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Abstract

Consider a universe of tokens, each of which is associated with a weight, and a database consisting of
strings that can be represented as subsets of these tokens. Given a query string, also represented as a
set of tokens, a weighted string similarity query identifies all strings in the database whose similarity
to the query is larger than a user specified threshold. Weighted string similarity queries are useful
in applications like data cleaning and integration for finding approximate matches in the presence of
typographical mistakes, multiple formatting conventions, data transformation errors, etc. We show that
this problem has semantic properties that can be exploited to design index structures that support very
efficient algorithms for query answering.

1 Introduction

Arguably, one of the most important primitive data types in modern data processing is strings. Short strings
comprise the largest percentage of data in relational database systems, long strings are used to represent protein
and DNA sequences in biological applications, as well as HTML and XML documents on the web. Searching
through string datasets is a fundamental operation in almost every application domain, for example SQL query
processing, information retrieval, genome research, product search in eCommerce applications, and local busi-
ness search on online maps. Hence, a plethora of specialized indexes, algorithms, and techniques have been
developed for searching through strings.

Due to the complexity of collecting, storing and managing strings, string datasets almost always contain
representational inconsistencies due to typographical mistakes, multiple formatting conventions, data transfor-
mation errors, etc. Most importantly, string keyword queries more often than not contain errors as well. Even
though exact string matching has been studied extensively in the past and a variety of efficient string searching
algorithms have been developed, it is clear that approximate string matching (based on some notion of string
similarity) is fundamental for retrieving the most relevant results for a given query, and ultimately improving
user satisfaction. For that purpose, various string similarity functions have been proposed in the literature.

This article discusses indexing techniques and algorithms based on inverted indexes and a variety of weighted
set-based string similarity functions, that can be used for efficiently answering all-match selection queries, i.e.,
queries which ask for all data strings whose similarity with the query string is larger than a user specified
threshold.
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2 Set-Based Similarity

Set-based similarity decomposes strings into sets of tokens (such as words or n-grams) using a variety of tok-
enization methods and evaluates similarity of strings with respect to the similarity of their sets. A variety of set
similarity functions can be used for this purpose, all of which have a similar flavor: each set element (or token)
is assigned a weight and the similarity between the sets is computed as a weighted function of the tokens in each
of the sets and in their intersection. The application characteristics heavily influence the tokens to extract, the
token weights, and the similarity function used.

2.1 Similarity Functions

Strings are modeled as sets of tokens from a known token set Λ. Let s = {a1, a2, . . . , an}, ai ∈ Λ be a string
consisting of n tokens. Let W : Λ → R+ be a function that assigns a positive real weight value to each token.
A simple function to evaluate the similarity between two strings is the weighted intersection of their token sets.

Definition 1 (Weighted Intersection on Sets): Let s = {a1, . . . , an}, r = {b1, . . . , bm}, ai, bi ∈ Λ be two sets
of tokens. The weighted intersection of s and r is defined as I(s, r) =

∑
a∈s∩r W (a).

The definition above does not take into account the weight or number of tokens that the two strings do not
have in common. In some applications, the strings are required to have similar lengths (i.e., similar number of
tokens or similar total token weight). One could use various forms of normalization to address this issue.

Definition 2 (Normalized Weighted Intersection, Jaccard Similarity, Dice Similarity, Cosine Similarity): Let
s = {a1, . . . , an}, r = {b1, . . . , bm}, ai, bi ∈ Λ be two sets of tokens. Let ∥s∥1 =

∑n
i=1W (ai) (i.e., the L1-

norm), and ∥s∥2 =
√∑n

i=1W (ai)2 (i.e., the L2-norm).
The normalized weighted intersection of s and r is defined as N (s, r) = ∥s∩r∥1

max(∥s∥1,∥r∥1) .

The Jaccard similarity of s and r is defined as J (s, r) = ∥s∩r∥1
∥s∪r∥1 = ∥s∩r∥1

∥s|1+|r|1−|s∩r∥1 .

The Dice similarity of s and r is defined as mathcalD(s, r) = 2∥s∩r∥1
∥s∥1+∥r∥1 .

The Cosine similarity of s and r is defined as: C(s, r) = [∥s∩r∥2]2
∥s∥2∗∥r∥2 .

Clearly, Normalized Weighted Intersection, Jaccard, Dice and Cosine similarity are strongly related in a
sense that they normalize the similarity with respect to the weights of the token sets, and result in a similarity
value between 0 and 1. The similarity is minimized (i.e., equal to 0) only if the two sets share no tokens in
common, and is maximized (i.e., equal to one) only if the two sets are the same. In general, the larger the weight
of the tokens that the two strings do not have in common, the smaller is their similarity. Which function works
better depends heavily on application and data characteristics.

2.2 Token Weights

An important consideration for weighted similarity functions is the token weighting scheme used. The simplest
weighting scheme is to use unit weights for all tokens. A more meaningful weighting scheme though, should
assign larger weights to tokens that carry more information content. As usual, the information content of a token
is application and data dependent. For example, a specific sequence of phonemes might be very rare in the
English language but a common sequence in Greek. A commonly used weighting scheme for text processing is
based on inverse document frequency weights.

Definition 3 (Inverse Document Frequency Weight): Consider a set of strings D and a universe of tokens Λ.
Let df(a), a ∈ Λ be the number of strings s ∈ D that have at least one occurrence of a. The inverse document
frequency weight of a is defined as idf(a) = log(1 + |D|

df(a)).
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String Tokens
s1 Children’s Food Fund
s2 One Laptop per Child
s3 Feed the Children
s4 International Children’s Found
s5 UNICEF

Token String Identifiers
child s1, s2, s3, s4
food s1, s3
found s4
fund s1
international s4
one s2
laptop s2
unicef s5

Table 1: (a) A collection of strings represented as sets of tokens. (b) An inverted representation of these sets of
tokens. It is assumed that common stop words and special characters have been removed, stemming of words
has occurred, and all tokens have been converted to lowercase.

Alternative definitions of idf weights are also possible. Nevertheless, they all have a similar flavor. The idf
weight is related to the probability that a given token a appears in a random string s ∈ D. Frequent tokens have
a high probability of appearing in many strings, hence they are assigned small weights. Infrequent tokens have
a small probability of appearing in any string, hence they are assigned large weights. The intuition is that two
strings that share a few infrequent tokens must have a high similarity.

2.3 Selection Queries

We consider all-match selection queries, which return all data strings whose similarity with the query string is
larger than a user specified threshold.

Definition 4 (All-Match Selection Query): Given a string similarity function S, a set of strings D, a query
string q, and a positive threshold τ , the result of an all-match selection query is the answer set A = {s ∈ D :
S(q, s) ≥ τ}.

3 Algorithms for Set-Based Similarity

The brute-force approach for evaluating selection queries requires computing all pairwise similarities between
the query string and the data strings, which can be expensive. A significant savings in computation cost can be
achieved by using an index structure (resulting in a typical computation cost versus storage cost trade-off).

All the set-based similarity functions introduced in Section 2 can be computed easily using an inverted index.
First, the data strings are tokenized and an inverted index is built on the resulting tokens, one list per token; an
example using word tokens is shown in Table 1. Each list element is simply a string identifier. Depending on the
algorithm used to evaluate the chosen similarity function, the lists can be stored sequentially as a flat file, using
a B-tree, or a hash table. They can also be sorted according to string identifiers or any other information stored
in the lists (e.g., the Lp-norm of the strings) as will become clear shortly.

All-match selection queries can be answered quite efficiently using an inverted index. Recall that an all-
match selection query retrieves all data strings whose similarity with the query exceeds a query threshold τ . To
answer the query, first the query string is tokenized using exactly the same tokenization scheme that was used for
the data strings. The data strings satisfying the similarity threshold need to have at least one token in common
with the query, hence only the token lists corresponding to query tokens need to be involved in the search. This
results in significant pruning compared to the brute-force approach.
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3.1 Sorting in String Identifier Order

Let q = {q1, . . . , qn} be a query string and Lq = {l1, . . . , ln} be the n lists corresponding to the query tokens.
By construction, each list li contains all string identifiers of strings s ∈ D s.t. qi ∈ s. The simplest algorithm for
evaluating the exact similarity between the query and all the strings in Lq is to perform a multiway merge
on the string identifiers over the lists to compute all intersections q ∩ s. This will directly yield the weighted
intersection similarity. Clearly, the multiway merge computation can be performed very efficiently if the
lists are already sorted in increasing order of string identifiers. However, the algorithm has to exhaustively scan
all lists in Lq in order to identify all strings with similarity exceeding threshold τ .

Computing Normalized Weighed Intersection is also straightforward, provided that the L1-norm of each data
string is stored in the token lists. Hence, the lists store tuples (string-identifier, L1-norm). Once again, if lists
are sorted in increasing order of string identifiers, a multiway merge algorithm can evaluate the normalized
weighted intersection between the query and all relevant strings very efficiently. Similar arguments hold for
Jaccard, Dice and Cosine similarity.

3.2 Sorting in Lp-norm Order

The multiway merge algorithm has to exhaustively scan all the lists in Lq in order to compute the similarity
score of every data string and determine whether the similarity exceeds threshold τ . For Normalized Weighed
Intersection similarity we make the following observation:

Lemma 5 (Normalized Weighted Intersection L1-norm Filter): Given sets s, r and Normalized Weighted
Intersection threshold τ ∈ (0, 1] the following holds:

N (s, r) ≥ τ ⇔ τ∥r∥1 ≤ ∥s∥1 ≤
∥r∥1
τ

.

Essentially, we can use the L1-norm filter to prune strings appearing in any list in Lq without the need
to compute the actual similarity with the query. For that purpose, we sort token lists in increasing order of
the L1-norms of strings, rather than in string identifier order. Using Lemma 5, we can directly skip over all
candidate strings with L1-norm ∥s∥1 < τ∥q∥1 (where ∥q∥1 is the L1-norm of the query) and stop scanning a
list whenever we encounter the first candidate string with L1-norm ∥s∥1 > ∥q∥1

τ . Given that the lists are not
sorted in increasing string identifier order, there are two options available: The first is to sort the strings within
the appropriate norm intervals in string identifier order and perform the multiway merge in main memory.
The second is to use classic threshold based algorithms to compute the similarity of each string to the query
string.

Threshold algorithms utilize special terminating conditions that enable processing to stop before exhaus-
tively scanning all token lists. This is easy to show if the similarity function is a monotone aggregate function.
Let wi(s, q) = W (qi)

max(∥s∥1,∥q∥1) be the partial similarity of data string s and query token qi. Then, N (s, q) =∑
qi∈s∩q wi(s, q). It can be shown that N (s, q) is a monotone aggregate function, i.e., N (s, q) ≤ N (s′, q) if

∀i ∈ [1, n] : wi(s, q) ≤ wi(s
′, q).

There are three threshold algorithm flavors. The first scans lists sequentially and in a round robin fashion
and computes the similarity of strings incrementally. The second uses random accesses to compute similarity
aggressively every time a new string identifier is encountered in one of the lists. The third uses combination
strategies of both sequential and random accesses.

Since the sequential round robin algorithm computes similarity incrementally, it has to temporarily store in
main memory information about strings whose similarity has only been partially computed. Hence, the algorithm
has a high book keeping cost, given that the candidate set needs to be maintained as a hash table organized by
string identifiers. The aggressive random access based algorithm computes the similarity of strings in one step
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and hence does not need to store any information in main memory. Hence it has a very small book keeping
cost, but on the other hand it has to perform a large number of random accesses to achieve this. This could be a
drawback on traditional storage devices (like hard drives) but unimportant in modern, solid state based devices,
like flash storage. Combination strategies try to strike a balance between low book keeping and a small number
of random accesses. A simple round robin strategy is shown in Algorithm 3.1.

Algorithm 3.1: NRA(q, τ )

Tokenize the query: q = {q1, . . . , qn}
M is a map of (s̈,Ns, B1, . . . Bn]) tuples (Bi are bits, s̈ is the string identifier)
for i← 1 to n

do seek li to first element s.t. ∥s∥1 ≥ τ∥q∥1
while not all lists li are inactive

f =∞, w = 0
for i← 1 to n

do



if li is inactive : Continue
else (s̈, ∥s∥1)← li.next

if ∥s∥1 > ∥q∥1
τ : Flag li as inactive and Continue

f = min(f, ∥s∥1), w = w +W (qi)
(s̈,Ns, B1, . . . , Bn)←M.find(s̈)
for j ← 1 to n

do if lj is inactive : Bj = 1
if s̈ ∈M

then


if B1 = 1, . . . , Bn = 1} and Ns +W (qi) > τ max(∥s∥1, ∥q∥1)

then report s̈,Ns +W (qi)
else M ← (s̈,Ns +W (qi), B1, . . . , Bn)

else
{
M ← (s̈,W (qi), B1, . . . , Bn)

for all (s̈,Ns, B1, . . . , Bn) ∈M

do



for j ← 1 to n
do if lj is inactive : Bj = 1

if B1 = 1, . . . , Bn = 1

then


if Ns > τ max(∥s∥1, ∥q∥1)

then report s̈,Ns

else remove from M

if w
max(f,∥q∥1) < τ and M is empty : Stop

The algorithm keeps a candidate set M containing tuples consisting of a string identifier, a partial similarity
score, and a bit vector containing zeros for all query tokens that have not matched with the particular string
identifier yet, and ones for those that a match has been found. The candidate set is organized as a hash table on
string identifiers for efficiently determining whether a given string has already been encountered or not. Lemma
5 states that for each list we only need to scan elements within a narrow L1-norm interval. We skip directly
to the first element in every list with L1-norm ∥s∥1 ≥ τ∥q∥1. The algorithm proceeds by reading one element
per list in every iteration, from each active list. According to Lemma 5, if the next element read from list li
has L1-norm larger than ∥q∥1

τ the algorithm flags li as inactive. Otherwise, if the string identifier read is already
contained in the candidate set M , its entry is updated to reflect the new partial similarity score. In addition, the
bit vector is updated to reflect the fact that the candidate string contains the particular query token. Also, the
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algorithm checks whether any other lists have already become inactive, which implies one of two things: If the
candidate string contains the query token, then the bit vector is already set to one and the partial similarity score
has been updated to reflect that fact; or the candidate string does not contain the query token, hence the bit vector
can be set to one without updating the partial similarity score (essentially adding zero to the similarity score).
Finally, if the bit vector is fully set and the similarity score exceeds the query threshold, the string is reported as
an answer. If the new string read is not already contained in M , a new entry is created and reported as an answer
or inserted in M , using reasoning similar to the previous step. After one round robin iteration, the bit vector of
each candidate in the candidate set is updated, and candidates with fully set bit vectors are reported as answers
or evicted from the candidate set accordingly.

The algorithm can terminate early if two conditions are met. First the candidate set is empty, which means
no more viable candidates whose similarity has not been completely computed yet exist. Second, the maximum
possible score of a conceptual frontier string that appears at the current position in all lists cannot exceed the
desired threshold.

Lemma 6: Let La ⊆ Lq be the set of active lists. The terminating condition

N f =

∑
li∈La

W (qi)

max(minli∈La ∥fi∥1, ∥q∥1)
< τ,

does not lead to any false dismissals.

It is easy to see that a tighter bound for N f exists. This can be achieved by examining the L1-norm of all
frontier elements simultaneously and is based on the observation that

Observation 7: Given a string s with L1-norm ∥s∥1 and the L1-norms of all frontier elements ∥fi∥1 we can
immediately deduce whether s potentially appears in list li or not by a simple comparison: If ∥s∥1 < ∥fi∥1 and
s has not been encountered in list li yet, then s does not appear in li (given that lists are sorted in increasing
order of L1-norms).

Let lj be a list s.t. ∥fj∥1 = minli∈La ∥fi∥1. Based on Observation 7, a conceptual string s with L1-norm
∥s∥1 = ∥fj∥1 can appear only in list lj . Thus

Lemma 8: Let La ⊆ Lq be the set of active lists. The terminating condition

N f = max
li∈La

∑
lj∈La:∥fj∥1≤∥fi∥1 W (qj)

max(∥fi∥1, ∥q∥1)
< τ,

does not lead to any false dismissals.

We can also use Observation 7 to improve the pruning power of the nra algorithm by computing a best-case
similarity for all candidate strings before and after they have been inserted in the candidate set. Strings whose
best-case similarity is below the threshold can be pruned immediately, reducing the memory requirements and
the book keeping cost of the algorithm. The best-case similarity of a new candidate uses Observation 7 to
identify lists that do not contain that candidate.

Lemma 9: Given query q, candidate string s, and a subset of lists Lq′ ⊆ Lq potentially containing s (based on
Observation 7 and the frontier elements fi), the best-case similarity score for s is:

N b(s, q) =
∥q′∥1

max(∥s∥1, ∥q∥1)
.
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An alternative threshold algorithm strategy is to assume that token lists are sorted in increasing L1-norms
for efficient sequential access, but that there also exists one index per token list on the string identifiers. Then,
a random access algorithm can scan token lists sequentially and for every element probe the remaining lists
using the string identifier index to immediately compute the exact similarity of the string. Similar terminating
conditions as those used for the nra algorithm can be derived for the random access only algorithm.

The last threshold based strategy is to use a combination of nra and random accesses. We run the nra
algorithm as usual but after each iteration we do a linear pass over the candidate set and use random accesses to
compute the exact similarity of the strings and empty the candidate set.

It turns out that exactly the same length based algorithms can be used for Dice and Cosine similarity. It is
easy to show that Dice similarity is a monotone aggregate function with partial similarity defined as wi(s, q) =

W (qi)
∥s∥1+∥q∥1 . Hence, all threshold algorithms presented above can be adapted to Dice. In addition, it is easy to
prove the following lemmas.

Lemma 10 (Dice L1-norm Filter): Given sets s, r and Dice similarity threshold τ ∈ (0, 1] the following holds:

D(s, r) ≥ τ ⇔ τ

2− τ
∥r∥1 ≤ ∥s∥1 ≤

2− τ

τ
∥r∥1.

Lemma 11: Let La ⊆ Lq be the set of active lists. The terminating condition

Df = max
li∈La

∑
lj∈La:∥fj∥1≤∥fi∥1 2W (qi)

∥fi∥1 + ∥q∥1
< τ,

does not lead to any false dismissals.

Lemma 12: Given query q, candidate string s, and a subset of list Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

Db(s, q) =
2∥q′∥1

∥s∥1 + ∥q∥1
.

Exactly the same arguments hold for cosine similarity as well. Recall that cosine similarity is computed
based on the L2-norm of the strings. Once again, an inverted index is built where this time each list element
contains tuples (string-identifier, L2-norm). Clearly, Cosine similarity is a monotone aggregate function with
partial similarity wi(s, q) =

W (qi)
2

∥s∥2∥q∥2 . An L2-norm filter also holds.

Lemma 13 (Cosine similarity L2-norm Filter): Given sets s, r and Cosine similarity threshold τ ∈ (0, 1] the
following holds:

C(s, r) ≥ τ ⇔ τ∥r∥2 ≤ ∥s∥2 ≤
∥r∥2
τ

.

In addition

Observation 14: Given a string s with L2-norm ∥s∥2 and the L2-norms of all frontier elements ∥fi∥2 we can
immediately deduce whether s potentially appears in list li or not by a simple comparison: If ∥s∥2 < ∥fi∥2 and
s has not been encountered in list li yet, then s does not appear in li (given that lists are sorted in increasing
order of L2-norms).

Hence

Lemma 15: Let La ⊆ Lq be the set of active lists. The terminating condition

Cf = max
li∈La

∑
lj∈La:∥fj∥2≤∥fi∥2 W (qi)

2

∥fi∥2 ∗ ∥q∥2
< τ,

does not lead to any false dismissals.
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Lemma 16: Given query q, candidate string s, and a subset of lists Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

Cb(s, q) = [∥q′∥2]2

∥s∥2 ∗ ∥q∥2
.

The actual algorithms in principle remain the same.
Jaccard similarity presents some difficulties. Notice that Jaccard is a monotone aggregate function with

partial similarity wi(s, q) =
W (qi)
∥s∪q∥1 . Nevertheless, we cannot use this fact for designing termination conditions

for the simple reason that wi’s cannot be evaluated on a per token list basis since ∥s ∪ q∥1 is not known in
advance (knowledge of ∥s ∪ q∥1 implies knowledge of the whole string s and hence knowledge of ∥s ∩ q∥1
which is equivalent to directly computing the similarity). Recall that an alternative expression for Jaccard is
J (s, q) = ∥s∩q∥1

∥s∥1+∥q∥1−∥s∩q∥1 . This expression cannot be decomposed into aggregate parts on a per token basis,
and hence is not useful either. Nevertheless, we can still prove various properties of Jaccard that enable us to
use all threshold based algorithms. In particular

Lemma 17 (Jaccard L1-norm Filter): Given sets s, r and Jaccard similarity threshold τ ∈ (0, 1] the following
holds:

J (s, r) ≥ τ ⇔ τ∥r∥1 ≤ ∥s∥1 ≤
∥r∥1
τ

.

Lemma 18: Let La ⊆ Lq be the set of active lists. Let Ii =
∑

lj∈La:∥fj∥1≤∥fi∥1 W (qi). The terminating
condition

J f = max
li∈La

Ii
∥fi∥1 + ∥q∥1 − Ii

< τ,

does not lead to any false dismissals.

Lemma 19: Given query q, candidate string s, and a subset of list Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

J b(s, q) =
∥q′∥1

∥s∥1 + ∥q∥1 − ∥q′∥1
.

Generally speaking, comparing the threshold based algorithms with the multiway merge algorithm, the rel-
ative cost savings between sorting according to string identifiers or sorting according to the Lp-norm heavily
depends on a variety of factors most important of which are: the algorithm used, the specific query (whether it
contains tokens with very long lists for which the Lp-norm filtering will yield significant pruning), the overall
token distribution of the data strings, the storage medium used to store the lists (e.g., disk drive, main memory,
solid state drive), and the type of compression used for the lists, if any.

It is important to state here that most list compression algorithms are designed for compressing string iden-
tifiers, which are natural numbers. The idea being that natural numbers in sorted order can easily be represented
by delta coding. In delta coding only the first number is stored, and each consecutive number is represented
by its difference with the previous number. This representation decreases the magnitude of the numbers stored
(since deltas are expected to have small magnitude when the numbers are in sorted order) and enables very
efficient compression. A significant issue with all normalized similarity functions is that, given arbitrary token
weights, token lists have to store real valued L1-norms (or L2-norms for Cosine similarity). Lists containing
real valued attributes cannot be compressed as efficiently as lists containing only natural numbers.
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3.3 Processing Lists in Token Weight Order

Recall that the threshold based algorithms scan lists in a random order, e.g., in the order that tokens appear
in the query string. However, the distribution of tokens in the data strings can help determine a more meaningful
ordering that can yield significant performance benefits. The idea is based on the observation that the order and
the strategy used to scan the lists affects the frontier elements, and hence the pruning power of subsequent steps.

Consider Normalized Weighted Intersection first. Let the lists in Lq be sorted according to their respective
token weights, from heaviest to lightest. Without loss of generality, let this ordering be Lq = {l1, . . . , ln} s.t.
W (q1) ≥ . . . ≥ W (qn). Since w1(s, q) ≥ . . . ≥ wn(s, q), the most promising candidates appear in list l1;
the second most promising appear in l2; and so on. This leads to an alternative sequential algorithm, which we
refer to here as heaviest first. The algorithm exhaustively reads the heaviest token list first, and stores all
strings in a candidate set. The second to heaviest list is scanned next. The similarity of strings that have already
been encountered in the previous list is updated, and new candidates are added in the candidate set, until all lists
have been scanned and the similarity of all candidates has been computed. While a new list is being traversed
the algorithm prunes the candidates in the candidate set whose best-case similarity is below the query threshold.
The best-case similarity for every candidate is computed by taking the partial similarity score already computed
for each candidate after list li has been scanned, and assuming that the candidate exists in all subsequent lists
li+1, . . . , ln.

The important observation here is that we can compute a tighter L1-norm filtering bound each time a new
list is scanned. The idea is to treat the remaining lists as a new query q′ = {qi+1, . . . , qn} and recompute the
bounds using Lemma 5. The intuition is that the most promising new candidates in lists li+1, . . . , ln, are the
ones containing all tokens qi+1, . . . , qn and hence potentially satisfying s = q′. Care needs to be taken though
in order to accurately complete the partial similarity scores of all candidates already inserted in the candidate set
from previous lists, which can have L1-norms that do not satisfy the recomputed bounds for q′. The algorithm
identifies the largest L1-norm in the candidate set and scans subsequent lists using that bound. If a string already
appears in the candidate set its similarity is updated. If a string does not appear in the candidate set (this is either
a new string or an already pruned string) then the string is inserted in the candidate set if and only if its L1-norm
satisfies the recomputed bounds based on q′.

To reduce the book keeping cost of the candidate set, the algorithm stores the set as a linked list, sorted
primarily in increasing order of L1-norm and secondarily in increasing order of string identifiers. Then the
algorithm can do a merge join of the currently processed token list and the candidate list very efficiently in one
pass. The complete algorithm is shown in Algorithm 3.2.

The biggest advantage of the heaviest first algorithm is that it can benefit from long sequential
accesses, one list at a time. Notice that both the nra and the multiway merge strategies have to access lists
in parallel. For traditional disk based storage devices, as the query size increases and the number of lists that
need to be accessed in parallel increases, a larger buffer is required in order to prefetch entries from all the lists
and the head seek time increases, moving from one list to the next (this is not an issue for solid state devices).

Notice that the heaviest first strategy has another advantage when token weights are assigned ac-
cording to inverse token popularity, as is the case for idf weights. In that case, the heaviest tokens are rare tokens
that correspond to the shortest lists and the heaviest first strategy is equivalent to scanning the lists in or-
der of their length, shortest list first. The advantage is that this keeps the size of the candidate set to a minimum,
since as the algorithm advances to lighter tokens, the probability that newly encountered strings (strings that do
not share any of the heavy tokens with the query) will satisfy the similarity threshold significantly decreases.
Such strings are therefore immediately discarded. In addition, the algorithm terminates with high probability
before long lists have to be examined exhaustively.

It is easy to see that the heaviest first strategy can be adapted straightforwardly to all other normal-
ized similarity measures. Moreover, the heaviest first strategy can help prune candidates even for simple
Weighted Intersection similarity, based on the observation that strings containing the heaviest query tokens are
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more likely to exceed the threshold.

Algorithm 3.2: HEAVIEST FIRST(q, τ )

Tokenize query: q = {q1, . . . , qn} s.t. W (qi) ≥W (qj), i < j
M is a list of (s̈,Ns, ∥s∥1) sorted in ∥s∥1, s̈ order
λ =

∑n
i=1W (qi)

for i← 1 to n

λ = λ−W (qi)
Seek to first element of li with ∥s∥1 ≥ τλ
(r̈,Nr, ∥r∥1)←M.last
µ = max(∥r∥1, λτ

(r̈,Nr, ∥r∥1)←M.first
while not at end of li

do



(s̈, ∥s∥1)← li.next
if ∥s∥1 > µ : Break

while ∥r∥1 ≤ ∥s∥1 and r̈ ̸= s̈

do
{

if Nr + λ ≤ τ max(∥r|1, ∥q∥1) : Remove from M
(r̈,Nr, ∥r∥1) = M.next

if r̈ = s̈
then

{
M ← (r̈,Nr +W (qi), ∥r∥1)

else if W (qi) + λ ≥ τ max(∥s∥1, ∥q∥1)
then Insert (s̈,W (qi), ∥s∥1) at current position in M

Let query string q = {q1, . . . , qn} and threshold τ ∈ (0,
∑n

i=1W (qi)], and assume without loss of generality
that lists are sorted in decreasing order of token weights (i.e., W (q1) ≥ . . . ≥W (qn)). Assume that there exists
a string s that is contained only in a suffix lk, . . . , ln of token lists, whose aggregate weight

∑n
i=k W (qi) < τ .

Clearly such a string cannot exceed the query threshold. An immediate conclusion is that

Lemma 20: Let query q = q1, . . . , qn s.t. W (q1) ≥ . . . ≥ W (qn), and threshold τ ∈ (0,
∑n

i=1W (qi)]. Let
π = argmax1≤π≤n

∑n
i=π W (qi) ≥ τ . Call P (q) = {q1, . . . , qπ} the prefix of q and S(q) = {qπ+1, . . . , qn}

the suffix of q. Then, for any string s s.t. s ∩ P (q) = ∅, I(s, q) < τ .

Hence, the only viable candidates have to appear in at least one of the lists in the prefix l1, . . . lπ. The
heaviest first algorithm exhaustively scans the prefix lists to find all viable candidates and then probes
the suffix lists to complete their scores. If an index on string identifiers is available on each of the lists in the
suffix, the algorithm needs to perform, on average, one random access per candidate per list in S(q). If an index
is not available, then assuming that lists are sorted in increasing string identifier order, the algorithm keeps track
of the smallest and largest string identifier in the candidate set, seeks to the first list element with identifier
larger than or equal to the smallest identifier and scans each list as deep as the largest identifier. Alternatively,
binary search can be performed. This strategy will help potentially prune a long head and tail from each list in
the suffix, which can be very beneficial when token weights are assigned according to token popularity (e.g.,
idf weights) where the lightest tokens (the most popular ones) correspond to the longest lists (which by design
become part of the suffix).
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4 Index Updates

Typically, inverted indexes are used for mostly static data. More often than not, token lists are represented either
by simple arrays in main memory, or flat files in secondary storage, since these representations are space efficient
and also enable very fast sequential processing of list elements. On the other hand, inserting or deleting elements
in the token lists becomes expensive.

In situations where fast updates are important, token lists can be represented by linked lists or binary trees
in main memory, or B-trees in external memory. The drawback is the increased storage cost both for main
memory and external memory structures, and also the fact that external memory data structures do not support
sequential accesses over the complete token lists as efficiently as flat files. On the other hand, the advantage is
that insertions and deletions can be performed very efficiently.

A subtle but very important point regarding updates arises when considering token lists that contain Lp-
norms. Recall that Lp-norms are computed based on token weights. For certain token weighting schemes, like
idf weights, the weights depend on the total number of strings and the number of occurrences of tokens within
the strings. As strings get inserted, deleted, or updated, both the total number of strings and the number of
occurrences of tokens might change, and as a result the Lp-norms of strings will change.

Consider for example idf weights, where the weight of a token is a function of the total number of strings
|D| (see Definition 3). A single string insertion or deletion will affect the idfs of all tokens, and hence render the
Lp-norms of all entries in the inverted lists in need for updating. Similar effects occur when a string is updated,
resulting in the document frequency of a set of tokens to change. Since the idf weight of tokens is also a function
of document frequency, the Lp-norm of every string containing one or more of these tokens will change. Hence,
a single string update can result in a cascading update effect on the token lists of the inverted index that could be
very expensive.

To alleviate the cost of updates in such scenarios, a technique based on delayed propagation of updates has
been proposed. The idea is to keep stale information in the inverted lists as long as certain guarantees on the
answers returned can be provided. Once the computed Lp-norms have deviated far enough from the true values
such that the guarantees no longer hold, the pending updates are applied in a batch fashion.

The algorithm essentially computes lower and upper bounds between which the weight of individual tokens
can vary, such that a selection query with a well defined reduced threshold τ ′ < τ will return all true answers
(i.e., will not result in any false negatives). The additional cost is an increased number of false positives. The
reduced threshold τ ′ is a function of τ , the particular weighting scheme, and the relaxation bounds. The tighter
the relaxation bounds chosen, the smaller the number of false positives becomes, but the more frequently the
inverted lists need to be batch updated.

5 Related Work

Baeza-Yates and Ribeiro-Neto [2] and Witten et al. [14] discuss selection queries for various similarity measures
using multiway merge and inverted indexes. The authors also discuss various compression algorithms for
inverted lists sorted according to string identifiers.

Various strategies for evaluating queries based on sorting strings according to their Lp-norms appear in
Hadjieleftheriou et al. [8]. Similar observations using Lp-norms (in a more general context) have been made by
Bayardo et al. [3]. Lp-norm based filtering has also been used by Xiao et al. [17].

A detailed analysis of threshold based algorithms is conducted by Fagin et al. [6]. Improved termination
conditions for these algorithms are discussed by Sarawagi and Kirpal [13], Bayardo et al. [3] and Hadjielefthe-
riou et al. [8]. The heaviest first strategy was introduced by Hadjieleftheriou et al. [8]. The heaviest
first algorithm for weighted intersection based on prefix and suffix lists is based on ideas introduced by
Chaudhuri et al. [4].
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Index construction and update related issues with regard to Lp-norm computation is discussed in detail by
Hadjieleftheriou et al. [9].

Apart from selection queries, string similarity join queries have also received a lot of attention [1, 3, 4, 7,
13, 16, 17]. A related line of work has concentrated on edit-based (as opposed to set-based) similarity functions
(e.g., edit distance) [1, 4, 5, 7, 10–12, 15, 17].
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