th Int. Conf. on
Data Engineering, pages 724–735, 2009.

[27] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Scalable keyword search on large data streams. In Proc. 25th Int. Conf. on
Data Engineering, pages 1199–1202, 2009.

[28] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Morgan & Claypool, 2010.

78

