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Letter from the Editor-in-Chief

About the Bulletin

Bulletin Editors

Bulletin editors have two year appointments in which they take responsibility for two issues, one per year. The
result is that at two year intervals, prior editors “retire” and new editors are appointed. This transition takes
place in March of even numbered years. So now is the time to thank the editors whose terms are ending with
the publication of the current issue. These editors (still listed on the inside front cover) are Sihem Amer-Yahia,
Beng Chin Ooi, Jianwen Su, and Vassilis Tsotras. Each has produced two issues on topics of current interest to
the database community. It is important for me to emphasize that the topics are chosen by these editors. I play,
at most, a modest role in avoiding obvious overlap and trying to provide broad coverage. The success of the
Bulletin depends in an essential way, on the efforts of the editors. So I want to thank them for having provided
our readers with two years of special topic issues containing high quality papers focused on technology that is
actively being investigated.

Bulletin Publication

I have dropped all the “draft” postscript versions from the Bulletin web site. Essentially everyone has web access
that is sufficiently reliable and capable that these issues can now be dropped. I continue to weigh the dropping
of postscript versions in an effort to further simplify the web site. Please provide input to this process, especially
if you would like to continue accessing postscript versions.

ICDE: International Conference on Data Engineering

In 2011, ICDE will be in Hanover, Germany. ICDE is the signature conference of the IEEE Technical Committee
on Data Engineering. This issue contains a “Call for Papers” for ICDE’11 on the inside back cover. Take note
of the deadline for paper submission (July 16, 2010). I would encourage you all to submit papers to this high
quality conference and hope to see you in Hanover in the spring of 2011.

The Current Issue

Keyword search has been and continues as a topic of great research interest and clear commercial importance.
There are a large number of technologies being pursued, from trying to make search produce more relevant
information, to including structured data, to making search more immediately responsive, and the list goes on.
Indeed, no single issue can capture everything. The current issue includes survey articles as well as ongoing
research articles and provides excellent coverage for this field. I want to thank Beng Chin Ooi for a fine job
of assembling the issue and, as always is needed, handling the difficulties involved in publication of the issue.
Readers will be well rewarded with this issue and its fine overview of keyword search.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

The simple keyword-based query interface has to a great extent contributed to the wide acceptance of the In-
ternet and its proliferation of user-contributed contents. The interface allows users to query vast collections of
information freely, and hence improves the usability of the technology. Over the past two decades, database sys-
tems have made great advances in terms of performance, scalability and fault tolerance. They can now process a
huge number of concurrent complex queries efficiently over enormous and diverse data sets. Naturally, the next
challenge is to improve the usability of database systems in terms of providing search and query interfaces more
than structured query languages can, as well as query by examples and query by forms that prevail.

Coupled with the increasing volume of text-based data, the keyword-based query mechanism becomes a
natural and effective means for users to interact with databases. However, outstanding issues remain to be
addressed before we can have a paradigm shift that allows users to query a database meaningfully without having
any knowledge about the underlying data repository. In this issue, we have eight papers that provide different
aspects and insights of keyword-based search and retrieval methods. I thank the authors for their contributions.

One of the earlier approaches to keyword-based retrieval from structured data is to identify the connection
of data items containing keywords. Recent work has attempted to go beyond such approaches, and Chakrabarti,
Sarawagi and Sudarshan provide a survey of recent work on adding structure to keyword search.

The large collections of user-generated content in community systems enable construction of large knowl-
edge bases, and these are typically represented in the RDF model. Elbassuoni et al. give an overview of recent
and ongoing work on ranked retrieval of RDF data with keyword-augmented structured queries.

Strings are a common data type in many applications, ranging from relational databases, semi-structured
and unstructured databases to scientific databases such as genome databases. Hadjieleftheriou and Srivastava
discuss the issues of indexing techniques and algorithms based on inverted indexes and a variety of weighted
set-based string similarity functions.

With the recent trend in generalizing prefix-based auto-completion, Li and Li provide an overview of the
information-access mechanism, where the system attempts to find answers to queries as users type in their
keywords. They discuss various technical challenges in terms of interactive search speed, and open problems
that remain.

The keywords entered by users may imply different information needs of different users, and this causes
ambiguity during query processing. Liu and Chen discuss several post-processing methods for keyword-based
retrieval on structured data with the objective of making the results more meaningful to users.

Keyword-based retrieval is well studied in the context of information retrieval. Webber examines the evolv-
ing practices and resources for effectiveness evaluation of keyword search over relational databases, compares
them with longer-standing full-text evaluation methodologies in information retrieval, and offers some sugges-
tions for future development.

Duplicates are common in databases due to abbreviation and typographical errors, and these create the nearly
duplicate records problem. Yang et al. describes a system called RSEARCH for identifying nearly duplicate
records so that meaningful results may be generated efficiently.

Yu, Qin and Chang present a survey on recent developments in keyword-based search over relational databases
that focus on identifying primitive structures as answers and finding top-k answers efficiently. The focus is on
proposals that support keyword search over RDBMS using SQL, and those viewing a relational database as a
directed graph.

Beng Chin Ooi
National University of Singapore
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Enhancing Search with Structure

Soumen Chakrabarti Sunita Sarawagi S. Sudarshan

Computer Science and Engineering Department
Indian Institute Of Technology, Bombay, India

{soumen,sunita,sudarsha}@cse.iitb.ac.in

Abstract

Keyword search has traditionally focussed on retrieving documents in ranked order, given simple key-
word queries. Similarly, work on keyword queries on structured data has focussed on retrieving closely
connected pieces of data that together contain given query keywords. In recent years, there has been
a good deal of work that attempts to go beyond the above paradigms, to improve search experience
on unstructured textual data as well as on structured or semi-structured data. In this paper, we survey
recent work on adding structure to keyword search, which can be categorized on three axes: (a) adding
structure to unstructured data, (b) adding structure to answers, and (c) adding structure to queries al-
lowing more power than simple keyword queries, but while avoiding the complexity of elaborate query
languages that demand extensive schema knowledge.

1 Introduction

Web search and information retrieval (IR) have traditionally focused on retrieving documents in ranked order,
given simple keyword queries. Meanwhile, work on keyword queries on structured data has focused on retrieving
closely connected pieces of data that together contain given query keywords. Recent years have witnessed many
attempts to go beyond the above paradigms, to improve search experience on data sources (see Section 2) ranging
from relational data with textual fields to semi-structured graphs with text associated with nodes and edges to
completely unstructured text. In this paper, we survey recent efforts toward adding structure to keyword search.

In Section 3 we review a few data models somewhere in the gap between relational tables from the database
community and the sequence-of-tokens or vector-space models from the IR community. We are specifically
interested in lowest common denominator representations of ER graphs, text segments connected to type hierar-
chies with attached entity nodes, RDF, and tables represented using HTML markup without formal schema.

Then, in Section 4.1, we discuss various possible definitions of the unit of answer, which is a tuple in
relational queries and a document in IR. In the ER graph model, an answer may be a single node, or a small
tree or subgraph. The answer may be an entity node in a type hierarchy. The answer may be a table, even if the
source is unstructured text. The (initial) answer may be a form that the user has to fill to issue a more precise
second query. In Section 4.2, we move on to the design of structure-enabling features in queries, while avoiding
the complexity of full query languages.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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In Section 5 we outline algorithmic and systems issues in efficiently evaluating some forms of structured
queries, as well as queries that provide some forms of structured answers. We first summarize how to annotate
unstructured text with links to entities in a graph-structured entity and type catalog. Then we discuss indexing
and query processing for entity search in annotated text. Next we describe how to respond to queries with
subgraphs, forms, and tables.

2 Structure in data sources

Databases and text search systems evolved very differently for several decades, but new applications are push-
ing them toward common ground [15]. In this section, we describe three types of data sources useful in new
applications somewhere between strictly structured and completely unstructured data management systems.

We begin in Section 2.1 with the most explicit form of structure, where the job is to index and search entity-
relation (ER) tables or graphs, except that there may be free-form text associated with table cells or nodes and
edges in the graph. Standard relational or XML search systems do not provide sufficiently flexible support for
combining text and structure search in such settings.

We continue in Section 2.2 with a less friendly situation where record-like regular structure has to be auto-
matically extracted from HTML source. Here HTML markup tags and their regular patterns provide clues to
extracting structure.

The most challenging scenario is where there is no explicit structure in the source text, but the structure is
created by linking text tokens to entities in a structured database, which might be tabular or graphical. This is
discussed in Section 2.3.

2.1 Structured data with textual content

Relational databases are widely used to store and generate textual content for e-commerce and social media
sites. Familiar examples in academia include DBLP and CiteSeer. Many table columns in such applications are
free-form or somewhat stylized text. The dominant query paradigm combines small forms for structured (e.g.,
numeric) fields and text boxes for free-format text input. Unlike with SQL queries where any row ordering must
be deliberate and explicit, users expect tuples to be implicitly sorted by a relatively vague notion of relevance,
as in IR. Finally, data normalization and the use of primary and foreign keys across multiple tables means that
different words in a query may match cells in different tables, connected via joined attributes. We can think of
every row in every table as a node in a graph, with edges representing primary and foreign key matches.

This “lowest common denominator” graph representation is quite generic, and can also be used to represent
XML documents with text “blobs” associated with leaf nodes, and nodes being labeled with some element type.
This kind of labeled entity-relation graph can also be used to represent RDF data. A specific and interesting
example for us is DBPedia 1, which is an RDF repository built by extracting triples from Wikipedia.

2.2 Records and tables embedded in HTML

Web pages often contain embedded tables and lists that can be interpreted as sets of multi-attribute records.
Such sources can serve as a compact and high quality source of structured information, that has been ignored
until recently [9,11,21,23]. For example, researchers at Google report the extraction of 154 million information
bearing tables from their search engine crawl [11]. In addition to providing partially structured sets of records,
such artifacts also provide useful meta-data in the form of headers and titles. With proper tools, it is possible
to collect several useful kinds of information such as instances of type-entity pairs from a table’s header and its
entity columns, and multi-way relationships from rows of a table. Specifically under the assumption that the first

1http://dbpedia.org/About
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non-numeric unique column is an entity, tables can be used to extract (entity, attribute name, value) triples [10].
Lists on the web can be converted to yield useful multi-way relationships as discussed in [23]. The headers of
tables provide an implicit grouping of attribute names that can be exploited in useful ways. For example, by
exploiting the co-occurrence pattern of a column header with headers of other tables, one can group attribute
names that are synonyms [11].

2.3 Unstructured text mentioning entities from catalog

The most “organic” sources of structure are in unstructured text on Web pages, and these are the most difficult
to exploit reliably in search. In general, an annotation associates a short token segment with either a type of
entities, or a specific entity. Named entity taggers can associate a coarse-grained type like person with the
token sequence Albert Einstein with high accuracy. More fine-grained annotations may assert that tokens Albert
Einstein, in a given context, refers to a physicist rather than a more generic type person. The most unambiguous
level of information is that these tokens refer to a known entity, possibly expressed by a standard URN in an
entity catalog such as Wikipedia.

Unstructured text in Wikipedia articles already have references to standard entity URNs within Wikipedia,
and there are also many links from other pages that refer to a specific entity, to the corresponding URN in
Wikipedia. Such annotated text leads to a new document representation (Section 3.2) that can be used for
entity search. Authoring entity-annotated text is labor-intensive. Much of the Web is not annotated thus. In
Section 5.1.2 we will summarize recent algorithms to automatically annotate free-form text with likely mentions
of entities from a given catalog. These automatic annotation algorithms are not perfect, but the hope is that they
have sufficient accuracy to assist semi-structured search.

3 Data representation

In Section 2 we discussed various forms in which structure may be explicit in, or be mined out of a data source.
In this section we describe the corresponding abstract representations used in building storage and query sys-
tems. These representations bring together tabular relational data, document representation in traditional IR, and
graph-structured data.

3.1 Entity and type catalog

A catalog provides a directed acyclic graph where nodes are types and entities. A directed edge labeled “⊆”
from type T1 to T2 means that T2 is a subtype or subclass of T1. E.g., Physicist is a subtype of Scientist. Entities
e are also represented as nodes, connected to types T they belong to, using edges labeled “∈”. The catalog may
be provided by WordNet [34], Wikipedia, or YAGO [43].

Each entity (or type) in the catalog is known by a unique ID. It is also known by one or more lemmas: short
token sequences describing the entity (or type). E.g., the city of New York is known by lemmas “New York
City” and “Big Apple”. Over and above lemmas, each entity also has an associated description that uniquely
defines it. In case of WordNet, the description is a dictionary definition. In case of Wikipedia, the description is
a whole article page. More generally, we may find hyperlinks anywhere on the Web (including Wikipedia itself)
to an entity e, and consider the anchor and surrounding text as another form of “description” of e.

3.2 Text linked to catalog

The vector space model [44] has served its purpose well in traditional IR, but more elaborate models are needed
if we are to augment the query system with more structure. One way to do so is to exploit connections between
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the text and a catalog of types and entities. An annotation is a record with fields: document ID, range of token
offsets, entity (or type) ID from the catalog, and an optional score of confidence

We might represent the corpus in graph format as a set of chains, one for each document. Each node in a
chain represents a token in the corresponding document. In case a token is part of a suspected mention of entity
e, the node corresponding to the token is attached by an edge to the node corresponding to e. The weight of this
edge may be designed to reflect the (un)certainty of the mention. In case of multi-token mentions, depending
on the application, one may add edges to each token or to the first, center or last token, with weights adjusted
suitably.

In some cases, as in explicit hyperlinks from Web or Wikipedia documents to e, there is no uncertainty. But
a majority of potential mentions are uncertain. E.g., the token segment “New York” may refer to either the city
or the state, and “Einstein” may refer to the famous physicist or the well-known bagel makers. Many pages in
Wikipedia are disambiguation pages that list alternative entity references for a given lemma.

3.3 General graphs with textual properties

In the above model of text linked to a catalog, the graph is very specific (catalog graph connected to document
token chains) and there are only a handful of relationships: entity is instance of type, type is subtype of type,
token/s mention entity, and tokens are adjacent/nearby. In a more general entity-relation (ER) graph model,
nodes are arbitrary entities of given types. E.g., in representing DBLP, a node may represent a paper or author.
Entity nodes may be explicitly connected by edges to a type “meta data” node, or the type may be interpreted
as a discrete attribute of the entity node. In addition, nodes may have other named attributes; these could be
numeric (e.g. date of publication) or string-valued. The string attributes may be short (such as author address)
or long (an abstract).

Edges represent arbitrary binary relations between the nodes they connect. Like nodes, edges have types.
E.g., a node representing a person may be connected to a node representing a paper, using an “is author of”
edge. Generally, most binary relations have transposed relations, and we can model this as a reversed parallel
edge, say, “is authored by” in the above example.

We can tokenize (long) text fields and represent each token as a node in the same ER graph. Each token
node would then be connected to the entity nodes where they appear in attribute fields. We might define a “token
appears in node” edge type to represent these relations.

3.4 RDF

The Resource Description Framework (RDF) is a framework originally designed for representing information
on the Web. It is based on a set of (subject, predicate, object) triples, where subject and object are nodes of a
graph, and the predicate (or property) is the label of an edge from subject to object. Each node may represent an
entity, in which case it has a unique identifier, or it may represent a literal such as a string or number. Attribute
values relationships are represented using edges. For example, we may have a graph with entity nodes “Jim
Gray” and “Transaction Processing Concepts”, the book written by Jim Gray. The Jim Gray entity may have
an edge HasName linking it to a node representing the string “Jim Gray”. and similarly the book may have an
edge HasTitle linking it to a node representing the string “Transaction Processing Concepts”. Although other
graph models have been proposed for semistructured data, such as Lore [?], RDF is today the most widely used
semistructured data model.

An RDF graph is conventionally represented as a set of triples, where each triple asserts a fact; an RDF graph
asserts the conjunction of all triples in the graph. Unlike full featured knowledge representation languages, RDF
does not allow specification of disjunction, negation, or quantification. In this aspect RDF is like the relational
model, but unlike the relational model RDF does not require a strict schema, and it is restricted to the triple
representation. Although RDF was originally proposed as a way for Web sites to provide semantics for their

6



content, it has not been widely used in that context, but is a convenient unified representation for knowledge
extracted from a variety of sources. For example, the YAGO project [43] uses RDF to represent knowledge
extracted from Wikipedia and WordNet, among other sources.

3.5 Tabular data

At the top-level, tabular data extracted from the Web represents sets of records where the record boundaries
are indicated by rows for tables and items for lists. Records comprise of a set of attributes. For lists, the
attribute structure is latent and expensive extraction methods are required to reveal it (Section 5.4). For tables,
the columns often correspond to attributes. Further, these can be partitioned relatively easily into those that
represent entities, and those that are properties or attributes of the entities. Tables can optionally contain one or
more header rows, and titles/context tokens describing the content.

Normally, the cells and headers of a table are not tied to any standardized schema. Greater leverage is
possible by inter-linking the information across the millions of tables on the Web. One way to acheive this is to
infer join links among table pairs — for example, Cafarella et al [11] propose to add join links between a column
C of table T to a column C ′ of another table T ′ when the headers of C and C ′ are synonyms and co-occur with
similar columns. A second approach is to annotate table columns and entities to a standardized catalog. In
Section 3.2 we discussed the annotated text model where text snippets are annotated with entity nodes of a type
hierarchy. For tables, in addition to entity annotation on the cells, type annotations can be attached to columns
and relationship annotations among groups of columns. For example, based on its contents, a table’s columns
can be assigned type annotation such as “Western Movies”, “Currency”, “American director” and associated
with relationship tags such as “box office total” and “directed by”.

4 Models for queries and answers

To take advantage of explicit structure in the data, or latent structure in a corpus, we need one or both of the
following features in the system:
• The unit of an answer has to be defined carefully. Unlike in Web search or IR, the answer will usually not

be a document or page. As we shall see in Section 4.1, an answer to a keyword query may be a node in a
graph, or a small subgraph, a table with textual and other fields, or even a form to fill for a second round
of more structured query.

• There must be constructs in the query language to express more structure than in traditional keyword
search systems. However, in doing so, the query language should not demand complete schema knowledge
from users and border on to SQL or XQuery. Striking a balance in this matter is an important design issue.
We will visit some promising query dialects in Section 4.2.

4.1 Answer structure for keyword queries

The unit of an answer to a keyword query on structured data can be defined in several ways, including nodes,
trees, and graphs. Alternatively a keyword query can retrieve not raw data, but forms, or form results. We outline
these options in this section.

4.1.1 Single node in a graph as answer

A common search task in the ER graph model is to rank single nodes in response to keyword queries. In standard
IR, the score of a document in response to a query would be a function of the overlap of query words with text
in the document. In the graph ER model, however, we would be interested in taking advantage of the graph
structure for better ranking of response nodes.
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As a specific motivating example, consider the DBLP or CiteSeer graphs. The paper about the Object Ex-
change Model (OEM) [38] is widely cited by papers about XML search, but it was written before XML became
a mainstream research area in databases. Given that the OEM paper is directly related to XML technology and
highly cited, one may argue that it should be ranked highly in response to a query containing ‘XML’. As a more
generic motivation, an edge between nodes u, v is evidence of an association, which might lead us to postulate
that the score of of node u in response to a query should not be too different from the score of node v.

Proximity search approaches, such as [22], the near query mechanism in BANKS [1], and OBJECTRANK [7],
return an entity node as an answer to a keyword query. For example, in the BANKS system, a query “author(near
recovery)” would return authors that are closely related to the keyword recovery. The key issue is how to rank
nodes in the input graph, in response to the given keyword query. Goldman et al. [22] find shortest paths from
each potential answer node to each node containing the given keywords, and aggregate the shortest path lengths
to get a node score. In constrast, BANKS [1] is based on a spreading activation model.

4.1.2 Trees and graphs as answers

A majority of the work on keyword search on structured data is based on finding a subtree connecting the
keywords specified in the query. Early examples of this approach include BANKS [8], DBXplorer [4] and
Discover [24].

While some early work ranked trees based on the number of edges, BANKS [8] proposed a more sophis-
ticated ranking model based on edge directionality and edge weights; this model was later refined based on
traversal probabilities in [26]. The primary motivation for the more sophisticated ranking approach was that
unrelated nodes often have very short parts connecting them through “hub” nodes; for example if a paper node
links to the conference in which it appears, every two papers in that conference have a path of length 2 connect-
ing them, even if they are otherwise unrelated. The directed edge weight model penalizes such shortcut paths
that connect a large number of nodes.

When nodes can contain significant amounts of text, IR ranking techniques are important for computing
answer tree scores. Fang et al. [32] describe how to apply IR ranking techniques such as TF-IDF, document size
normalization and phrase-based ranking to rank answer trees.

Given a keyword query, Précis [28] first finds nodes containing the keywords; but instead of just returning
these nodes, for each such answer node Précis returns a subgraph of related nodes. The subgraph of related
nodes is generated based on foreign key joins with other closely related relations, which can be automatically
chosen based on some heuristics.

The Précis approach starts with a node or a path/tree and grows a graph around it. An alternative approach
is based on finding small subgraphs that contain the given query keywords. For example, the EASE system [31]
finds r-radius Steiner subgraphs that contain the given query keywords, ranked based on their compactness and
length-normalized TF-IDF scores.

4.1.3 Forms and Queries as Answers

Presenting nodes, trees or graphs as answers is often not satisfactory for end users who are not concerned with
the schema. For example, users of enterprise information systems are used to getting richly structured answers in
response to filling in forms. A different approach is required to generate such structured answers; in particular,
answers formats need to be predecided in some way, and a keyword query retrieves one of the predecided answer
formats.

One approach, proposed by [17], precomputes a set of forms, with associated SQL queries, from the given
database schema. A keyword search then returns a set of forms that are relevant to the query, instead of returning
actual data; a form is considered relevant to a query if the keywords occur in relations used in the form query.
The user can then provide values for form parameters to get at required information.
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A second approach, proposed by [36], is to specify units of information called qunits, each defined using a
parametrized query, defined in a language such as SQL/XML. Executing each such qunit template with different
instantiations of the parameters leads to a collection of instantiated qunits. Keyword queries are evaluated
against the set of instantiated qunits, and relevant qunits are returned as (ranked) answers. A major focus of [36]
is on how to automate the generation of qunits, and a user study shows that automated generation can perform
reasonably close to human generated qunits.

A third approach is applicable to a situation where an enterprise information system has already defined
a large number of forms; here, the goal of a keyword query is to find a form, along with an instantiation of
form parameters, such that the result of the instantiated form contains the specified keywords. In the approach
proposed by [20], forms results are precomputed for all possible parameter values, and indexed offline. In
enterprise information systems, this approach is complicated by the fact that different users may see different
results on submitting the same form. In Section 5.3 we outline how Duda et al. [20] handle this problem. The
problem of deep Web search, e.g. [40], is closely related. Work in this area has generally focussed on generating
values to be filled into Web forms to surface data hidden behind the forms; pages thus surfaced are then indexed
just like regular Web pages.

4.1.4 Tables as Answers

For many user information needs, the answer is best represented as a single table rather than as a collection of
documents. For example, in Google Squared 2 a search for entity types such as “fighter jets” outputs a table with
rows representing instances of fighter jets and columns denoting attributes like dimensions and crew size. The
column of the table are either specified by the user or inferred by referring to an offline extracted knowledge
base of attributes and classes [39]. Typically, such tables are constructed from noisy consolidation of information
from multiple sources. So, the cells of the table contain multiple ranked plausible answers.

4.2 Query structure

Several approaches have been proposed for adding some degree of structure to keyword queries. We outline a
few of these in this section.

4.2.1 Type and proximity queries

A broad class of entity search queries ask about an unknown entity belonging to a known type that satisfy some
properties. These properties are loosely expressed in terms of the entity being mentioned in close juxtaposition
with certain keywords. E.g., using the category Physicist in Wikipedia, we might look for physicists who
play(ed) the violin by searching for short token sequences that contain both a descendant of type Physicist and
the literal word violin. In Section 5.1.3 we present various issues of answering such queries. Searching for
entities is now a standard track in the TREC and INEX competitions.

4.2.2 EntityRank

The next step is to ask for not one entity of a given type but a few entities with given types, related to each
other in specified ways [16]. (The relation is again favored in a soft manner through lexical proximity within
a short token sequence.) E.g., if we had surface recognizers (Section 2.3) for emails and phone numbers, and
we managed to reliably annotate entities that are instances of database researcher, we could ask for a table
with three columns: the mention of a database researcher (“David Lomet”), an email (lomet@xyz.com) and
a phone number (“800-555-1212”). Note that the use of schema in the query “language” thus far is not very

2http://www.google.com/squared
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overbearing. The only new query construct is a type name. Of course, the user has to know the type name from
a standard catalog, but autocompletion and query suggestions can help [42].

4.2.3 Adding variables, contexts, and joins

Pushing further on the paradigm of structured queries on unstructured data, the logical next stop involves vari-
ables and joins. Suppose we can name a variable ?m as a placeholder for a movie, variable ?o as a number, and
variable ?b as a money amount, expressed as these subqueries:

• ?m ∈+ Type:Movie

• ?o ∈ Quantity:Number

• ?b ∈+ Quantity:MoneyAmount

(Here “∈+” denotes transitive membership via intermediate subtypes.) Then we can ask for token segments or
contexts ?c1 and ?c2 such that

• INCONTEXT(?c1;?m,?o;won,Oscar)

• INCONTEXT(?c2;?m,?b; production, cost, budget)

and finally aggregate over contexts ?c1 and ?c2 to get a table with three columns: a movie name mention, the
number of Oscars it won, and its production budget. Although such a language may not be used by end-users, it
can be used as a “decision support” tool.

4.2.4 Specifying graph structures

Keyword queries can specify partial structures on graphs. For example, XPath expressions, or approximate
match XPath expressions can be used to restrict the scope of a keyword query on XML data; see for example, [6],
which explores flexible path specifications in the context of XML data. The idea of flexible path specifications
can be easily applied to graph data. In the context of RDF graphs, one could use SPARQL, a structured, SQL-like
query language for querying RDF.

The NAGA search engine [27] proposes a query language that allows specification of some kinds of graph
constraints such as path and edge constraints. Unlike SPARQL, the graph-based NAGA query language takes
into account uncertainty of underlying facts, and aggregates support for a fact from multiple sources. A com-
parison of result quality using NAGA with results of Google search, and results of keyword queries using the
BANKS scoring model is presented in [27].

4.2.5 Specifying table structure

In Section 4.1.4 we discussed the Google Squared method of returning table answers to keyword queries. These
provide limited control to the user on how to describe the answer table. We propose two alternative modes
of querying for tables. The first kind of queries are called column description queries where the user fills in
multiple keyword boxes where each text box describes a column of the answer table. For example to retrieve a
list of scientists and their inventions, he fills two text boxes: one containing words like “inventor, scientist” and
the second containing words like “major invention”. The second kind are content queries where a user submits
a few examples of structured rows of the desired table and expects to get more instances of such rows. These
examples can prove invaluable for teaching an extractor how to convert unstructured list sources to structured
tables in the answer [23].

10



5 Algorithms and systems

In this section we review some algorithmic and system issues that come up when one implements the annotator,
index, and search capabilities introduced before.

5.1 Entity search in annotated text

5.1.1 Broad type annotation

Machine learning techniques have come a long way toward annotating text with coarse-grained types. Let a text
token sequence be called x = (x1, x2, . . . , xT ), and designate (unknown) labels y = (y1, y2, . . . , yT ) to these
token positions. Each yt can take on type values like Person, Street name, Paper title, Phone number, and so
on. Usually there is also a “none of the above” label for tokens not recognized to belong to any of the specified
groups. Then the job is to find the best labeling y. Note that, if each token position can have one of M labels, the
number of possible labelings is astronomical, MT . This explosion can be avoided using the Viterbi algorithm
used in hidden Markov models. Recent techniques have improved upon HMMs by defining general families
of feature functions ϕ(x, y) ∈ Rd and then learning a model w ∈ Rd such that the best labeling is given by
argmaxy w

⊤ϕ(x, y) [41].

5.1.2 Entity disambiguation

Beyond broad types, we want to annotate tokens with disambiguated entities. Suppose s is a spot (token segment)
in a document that is suspected to mention some entity from a set Γs. It is possible that s does not mention any
entity in Γs, and the “null” label is denoted N.A.. Let S0 be the set of all spots in a document. Then the job is
to pick, for each s, an entity label γ ∈ Γs ∪ {N.A.}. Recall that γ comes from an entity catalog. Specifically, if
WordNet is the catalog, each concept has a dictionary-like definition with an example “gloss” showing typical
usage. If the catalog is Wikipedia, there is a whole article describing the entity at length. On the other side, the
potential mention s has a textual context. We would generally expect some affinity between the context of s and
the definition of γ. This can be expressed in a manner neutral to the specific identity of s or γ, as a feature vector
fs(γ) in some space. Again, we can learn a model w in the same space such that the predicted entity label is
argmaxγ∈Γs∪N.A.w

⊤fs(γ) [29, 33].
However, one may do better by exploiting the fact that entities mentioned in a single discourse tend to

be semantically related. E.g., Wikipedia lists several Michael Jordans of who only one is a Computer Science
professor, and likewise with Stuart Russell. However, a single Web page listing both names almost certainly refer
to the two computer scientists. A collective optimization over all spot labels [19,35] can improve disambiguation
accuracy noticeably.

5.1.3 Indexing and query processing

To process INCONTEXT queries as presented in Section 4.2.3, we need two basic devices:

• Find connections between types in the query to entities mentioned in token segments.

• Score and rank these token segments using textual proximity as an important feature.

Reachability testing between the query type and a candidate entity answer can be done in at least two ways:

• At query time, expand the query type into each candidate in turn, and score the candidates. In other
words, if the query is looking for a scientist who studied whales, effectively ask if e and ‘whale’ appear
in a context, where e ∈+ scientist. This slows down queries unacceptably: Even WordNet knows of 650
scientists and 860 cities, not to mention Wikipedia or YAGO.
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• At indexing time, suppose a token is a mention of entity e, and let Te be all types to which e belongs
directly or transitively. Then we insert pseudotokens encoding all types T ∈ Te at the same token position
and index these. This works well in applications with a small type system (5–10) [16]. In contrast,
Wikipedia and YAGO have over 250,000 types and over 2.2 million entities, and the average size of Te
may be 10–30. This leads to unacceptable index size blowup.

One approach [13] is to compromise on both ends: index a carefully chosen subset of types, then do more
work at query time. I.e., follow a “pre-generalize/post-filter” paradigm. Given a query type a, if a has not been
indexed, generalize to some type g ⊇+ a, and launch an IR-style query. Afterward, check if the instance of g in
each candidate context is an also instances of a; if not, discard. Experiments with TREC and WordNet suggest
that index size can be kept comparable to a standard text index while slowing down queries by less than a factor
of 2.

5.2 Ranking entity nodes in ER graphs

Proximity queries in ER graphs seek entity nodes that are “near” nodes representing query words, or entity nodes
that match query words. This paradigm is easiest to express in terms of personalized PageRank [25, 37]. Each
directed edge (u, v) of the data graph has a conductance C(v, u) ∈ (0, 1), which is the conditional probability
Pr(v|u) that a “random surfer”, in PageRank parlance, will walk from node u in the previous step to node v in the
current step, should he decide to walk, which happens with probability α ∈ (0, 1). By design,

∑
v C(v, u) = 1.

With probability 1−α, he teleports to a node w in the graph with probability r(w), with
∑

u r(u) = 1. It is well-
known that the PageRank vector pr corresponding to teleport r satisfies the recurrence pr = αCpr + (1− α)r,
which solves to pr = (1− α)(I− αC)−1r. Summarizing, query processing consists of

• Designing the data graph, C and α ahead of time

• Using the query to define r

• Computing PageRank vector pr
• Reporting the top K nodes u with the largest pr(u) scores.

A variant of the above paradigm (that allowed taking much of the computation offline) was proposed as OBJEC-
TRANK [7]. The matrix C can also be learned automatically from training data [2, 3].

Traditional offline computation of PageRank is done by power iteration: Initialize pr to some random
nonzero vector, then iterate pr ← αCpr + (1 − α)r. For large data graphs (beyond tens of millions of nodes),
it is not practical to compute pr at query time using power iterations. The special structure of personalized
PageRank can be exploited [12] to achieve an almost constant query time independent of graph size, provided
special indices are precomputed whose size scales as a modest fraction of graph size.

5.3 Executing tree and form queries

In this section, we address the issue of answering tree and form queries, focusing on preprocessing/indexing,
and query execution.

Work in the area of efficient computation of connection trees or graphs as answers to keyword queries can
be divided into two approaches:

1. approaches based on generating and executing SQL queries, and

2. approaches based on graph traversal.

In a companion article in this issue, Yu et al. [45] provide an extensive survey of techniques for executing
keyword queries on relational and graph databases.
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Work on indexing deep Web content, such as by Raghavan and Garcia-Molina [40], is primarily based on
surfacing the content by filling in form values, so that the content can be indexed subsequently. This approach
is implemented in popular search engines today.

As an alternative, if the domain of an input to a form is known, e.g. a set of flight numbers, the set of
values associated with the domain can be added to the document representing the form; a query containing these
keywords could then retrieve the form.

In contrast to the Web scenario, in an enterprise setting the underlying data is available, and can be used to
retrieve forms without surfacing all results of the form; however access restrictions must be taken into account.
For example, in the approach of Duda et al. [20], each form is specified using a representation language which
allows the system to understand what results are generated for what form parameters, with the identity of the
user also treated as a parameter. Then, keywords from parts of the form that are dependent on a parameter value
(for example, the name of a person where employee identifier is a parameter) are stored in a keyword index with
an associated predicate.

For example, consider a form that outputs an employee name, given the employee identifier. If employee ID
2345 had the name John, the keyword index entry for John would include the above form, with an associated
predicate “empID=2345”. A query “John” would retrieve an index entry with the above predicate, allowing
the system to infer that the form, with parameter empId=2345 is an answer to the query. If the query contains
multiple keywords, the inverted lists are merged, taking the predicates into account. Parts of the form which are
common across all parameter values would not have any associated predicate, minimizing the storage and query
cost.

5.4 Processing table queries

In this section we discuss how to process table search queries of the kind described in 4.2.5 by tapping tables
and lists on the Web. We present a brief summary; more details can be found elsewhere [23]3.

5.4.1 Pre-processing and annotation

Recognizing useful tables and lists First, we need to identify parts of HTML pages that contain useful record
sets. Depending only on HTML tags such as ⟨table⟩ and ⟨li⟩ is not sufficient as these are often used as layout
tools or navigational aids for non-record data. For instance, as observed in [9] only 10% of HTML table tags are
used to represent structured content. Similarly, only a small fraction of lists on HTML pages actually represent
record sets.

Catalog annotations on web tables A catalog is used to annotate table cells with entity nodes, table columns
with type nodes and column pairs with relationship identifiers. The lemma attached with these nodes are used
to associate additional keywords with table cells and columns.

Indexing A text index is constructed on the extracted record sets where each set is associated with three kinds
of fields: a bag of word representation of all the contents in the table, the catalog annotations, and the union of
the title and descriptive context of the table.

5.4.2 Processing at query time

During query processing the index is first probed using the query words to find a list of candidate tables and
lists. These are then subjected to the following steps:

3http://www.cse.iitb.ac.in/˜sunita/wwt
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Table extraction from HTML record sets There is a long history of extracting structure from record data on
the Web [5,14,18,21,30,46]. However, most of this work has been restricted to specific verticals like shopping,
advertisements, and publications. Recent work [23] seeks robust extractors that do not depend on prior schema
knowledge. At query time they have only (1) the few example rows provided by the user, and (2) other candidate
record sets with overlapping content. The trick is to first use the query rows to create a partially labeled dataset,
and then fit a model that simultaneously maximizes the probability of the labeled data and the probability that
overlapping content across different lists get the same label.

Consolidation and ranking The extractor outputs a set of tables along with row and cell confidence scores
indicating the probability of correctness of the extraction. The consolidator merges these tables into a single
result table by resolving the set of rows that are duplicates. A cell in the consolidated table contains a set of
cell values that are aliases of each other. Intuitively, a high scoring consolidated row is one which repeats in
sources which overlap greatly with query words, has a high confidence score of extraction, and contains most of
the useful columns.

6 Outlook

A great deal of recent work aims to improve the quality of results of keyword queries by adding structure to
data, answers, and to queries themselves. We believe that the results of this research will have a significant
impact on bridging the gap between structured and unstructured search. This article gives the reader a feel for
the fast-growing area, but we cannot claim to have covered it exhaustively.
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Abstract

The proliferation of knowledge-sharing communities like Wikipedia and the advances in automated information
extraction from Web pages enable the construction of large knowledge bases with facts about entities and their
relationships. The facts can be represented in the RDF data model, as so-called subject-property-object triples,
and can thus be queried by structured query languages like SPARQL. In principle, this allows precise querying
in the database spirit. However, RDF data may be highly diverse and queries may return way too many results,
so that ranking by informativeness measures is crucial to avoid overwhelming users. Moreover, as facts are
extracted from textual contexts or have community-provided annotations, it can be beneficial to consider also
keywords for formulating search requests. This paper gives an overview of recent and ongoing work on ranked
retrieval of RDF data with keyword-augmented structured queries. The ranking method is based on statistical
language models, the state-of-the-art paradigm in information retrieval. The paper develops a novel form of
language models for the structured, but schema-less setting of RDF triples and extended SPARQL queries.

1 Motivation and Background

Entity-Relationship graphs are receiving great attention for information management outside of mainstream
database engines. In particular, the Semantic-Web data model RDF (Resource Description Format) is gaining
popularity for applications on scientific data such as biological networks [14], social Web2.0 applications [4],
large-scale knowledge bases such as DBpedia [2] or YAGO [13], and more generally, as a light-weight repre-
sentation for the “Web of data” [5].

An RDF data collection consists of a set of subject-property-object triples, SPO triples for short. In ER
terminology, an SPO triple corresponds to a pair of entities connected by a named relationship or to an entity
connected to the value of a named attribute. As the object of a triple can in turn be the subject of other triples,
we can also view the RDF data as a graph of typed nodes and typed edges where nodes correspond to entities
and edges to relationships (viewing attributes as relations as well). Some of the existing RDF collections contain
more than a billion triples.

As a simple example that we will use throughout the paper, consider a Web portal on movies. Table 1
shows a few sample triples. The example illustrates a number of specific requirements that RDF data poses for
querying:

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Subject (S) Property (P) Object (O)
Ennio Morricone hasType Composer
Ennio Morricone hasWonPrize Academy Award
Ennio Morricone composedSoundtrack C’era una volta il West
Henry Fonda actedIn C’era una volta il West
Henry Fonda hasWonPrize Academy Award
Claudia Cardinale actedIn C’era una volta il West
Claudia Cardinale hasWonPrize Golden Berlin Bear
El Laberinto del Fauno hasType Movie
El Laberinto del Fauno hasTag Fantasy
El Laberinto del Fauno hasTag Franco Regime in Spain
Guillermo del Toro directed El Laberinto del Fauno
Guillermo del Toro hasWonPrize Academy Award
Javier Navarette createdFilmMusic El Laberinto del Fauno
Javier Navarette nominatedFor Grammy Award

Table 1: SPO triples in the RDF data model

1. Despite the repetitive structure in some parts of the data, there is often a high diversity of property names
across the entire dataset. Thus, we need a flexible query language to search and explore schema-less data.
The W3C-endorsed SPARQL language offers the equivalent of select-project-join queries, but in contrast
to SQL, allows wildcards for property names.

2. While this is a powerful feature for schema-less data, it would still be a Boolean-match evaluation. There-
fore, SPARQL queries may often produce empty results when queries are too specific, or overwhelm the
user or application program with huge result sets. This calls for meaningful ranking of search results,
based on statistics about the data and user queries.

3. While ranking is desired for structured query conditions, we should also consider that RDF triples of-
ten come with additional textual components. For example, movie portals also contain user comments,
knowledge bases that are automatically built by information extraction from Web sources should also in-
clude the source texts, and biological data collections are often annotated by expert users or may reference
PubMed articles. To tap on these potentially valuable texts, an RDF query language should also support
text search with keywords and phrases.

This paper gives an overview on how these three requirements can be addressed. It is based on recent and
ongoing research on IR-style ranking for RDF data [8, 9]. In Section 2, we discuss how to extend the SPARQL
language with keyword search. In Section 3, we show how to compute principled rankings for search results
in a schema-less but structured data setting. In Section 4, we sketch experimental studies, as evidence for the
viability of the proposed model. We conclude with an outlook on open issues.

2 Extending the SPARQL Query Language

The SPARQL language is the W3C standard for querying RDF data. A query consists of conjunctions of elemen-
tary SPO search conditions, so-called triple patterns. For example, a question about prize-winning composers
who have composed music for movies that feature prize-winning actors, with results consisting of composer-
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movie pairs, can be expressed in SPARQL as follows:

Select ?x, ?m Where { ?x hasType Composer . ?x hasWonPrize ?p .
?x composedSoundtrack ?m . ?m hasType Movie .
?a actedIn ?m . ?a hasWonPrize ?q }

Each triple pattern has one or two of the SPO components replaced by variables such as ?x , the dots between
the triple patterns denote logical conjunctions, and using the same variable in different triple patterns denotes
join conditions. For the example data of Table 1, this query returns Ennio Morricone and C’era Una Volta il
West (which stars Henry Fonda). However, the query would miss results about movies whose directors won an
award or with actors or directors nominated for an award (which often is a major honor already). Moreover, as
there is no prescriptive schema for property names, there are a variety of ways for expressing the appearance
of musical compositions in movies; referring only to the composedSoundtrack property is unduly restrictive.
Fortunately, SPARQL allows relaxing the query by having variables for property names. This way, the query
could be re-phrased into the more liberal form:

Select ?x, ?m Where { ?x hasType Composer . ?x hasWonPrize ?p .
?x ?p ?m . ?m hasType Movie . ?a ?r ?m . ?a hasWonPrize ?q }

This is still a highly structured query, with typed entity variables, join conditions, etc. But it is now so
relaxed that we would obtain a large number of results on a realistically sized movie collection. This too-many-
results situation thus calls for a ranked result list, in the IR spirit, rather than a result set merely based on Boolean
matching. We will discuss our approach to ranking in the next section.

As mentioned before, RDF triples may have associated text passages, e.g., the text from which a fact was
automatically extracted or user-provided comments from a Web2.0 community. In this case, that text provides
extra information that we can consider in formulating queries. For example, suppose we search for film-music
composers who have also written classical music and whose compositions appear in dramatic movie scenes such
as gunfights in westerns or battles in easterns. This is difficult if not impossible to express by structured query
conditions alone. To overcome this problem, we would prefer to simply specify keywords – but keywords within
the context of a more precise triple pattern:

Select ?x, ?m Where { ?x hasType Musician {classical, composer} .
?x composedSoundtrack ?m . ?m hasType Movie {gunfight, battle} }

Here, two of the triple patterns are augmented by keyword conditions. The query should return results such
as Tan Dun composedSoundtrack Hero. Similarly, we could ask for rock musicians whose music is used in love
scenes in movies (as mentioned in descriptions of the movie plot or discussed in fan communities), or we could
refine our earlier condition about awards by specifying that the award citation should include certain keywords,
and so on.

It is important to note that the query still has a rich structure with several triple patterns and that the associa-
tion of keywords with individual triple patterns is crucial. The keyword parts have to be matched by facts whose
associated text contains the specified keywords. This imposes a semantic grouping on the total set of query
keywords. Without this structure, we would get different, possibly inappropriate, matches: for example, movies
about classical composers such as Mozart with music composed by rock stars that were involved in gunfights
and their personal battle with drugs (to give an outrageous example).

The outlined approach is close in spirit to languages like XQuery Full-Text [1] - except, and this is crucial,
that we are dealing with RDF-style graph data and not with XML trees. The semantic grouping of keywords
is impossible to express with today’s Internet search engines. Separate phrase conditions such as “classical
composer” and “gunfight battle” return very different results based on exact matching of consecutive words, and
would miss good results such as “composer of the opera . . . a masterpiece for classical orchestra”.
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3 Ranking with Statistical Language Models

Whenever queries return many results, we need ranking based on the informativeness of the answers. Users
prefer prominent entities and salient facts as answers. For example, the query about award-winning composers
for movies with award-winning actors or directors should return prominent results such as “El Laberinto del
Fauno” or “Hero” rather than matches such as “The Muse” (which features music by Grammy winner Elton
John but is not a well-known movie).

State-of-the-art ranking models in IR are based on statistical language models, LMs for short. They have
been successfully applied to passage retrieval for question answering, cross-lingual search, ranking elements in
semistructured XML data, and other advanced IR tasks [7]. An LM is a generative model, where a document
d is viewed as a probability distribution over a set of words {t1, ..., tn} (e.g., a multinomial distribution), and a
query q = {q1, ..., qm}with several keywords qi is seen as a sample from this distribution. The parameters of the
distribution d are determined by maximum-likelihood estimators in combination with advanced smoothing (e.g.,
Dirichlet smoothing). This is not unlike tf ∗ idf -style frequency-based models, but LMs are more principled
and the smoothing method is often decisive for good results. Now one can estimate the likelihood of query q
for different candidate documents, and the one document that maximizes this likelihood should be the highest-
ranked result. Alternatively, we can also associate queries with LMs: a query is a probability distribution over
keywords, derived from the query itself and, for example, a general user-interest profile or other sources for
smoothing. Then, the query-likelihood model is equivalent to ranking based on the Kullback-Leibler divergence
(KL-divergence for short) of the query LM with regard to the candidate document LMs [16]. KL-divergence
is an information-theoretic measure (aka. relative entropy) for comparing two probability distributions. It is
always non-negative and zero only for identical distributions.

3.1 Entity-Relationship Ranking

Recently, extended LMs have been developed for entity ranking in the context of expert finding in enterprises
and Wikipedia-based retrieval and recommendation tasks [10–12, 15]. These models are limited to entities –
the nodes in an entity-relationship graph. In contrast, general knowledge search needs to also consider the
role of relations – the edges in the graph – for answering more expressive classes of queries. Moreover, the
discussed work on entity IR is still based on keyword search and does not consider structured query languages
like SPARQL. Ranking for structured queries has been intensively investigated for XML [1], and, to a small
extent, for restricted forms of SQL queries [6]. Ranking has also been studied in the context of keyword search
on relational graphs (e.g., [3]). However, these approaches do not carry over to the graph-structured, largely
schema-less RDF data collections and the expressive queries discussed before.

What we need for RDF knowledge ranking is a generalization of entity LMs that considers relationships
(RDF properties) as first-class citizens. Recent work on the NAGA search engine [8, 9] has addressed these
issues and developed full-fledged LM-based methods for ranking the results of extended SPARQL queries.

In IR, typical LM-based ranking for documents, passages, or entities are associated with informative distri-
butions over words (or phrases or N-grams) and queries have straightforward LMs (essentially just the words
in the query). In contrast, our LMs for structured RDF search are probability distributions over facts (RDF
triples). Our approach is to construct a query LM for the query and result LMs for each potential result. The
KL-divergence between the query LM and a result LM gives a measure of relevance with the results being
presented to the user in increasing order of KL-divergence.

3.2 Estimating the Query LM

The LM for a triple pattern, the basic unit of a structured query, considers all possible substitutions of its variables
by matching triples from the underlying RDF data collection. Consider the pattern ?x directed ?y. This is
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satisfied by all director-movie pairs from directed triples in the data. The LM for this triple pattern is a probability
distribution over these triples (with smoothing by giving a small amount of probability mass to all other triples).

The probability of a given triple in the LM of a triple pattern can be viewed as the probability that the user
is interested in this particular triple as an answer to her question. As discussed above, some triples are more
informative than others, because they refer to important directors, important movies, etc. We can incorporate
this aspect into the LM by using statistical weights for different triples in order to construct a non-uniform
distribution. To this end, we consider the witnesses of a given triple: how often, on the Web or in the news, do
we see this triple. Alternatively, if we construct the RDF data collection by automatic information extraction
from Web sources, the witnesses of a triple are the distinct sources from which we have extracted the triple.
In our implementation, we issued keywords queries for each triple against a major search engine and used the
reported result sizes as estimates for witness counts. These counts are pre-computed and stored in indexes.

# Triple (ti) c(ti) PQ(ti)
t1 Ivana Baquero actedIn El laberinto del fauno 200 200/1000 = 0.2
t2 Henry Fonda actedIn C’era una volta il West 250 250/1000 = 0.25
t3 Holly Hunter actedIn The Piano 200 200/1000 = 0.2
t4 Robert Duvall actedIn Apocalypse Now 350 350/1000 = 0.35

Table 2: Triples matching ?a actedIn ?m with witness counts

Let q̂i be the set of triples which match the triple pattern qi and c(ti) be the number of witnesses of triple ti.
The probability PQ(ti) is then estimated as follows:

PQ(ti) =
c(ti)∑
t∈q̂i c(t)

For the triple pattern ?a actedIn ?m, Table 2 shows a very simple LM over four actedIn triples (smoothing over
all triples is ignored here for simplicity).

Now consider a query with two or more patterns, for example, [?x directed ?y . ?x hasWonPrize Academy Award]
asking for movies whose directors have won the Academy Award. For queries with N triple patterns, we now
define the query LM to be a probability distribution over N -tuples of triples. For tractability of both parameter
estimation and query-time computation, we assume probabilistic independence among pairs of triple patterns
and compute the entire query LM as:

PQ(T ) =
∏
i

PQ(ti)

where PQ(T ) is the probability of the N -tuple (t1, . . . , tN ) in the query LM and PQ(ti) is the probability of
triple ti. PQ(ti) is computed as previously described.

The Query LM for Keyword-Augmented Structured Queries. For estimating the query LM of keyword-
augmented queries, each triple in the RDF collection is conceptually extended by an associated keyword taken
from textual annotations or witness documents. The same triple is repeated with different words if it has multiple
words associated with it. c(ti;wk) is the number of witnesses for triple ti occurring with word wk.

We now need to compute the probability of keyword-augmented triple patterns of the form qi = q{w1, ..., wm}
where q is a simple triple pattern and wk is an associated keyword. As before, we need to estimate PQ(ti), the
probability of a triple ti in the query LM. However, since now we have a context, in the form of words w1, ..., wm,
we actually need to estimate the probability PQ(ti|w1, ..., wm). That is, the probability of the triple ti, given the
context w1, ..., wm. Assuming independence between keywords, we calculate the triple probability as
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PQ(ti|w1, ..., wm) =
m∏
k=1

[αPQ(ti|wk) + (1− α)P (ti)] (1)

where PQ(ti|wk) is the probability of ti given the single-keyword context wk, P (ti) is the smoothing component,
and the parameter α controls the influence of smoothing. Note that it is crucial to smooth the probabilities, since
otherwise PQ(ti|w1, ..., wm) = 0 if ti is not associated with at least one word wk in the context. We use uniform
smoothing (i.e, a uniform probability distribution for P (ti)). Now, let q̂i be the set of triples which match the
triple pattern q. Then,

PQ(ti|wk) =

{
c(ti;wk)∑
t∈q̂i

c(t;wk)
if ti ∈ q̂i

0 otherwise
(2)

The necessary count values c(ti;wk) are precomputed and stored in indexes (indexed on triple identifier and
keyword identifier).

3.3 Result LM and Ranking

For query Q with N triple patterns, let G be a result. Now, the LM of G, denoted PG, is estimated over all
N -tuples as: PG(T ) = βP (T |G) + (1 − β)P (T |C), where β is another smoothing parameter. If G is the N -
tuple T , then P (T |G) = 1, otherwise, P (T |G) = 0. For the smoothing component, probabilistic independence
is assumed: P (T |C) =

∏N
i=1 P (ti|C) where P (ti|C) is estimated given the entire corpus or data collection:

P (ti|C) = c(ti)∑
t∈KB c(t)

Given the query and candidate-result LMs, the KL-divergence between the query LM PQ of query Q and a
result LM PG of result G is computed as follows:

KL(Q||G) =
∑
i

PQ(Ti)log
PQ(Ti)

PG(Ti)

The results are returned to the user in ascending order of KL-divergence.

4 Experimental Studies

We conducted a user study with relevance assessments collected on the Amazon Mechanical Turk platform.
Our dataset was derived from a subset of the Internet Movie Database (IMDB) and consisted of around 600,000
RDF triples. In addition, each triple was augmented with keywords derived from the data source where it was
extracted from. In particular, all the terms in the plots, tag-lines and keywords fields were extracted and stored
with each triple.

We constructed 10 structured queries and 10 keyword-augmented queries. We presented the top-10 results
for each query to 7 different evaluators who judged the results based on a 6-point scale ranging from “highly
relevant” (5) to “irrelevant” (0). To measure the ranking quality, we used the Discounted Cumulative Gain
(DCG) [7], which is a measure that takes into consideration the rank of relevant documents and allows the
incorporation of different relevance levels. Dividing the obtained DCG by the DCG of the ideal ranking we
obtained a Normalized DCG (NDCG) which accounts for the variance in performance among queries.

Table 3 shows the 10 evaluation queries and their NDCG values for the case of purely structured SPARQL
queries. On average, we achieved a high NDCG value of 0.88. Similarly, Table 4 shows the 10 keyword-
augmented SPARQL queries we used to evaluate the quality of the result ranking in the case where the queries
contained keyword conditions. The third column gives the corresponding NDCG value for each query. On
average, we obtained an NDCG value of 0.866. For both types of queries, the NDCG results are excellent (1.0
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would be perfect). Note that the keyword-augmented queries cannot be expressed at all in purely structured
form. If we dropped the keyword conditions and merely used the structural conditions, we would obtain much
weaker if not useless results.

ID SPARQL Query NDCG
1 ?a actedIn ?m . ?a hasWonPrize ?p . ?m hasWonPrize Academy Award 0.834
2 ?a hasWonPrize ?p . ?a actedIn ?m1 . ?a actedIn ?m2 0.891
3 ?d directed ?m . ?d actedIn ?m 0.901
4 ?a1 isMarriedTo ?a2 . ?a1 actedIn ?m . ?a2 actedIn ?m 0.905
5 ?d hasWonPrize Academy Award for Best Director . ?d directed ?m .

?a actedIn ?m . ?a hasWonPrize Academy Award for Best Actor 0.869
6 ?m hasGenre Comedy . ?a actedIn ?m . ?a directed ?m 0.956
7 ?m hasGenre Comedy . ?a1 actedIn ?m . ?a2 actedIn ?m 0.894
8 ?a hasWonPrize Academy Award for Best Actress. ?a actedIn ?m .

?a diedOnDate ?t 0.912
9 ?d directed ?m . ?d hasWonPrize ?p1 . ?m hasWonPrize ?p2 0.818
10 ?m1 hasGenre Family . ?m1 hasProductionYear 1995 . ?a actedIn ?m1 .

?m2 hasGenre Comedy . ?a actedIn ?m2 0.821

Table 3: NDCG for Purely Structured Queries

ID SPARQL Query NDCG
1 ?a actedIn ?m {spielberg} . ?a hasWonPrize ?p 0.745
2 ?m hasGenre Comedy {christmas} . ?a1 actedIn ?m . ?a2 actedIn ?m 0.846
3 ?a1 hasWonPrize Academy Award for Best Actor . ?a1 actedIn ?m {relationship} .

?a2 hasWonPrize Academy Award for Best Actress . ?a2 actedIn ?m {love} 0.873
4 ?d hasWonPrize Academy Award for Best Director . ?d directed ?m {new, york} .

?a actedIn ?m . ?a hasWonPrize Academy Award for Best Actor 0.872
5 ?m hasGenre Comedy {school, friends} 0.939
6 ?m hasGenre Comedy {police} . ?a actedIn ?m . ?a directed ?m 0.933
7 ?d directed ?y {true, story} . ?d hasWonPrize ?p 0.921
8 ?a hasWonPrize Academy Award for Best Actress . ?a actedIn ?m {paris} .

?a diedOnDate ?t 0.920
9 ?d directed ?m {love} . ?d hasWonPrize ?p1 . ?m hasWonPrize ?p2 0.849
10 ?m1 hasGenre Family {wedding} . ?m1 hasProductionYear 1995 . ?a actedIn ?m1 .

?m2 hasGenre Comedy {serial, killer} . ?a actedIn ?m2 0.762

Table 4: NDCG for Keyword-augmented Queries

In Table 5 we show some example purely-structured queries. For each query, the top-5 results are given.
Due to space limitations, we just show the bound entities (i.e., matches to the variables in the queries). Next to
each result, we also show the average relevance value given by the evaluators (column Rel.). Recall that each
result was given a relevance value between 0 and 5, with 5 corresponding to highly relevant results.

For Query 3 in Table 3, asking for a movie directed and acted in by the same person, the top-5 results are all
well-known movies (see Table 5). Similarly, for Query 5 in Table 3, asking for a director who won an Academy
award and directed a movie that an Academy-awarded actor acted in, we also obtain very prominent movies,
directors, and actors.

For the case of keyword-augmented SPARQL queries also, our result ranking is superior. For instance,
consider Query 2 in Table 4, asking for comedy movies about “Christmas” and their directors. The top-5 movies
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Q. ID Rank Result Rel.

3

1 Sylvester Stallone, Rambo 3.29
2 Mel Gibson, Braveheart 3.71
3 Clint Eastwood, Million Dollar Baby 3.71
4 Woody Allen, Annie Hall 3.71
5 Ben Stiller, Zoolander 4.14

5

1 Martin Scorsese, Robert De Niro, Casino 3.43
2 Milo Forman, Jack Nicholson, One Flew Over the Cuckoo’s Nest 3.29
3 William Wyler, Gregory Peck, Roman Holiday 3.29
4 Robert Zemeckis, Tom Hanks, Forrest Gump 3.00
5 Sydney Pollack, Dustin Hoffman, Tootsie 2.86

Table 5: Top-ranked results for some example purely-structured queries

Q. ID Rank Result Rel.

2

1 Miracle on 34th Street, Maureen O’Hara, Edmund Gwenn 2.86
2 Love Actually, Liam Neeson, Alan Rickman 3.14
3 Bad Santa, John Ritter, Billy Bob Thornton 2.86
4 Jingle All the Way, James Belushi, Arnold Schwarzenegger 3.29
5 Christmas in Connecticut, Sydney Greenstreet, Barbara Stanwyck 3.14

4

1 Martin Scorsese, Robert De Niro, Mean Streets 3.29
2 Elia Kazan, Marlon Brando, On the Waterfront 3.29
3 James L. Brooks, Jack Nicholson, As Good as It Gets 3.14
4 Spike Jonze, Nicolas Cage, Adaptation. 3.29
5 John Schlesinger, Dustin Hoffman, Midnight Cowboy 3.57

Table 6: Top-ranked results for some example keyword-augmented queries

(see Table 6) are all well-known comedies that have christmas as a theme. Query 4 in Table 4 asks for a director
that won an Academy award, and directed a movie that an Academy-awarded actor acted in, and in addition the
movie should be related to “New York”. The top answers, shown in Table 6, are all salient movies featuring
New York.

5 Future Directions

In our current work, the text-search conditions are limited to keywords. However, IR systems usually offer
a richer repertoire of predicates: phrase matching (i.e., several contiguous keywords), proximity search (i.e.,
several non-contiguous keywords within short distance), negated conditions (i.e., taboo words that must not
appear in a result), query expansion (i.e., adding related words that are not explicitly given in the query), and
more. Our LM-based framework is geared for this, and can compute meaningful rankings even for such richer
queries with a structured “backbone”. However, efficient indexing and query processing pose major challenges.

Personalizing and diversifying search results are also open issues in the extended-SPARQL setting. For
example, consider a question about Oscar winners from Europe. In the standard setting, we would rank people
like Bruce Willis, Anthony Hopkins, Roman Polanski, or Ingrid Bergman as top results. But suppose the user has
previously expressed strong interest in music, e.g., by browsing information on contemporary composers. Then
the personalized search result should prefer people like Ennio Morricone, Hans Zimmer, or Javier Navarrete (all
of whom won Oscars for film music). Now consider that the query should also return salient movies by these
European Oscar winners. Returning only movies with Ennio Morricone’s music on the top ranks would be rather
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monotone, even if this is the user’s favorite composer. Instead, it is highly desirable to have more diversity in
the top-ranked results.

The querying and ranking models presented in this paper have shown very good results so far. The next step
will be to extend our framework to address the above open issues.
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Abstract

Consider a universe of tokens, each of which is associated with a weight, and a database consisting of
strings that can be represented as subsets of these tokens. Given a query string, also represented as a
set of tokens, a weighted string similarity query identifies all strings in the database whose similarity
to the query is larger than a user specified threshold. Weighted string similarity queries are useful
in applications like data cleaning and integration for finding approximate matches in the presence of
typographical mistakes, multiple formatting conventions, data transformation errors, etc. We show that
this problem has semantic properties that can be exploited to design index structures that support very
efficient algorithms for query answering.

1 Introduction

Arguably, one of the most important primitive data types in modern data processing is strings. Short strings
comprise the largest percentage of data in relational database systems, long strings are used to represent protein
and DNA sequences in biological applications, as well as HTML and XML documents on the web. Searching
through string datasets is a fundamental operation in almost every application domain, for example SQL query
processing, information retrieval, genome research, product search in eCommerce applications, and local busi-
ness search on online maps. Hence, a plethora of specialized indexes, algorithms, and techniques have been
developed for searching through strings.

Due to the complexity of collecting, storing and managing strings, string datasets almost always contain
representational inconsistencies due to typographical mistakes, multiple formatting conventions, data transfor-
mation errors, etc. Most importantly, string keyword queries more often than not contain errors as well. Even
though exact string matching has been studied extensively in the past and a variety of efficient string searching
algorithms have been developed, it is clear that approximate string matching (based on some notion of string
similarity) is fundamental for retrieving the most relevant results for a given query, and ultimately improving
user satisfaction. For that purpose, various string similarity functions have been proposed in the literature.

This article discusses indexing techniques and algorithms based on inverted indexes and a variety of weighted
set-based string similarity functions, that can be used for efficiently answering all-match selection queries, i.e.,
queries which ask for all data strings whose similarity with the query string is larger than a user specified
threshold.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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2 Set-Based Similarity

Set-based similarity decomposes strings into sets of tokens (such as words or n-grams) using a variety of tok-
enization methods and evaluates similarity of strings with respect to the similarity of their sets. A variety of set
similarity functions can be used for this purpose, all of which have a similar flavor: each set element (or token)
is assigned a weight and the similarity between the sets is computed as a weighted function of the tokens in each
of the sets and in their intersection. The application characteristics heavily influence the tokens to extract, the
token weights, and the similarity function used.

2.1 Similarity Functions

Strings are modeled as sets of tokens from a known token set Λ. Let s = {a1, a2, . . . , an}, ai ∈ Λ be a string
consisting of n tokens. Let W : Λ → R+ be a function that assigns a positive real weight value to each token.
A simple function to evaluate the similarity between two strings is the weighted intersection of their token sets.

Definition 1 (Weighted Intersection on Sets): Let s = {a1, . . . , an}, r = {b1, . . . , bm}, ai, bi ∈ Λ be two sets
of tokens. The weighted intersection of s and r is defined as I(s, r) =

∑
a∈s∩r W (a).

The definition above does not take into account the weight or number of tokens that the two strings do not
have in common. In some applications, the strings are required to have similar lengths (i.e., similar number of
tokens or similar total token weight). One could use various forms of normalization to address this issue.

Definition 2 (Normalized Weighted Intersection, Jaccard Similarity, Dice Similarity, Cosine Similarity):
Let s = {a1, . . . , an}, r = {b1, . . . , bm}, ai, bi ∈ Λ be two sets of tokens. Let ∥s∥1 =

∑n
i=1W (ai) (i.e., the

L1-norm), and ∥s∥2 =
√∑n

i=1W (ai)2 (i.e., the L2-norm).
The normalized weighted intersection of s and r is defined as N (s, r) = ∥s∩r∥1

max(∥s∥1,∥r∥1) .

The Jaccard similarity of s and r is defined as J (s, r) = ∥s∩r∥1
∥s∪r∥1 = ∥s∩r∥1

∥s|1+|r|1−|s∩r∥1 .

The Dice similarity of s and r is defined as mathcalD(s, r) = 2∥s∩r∥1
∥s∥1+∥r∥1 .

The Cosine similarity of s and r is defined as: C(s, r) = [∥s∩r∥2]2
∥s∥2∗∥r∥2 .

Clearly, Normalized Weighted Intersection, Jaccard, Dice and Cosine similarity are strongly related in a
sense that they normalize the similarity with respect to the weights of the token sets, and result in a similarity
value between 0 and 1. The similarity is minimized (i.e., equal to 0) only if the two sets share no tokens in
common, and is maximized (i.e., equal to one) only if the two sets are the same. In general, the larger the weight
of the tokens that the two strings do not have in common, the smaller is their similarity. Which function works
better depends heavily on application and data characteristics.

2.2 Token Weights

An important consideration for weighted similarity functions is the token weighting scheme used. The simplest
weighting scheme is to use unit weights for all tokens. A more meaningful weighting scheme though, should
assign larger weights to tokens that carry more information content. As usual, the information content of a token
is application and data dependent. For example, a specific sequence of phonemes might be very rare in the
English language but a common sequence in Greek. A commonly used weighting scheme for text processing is
based on inverse document frequency weights.

Definition 3 (Inverse Document Frequency Weight): Consider a set of strings D and a universe of tokens Λ.
Let df(a), a ∈ Λ be the number of strings s ∈ D that have at least one occurrence of a. The inverse document
frequency weight of a is defined as idf(a) = log(1 + |D|

df(a)).
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String Tokens
s1 Children’s Food Fund
s2 One Laptop per Child
s3 Feed the Children
s4 International Children’s Found
s5 UNICEF

Token String Identifiers
child s1, s2, s3, s4
food s1, s3
found s4
fund s1
international s4
one s2
laptop s2
unicef s5

Table 7: (a) A collection of strings represented as sets of tokens. (b) An inverted representation of these sets of
tokens. It is assumed that common stop words and special characters have been removed, stemming of words
has occurred, and all tokens have been converted to lowercase.

Alternative definitions of idf weights are also possible. Nevertheless, they all have a similar flavor. The idf
weight is related to the probability that a given token a appears in a random string s ∈ D. Frequent tokens have
a high probability of appearing in many strings, hence they are assigned small weights. Infrequent tokens have
a small probability of appearing in any string, hence they are assigned large weights. The intuition is that two
strings that share a few infrequent tokens must have a high similarity.

2.3 Selection Queries

We consider all-match selection queries, which return all data strings whose similarity with the query string is
larger than a user specified threshold.

Definition 4 (All-Match Selection Query): Given a string similarity function S, a set of strings D, a query
string q, and a positive threshold τ , the result of an all-match selection query is the answer set A = {s ∈ D :
S(q, s) ≥ τ}.

3 Algorithms for Set-Based Similarity

The brute-force approach for evaluating selection queries requires computing all pairwise similarities between
the query string and the data strings, which can be expensive. A significant savings in computation cost can be
achieved by using an index structure (resulting in a typical computation cost versus storage cost trade-off).

All the set-based similarity functions introduced in Section 2 can be computed easily using an inverted index.
First, the data strings are tokenized and an inverted index is built on the resulting tokens, one list per token; an
example using word tokens is shown in Table 7. Each list element is simply a string identifier. Depending on the
algorithm used to evaluate the chosen similarity function, the lists can be stored sequentially as a flat file, using
a B-tree, or a hash table. They can also be sorted according to string identifiers or any other information stored
in the lists (e.g., the Lp-norm of the strings) as will become clear shortly.

All-match selection queries can be answered quite efficiently using an inverted index. Recall that an all-
match selection query retrieves all data strings whose similarity with the query exceeds a query threshold τ . To
answer the query, first the query string is tokenized using exactly the same tokenization scheme that was used for
the data strings. The data strings satisfying the similarity threshold need to have at least one token in common
with the query, hence only the token lists corresponding to query tokens need to be involved in the search. This
results in significant pruning compared to the brute-force approach.
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3.1 Sorting in String Identifier Order

Let q = {q1, . . . , qn} be a query string and Lq = {l1, . . . , ln} be the n lists corresponding to the query tokens.
By construction, each list li contains all string identifiers of strings s ∈ D s.t. qi ∈ s. The simplest algorithm for
evaluating the exact similarity between the query and all the strings in Lq is to perform a multiway merge
on the string identifiers over the lists to compute all intersections q ∩ s. This will directly yield the weighted
intersection similarity. Clearly, the multiway merge computation can be performed very efficiently if the
lists are already sorted in increasing order of string identifiers. However, the algorithm has to exhaustively scan
all lists in Lq in order to identify all strings with similarity exceeding threshold τ .

Computing Normalized Weighed Intersection is also straightforward, provided that the L1-norm of each data
string is stored in the token lists. Hence, the lists store tuples (string-identifier, L1-norm). Once again, if lists
are sorted in increasing order of string identifiers, a multiway merge algorithm can evaluate the normalized
weighted intersection between the query and all relevant strings very efficiently. Similar arguments hold for
Jaccard, Dice and Cosine similarity.

3.2 Sorting in Lp-norm Order

The multiway merge algorithm has to exhaustively scan all the lists in Lq in order to compute the similarity
score of every data string and determine whether the similarity exceeds threshold τ . For Normalized Weighed
Intersection similarity we make the following observation:

Lemma 5 (Normalized Weighted Intersection L1-norm Filter): Given sets s, r and Normalized Weighted
Intersection threshold τ ∈ (0, 1] the following holds:

N (s, r) ≥ τ ⇔ τ∥r∥1 ≤ ∥s∥1 ≤
∥r∥1
τ

.

Essentially, we can use the L1-norm filter to prune strings appearing in any list in Lq without the need
to compute the actual similarity with the query. For that purpose, we sort token lists in increasing order of
the L1-norms of strings, rather than in string identifier order. Using Lemma 5, we can directly skip over all
candidate strings with L1-norm ∥s∥1 < τ∥q∥1 (where ∥q∥1 is the L1-norm of the query) and stop scanning a
list whenever we encounter the first candidate string with L1-norm ∥s∥1 > ∥q∥1

τ . Given that the lists are not
sorted in increasing string identifier order, there are two options available: The first is to sort the strings within
the appropriate norm intervals in string identifier order and perform the multiway merge in main memory.
The second is to use classic threshold based algorithms to compute the similarity of each string to the query
string.

Threshold algorithms utilize special terminating conditions that enable processing to stop before exhaus-
tively scanning all token lists. This is easy to show if the similarity function is a monotone aggregate function.
Let wi(s, q) = W (qi)

max(∥s∥1,∥q∥1) be the partial similarity of data string s and query token qi. Then, N (s, q) =∑
qi∈s∩q wi(s, q). It can be shown that N (s, q) is a monotone aggregate function, i.e., N (s, q) ≤ N (s′, q) if

∀i ∈ [1, n] : wi(s, q) ≤ wi(s
′, q).

There are three threshold algorithm flavors. The first scans lists sequentially and in a round robin fashion
and computes the similarity of strings incrementally. The second uses random accesses to compute similarity
aggressively every time a new string identifier is encountered in one of the lists. The third uses combination
strategies of both sequential and random accesses.

Since the sequential round robin algorithm computes similarity incrementally, it has to temporarily store in
main memory information about strings whose similarity has only been partially computed. Hence, the algorithm
has a high book keeping cost, given that the candidate set needs to be maintained as a hash table organized by
string identifiers. The aggressive random access based algorithm computes the similarity of strings in one step
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and hence does not need to store any information in main memory. Hence it has a very small book keeping
cost, but on the other hand it has to perform a large number of random accesses to achieve this. This could be a
drawback on traditional storage devices (like hard drives) but unimportant in modern, solid state based devices,
like flash storage. Combination strategies try to strike a balance between low book keeping and a small number
of random accesses. A simple round robin strategy is shown in Algorithm 3.1.

Algorithm 3.1: NRA(q, τ )

Tokenize the query: q = {q1, . . . , qn}
M is a map of (s̈,Ns, B1, . . . Bn]) tuples (Bi are bits, s̈ is the string identifier)
for i← 1 to n

do seek li to first element s.t. ∥s∥1 ≥ τ∥q∥1
while not all lists li are inactive

f =∞, w = 0
for i← 1 to n

do



if li is inactive : Continue
else (s̈, ∥s∥1)← li.next

if ∥s∥1 > ∥q∥1
τ : Flag li as inactive and Continue

f = min(f, ∥s∥1), w = w +W (qi)
(s̈,Ns, B1, . . . , Bn)←M.find(s̈)
for j ← 1 to n

do if lj is inactive : Bj = 1
if s̈ ∈M

then


if B1 = 1, . . . , Bn = 1} and Ns +W (qi) > τ max(∥s∥1, ∥q∥1)

then report s̈,Ns +W (qi)
else M ← (s̈,Ns +W (qi), B1, . . . , Bn)

else
{
M ← (s̈,W (qi), B1, . . . , Bn)

for all (s̈,Ns, B1, . . . , Bn) ∈M

do



for j ← 1 to n
do if lj is inactive : Bj = 1

if B1 = 1, . . . , Bn = 1

then


if Ns > τ max(∥s∥1, ∥q∥1)

then report s̈,Ns

else remove from M

if w
max(f,∥q∥1) < τ and M is empty : Stop

The algorithm keeps a candidate set M containing tuples consisting of a string identifier, a partial similarity
score, and a bit vector containing zeros for all query tokens that have not matched with the particular string
identifier yet, and ones for those that a match has been found. The candidate set is organized as a hash table on
string identifiers for efficiently determining whether a given string has already been encountered or not. Lemma
5 states that for each list we only need to scan elements within a narrow L1-norm interval. We skip directly
to the first element in every list with L1-norm ∥s∥1 ≥ τ∥q∥1. The algorithm proceeds by reading one element
per list in every iteration, from each active list. According to Lemma 5, if the next element read from list li
has L1-norm larger than ∥q∥1

τ the algorithm flags li as inactive. Otherwise, if the string identifier read is already
contained in the candidate set M , its entry is updated to reflect the new partial similarity score. In addition, the
bit vector is updated to reflect the fact that the candidate string contains the particular query token. Also, the
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algorithm checks whether any other lists have already become inactive, which implies one of two things: If the
candidate string contains the query token, then the bit vector is already set to one and the partial similarity score
has been updated to reflect that fact; or the candidate string does not contain the query token, hence the bit vector
can be set to one without updating the partial similarity score (essentially adding zero to the similarity score).
Finally, if the bit vector is fully set and the similarity score exceeds the query threshold, the string is reported as
an answer. If the new string read is not already contained in M , a new entry is created and reported as an answer
or inserted in M , using reasoning similar to the previous step. After one round robin iteration, the bit vector of
each candidate in the candidate set is updated, and candidates with fully set bit vectors are reported as answers
or evicted from the candidate set accordingly.

The algorithm can terminate early if two conditions are met. First the candidate set is empty, which means
no more viable candidates whose similarity has not been completely computed yet exist. Second, the maximum
possible score of a conceptual frontier string that appears at the current position in all lists cannot exceed the
desired threshold.

Lemma 6: Let La ⊆ Lq be the set of active lists. The terminating condition

N f =

∑
li∈La

W (qi)

max(minli∈La ∥fi∥1, ∥q∥1)
< τ,

does not lead to any false dismissals.

It is easy to see that a tighter bound for N f exists. This can be achieved by examining the L1-norm of all
frontier elements simultaneously and is based on the observation that

Observation 7: Given a string s with L1-norm ∥s∥1 and the L1-norms of all frontier elements ∥fi∥1 we can
immediately deduce whether s potentially appears in list li or not by a simple comparison: If ∥s∥1 < ∥fi∥1 and
s has not been encountered in list li yet, then s does not appear in li (given that lists are sorted in increasing
order of L1-norms).

Let lj be a list s.t. ∥fj∥1 = minli∈La ∥fi∥1. Based on Observation 7, a conceptual string s with L1-norm
∥s∥1 = ∥fj∥1 can appear only in list lj . Thus

Lemma 8: Let La ⊆ Lq be the set of active lists. The terminating condition

N f = max
li∈La

∑
lj∈La:∥fj∥1≤∥fi∥1 W (qj)

max(∥fi∥1, ∥q∥1)
< τ,

does not lead to any false dismissals.

We can also use Observation 7 to improve the pruning power of the nra algorithm by computing a best-case
similarity for all candidate strings before and after they have been inserted in the candidate set. Strings whose
best-case similarity is below the threshold can be pruned immediately, reducing the memory requirements and
the book keeping cost of the algorithm. The best-case similarity of a new candidate uses Observation 7 to
identify lists that do not contain that candidate.

Lemma 9: Given query q, candidate string s, and a subset of lists Lq′ ⊆ Lq potentially containing s (based on
Observation 7 and the frontier elements fi), the best-case similarity score for s is:

N b(s, q) =
∥q′∥1

max(∥s∥1, ∥q∥1)
.

30



An alternative threshold algorithm strategy is to assume that token lists are sorted in increasing L1-norms
for efficient sequential access, but that there also exists one index per token list on the string identifiers. Then,
a random access algorithm can scan token lists sequentially and for every element probe the remaining lists
using the string identifier index to immediately compute the exact similarity of the string. Similar terminating
conditions as those used for the nra algorithm can be derived for the random access only algorithm.

The last threshold based strategy is to use a combination of nra and random accesses. We run the nra
algorithm as usual but after each iteration we do a linear pass over the candidate set and use random accesses to
compute the exact similarity of the strings and empty the candidate set.

It turns out that exactly the same length based algorithms can be used for Dice and Cosine similarity. It is
easy to show that Dice similarity is a monotone aggregate function with partial similarity defined as wi(s, q) =

W (qi)
∥s∥1+∥q∥1 . Hence, all threshold algorithms presented above can be adapted to Dice. In addition, it is easy to
prove the following lemmas.

Lemma 10 (Dice L1-norm Filter): Given sets s, r and Dice similarity threshold τ ∈ (0, 1] the following holds:

D(s, r) ≥ τ ⇔ τ

2− τ
∥r∥1 ≤ ∥s∥1 ≤

2− τ

τ
∥r∥1.

Lemma 11: Let La ⊆ Lq be the set of active lists. The terminating condition

Df = max
li∈La

∑
lj∈La:∥fj∥1≤∥fi∥1 2W (qi)

∥fi∥1 + ∥q∥1
< τ,

does not lead to any false dismissals.

Lemma 12: Given query q, candidate string s, and a subset of list Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

Db(s, q) =
2∥q′∥1

∥s∥1 + ∥q∥1
.

Exactly the same arguments hold for cosine similarity as well. Recall that cosine similarity is computed
based on the L2-norm of the strings. Once again, an inverted index is built where this time each list element
contains tuples (string-identifier, L2-norm). Clearly, Cosine similarity is a monotone aggregate function with
partial similarity wi(s, q) =

W (qi)
2

∥s∥2∥q∥2 . An L2-norm filter also holds.

Lemma 13 (Cosine similarity L2-norm Filter): Given sets s, r and Cosine similarity threshold τ ∈ (0, 1] the
following holds:

C(s, r) ≥ τ ⇔ τ∥r∥2 ≤ ∥s∥2 ≤
∥r∥2
τ

.

In addition

Observation 14: Given a string s with L2-norm ∥s∥2 and the L2-norms of all frontier elements ∥fi∥2 we can
immediately deduce whether s potentially appears in list li or not by a simple comparison: If ∥s∥2 < ∥fi∥2 and
s has not been encountered in list li yet, then s does not appear in li (given that lists are sorted in increasing
order of L2-norms).

Hence

Lemma 15: Let La ⊆ Lq be the set of active lists. The terminating condition

Cf = max
li∈La

∑
lj∈La:∥fj∥2≤∥fi∥2 W (qi)

2

∥fi∥2 ∗ ∥q∥2
< τ,

does not lead to any false dismissals.
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Lemma 16: Given query q, candidate string s, and a subset of lists Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

Cb(s, q) = [∥q′∥2]2

∥s∥2 ∗ ∥q∥2
.

The actual algorithms in principle remain the same.
Jaccard similarity presents some difficulties. Notice that Jaccard is a monotone aggregate function with

partial similarity wi(s, q) =
W (qi)
∥s∪q∥1 . Nevertheless, we cannot use this fact for designing termination conditions

for the simple reason that wi’s cannot be evaluated on a per token list basis since ∥s ∪ q∥1 is not known in
advance (knowledge of ∥s ∪ q∥1 implies knowledge of the whole string s and hence knowledge of ∥s ∩ q∥1
which is equivalent to directly computing the similarity). Recall that an alternative expression for Jaccard is
J (s, q) = ∥s∩q∥1

∥s∥1+∥q∥1−∥s∩q∥1 . This expression cannot be decomposed into aggregate parts on a per token basis,
and hence is not useful either. Nevertheless, we can still prove various properties of Jaccard that enable us to
use all threshold based algorithms. In particular

Lemma 17 (Jaccard L1-norm Filter): Given sets s, r and Jaccard similarity threshold τ ∈ (0, 1] the following
holds:

J (s, r) ≥ τ ⇔ τ∥r∥1 ≤ ∥s∥1 ≤
∥r∥1
τ

.

Lemma 18: Let La ⊆ Lq be the set of active lists. Let Ii =
∑

lj∈La:∥fj∥1≤∥fi∥1 W (qi). The terminating
condition

J f = max
li∈La

Ii
∥fi∥1 + ∥q∥1 − Ii

< τ,

does not lead to any false dismissals.

Lemma 19: Given query q, candidate string s, and a subset of list Lq′ ⊆ Lq potentially containing s, the
best-case similarity score for s is:

J b(s, q) =
∥q′∥1

∥s∥1 + ∥q∥1 − ∥q′∥1
.

Generally speaking, comparing the threshold based algorithms with the multiway merge algorithm, the rel-
ative cost savings between sorting according to string identifiers or sorting according to the Lp-norm heavily
depends on a variety of factors most important of which are: the algorithm used, the specific query (whether it
contains tokens with very long lists for which the Lp-norm filtering will yield significant pruning), the overall
token distribution of the data strings, the storage medium used to store the lists (e.g., disk drive, main memory,
solid state drive), and the type of compression used for the lists, if any.

It is important to state here that most list compression algorithms are designed for compressing string iden-
tifiers, which are natural numbers. The idea being that natural numbers in sorted order can easily be represented
by delta coding. In delta coding only the first number is stored, and each consecutive number is represented
by its difference with the previous number. This representation decreases the magnitude of the numbers stored
(since deltas are expected to have small magnitude when the numbers are in sorted order) and enables very
efficient compression. A significant issue with all normalized similarity functions is that, given arbitrary token
weights, token lists have to store real valued L1-norms (or L2-norms for Cosine similarity). Lists containing
real valued attributes cannot be compressed as efficiently as lists containing only natural numbers.
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3.3 Processing Lists in Token Weight Order

Recall that the threshold based algorithms scan lists in a random order, e.g., in the order that tokens appear
in the query string. However, the distribution of tokens in the data strings can help determine a more meaningful
ordering that can yield significant performance benefits. The idea is based on the observation that the order and
the strategy used to scan the lists affects the frontier elements, and hence the pruning power of subsequent steps.

Consider Normalized Weighted Intersection first. Let the lists in Lq be sorted according to their respective
token weights, from heaviest to lightest. Without loss of generality, let this ordering be Lq = {l1, . . . , ln} s.t.
W (q1) ≥ . . . ≥ W (qn). Since w1(s, q) ≥ . . . ≥ wn(s, q), the most promising candidates appear in list l1;
the second most promising appear in l2; and so on. This leads to an alternative sequential algorithm, which we
refer to here as heaviest first. The algorithm exhaustively reads the heaviest token list first, and stores all
strings in a candidate set. The second to heaviest list is scanned next. The similarity of strings that have already
been encountered in the previous list is updated, and new candidates are added in the candidate set, until all lists
have been scanned and the similarity of all candidates has been computed. While a new list is being traversed
the algorithm prunes the candidates in the candidate set whose best-case similarity is below the query threshold.
The best-case similarity for every candidate is computed by taking the partial similarity score already computed
for each candidate after list li has been scanned, and assuming that the candidate exists in all subsequent lists
li+1, . . . , ln.

The important observation here is that we can compute a tighter L1-norm filtering bound each time a new
list is scanned. The idea is to treat the remaining lists as a new query q′ = {qi+1, . . . , qn} and recompute the
bounds using Lemma 5. The intuition is that the most promising new candidates in lists li+1, . . . , ln, are the
ones containing all tokens qi+1, . . . , qn and hence potentially satisfying s = q′. Care needs to be taken though
in order to accurately complete the partial similarity scores of all candidates already inserted in the candidate set
from previous lists, which can have L1-norms that do not satisfy the recomputed bounds for q′. The algorithm
identifies the largest L1-norm in the candidate set and scans subsequent lists using that bound. If a string already
appears in the candidate set its similarity is updated. If a string does not appear in the candidate set (this is either
a new string or an already pruned string) then the string is inserted in the candidate set if and only if its L1-norm
satisfies the recomputed bounds based on q′.

To reduce the book keeping cost of the candidate set, the algorithm stores the set as a linked list, sorted
primarily in increasing order of L1-norm and secondarily in increasing order of string identifiers. Then the
algorithm can do a merge join of the currently processed token list and the candidate list very efficiently in one
pass. The complete algorithm is shown in Algorithm 3.2.

The biggest advantage of the heaviest first algorithm is that it can benefit from long sequential
accesses, one list at a time. Notice that both the nra and the multiway merge strategies have to access lists
in parallel. For traditional disk based storage devices, as the query size increases and the number of lists that
need to be accessed in parallel increases, a larger buffer is required in order to prefetch entries from all the lists
and the head seek time increases, moving from one list to the next (this is not an issue for solid state devices).

Notice that the heaviest first strategy has another advantage when token weights are assigned ac-
cording to inverse token popularity, as is the case for idf weights. In that case, the heaviest tokens are rare tokens
that correspond to the shortest lists and the heaviest first strategy is equivalent to scanning the lists in or-
der of their length, shortest list first. The advantage is that this keeps the size of the candidate set to a minimum,
since as the algorithm advances to lighter tokens, the probability that newly encountered strings (strings that do
not share any of the heavy tokens with the query) will satisfy the similarity threshold significantly decreases.
Such strings are therefore immediately discarded. In addition, the algorithm terminates with high probability
before long lists have to be examined exhaustively.

It is easy to see that the heaviest first strategy can be adapted straightforwardly to all other normal-
ized similarity measures. Moreover, the heaviest first strategy can help prune candidates even for simple
Weighted Intersection similarity, based on the observation that strings containing the heaviest query tokens are
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more likely to exceed the threshold.

Algorithm 3.2: HEAVIEST FIRST(q, τ )

Tokenize query: q = {q1, . . . , qn} s.t. W (qi) ≥W (qj), i < j
M is a list of (s̈,Ns, ∥s∥1) sorted in ∥s∥1, s̈ order
λ =

∑n
i=1W (qi)

for i← 1 to n

λ = λ−W (qi)
Seek to first element of li with ∥s∥1 ≥ τλ
(r̈,Nr, ∥r∥1)←M.last
µ = max(∥r∥1, λτ

(r̈,Nr, ∥r∥1)←M.first
while not at end of li

do



(s̈, ∥s∥1)← li.next
if ∥s∥1 > µ : Break

while ∥r∥1 ≤ ∥s∥1 and r̈ ̸= s̈

do
{

if Nr + λ ≤ τ max(∥r|1, ∥q∥1) : Remove from M
(r̈,Nr, ∥r∥1) = M.next

if r̈ = s̈
then

{
M ← (r̈,Nr +W (qi), ∥r∥1)

else if W (qi) + λ ≥ τ max(∥s∥1, ∥q∥1)
then Insert (s̈,W (qi), ∥s∥1) at current position in M

Let query string q = {q1, . . . , qn} and threshold τ ∈ (0,
∑n

i=1W (qi)], and assume without loss of generality
that lists are sorted in decreasing order of token weights (i.e., W (q1) ≥ . . . ≥W (qn)). Assume that there exists
a string s that is contained only in a suffix lk, . . . , ln of token lists, whose aggregate weight

∑n
i=k W (qi) < τ .

Clearly such a string cannot exceed the query threshold. An immediate conclusion is that

Lemma 20: Let query q = q1, . . . , qn s.t. W (q1) ≥ . . . ≥ W (qn), and threshold τ ∈ (0,
∑n

i=1W (qi)]. Let
π = argmax1≤π≤n

∑n
i=π W (qi) ≥ τ . Call P (q) = {q1, . . . , qπ} the prefix of q and S(q) = {qπ+1, . . . , qn}

the suffix of q. Then, for any string s s.t. s ∩ P (q) = ∅, I(s, q) < τ .

Hence, the only viable candidates have to appear in at least one of the lists in the prefix l1, . . . lπ. The
heaviest first algorithm exhaustively scans the prefix lists to find all viable candidates and then probes
the suffix lists to complete their scores. If an index on string identifiers is available on each of the lists in the
suffix, the algorithm needs to perform, on average, one random access per candidate per list in S(q). If an index
is not available, then assuming that lists are sorted in increasing string identifier order, the algorithm keeps track
of the smallest and largest string identifier in the candidate set, seeks to the first list element with identifier
larger than or equal to the smallest identifier and scans each list as deep as the largest identifier. Alternatively,
binary search can be performed. This strategy will help potentially prune a long head and tail from each list in
the suffix, which can be very beneficial when token weights are assigned according to token popularity (e.g.,
idf weights) where the lightest tokens (the most popular ones) correspond to the longest lists (which by design
become part of the suffix).
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4 Index Updates

Typically, inverted indexes are used for mostly static data. More often than not, token lists are represented either
by simple arrays in main memory, or flat files in secondary storage, since these representations are space efficient
and also enable very fast sequential processing of list elements. On the other hand, inserting or deleting elements
in the token lists becomes expensive.

In situations where fast updates are important, token lists can be represented by linked lists or binary trees
in main memory, or B-trees in external memory. The drawback is the increased storage cost both for main
memory and external memory structures, and also the fact that external memory data structures do not support
sequential accesses over the complete token lists as efficiently as flat files. On the other hand, the advantage is
that insertions and deletions can be performed very efficiently.

A subtle but very important point regarding updates arises when considering token lists that contain Lp-
norms. Recall that Lp-norms are computed based on token weights. For certain token weighting schemes, like
idf weights, the weights depend on the total number of strings and the number of occurrences of tokens within
the strings. As strings get inserted, deleted, or updated, both the total number of strings and the number of
occurrences of tokens might change, and as a result the Lp-norms of strings will change.

Consider for example idf weights, where the weight of a token is a function of the total number of strings
|D| (see Definition 3). A single string insertion or deletion will affect the idfs of all tokens, and hence render the
Lp-norms of all entries in the inverted lists in need for updating. Similar effects occur when a string is updated,
resulting in the document frequency of a set of tokens to change. Since the idf weight of tokens is also a function
of document frequency, the Lp-norm of every string containing one or more of these tokens will change. Hence,
a single string update can result in a cascading update effect on the token lists of the inverted index that could be
very expensive.

To alleviate the cost of updates in such scenarios, a technique based on delayed propagation of updates has
been proposed. The idea is to keep stale information in the inverted lists as long as certain guarantees on the
answers returned can be provided. Once the computed Lp-norms have deviated far enough from the true values
such that the guarantees no longer hold, the pending updates are applied in a batch fashion.

The algorithm essentially computes lower and upper bounds between which the weight of individual tokens
can vary, such that a selection query with a well defined reduced threshold τ ′ < τ will return all true answers
(i.e., will not result in any false negatives). The additional cost is an increased number of false positives. The
reduced threshold τ ′ is a function of τ , the particular weighting scheme, and the relaxation bounds. The tighter
the relaxation bounds chosen, the smaller the number of false positives becomes, but the more frequently the
inverted lists need to be batch updated.

5 Related Work

Baeza-Yates and Ribeiro-Neto [2] and Witten et al. [14] discuss selection queries for various similarity measures
using multiway merge and inverted indexes. The authors also discuss various compression algorithms for
inverted lists sorted according to string identifiers.

Various strategies for evaluating queries based on sorting strings according to their Lp-norms appear in
Hadjieleftheriou et al. [8]. Similar observations using Lp-norms (in a more general context) have been made by
Bayardo et al. [3]. Lp-norm based filtering has also been used by Xiao et al. [17].

A detailed analysis of threshold based algorithms is conducted by Fagin et al. [6]. Improved termination
conditions for these algorithms are discussed by Sarawagi and Kirpal [13], Bayardo et al. [3] and Hadjielefthe-
riou et al. [8]. The heaviest first strategy was introduced by Hadjieleftheriou et al. [8]. The heaviest
first algorithm for weighted intersection based on prefix and suffix lists is based on ideas introduced by
Chaudhuri et al. [4].
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Index construction and update related issues with regard to Lp-norm computation is discussed in detail by
Hadjieleftheriou et al. [9].

Apart from selection queries, string similarity join queries have also received a lot of attention [1, 3, 4, 7,
13, 16, 17]. A related line of work has concentrated on edit-based (as opposed to set-based) similarity functions
(e.g., edit distance) [1, 4, 5, 7, 10–12, 15, 17].
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Abstract

Traditional information systems return answers after a user submits a complete query. Users often feel
“left in the dark” when they have limited knowledge about the underlying data, and have to use a try-
and-see approach for finding information. A recent trend of supporting autocompletion in these systems
is a first step towards solving this problem. In this paper, we study a new information-access paradigm,
called “search-as-you-type” or “type-ahead search,” in which the system searches the underlying data
on the fly as the user types in query keywords. It extends traditional prefix-based autocompletion inter-
faces by supporting full-text search on the data using tokenzied query keywords. We give an overview
of this information-access paradigm, discuss research challenges and opportunities, and report recently
developed techniques.

1 Introduction

Traditional information systems allow users to compose and submit a query to retrieve relevant answers. This
information-access paradigm requires the user to have certain knowledge about the structure and content of the
underlying data repository. With limited knowledge about the data, a user often feels “left in the dark” when
issuing queries, and the user and has to use a try-and-see approach for finding information. For instance, Figure 1
shows a traditional interface to search on the people directory of an organization. To find a person, a user needs
to fill in the form by providing information for multiple attributes, such as name, phone, department, and title.
If the user has limited information about the person she is looking for, such as the exact spelling of the person’s
name, the user needs to try a few possible keywords, go through the returned results, modify the keywords, and
reissue a new query. She needs to repeat this step multiple times to find the person, if lucky enough. This search
interface is neither efficient nor user friendly.

To solve this problem, many systems provide instant feedback as users formulate search queries. Most
search engines and many online search forms support autocompletion, which shows suggested queries or even
answers “on the fly” as a user types in a keyword query letter by letter. For instance, consider the Web search
interface at Netflix (http://www.netflix.com/BrowseSelection), which allows a user to search for movies by their
titles, actors, directors, and genres. If a user types in a partial query “mad”, the system shows movies matching
this keyword as a prefix, such as “Madagascar” and “Mad Men: Season 1”.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The quick feedback helps the user not only in formulating the query, but also in understanding the underlying
data. Most autocompletion systems make suggestions by simply treating a query as a prefix condition. As a
result, a Netflix user cannot type in “Spielberg sci-fi” to find sci-fi movies directed by Steven Spielberg,
since the system treats the query as a prefix string, which does not exist in any movie record.

Figure 1: A traditional directory-search form.

Recently a new type-ahead-search paradigm has arisen that generalizes prefix-based autocompletion. In this
paradigm, a system supports full-text search on the underlying data to find answers as a user types in query
keywords. We have developed several prototypes using this paradigm. The first one, called PSearch, supports
search on the UC Irvine people directory. A screenshot is shown in Figure 2. In the figure, a user has typed
in a query string “professor smyt.” Even though the user has not typed in the second keyword completely,
the system can already find person records that might be of interest to the user. Notice that the two keywords
in the query string (including a partial keyword “smyt”) can appear in different attributes of the records. In
particular, in the first record, the keyword “professor” appears in the “title” attribute, and the partial keyword
“smyt” appears in the “name” attribute. The matched prefixes are highlighted. The system also utilizes a-priori
knowledge such as synonyms. For instance, given the fact that “william” and “bill” are synonyms, the system
can find a person called “William Kropp” when the user has typed in “bill crop.” This search prototype has
been used regularly by many people at UCI, and received positive feedback due to the friendly user interface
and high efficiency.

Figure 2: Fuzzy type-ahead search on the UC Irvine people directory (http://psearch.ics.uci.edu).

There are several other systems developed using this search paradigm: (1) The “Search” box on the page
http://www.ics.uci.edu that searches on the people of the school of ICS at UCI and its important internal pages;
(2) A system called “iPubMed” (http://ipubmed.ics.uci.edu) that supports interactive, fuzzy search on more than
18 million MEDLINE publications; (3) A prototype (http://tastier.cs.tsinghua.edu.cn/urlsearch/) that supports
searches on 10 million popular URLs [11]; and (4) A search interface (http://fr.ics.uci.edu/haiti) for family
reunification for the recent Haiti earthquake.

In this paper, we give an overview of this information-access paradigm, discuss research challenges and
opportunities, and report recently developed techniques.
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2 Overview of Type-ahead Search

Figure 3 illustrates a client-server architecture of a system supporting search-as-you-type. The underlying data
residing on the server can be a relational database [10], a collection of documents, or XML data [9]. For
simplicity, in this paper we focus on the case where the server has a set of relational records. The client has a
browser, using which a user can send requests to the server to retrieve results. Each keystroke of the user could
invoke a query, which includes the current string the user has typed in. The browser sends the query to the server.

The server tokenizes the query string, computes and returns to the user the best answers ranked by their
relevancy to the query. For each query, the server treats the last keyword as a partial keyword the user is
completing, and other earlier keywords as complete keywords. For a keyword query, we want to find the records
that contain every complete keyword in the query and a keyword with the partial keyword as a prefix. For
example, in Figure 2, for a keyword query “professor smyt”, the keyword “smyt” is a partial keyword, while
“professor” is a complete keyword. The first record in the figure is an answer since it contains keyword
“professor” and a keyword “smyth” with the prefix “smyt”.

Figure 3: Search-as-you-type system architecture.

Supporting fuzzy search is very important especially when users do not remember the exact spelling of the
right keywords. To support this feature, for each complete keyword in a query, we identify the keywords in the
data that are similar to the keyword. For the partial keyword, we identify its similar keywords as those in the data
with a prefix similar to the partial keyword. We compute the relevant records that contain a similar keyword for
every query keyword. We can use edit distance to quantify the similarity between keywords. The edit distance
between two words is the minimum number of edit operations (i.e., insertion, deletion, and substitution) of
single characters needed to transform the first one to the second. For example, the edit distance of “feloutose”
and “faloutsos” is 3. We say two keywords are similar if their edit distance is within a given threshold τ .
This threshold could be proportional to the length of a query keyword to allow more errors for longer keywords.
For example, suppose the edit-distance threshold τ = 1. In Figure 2, for keyword query “professor smyt”,
the second record is an answer, since it contains keyword “professor” and a keyword “smith” with a prefix
“smit” similar to input keyword “smyt”.
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2.1 Client

The client side contains HTML contents with JavaScript code executed in the browser. When the user types in
a query, if there is no pending request being processed by the server, the JavaScript code issues an AJAX query
to the server. Otherwise, it waits until the request has been answered. In this way, we can avoid overloading the
server if the user types very fast.

2.2 Server

As shown in Figure 3, there are several components on the server side. We use a FastCGI module to store the
data and indices. (Other programming languages such as Java Servlets are also possible.) The FastCGI server
module is loaded once when the Web server starts, and continually handles queries without spawning more
instances. The server loads the data and indices from disks, and searches on the data. The FastCgi Server waits
for queries from the client, and caches query results. The Server Cache component checks whether the query
can be answered using the cached results. If not, the server incrementally answers the query by using the cached
information. For each query keyword, the Prefix Finder incrementally computes keywords of partial keywords.
The Multi-keyword Intersection module computes the relevant answers. The Ranker module ranks the answers
to identify the best answers. The Indexer component indexes the underlying data. Now we explain the modules
in more detail.

Prefix Finder: For exact search, it finds the keywords with a prefix of the partial keyword. However, to support
fuzzy search, we need to compute multiple prefixes that are similar to the partial keyword, and retrieve their
corresponding complete keywords as the similar keywords. In the query “professor smyt”, for exact search,
this module finds complete keywords with the prefix “smyt”, such as “smyth”. For fuzzy search, it finds
complete keywords with a prefix similar to “smyt,” such as “smyth” and “smith”.

Multi-keyword Intersection: This module takes the sets of keywords produced by the prefix finder as input
(for multiple keywords), and computes the relevant answers, which contain a matching keyword from each set.
For the partial keyword, there could be multiple keywords, and each similar partial prefix has multiple similar
keywords. The union of the inverted lists of those keywords similar to one keyword is called the “union list” for
this keyword. A straightforward method to identify the relevant answers is to first construct the union list for
every query keyword, and compute the intersection of the union lists. In our running example, for exact search,
based on keywords “professor” and “smyth”, this module computes the intersection of inverted lists of the
two keywords. For fuzzy search, we first compute the union lists of “smyt”, which is the union of inverted lists
of similar keywords of “smyt” (e.g., “smyth” and “smith”). Then we compute the intersection of the union
lists of “professor” and “smyt”. More efficient algorithms have been developed for solving this problem [7].

Ranker: In order to compute high-quality results, we need to use a good ranking function for the candidates. The
function should consider various factors such as the similarity between a query keyword and its similar prefixes,
the weight of each keyword, term frequencies, inverse document frequencies, importance of each record, etc.

Server Cache: After finding the answers to a query, we can cache some information, and incrementally answer
the subsequent keyword queries using the cached information. For instance, suppose the results of the keyword
query “professor smyt” have been cached. If the user types in one more letter and submits a new query
“professor smyth”, we can use the cached information to answer the new query.

Indexer: To improve performance, we can create index structures for efficiently answering type-ahead search,
which will be discussed in the next section.
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3 Research Challenges

There are several unique challenges in type-ahead search, mainly due to the requirement on a high interactive
speed and the capability of relaxing keyword conditions. Each keystroke from the user can invoke a query on
the backend server. The total round-trip time between the client browser and the backend server includes the
network delay and data-transfer time, query-execution time on the server, and the javascript-execution time on
the client browser. In order to achieve an interactive speed, this total time should be short (typically within
100ms). The query-execution time on the server should be even shorter. This high speed is more challenging
to achieve when we need to relax the keywords on-the-fly. At a high level, a main challenge is: in type-ahead
search we need to support the features available in traditional search systems as the user types in keywords
character by character. Notice that in traditional autocompletion, we can easily recommend good queries by
traversing a trie structure. However, when we allow keywords to appear at different places in the answers, the
problem becomes “search the data on the fly,” rather than just recommending a few queries. As a consequence,
the join nature of the online-search problem can be computationally costly.

In this section, we present several recently developed techniques to address these challenges and discuss
open problems that need more research investigation.

3.1 Efficient Indexing and Ranking

To facilite prefix search, we can construct a trie structure with inverted lists on the leaf nodes [3, 7]. Each word
in the data set corresponds to a unique path from the root of the trie to a leaf node. Each node on the path has a
label of a character in the word. For each leaf node, we store an inverted list of IDs of records that contain the
corresponding word. Figure 4 gives an example trie structure, in which node 12 has an inverted list of records 3
and 4, when records 3 and 4 contain the corresponding keywords “lin”.

Figure 4: Trie structure with inverted lists on leaf nodes.

Exact Prefix Search: Given a partial keyword, we want to find the keywords with a prefix of the partial keyword.
We can use the trie structure to answer prefix queries as follows. We first find the corresponding trie node of the
prefix, and then traverse the subtrie to get the keywords with a prefix of the input keyword. Finally, we compute
the records on the inverted lists of the leaf nodes. For example, consider the trie structure in Figure 4. When a
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user types in a keyword “lu”, we find the trie node 14, and retrieve the corresponding leaf nodes “luis,” and
get record 7. When the user types in a new keyword “lui”, we find trie node 15. In this way, we can use the trie
structure to efficiently find the complete keywords of the partial keyword.

Fuzzy Prefix Search: For the case of exact prefix search using a trie index, there can be at most one trie
node corresponding to a query prefix. The solution to the problem of fuzzy search is more challenging since a
keyword prefix can have multiple similar prefixes, and we need to compute them efficiently. Traditional gram-
based methods [8] are inefficient in this case due to their poor pruning power for short strings.

There are recent studies on supporting fuzzy prefix search efficiently [5,7]. The idea is the following. When
the user types in one more letter after a query prefix p, the similar prefixes of p can be used to compute the
similar prefixes of the new query. Specifically, when the user types in one more letter after the partial keyword
p, only the similar prefixes of p and their descendants could be similar prefixes of the new query keyword. We
can use this property to incrementally compute the similar prefixes of a new query. For a new query, we first
find similar prefixes of previous queries from the server cache, compute similar prefixes for the current query
incrementally, and store the results in the cache for future computation. For example, consider the trie structure
in Figure 4. Assume a user types in a query “nlis” letter by letter. Suppose two strings are considered to be
similar if their edit distance is within 2. First, the similar prefixes of the empty string are nodes 0, 10, 11, and
14. When the user types in the first character “n”, we compute its similar prefixes based on that of the empty
string as follows. For node 0, since we can delete the letter “n”, it is a similar prefix of “n”. For node 10, which
is a child of node 0 with a letter “l”, as we can substitute “l” for “n”, it is a similar prefix of “n”. In this way,
we can compute the similar prefixes of “n”.

Multi-Keyword Intersection: The goal of multi-keyword intersection is to efficiently and incrementally com-
pute the relevant records based on the keywords generated from the prefix finder. In [7] we studied the following
problems. (1) Intersection of multiple lists of keywords: Each query keyword (treated as a prefix) has multiple
predicted complete keywords, and the union of the lists of these complete keywords includes potential answers.
The union lists of multiple query keywords need to be intersected in order to compute the answers to the query.
These operations can be computationally costly, especially when each query keyword can have multiple similar
prefixes. (2) Cache-based incremental intersection: Users tend to type in a query letter by letter. Thus we can
use the cached results of earlier queries to answer a query incrementally. We use an example to illustrate how
to cache query results and use them to answer subsequent queries. Suppose a user types in a keyword query Q1

= “cs co”. All the records in the answers to Q1 are computed and cached. For a new query Q2 = “cs conf”
that appends two letters to the end of Q1, we can use the cached results of Q1 to answer Q2, because the second
keyword “conf” in Q2 is more restrictive than the corresponding keyword “co” in Q1. Each record in the
cached results of Q1 is verified to check if “conf” can appear in the record as a prefix. In this way, Q2 does not
need to be answered from scratch.

3.2 Ranking

A good ranking function needs to consider various factors to compute an overall relevance score of a record
to a query. The following are important factors. (1) Matching prefixes: We consider the similarity between a
query keyword and its best matching prefix. The more similar a record’s matching keywords are to the query
keywords, the higher this record should be ranked. The similarity is also related to keyword length. For example,
when a user types in a keyword “circ”, the word “circle” is possibly more similar to the query keyword than
“circumstance”. Therefore records containing the word “circle” could be ranked higher than those with
the word “circumstance”. Exact matches on the query should have a higher weight than fuzzy matches. (2)
Predicted keywords: Different predicted keywords for the same prefix can have different weights. One way to
assign a score to a keyword is based on its inverse document frequency (IDF). (3) Record weights: Different
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records could have different weights. For example, a publication record with many citations could be ranked
higher than a less cited publication.

As an example, the following is a scoring function that combines the above factors. Suppose the query Q
has keywords p1, p2, . . . , pℓ, while p′i is the best matching prefix for pi, and ki is the best predicted keyword for
p′i. Let sim(pi, p

′
i) be an edit similarity between p′i and pi. The score of a record r for Q can be defined as:

Score(r,Q) =
∑
i

[sim(pi, p
′
i) + α · (|p′i| − |ki|) + β · score(r, ki)],

where α and β are coefficients (0 < β < α < 1), sim(pi, p
′
i) =

ed(pi,p
′
i)

|p′| , and score(r, ki) is a score of record r
for keyword ki.

One technical challenge is how to utilize a ranking function in the search process to compute the top answers
efficiently. While traditional top-k algorithms (e.g., [6]) could be utilized, new techniques need to be developed
specifically for the unique index structure in type-ahead search to support efficient list access and pruning.

3.3 Additional Features

Keyword Highlighting: When displaying records to users, we want to highlight the most similar prefixes for
an input prefix. This highlighting feature is straightforward for the exact-match case. For fuzzy search, a query
prefix could be similar to several prefixes of the same predicted keyword. Thus, there could be multiple ways to
highlight the predicted keyword. For example, suppose a user types in “lus”, and there is a predicted keyword
“luis”. Both prefixes “lui” and “luis” are similar to “lus”. There are several ways to highlight them, such
as “luis” or “luis”, where underlined characters are highlighted. To address this issue, we use the concept of
normalized edit distance. Formally, given two prefixes pi and pj , their normalized edit distance is:

ned(pi, pj) =
ed(pi, pj)

max(|pi|, |pj |)
, (3)

where |pi| denotes the length of pi. Given an input prefix and one of its predicted keywords, the prefix of the
predicted keyword with the minimum ned to the query is highlighted. We call such a prefix a best matched
prefix, and call the corresponding normalized edit distance the “minimal normalized edit distance,” denoted as
“mned.” This prefix is considered to be most similar to the input keyword. For example, for the keyword “lus”
and its predicted word “luis,” we have ned(“lus”, “l”) = 2

3 , ned(“lus”, “lu”) = 1
3 , ned(“lus”, “lui”) = 1

3 ,
and ned(“lus”, “luis”) = 1

4 . Since mned(“lus”, “luis”) = ned(“lus”, “luis”), “luis” will be highlighted.

Supporting Synonyms: We can also utilize a-priori knowledge about synonyms to find relevant records. For
example, “William = Bill” is a common synonym in the domain of person names. Suppose in the underlying
data, there is a person called “Bill Gates”. If a user types in “William Gates”, we want to find this person.
One way to support this feature is the following. On the trie, the node corresponding to “Bill” has a link to the
node corresponding to “William”, and vice versa. When a user types in “Bill”, in addition to retrieving the
records for “Bill”, we also identify those of “William” following the link.

3.4 Supporting Type-Ahead Search on Relational Databases

In [10] we studied how to support type-ahead search on a relational database with multiple tables. We model the
underlying data as a graph, and propose efficient index structures and algorithms for finding relevant answers
on-the-fly by joining tuples in the database. This join operation is more challenging than the single-table case
due to the complexity of the data model. We devised a partition-based method to improve query performance
by grouping relevant tuples and pruning irrelevant tuples efficiently. We also developed a technique to answer a
query efficiently by predicting highly relevant complete queries for the user. The idea is to first predict the query
the user may want to type, then use it to compute answers.
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3.5 Open Problems

Reducing Memory Requirements: There have been studies on disk-based index structures and algorithms for
type-ahead search [1–4]. To achieve a very high interactive speed, especially for Web servers with a lot of
queries, ideally we want to store in memory the data, index structures, and cached query results. This memory
requirement will increase as the data set increases. Furthermore, it is expensive to answer queries with short
prefixes, since these prefixes can have many complete keywords. To make such queries more efficient, we can
also cache the results for short-keyword queries, which also require a lot of memory. Thus new techniques are
needed to solve this problem of high memory requirement.

One way to solve the problem is utilize solid-state drives (SSDs or flash drives). SSDs serve as a storage
layer between traditional hard disks and memory. They are much faster but more expensive than traditional hard
disks, yet cheaper and slower than memory. Compared to hard disks, an SSD has several advantages such as
smaller startup time, extremely low read latency times, and relatively deterministic read performance. Due to
these advantages, there have been many recent studies on how to use this new storage medium to do efficient
data management. It is worth studying how to use SSDs to support efficient type-ahead search.

Type-ahead Search in non-English Languages: Considering the global reach of the Internet and its interna-
tionalization trend, it is important to study how to extend type-ahead-search techniques mainly designed for
English to other languages, and solve unique, common challenges specific to these languages. For instance,
there are many languages using the Latin alphabet such as French, Greek, German, and Turkish. They are sim-
ilar to English in the way words are separated by delimiters such as space. Therefore, existing techniques for
search on queries with multiple keywords can be naturally applied to these languages. At the same time, we need
to consider their language-specific characteristics. For example, these languages often have special characters
that do not exist in English, and these letters often have corresponding English letters. Many special letters are
obtained by adding a diacritical mark to an English letter, such as the letter ä in German corresponding to the
English letter a. In most cases these special characters are used to change the accent of their corresponding base
letters. On an English keyboard, users often substitute these special characters with their base letters.

We use Turkish as an example to show language-specific characteristics and the corresponding search-related
issues. Turkish has six special characters: ç, ğ, ı, ö, ş, and ü, which correspond to characters c, g, i, o, s, and
u, respectively. When typing in a special letter, users often type in the base letter since it is easier. This common
input behavior affects the way a search should be done. In a search engine such as Google, if a user types in a
keyword koruk, the search engine will return both koruk pages and körük pages, since the engine may not
know if the user typed the word exactly or substituted special characters with base letters. On the other hand,
if the user types in the word körük with special characters, the system may still find documents containing
the word koruk, but possibly give them a lower rank compared to those documents with the word körük.
The reason is that the user may specifically want to use the special letters to find documents with this word.
As a result, the similarity between these two words becomes asymmetric. Similar issues need to considered in
type-ahead search in these languages.

Go Beyond String Data: Consider the case where we have a publication database, and a user types in a keyword
“2001” in type-ahead search. Based on edit distance, we may find a record with a keyword “2009”. On the other
hand, if we knew this keyword is about the year of a publication, then we may relax the condition in a different
way, e.g., by finding publications in a year between 1999 and 2003. This kind of relaxation and matching
depends on the type and semantics of the corresponding attribute, and requires new techniques to do indexing
and searching.

Supporting Large Scale Data: For large amounts of data that cannot be handled by a single machine, we need
to use multiple machines to support type-ahead search. For structured data, such as relational records, we can
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partition them to different machines, and let each machine process its local data. A keyword query is sent to
these machines, which answer the query locally and send the results to a master machine to do the aggregation.
New techniques are needed to support type-ahead search, especially related to how to partition complex data
models such as graphs.

4 Conclusion

In this paper, we gave an overview of the new information-access paradigm, called search-as-you-type or type-
ahead search, which finds answers to queries as a user types in keywords character by character. We discussed
technical challenges related to achieving a high interactive search speed, reported recently developed results,
and presented open problems that need more research investigation.
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Abstract

A major hardness of processing searches issued in the form of keywords on structured data is the ambi-
guity problem. A set of keywords itself is not a complete piece of information and may imply different
information needs from different users. Although state-of-the-art keyword search engines are usually
able to automatically identify meaningful connections among keywords in the data, users may still be
frequently overwhelmed by the huge number of results and face much trouble in selecting the relevant
ones. Many search engines attempt to rank the results in order of their inferred relevance, however, it is
virtually impossible for a ranking scheme to be perfect and works properly for all users and all queries.

In this paper we discuss several post-processing methods for keyword searches on structured data,
which ease the users’ task of finding and digesting relevant results from all results returned for a keyword
query. The methods to be discussed include generating result snippets, differentiating selected results as
well as query expansion. Each of these methods helps users gracefully get the relevant information in its
own way. At last we discuss the remaining challenges in post-processing keyword searches on structured
data.

1 Introduction

Keyword searches are usually ambiguous. A set of keywords with no further information of how they should
be related/connected in the results, as is the typical scenario in most keyword searches, can have many different
ways to be interpreted. It may very well be the case that different users with different intensions issue the same
set of keywords. As a result, it is impossible for a search engine which simply provides a set of ranked results
to guarantee that the order of the results exactly matches the user’s need. This may cause the users to spend lots
of time navigating through the results in order to find the relevant ones. Moreover, it is unlikely that the user
always comes up with a good set of keywords; often times the user may miss important keywords or use some
“bad” keywords which may harm the quality of the retrieved results, and it will be desirable if the search engine
can provide help to the user if so happen.

In this paper we discuss several post-processing techniques that work beyond generating a ranked list of
results for keyword searches on structured data. Each of these techniques helps the user get insights of the
results in its own way. Let us look at a few desirable ways of postprocessing.
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Figure 1: Two Results of Query “Phoenix, camera, store”

Result snippet generation is one of the most helpful postprocessing methods for keyword search and is used
by almost all web search engines. Although search engines attempt to rank the results in terms of their relevance
to the query, all existing ranking schemes are heuristics; the user usually has no idea based on what criteria the
results are ranked and cannot possibly fully trust the ranking. Indeed, when we issue a web search, very often
the top results consist of a mixture of relevant and irrelevant results. Result snippets are very helpful in these
circumstances as they help the users quickly judge the relevance of each result.

After the user roughly understands the content of each result, the user may be interested in the relationship
of a set of results by comparing them. Such needs are common in applications like online shopping, employee
hiring, job/institution hunting, etc. It is shown in [2] that 50% of keyword searches on the web are for information
exploration purposes, and inherently have multiple relevant results. Such queries are classified as informational
queries, where a user would like to investigate, evaluate, compare, and synthesize multiple relevant results for
information discovery and decision making, rather than reaching a particular website. Generating a comparison
table which highlights the key differences of the selected results will be very helpful.

Furthermore, although result snippets and differentiation tables are helpful for users to judge the relevance
of results, yet if the keywords selected by the user is imperfect to begin with, the query may retrieve so many
irrelevant results that it is still very difficult for the user to pick the relevant ones even with the help of snippets
and differentiation techniques. By suggesting a set of related queries to the keyword query the user has issued
(also called query expansion), the search engine can help the user get more insights of what is the important
information contained in the results, and narrow down the search scope to get more precise results.

Sometimes the keywords have multiple relationships in the data, and in this case clustering the search results
and showing one representative for each cluster makes it easy for the user to quickly browse all types of results.
Last but not the least, the search engine can also work interactively with the user to improve the result quality
through relevance feedbacks.

The rest of the paper is organized as follows. Section 2 discusses result snippet generation techniques
proposed in eXtract [4]; Section 3 introduces the approach for generating comparison tables for selected results
proposed in XRed [7]; in Section 4 we introduce two related approaches, Data Clouds [5] and [10], which selects
important keywords from the search results for query expansion. At last we discuss the remaining challenges of
processing keyword searches on structured data and potential future research directions.

2 Generating Result Snippets

Snippets help the user quickly understand the essence of a result without reading through its entirety. As an
example, let us look at fragments of two tree-structured search results of query “Phoenix, camera, store” shown

47



Figure 2: Snippets of the Result in Figure 1

in Figure 1. Some nodes in the results are omitted due to space constraint, and the box next to each result records
the statistics information of the result, e.g., DSLR: 188 indicates there are 188 DSLR cameras in this result.

Two sample snippets of the results are shown in Figure 2. As can be seen, each snippet captures the heart
of the result in a small tree, e.g., from snippet 1, we know that the result is about a store named BHPhoto in
Phoenix, which features Canon and Sony cameras and mainly sells cameras with 12 megapixel. Users can judge
the relevance of the query result from this brief subtree of carefully selected nodes.

Snippet generation on structured data faces several unique challenges comparing with snippet generation on
plain text documents. Most importantly, unlike results on text documents, results on structured data typically
have a tree structure, which is not composed of sentences or paragraphs. Therefore, selecting representative
sentences as snippets is not a valid solution. Instead, the selection should be made at the node level. Except
nodes that match keywords, it is not directly obvious which nodes are significant and helpful for the user to
judge the result relevance. In this subsection we introduce a system eXtract [4], which adopts techniques for
snippet generation in XML keyword search.

eXtract attempts to achieve four goals in generating a snippet: (1) the snippet should be self-contained (i.e.,
represent a semantic unit); (2) the snippet should distinguish the result from other results; (3) the snippet should
be a reasonable summary of the result; (4) the snippet should be small to be easily comprehensible. Note that
the first three goals interfere with the last one: the more nodes a snippet has, the better it achieves the first three
goals but the harder it is for the user to comprehend it. eXtract takes all four goals into account by creating a list
of important features in the result, called IList. eXtract then adds the features in the IList into the snippet one by
one, until the snippet size has reached a limit. Each feature is a triplet consisting of an entity, an attribute and a
value, e.g., (camera, category, DSLR). Entities and attributes are inferred using the heuristics proposed in [6].

The IList is initialized to include the keywords in the query. To make the snippet self-contained, eXtract
adds all entities in the result into IList. Take result 1 in Figure 1 as an example. The entities in the result are
store and camera.

To make the snippet distinguishable, eXtract identifies the key of a result and adds it to the IList. The key
of a result is considered to be the key attribute of an entity (called return entity) selected by eXtract. In result 1
in Figure 1, the return entity is store. The key attribute can be retrieved from the DTD or schema (if available),
otherwise the most selective attribute can be used. eXtract adds the key attribute value of the return entity to the
IList.

To make the snippet a reasonable summary of the result, eXtract identifies features whose occurrences are
dominant. A feature is dominant if its number of occurrences in the result is large compared with features with
the same type, where feature type refers to the (entity, attribute) pair. For example, according to the statistics
of result 1 in Figure 1, DSLR, Canon, Sony and 12 are dominant features. A quantitative measure is adopted to
assess the dominance of a feature, i.e., the dominance score of feature f wrt result r, defined as following:
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Figure 3: IList for Result 1 in Figure 1

Figure 4: Comparison Table of the Result in Figure 1

DS(f, r) =
N(f)
N(f.t)
D(f.t)

where N(·) is the number of occurrences of a feature or feature type in the result, f.t is the feature type of
f , D(·) is the domain size (i.e., number of distinct features) of a feature type. For example, suppose there are
3 camera categories (DSLR, compact, single-use), then the dominance score of feature DSLR is 188/(200/3) =
2.82. eXtract adds the features in the result into the IList in the order of their dominance score. The final IList
of result 1 in Figure 1 looks like the one in Figure 3.

eXtract then includes the items in the IList one by one into the snippet until it reaches a preset size limit in
terms of number of edges. The challenge hereby is to choose the instance of each item so that the snippet can
accommodate as many items as possible. For example, to include items canon and 12, using 121 in Figure 1
is better than using 122 as the former choice results in a smaller tree size, thus leaving more space for other
items. The problem of including the most number of items in the snippet is proved to be NP-hard, and eXtract
uses a greedy algorithm for snippet generation. The details of the algorithm are omitted in this paper and can be
learned from [4].

3 Query Result Differentiation

From reading the snippets, the users will understand the most important features in the results. However, many
snippets may look similar to each other, and in order for the user to further judge the relevance of results, he/she
needs to learn the key differences of these results by comparing and analyzing them. From Figure 1, the store
in result 1 mainly sells Canon and Sony DSLR cameras, with roughly twice as many Canon cameras as Sony
cameras; while the store in result 2 mainly sells Canon and HP Compact cameras. From their snippets, we
know result 2 focuses on Compact cameras, but have no idea whether or not result 1 focuses on Compact or
DSLR, since the category information about the store is missing in its snippet. Similarly, result 1 has many Sony
cameras, but we do not have information about whether result 2 has many Sony cameras or not. As we can
see, snippets are designed to summarize a single result, rather than compare and differentiate multiple results.
Figure 4 shows the comparison table of the two results, which highlights the key difference of the two results,
e.g., the first store focuses on DSLR and the second one focuses on compact camera, which is helpful for the
user to make his/her decision.
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In this section we introduce XRed [7], a structured search result differentiation system that generates a
Differentiation Feature Set (DFS) for each result to help users compare and contrast results. Similar as eXtract,
XRed considers each (entity, attribute, value) triplet as a feature in the result. XRed allows users to select a set
of results for comparison, then it automatically selects a set of features from each result to generate a DFS that
shows the differences of the result from others.

XRed generates DFS according to the following 3 desiderata:
(1) Being Small. Similar as a result snippet, to enable users quickly differentiate query results, a DFS should

be small, so that users can quickly browse and understand them. XRed allows the user to specify a number
which is used as the upper bound of the number of features in each DFS.

(2) Summarizing Query Results. For the comparisons based on DFSs to be valid, a DFS should be a rea-
sonable summary of the corresponding result by capturing the main characteristics in the result. Otherwise, the
differences shown in two DFSs do not reflect the actual differences between the corresponding query results.

Specifically, a feature that has more occurrences in the result should have a higher priority to be selected
in the DFS, so that the DFS reflects the most important feature in the result, and the differences among DFSs
correctly reflect the main differences of their corresponding results. Consider again the two results of query
“Phoenix, camera, store” in Figure 1(a). Both results mainly sell Canon cameras. The store in result 1 also sells
a couple of HP cameras. Suppose we have the DFS for result 1, D1={store:brand:HP}, and the DFS for result 2,
D2={store:brand:Canon}. Obviously these two DFSs are different. However, the difference is meaningless as
they give users the impression that store 1 differs from store 2 by mainly selling HP cameras instead of Canon
cameras, which is untrue.

Furthermore, the distributions of features of the same type in a DFS should roughly reflect their distribution
in the data (up to the size limit). For example, although both stores in these results sells Canon and HP, it is
undesirable to have a single occurrence of Canon and HP in the DFS of each result. Such DFSs give users the
impression that the two stores are similar in terms of their speciality on Canon and HP. In fact, the store in result
1 mainly focuses on Canon with just a couple of HP; whereas the store in result 2 focuses on both Canon and
HP, with roughly the same number of cameras.

(3) Differentiating Query Results. Obviously, a DFS should be able to differentiate the result it represents
from others. Since different results are compared on feature types, a differentiation unit is a feature type, e.g.,
(camera, category). A feature type t can differentiate two DFSs if the features or the order of features of type t
are different in the two DFSs.

As an example, consider feature type (camera, category) in the DFSs in Figure 4. This feature type can
differentiate the two DFSs, as feature DSLR is the most common feature of this type in DFS 1, while in DFS 2
the most common one is compact. For feature type (camera, brand), it can also differentiate the two DFSs as
the second most common feature in the two DFSs are Sony and HP, respectively. Assuming that we use feature
HP to replace Sony in DFS 1, then they are still differentiable, as the ratios between the number of occurrences
of Canon and that of HP are about 2:1 in DFS 1 and 1:1 in DFS 2, respectively.

Using the concept of differentiable feature type, XRed judges the quality of two DFSs by the number of
feature types that can differentiate, which is called their degree of differentiation (DoD). The DoD of multiple
DFSs is the total DoD of all pairs of DFSs.

The DFS generation problem is formulated as the problem of generating a set of DFSs, one for each result,
such that each DFS should satisfy the size limit, be valid and maximize their DoD. The problem is proved to
be NP-hard. XRed adopts greedy algorithms that achieve two local optimality criteria efficiently. The detailed
algorithms and proofs can be found in [7].
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4 Query Expansion

Sometimes since the keywords issued by the user are imperfect, a large number of irrelevant results may be
retrieved. Even with the help of snippets and differentiation, it is still a tough task for the user to quickly locate
the relevant ones. In this case, the search engine can help user narrow down the search scope and improve the
result quality by suggesting a set of keywords related to the original query, which the user can use to revise
the query. For example, the sample query “Phoenix, camera, store” may retrieve a large number of results as
the predicates are not very specific. The user issues this query possibly because he/she is just interested in
buying a digital camera, but is unfamiliar with detailed specifications of cameras. If the search engine is able to
automatically recommend to the user a set of keywords such as “DSLR”, “compact”, “12 megapixel”, etc., the
user will be able to pick the desired keywords and reduce the number of retrieved results.

Major search engines provide query expansion functionality in the form of query auto-completion. Most of
them are implemented based on user query logs [1]. For instance, [3] extracts the personal information from
users’ desktops and query logs, and provides adaptive factors to evaluate the relevance of words. Although these
techniques are designed for web search engines, they can be applied to keyword search on structured data as
well. We do not further elaborate these approaches as they are not based on post-processing the query results.

In this section we mainly focus on a paper that studies query expansion for keyword search on structured data
without the aid of query logs: Data Clouds [5]. Data Clouds allows user to issue keyword queries on relational
databases, and ranks the terms in all results or selected top results, then returns the top ranked terms, which can
be used to form expanded queries.

To generate query results, Data Clouds first identifies a set of entities (e.g., product) in the relational database
which is done by domain experts or database administrators. Then it asks the user to specify which entity to
search. Each result is an entity that contains all keywords in the tuples related to it.

To find interesting terms as suggest keywords, Data Clouds discusses three alternative ranking schemes for
ranking terms in the results: popularity based ranking scheme, relevance based ranking scheme, and query-
dependent ranking scheme. Data Clouds returns terms with high scores for query expansion. The ranking
schemes are illustrated below.

(1) Popularity Based Ranking Scheme. This ranking schemes is based on the observation that the keywords
that appears many times in a result are likely important.. Given query q, a result r and a term t ∈ r, the popularity
score of term t is:

score(t, q, r) =
∑
e∈r

∑
a of e

na

where e is an entity, a is an attribute of e and na is the number of times t occurs in a.
(2) Relevance Based Ranking Scheme. Simply considering the numbers of occurrences of terms may lead

to selecting terms that occur universally frequently, which is undesirable as those terms are not representative
for the results. The relevance based ranking scheme additionally incorporates the idea of inverse document
frequency into the ranking score. Given query q, a result r and a term t ∈ r, the relevance score of term t is:

score(t, q, r) =
∑
e∈r

tft,e × idft

where tft,e is the frequency of term t within entity e, and idft is the log of the ratio of the number of
entities in the data over the number of entities containing t. Note that relevance based ranking scheme uses term
frequency tft,e instead of number of occurrences in the popularity based ranking scheme, as term frequency is
normalized over the size of the entities and is more fair.

(3) Query Dependent Ranking Scheme. Compared with the relevance based ranking scheme, this ranking
scheme additionally favors keywords occurring in entities that are highly related to the query. By combining
TFIDF with the scores of entities, the query dependent score of a term t is:
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score(t, q, r) =
∑
e∈r

(tft,e × idft)× score(e, q)

where score(e, q) is the relevance of entity e to query q, computed using traditional TFIDF metrics.
[8] also proposes a set of ranking factors for finding important keywords related to a user query. It is

designed specifically for queries related to online shopping: the keywords in the expanded queries are features
of the products. [8] uses three factors to judge the importance of a candidate query. The first factor is based on the
co-occurrence of the words in the candidate query with the keywords in the original query; high co-occurrence
is preferred. The other two factors rely on the users’ reviews of a product. They favor the attributes of a product
with extreme ratings (i.e., highly positive/negative) and consistent ratings (i.e., receiving the same rating from
many users), respectively. Top-k queries with the highest scores are computed and returned to the user. Another
difference from Data Clouds is that [8] considers a ranked list of queries, rather than keywords. For example, for
a user query “Canon”, Data Clouds returns suggested keywords such as “lens”, “DSLR”, “zoom”, etc., while [8]
returns suggested queries such as “camera, lens, zoom”.

Different from the two approaches introduced above, [10] ranks the terms in the order of their number of
occurrences in the results. It requires the input data to be a relational database with a schema. [10] proposes an
efficient algorithm that is able to compute precisely the top-k frequently occurred terms without even processing
the query. This enables the query processing and query expansion to be parallelized and shorten the response
time of a search engine. The detailed algorithm is omitted due to space constraint and we direct readers to the
paper for more insights.

5 Conclusions and Future Work

In this paper we discuss the benefits of keyword query post-processing on structured data, and introduce several
post-processing techniques which, from different angles, help users retrieve the relevant results: result snippets,
result differentiation and query expansion. Result snippets help user quickly get the essence of the results
without the need to read the entire results; result differentiation highlights the key differences of the selected
results which help the user compare and prioritize them; query expansion suggests a set of keywords based on
the results which gives the user insights of the results and helps the user narrow down the search scope.

There are other desirable post-processing methods which are open problems, for instance, query result clus-
tering and utilizing user feedbacks.

(1) Result Clustering. Results of a keyword search can have many subcategories. For example, for query
“Phoenix, camera, store”, some stores sell mainly DSLR cameras, some sell compact cameras, and some focus
on selling used cameras. Moreover, keyword “Phoenix” may have different semantics in different results: it may
match a city in Arizona, appear in a review, or even appear in the description of a camera. Note that ranking
schemes tend to give similar ranking scores to similar results, thus results in the same category will likely get
similar ranks. If the user only browse the top results (which is the case most of the time), he/she may only
see one category and miss many potentially relevant results. A natural way of solving this issue is to cluster the
query results. By grouping similar results together and showing either one result per cluster or a natural language
description for each cluster, the user will be able to conveniently view the result categories and navigate into the
relevant ones.

Much research has been done for clustering structured data; however, they are not query-aware, thus their
clustering criteria does not necessarily correspond to different interpretations of the query semantics. Further-
more, existing clustering criteria cannot be easily understood by the user, thus by looking at one result in a
cluster, it can be very difficult for the user to tell in what way they are similar. Query result clustering is a useful
post-processing method whose techniques await development.
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(2) Utilizing Relevance Feedback. After the results are generated, the search engine can also interact with
the user to improve the result quality. For example, the search engine can ask the user to provide some quality
judgement, e.g., specifying which results are relevant or assigning satisfaction scores to some results. Based on
the feedback from the user, the search engine can adjust its strategy in composing and ranking the results. The
search engine may also utilize implicit feedbacks, e.g., the results clicked by the user and the time each result is
browsed.

Utilization of user feedback is widely studied and adopted in information retrieval, whereas for keyword
search on structured data, the problem is not much studied. The structure of the data poses new challenges for
utilizing relevance feedback, e.g., the retrieval units are nodes rather than documents, and the ranking schemes
for structured data can usually be more complicated than those for text documents, requiring novel techniques for
incorporating feedbacks. [9] briefly discusses the problem of learning weights of edges in the schema graph for
keyword searches on relational databases. Whenever the user specifies a desirable way to connect the keywords,
the edge weights are adjusted, so that the score of any other way of connecting keywords is lower by a margin
that is equal to the distance of the two trees. Barring this work, there are still many open problems on utilizing
feedbacks. For example, it remains unclear how to adjust the weight of state-of-the-art ranking factors, such
as TFIDF, number of keywords appearing in the result, height of the result tree, etc., in face of user feedbacks.
User feedbacks can also be used by the search engine to either automatically refine the original query, or suggest
a set of new queries that can retrieve user preferred results.
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Abstract

The prevalence of free text search in web search engines has inspired recent interest in keyword search
on relational databases. Whereas relational queries formally specify matching tuples, keyword queries
are imprecise expressions of the user’s information need. The correctness of search results depends on
the user’s subjective assessment. As a result, the empirical evaluation of a keyword retrieval system’s
effectiveness is essential. In this paper, we examine the evolving practices and resources for effectiveness
evaluation of keyword searches on relational databases. We compare practices with the longer-standing
full-text evaluation methodologies in information retrieval. In the light of this comparison, we make
some suggestions for the future development of the art in evaluating keyword search effectiveness.

1 Introduction

The rise of search engines as gateways to the Internet has made searching an everyday activity. The predominant
mode of search is through the use of keywords, a small number of highly discriminating terms that the user
anticipates will identify the web pages they are looking for. Keyword search offers a straightforward, intuitive,
and flexible method of retrieving information. The success of keyword search on the web has generated interest
in keyword search interfaces to relational databases and similar structured data sources. The traditional method
of querying structured data stores is through formal query languages such as SQL. Such query languages,
however, require much time to learn, and knowledge of a store’s data schema to use. Keyword search interfaces
offer a simple and flexible alternative, with (it is hoped) minimal loss of querying power.

Keyword search on unstructured text data has long been studied in the information retrieval community,
where it goes under the name of free text search. Keyword searches provide only an approximate specification
of the information items to be retrieved. Therefore, the correctness of the retrieval cannot be formally verified,
as it can with query languages such as SQL. Instead, retrieval effectiveness is measured by user perception
and experience. The empirical assessment of keyword-based retrieval systems is therefore imperative. Such
assessment is the topic of this paper. We begin in Section 2 with a description of the characteristics of keyword
search. Section 3 surveys the history of effectiveness evaluation on unstructured text in information retrieval.
In Section 4, we examine the resources and methods used to date for keyword search evaluation over structured
data. Finally, we consider in Section 5 some future directions for the evaluation of keyword-based retrieval on
relational databases.
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2 Characteristics of Keyword Search

Users perform searches to satisfy information needs. A keyword query is an expression of such an information
need, and it is the task of the retrieval system to return information items that are relevant to that need. For
unstructured text, the information items are discrete documents. For relational data, however, the information
items are (possibly joined) tuples. The relational search system therefore has the additional responsibility of
determining the candidate tuple joins. Additionally, the keyword query contains no schema information, so that
each keyword potentially must be matched against each field of the joined tuple [1, 7].

A keyword query does not precisely define which information items are relevant to the user’s information
need. For instance, items may be relevant even though they do not contain all query terms, and conversely items
containing all query terms may not be relevant. Instead, retrieval involves computing the similarity between the
user’s query and each information item. Similarity metrics generally take into account textual features such as the
number of times a keyword occurs in an item, and the overall discrimination of the keyword in the collection [8].
With relational data, structural features can also be incorporated in the similarity metric. For instance, tuples
that have fewer joins may be preferred as more coherent than tuples with many joins [1, 9]; or query keywords
could be matched with schema terms [10]. The metric assigns a similarity score to each candidate item. The
system then ranks the items by decreasing similarity, and returns some prefix of the ranking to the user. The goal
of ranking by similarity is to bring more relevant items to the top, thus minimizing the amount of effort the user
must expend to find the information they want.

In a structured query language like SQL, there is only one correct answer set. In contrast, there are many
plausible similarity metrics, each with its own way of inferring a user’s information need from a query, and of
calculating the query’s similarity to information items, to generate a ranking of answers. The effectiveness of a
response to a keyword query, and hence of the similarity metric, is not something that can be formally proved;
rather, it is determined by the user who realized the information need, formulated the query, and perused the
response. This effectiveness must be empirically assessed.

3 Evaluation in Information Retrieval

The empirical approach to information retrieval began with the field itself, in the experiments conducted at the
library of the Cranfield Aeronautical College, England, in the late 1950s and early 1960s, under the direction
of the librarian, Cyril Cleverdon [4, 17]. The orthodoxy of the time in information science was that complex,
hierarchical indexing schemes were essential to effective retrieval. The question the Cranfield experiments set
out to answer was, which indexing scheme was best; and the answer the experiments arrived at was: none. It
made no great difference which scheme was used; simply indexing documents by plain keywords was as good a
method as any; what mattered was the process of retrieval. Cleverdon himself described these as “results which
seem to offend against every canon on which we were trained as librarians” [4, p.252]. These findings turned
attention away from information classification, and towards information retrieval.

The experimental method developed in the Cranfield tests has been highly influential. The first component
of this method is the corpus of documents to index and retrieve. Against this corpus, user information requests
must be processed; and a key insight of Cranfield was to divide these requests into two further components:
first, the request statements themselves (what later became termed the topics); and second, assessments of which
documents in the corpus were relevant to each request (called qrels in the jargon). These three components –
corpus, topics, and qrels – together form a test collection; and the use of such a test collection in evaluation is
often termed the “Cranfield methodology” or even the “Cranfield paradigm” [19].

The Cranfield experiments themselves were carried out entirely, and rather heroically, by manual means; the
two hours required to process each of the 361 searches by hand was regarded as “relatively cheap compared
to what would have been the cost for any form of machine searches” [4, p.91]. The test collection method is,
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Figure 1: Retrieval effectiveness of the SMART versions from the first eight years of TREC, averaged across
the first eight TREC collections [3].

though, ideally suited to automation and computerization. Relevance assessments are made in advance and are
reusable, so experiments can be performed automatically and cheaply. The first such computerized retrieval
systems were developed in the early 1960s, the most famous being that of the SMART project at Cornell Uni-
versity [13, 14]. Early progress was brisk, driven by the fast turnaround of collection-based evaluation, and the
foundations of statistical information retrieval were laid down within a decade, including term weighting, query
expansion, and result ranking. Over time, however, the field suffered from a lack of consolidation of results, due
in part to the small and ageing test collections employed [16]. The largest collection used by SMART in 1990
had under 13,000 documents and was already 20 years old [15]. The credibility of experimental findings was
undermined, impeding the adoption of research technologies in operational systems [13].

The second great impetus to empirical IR research came with the institution of the Text REtrieval Confer-
ences (TREC) in 1992 [6, 20]. TREC produces large-scale, up-to-date test collections, encourages collaborative
experiments upon them, and provides a venue for publishing and discussing results. The first collection used
at TREC, known as TIPSTER, contained some 750,000 documents, a fifty-fold leap over what was available
previously. The collaborative experiments run at TREC also provided a forum for the direct comparison, on
equal terms, of many different research ideas. The first TREC experiment involved 22 research groups; by the
fifth year, this has reached 38; and at its (apparent) peak in 2005, 117 research groups participated in TREC [18].

The impact that the TREC effort had upon the effectiveness of retrieval systems can be gauged from Figure 1.
Even though SMART had been under active development for three decades, the first five years of TREC saw its
retrieval effectiveness almost double, as measured by mean average precision, one common evaluation metric.
And SMART’s experience is typical of that of other participating groups. A number of important innovations
were made during these early years of TREC, from new similarity metrics such as BM25 [12], now the standard
retrieval formula, to smaller refinements that nevertheless had significant impacts, such as document length
normalization. Few of these innovations were revolutionary in their nature; rather, the existence of a large and
standard test environment allowed existing ideas to be extended, refined, and tuned. Figure 1 also suggests
that improvements had plateaued by TREC’s fifth year, leading to the retirement of the ad-hoc (plain text)
task in favour of fresher tasks in 1998; and a recent survey has found little improvements in ad-hoc retrieval
effectiveness during the following decade [2]. This underlines the impact that the standard, large-scale test
collections produced by TREC had: in just a few years, they took retrieval technology from half of its potential,
arrived at through three decades of piecemeal research, up to the effectiveness limits of current approaches.
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4 Evaluation of Keyword Search

The earliest work in keyword search on relational databases was concerned with the practicality of performing
it in a reasonably efficient manner. At this stage, any and only tuples that contained all of the query keywords
were considered correct matches for the query. Results were ranked simply by the increasing number of joins
(on the principle that the fewer joins, the more coherent the answer), and the evaluation of effectiveness was not
considered [1,7]. As technology developed, researchers became interested in not just the tractability of keyword
retrieval, but the quality of the results. Proper metrics of similarity between query and answer tuple were
introduced. Some of these metrics were specific to structured data, and were concerned with the conciseness or
coherence of the retrieved answer [5]. Other similarity metrics were adopted from full-text information retrieval,
treating either whole answer tuples or their individual fields as virtual documents [8, 10]. The most fruitful of
the similarity metrics combined both a structural and a full-text component [9].

With the development of proper similarity metrics to process queries came the need to assess the effective-
ness of the results. A number of different test datasets have been employed by different researchers. Two in
particular have become widely used: the IMDB movie database, and the DBLP database of academic publica-
tions and citations. Such agreement is not to be found on query sets, though. Queries are generally formulated
by the authors themselves, rather than taken from a query log, say, or written by independent third parties. Self-
authored queries have a strong potential for bias: it is too easy to formulate queries that are favourable to your
own over other algorithms. Query sets have not been re-used between experiments and experimenters, making
comparison of results difficult, unless the researcher provides that comparison directly through re-implementing
existing approaches as baselines – an important practice which, fortunately, is fairly common in the published
keyword work. Query sets are frequently quite small, rarely more than 20 per dataset, and sometimes as few as
5. This is somewhat short of the 50 queries used in TREC collections, and even that figure of 50 is regarded
by many as insufficient [21]. An exception is [10]: explicitly following TREC practice, they use a set of 50
queries; additionally, these queries are not created by the authors, but sampled from the log of a commercial
search engine.

Just as queries are generally authored by the researchers, so too relevance assessment is generally performed
by them or their colleagues. Like self-authoring, self-assessment has the potential for biasing results, with the
same interpretation of relevance determining both algorithm design and relevance assessment – and query con-
struction too, if self-authored. What should be a (correctly) subjective assessment of relevance can easily verge
on an (incorrectly) objective verification of correctness. The suspicion that this has occurred is strongest where
abnormally high effectiveness scores are achieved. For instance, the best fully automatic TREC participant sys-
tems achieve scores under the precision at depth 100 metric of around metric of around 0.25; but [9] report
around 0.9. Similarly, top-end scores at TREC for mean reciprocal rank (MRR, an admittedly unstable metric)
are around 0.8; but [11] achieve the rather astonishing, perfect MRR score of 1.

Given the disparity of query sets, corpora, and assessment methods, it is not straightforward to determine
how retrieval effectiveness in keyword search has progressed. The only method is to follow the chain of base-
lines. So, [10] employ a variety of tuning mechanisms to improve the vanilla IR baseline of [8] from a MRR of
0.245 to 0.871. In turn, [11] give MRR scores of 0.243 and 0.333 respectively for baselines derived from the
two aforementioned papers, and then report their impressive perfect score of 1. [22] count instead the proportion
of top-ranked documents that are relevant (P@1); they report a mean P@1 score for their [8] baseline of 0, and
for [11] baseline of 0.2; their own systems achieves a mean P@1 of 0.95. It is rather difficult to know what to
make of this sequence of results, with each researcher tripling their predecessor’s baseline to achieving perfect or
near-perfect scores. There is persuasive prima facie evidence that substantial improvements in effectiveness are
being made from a reasonable, standard IR beginning; [10] tantalizing report better effectiveness than Google
(and their effectiveness has been tripled twice since!). But the reliable verification of such improvements would
require a larger, more thorough, and more impartial, experimental environment.
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5 Future Directions In Keyword Search Evaluation

The field of keyword search on structured data is well poised for growth towards maturity. The fundamental
technical and formal problems of performing such search have been solved, and many important theoretical
results have been achieved (in, for instance, graph theory). Concern is now turning to questions of the end-user
effectiveness of such search systems. Traditional IR similarity metrics have been ported to the new domain,
and combined with domain-specific structural features. There is also evidence of significant improvements in
effectiveness, both through developing new methods and tuning existing ones.

Keyword search on structured data is therefore at roughly the same stage that information retrieval was pre-
TREC; or, to be less sanguine, the stage that information retrieval had reached by the mid-seventies, and was not
to clearly surpass for another two decades. There is much promise in the field, but more needs to be done to set
it on a firm basis, to validate its results, and to inspire the confidence needed to convert this research technology
into deployed tools. And most of these desiderata depend upon improvements in evaluation method.

What is needed is a standard method, combined with large-scale, independently curated test collections.
Some straightforward quantitative points are immediately apparent – for instance, test sets of only 20 queries
are scarcely adequate. Test collections also need to be more reusable; not merely document corpora should be
made available, but the query sets and relevance judgments to go with them, even if the last of these are in-
complete. And rather than unadorned keyword queries, test collections should have properly formulated topics;
that is, fuller statements of information need. Such fuller topics form a number of useful functions. They guide
additional relevance assessment, if such assessment should prove necessary. Moreover, they allow for different
query formulations to be made for the one information need, with each formulation assessable by the same set
of relevance judgments. The ability to reformulate queries is particularly important for a new and fluid field, as
new retrieval methods may require different query methods to draw out their features.

The field of keyword search may, however, still be too young, and the technology too fluid, for a full TREC-
style collaborative experiment to be achievable or even appropriate. Instead, the way forward would seem to
be for individual research groups to create more thorough, credibly independent, and re-usable test collections,
incorporating all three components – corpus, topics, and qrels. Such an undertaking requires a non-trivial amount
of effort. But the experience of TREC demonstrates how much leverage standard collections and a standard
methodology can achieve.
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Abstract

The importance of supporting keyword searches on relations has been widely recognized. Different
from the existing keyword search techniques on relations, this paper focuses on nearly duplicate records
in relational databases due to abbreviation and typos. As a result, processing keyword searches with
duplicate records involves many unique challenges. In this paper we discuss the motivation and present
a system, RSEARCH, to show challenges in supporting keyword search using nearly duplicate records
and key techniques including identifying nearly duplicate records and generating results efficiently.

1 Introduction

RDBMSs are very popular to store a huge amount of data due to their rigid schema specifications and mature
query processing techniques. Conventional RDBMSs provide SQL interfaces and require users to understand
how data is stored in it. However, some users might not know how to write an SQL to get what they are interested
in, instead, they hope RDBMSs provide IR-style facilities that allow users to access the database using a set of
keywords. Many recent work have studied the problem of keyword search in relational databases [1, 2, 5–7, 11–
14]. They mainly focus on the mapping between keywords and data in relations and explore different semantic
meanings to explain the query results without considering correlations among data.

In relational databases, duplication among tuples is one of typical data correlation. Informally, we say two
records are nearly duplicate if they identify the same real-world entity. Nearly duplicate records exists in many
databases due to data was collected from heterogenous sources. Figure 1 shows part of records in a real database:
Science Citation Index Expanded (SCI-E)1. The data was collected from different publishers who use different
format of author names and journal/conference names in their reference list. It is not surprising to see many
nearly duplicate records appear as individual tuples in relations, since a real-world entity might be expressed
using different values due to abbreviation, type errors, and etc.

For instance, in Figure 1, relation Source contains two duplicate records s4 and s5. Although journal names
are different, we can easily find the journal name of s4 is an abbreviation of s5. The situation becomes a little
complex in relation Author: three records a2, a3, and a4 contain the same author name, however, if we examine

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1http://isiknowledge.com
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Author Write Source
id name email id aid pid id name ISSN
a1 Alon Y. Halevy alon@cs.washington.edu w1 a1 p6 s1 Communication of the ACM 0001-0782
a2 Halevy A alon@cs.washington.edu w2 a2 p7 s2 IEEE Intelligent System 1541-1672
a3 Halevy A avinoams@clalit.org.il w3 a3 p5 s3 Journal of Child Neurology 0883-0738
a4 Halevy A w4 a4 p1 s4 VLDB J. 1066-8888
a5 Halevy Alon halevy@google.com w5 a4 p2 s5 VLDB Journal 1066-8888
a6 Halevy AY halevy@google.com w6 a4 p4

a7 Dong XL lunadong@research.att.com w7 a5 p2

w8 a6 p3

w9 a7 p2

Paper

id title sid year vol(number) page citation-times

p1 Data integration with uncertainty s5 2009 18(2) 469-500 0
p2 Representing uncertain data... s5 2009 18(5) 989-1019 0
p3 The Claremont Report on Database Research s1 2009 52(6) 56-65 0
p4 The Unreasonable Effectiveness of Data s2 2009 24(2) 8-12 0
p5 ... Complex Visual Hallucinations s3 2009 24(8) 1005-1007 0
p6 Schema mediation ... semantic data sharing s4 2005 14(1) 68-83 11
p7 MiniCon: ... answering queries using views s4 2001 10(2-3) 182-198 33

Figure 1: Sample database in Science Citation Index Expanded (SCI-E).

(a) Input Halevy A and 2009. (b) Input Halevy AY and 2009.

Figure 2: Keyword search results.

their published paper manually, we found a2 and a4 represent the same author Alon Y. Halevy in a1, whereas a3
does not. Such phenomenons result in the following two problems:

(i) users might retrieve wrong search results, or
(ii) users might miss some information that they are really interested in.

We use Example 1 to illustrate the problems.

Example 1: We used a 2-keyword query, Alon Y. Halevy and 2009 to search the SCI-indexed paper of Alon
Y. Halevy published in 2009 in the Science Citation Index Expanded database, unfortunately we got nothing.
Instead, when using Halevy A and 2009 we could get 5 results, 3 of them were written by Alon Y. Halevy
(marked by “

√
” in Figure 2(a)), and the other two results were not correct. When we used Halevy AY and

2009, we got a different result shown in Figure 2(b).

Ideally, we want to exclude irrelevant results and collect all correct results from relational databases to
increase both precision and recall. In this paper, we present a system, RSEARCH, to analyze data between tuples
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in a relation and identify nearly duplicate records to enhance the keyword search ability.
In the remaining part of this paper, we introduce the architecture of RSearch in Section 2. In Section 3 we

study several challenges that arise naturally when considering nearly duplicate records in the keyword search
processing, and introduce the basic idea of our techniques. Finally, we discuss future directions in Section 4.

2 The RSEARCH System: Architecture

Figure 3 shows the system architecture of RSEARCH. It mainly consists of five modules: Nearly Duplicate
Records Identifier, Indexer, Node Locator, Result Generator, and Result Ranker. We describe the process fol-
lowed by a brief overview of the various modules.

• Nearly Duplicate Records Identifier. The Nearly Duplicate Records Identifier analyzes data correlation in
relations, identifies nearly duplicate records, and generates a database graph.

A relational database can be modeled as a database graph G = (V,Ef , Ed). Each tuple in the database
corresponds to a vertex in V , and the vertex is associated with all attribute values in the tuple. An edge
e ∈ Ef from one vertex to another one represents a foreign-key relationship. Different from the existing
graph-based approaches [2, 5, 9, 13], we use Ed to express another type of edges, which we call duplicate
edges to express the relationship between two nearly duplicate records. For simplicity, the graph can also
be modeled as an undirected graph. The graph can have weights based on different semantics [2, 13]. For
example, Figure 4 shows the database graph of the database tuples in Figure 1. The dotted edges represent
duplicate edges.

• Indexer. The Indexer constructs indices based on database graph G = (V,Ef , Ed). In addition, the
Indexer maintains nearly duplicate records in indices. The index structure is a trie. Any token of string
type in the relational database can be expressed as a path from root to a leaf in the trie. We use a node to
express each of values of other data types, like integer, float, date, and etc.

• Node Locator. Once a user issues a query, the Node Locator accesses Indexer and retrieves matches to
each token in the given keywords in the database graph G = (V,Ef , Ed). We call such nodes keyword
nodes. Besides locating keywords nodes, the Indexer uses duplicate edges Ed in the database graph G to
locate nodes that donot contain keywords but are regarded as the same entities with the keyword nodes.
We call them shadow nodes. There is an duplicate edge in between a keyword node and a shadow node.
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Figure 4: The database graph of the database tuples in Figure 1.

• Result Generator. Based on the two kinds of located nodes: keyword nodes and shadow nodes, the Result
Generator decides how to connect them to generate results. Notice that, a search result might not contain
any keyword nodes, but is also interested by users. For example, the path a2 − w2 − p7 − s4 in Figure 4
should be an interested result to the 2-keyword query Alon Halevy and VLDB Journal, although the
result does not contain any keyword nodes. Here, both a2 and s4 are shadow nodes. Without considering
duplicate edges in the database graph, the system could not generate this result.

• Result Ranker. The Result Ranker ranks the results generated by the Result Generator based on different
ranking functions, such as variants of term frequency, the number of keyword matches, query result size,
weight in the database graph, and etc. For simplicity, in this paper, let the weight of duplicate edges
be 0. Notice that, when using the number of keyword matches, a shadow node is also a match to its
corresponding keyword.

3 Key Modules in RSEARCH

In this section, we discuss key modules in RSEARCH and address several challenges of keyword search in
relational databases with nearly duplicate records.

3.1 Identifying Nearly Duplicate Records

Two nearly duplicate records might look similar, for example, in Figure 1 records s2 and s3 in relation Source
are similar in name and ISSN columns. In fact, only partial attributes in a record could identify duplicates. For
example, the attribute email in Author, ISSN in Source, and the combination of attributes sid, vol(number), and
page in Paper could be used to identify duplicates. We call such attributes duplicate identifiers.

Duplicate identifier can help us to discriminate most of the nearly duplicate records. For instance, email is a
typical duplicate identifier to distinguish a person from others. Using email in Author, we know a1 and a2 are
duplicate, and the two records a5 and a6 are also duplicate.

Formally, given a relation R with a set of attributes U = {id, A1, . . . , An}, a similarity function δ, and
a similarity threshold λ. A subset of attributes X ⊆ U − {id} is a duplicate identifier on a relation R, if
the following statement holds: “If for any two tuples ti and tj of R agree on X (i.e. ti[X] = tj [X]), their
corresponding values ti[A1, . . . , An] and tj [A1, . . . , An] are similar (i.e. δ(ti[A1, . . . , An], tj [A1, . . . , An]) ≤
λ).” We say X approximately determines R, denoted X  R.

Many similarity functions have been used to evaluate the closeness of two records, such as edit distance,
jaccard similarity, cosine similarity, and etc [3, 4]. However, it is hard to determine which similarity function(s)
and threshold value(s) should be used to evaluate similarity for different attributes.
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In addition, we cannot use duplicate identifier to discriminate all nearly duplicate records. For example, we
donot know whether a4 and a5 are duplicate since a4 has no corresponding email address. In this case, we need
more complex way to do the discrimination. For example, Halevy A is the abbreviation of Halevy Alon, and
both of them write the same paper p2. Therefore, we infer that a4 and a5 are also duplicate.

The above observations show that automatically identifying duplicates is technically very nontrivial, how-
ever a manually solution is labor intensive and obviously undesirable.

RSEARCH provides a smart way to identify nearly duplicate records using following steps.

(1) Finding candidate duplicate identifers. For each relation R, the Nearly Duplicate Record Identifier firstly
finds possible duplicate identifer X (if any) in R by extracting X  R. Obviously, an id attribute of R is
not a duplicate identifer. Because the number of possible duplicate identifers is exponential in the number
of remaining n attributes A1, . . . , An in R, efficient search techniques and pruning heuristics are essential
ingredients of these approaches. Different from the soft key discovery algorithm developed in [8], we
examine each attribute Ai in R and prune attributes based on the following two heuristic rules:

(i) If at least one distinct value in an attribute Ai is frequent, then Ai should not be a duplicate
identifer. For example, neither attribute year nor citation-times in Figure 1 could be a duplicate
identifer.

(ii) If the cardinality of an attribute Ai is approximately equals to the cardinality of R, then Ai could
not be a duplicate identifer. For example, title of papers is not a duplicate identifer.

All these operations can be done easily using SQLs inside the RDBMS. For example, we can easily use the
expression COUNT(DISTINCT Ai) to count the number of distinct values in Ai and determine whether
Ai should be pruned according to the maximum count number.

(2) Verification of duplicate identifers using single attribute. For the remaining attributes in R, we verify
Ai  Aj (i ̸= j) by computing similarity between values in Aj . If Ai  Aj does not hold, we prune
Ai from the candidate set of duplicate identifers. The basic idea is to partition values in Ai firstly. For
each partition in Ai, we find the corresponding values in Aj and adopt our approximate string matching
approaches [10, 15] on them to verify whether these values are similar. If they are not similar, we then
conclude Ai  Aj does not hold.

Notice that, as we mentioned in the above, it is hard to choose a suitable similarity function and a threshold
to determine whether two records on Aj are close enough. RSEARCH begins with a “Show me more
similar samples” and learns a good similarity function and threshold based on the samples.

If Ai approximately determines each attribute in U − {id}, we say Ai is the duplicate identifier. We
conclude records in each partition of Ai are duplicates.

3.2 Result Generator: Propagation along Duplicate Edges

There are many approaches to generate results in a database graph without duplicate edges. L. Qin et al. in [12]
summarizes those approaches into three types of semantics: connected tree semantics, distinct root semantics,
and distinct core semantics.

Duplicate edges make the database graph more complicated and we need traverse the graph along these
duplicate edges. We use connected tree semantics [2, 7, 11] to explain the problem2. Consider a 3-keyword
query, Luna, Alon Halevy, and uncertain. Figure 5 shows the query results. Figure 5(a) is a result without
considering any duplicate edges, which means Luna and Alon Halevy coauthored a paper p2 on uncertain.
When considering duplicate edges, RSEARCH generates the other four results. The result in Figure 5(b) shows

2Notice that our approach is orthogonal to the existing graph-based keyword search approaches, which can be adopted easily by
considering duplicate edges in the database graph.
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Figure 5: Query results.

the same meaning with the one in Figure 5(a) but using a keyword node a7 and a shadow node a4, which is
propagated from the keyword node a5. The result in Figure 5(c) means Luna and Halevy A write paper p2 and
p1 separately. The title of these two papers contain uncertain. The result in Figure 5(d) means Luna published
a paper about uncertain in a journal, meanwhile the journal publishes another paper wrote by Alon Y. Halevy.
The result in Figure 5(e) has the similar meaning with the fourth result.

Different from the existing approaches, when a database graph contains duplicate edges, a critical problem
is to decide when and how to propagate along duplicate edges. In RSEARCH, the Node Locator firstly locates
all keyword nodes and traverses the database graph G using its foreign-key edges Ef . The Result Generator
finds all results using keyword nodes, if any. For each result T , it expands it by propagating along duplicate
edges. It uses a shadow node ns to replace the corresponding keyword node nk in T through a duplicate edge
e. If ns is reachable to the result through foreign-key edges Ef , we say it is a valid propagation. The Result
Generator then generate another results using Ef . If the Result Generator could not generate a result using
keyword nodes and Ef , it needs use duplicate edges Ed to generate more results by using the same policy of the
existing approaches.

4 Conclusions and Future Work

We motivated our work by considering nearly duplicate records in relational databases and show challenges
in developing a keyword search system for RDBMSs. We introduce RSEARCH system that can provide key-
word search results with higher precision and recall when considering nearly duplicate records in relations. We
briefly present two key techniques in RSEARCH including automatically identifying nearly duplicate records
and generating query results efficiently.

Future research directions include further analyzing effects on search results of rich data correlations inside
relational database. Besides nearly duplicate records, there are many types of data correlations, such as mutual
exclusive of tuples, association rules in relational database. Such data correlations will greatly affect the preci-
sion and recall of search results, as well as the search efficiency. However, none of the existing approaches on
relational keyword search considers data correlations. Another critical issue is to evaluate relational database
search systems. So far, there are many approaches and semantics of generating search results for given key-
words. The quality of a relation keyword search system greatly depends on users preference. We expect to allow
maximum flexibility for using different semantics according to different preferences.
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1 Introduction

The integration of DB and IR provides flexible ways for users to query information in the same platform [2, 3,
5–7,28]. On one hand, the sophisticated DB facilities provided by RDBMSs assist users to query well-structured
information using SQL. On the other hand, IR techniques allow users to search unstructured information using
keywords based on scoring and ranking, and do not need users to understand any database schemas.

We survey the developments on finding structural information among tuples in an RDB using an l-keyword
query, Q, which is a set of keywords of size l, denoted as Q = {k1, k2, · · · , kl}. Here, an RDB is viewed as a
data graph GD(V,E), where V represents a set of tuples, and E represents a set of edges between tuples. An
edge exists between two tuples if at least there is a foreign key reference from one to the other. A tuple consists
of attribute values and some of them are strings or full-text. The structural information to be returned for an
l-keyword query is a set of connected structures,R, where a connected structure represents how the tuples, that
contain the required keywords, are interconnected in a database GD. R can be either all trees or all subgraphs.
When a function score(·) is given to score a structure, we can find the top-k structures instead of all structures in
GD. Such a score(·) function can be based on either the text information maintained in tuples (node weights),
or the connections among tuples (edge weights), or both.

In Section 2, we focus on supporting keyword search in an RDBMS using SQL. Since this implies making
use of the database schema information to issue SQL queries in order to find structures for an l-keyword query,
it is called the schema-based approach. The two main steps in the schema-based approach are how to generate
a set of SQL queries that can find all the structures among tuples in an RDB completely, and how to evaluate
the generated set of SQL queries efficiently. Due to the nature of set operations used in SQL and the underneath
relational algebra, a data graph GD is considered as an undirected graph by ignoring the direction of references
between tuples, and therefore a returned structure is of undirected structure (either tree or subgraph). The
existing algorithms use a parameter to control the maximum size of a structure allowed. Such a size control
parameter limits the number of SQL queries to be executed. Otherwise, the number of SQL queries to be executed
for finding all or even top-k structures is too large. The score(·) functions used to rank the structures are all
based on the text information on tuples.

In Section 3, we focus on supporting keyword search in an RDBMS from a different viewpoint, by material-
izing an RDB as a directed graph GD. Unlike an undirected graph, the fact that a tuple v can reach to another
tuple u in a directed graph does not necessarily mean that the tuple v is reachable from u. In this context, a
returned structure (either steiner tree, distinct rooted tree, r-radius steiner graph, or multi-center subgraph) is
directed. Such direction handling provides users with more information on how the tuples are interconnected.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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On the other hand, it requests higher computational cost to find such structures. Many graph-based algorithms
are designed to find top-k structures, where the score(·) functions used to rank the structures are mainly based
on the connections among tuples. This type of approach is called schema-free in the sense that it does not request
any database schema assistance.

2 Schema-Based Keyword Search on Relational Databases

Consider a relational database schema as a directed graph GS(V,E), called a schema graph, where V represents
the set of relation schemas {R1, R2, · · · , Rn} and E represents the set of edges between two relation schemas.
Given two relation schemas, Ri and Rj , there exists an edge in the schema graph, from Ri to Rj , denoted
Ri → Rj , if the primary key defined on Ri is referenced by the foreign key defined on Rj . There may exist
multiple edges from Ri to Rj in GS if there are different foreign keys defined on Rj referencing the primary

key defined on Ri. In such a case, Ri
X→ Rj is used, where X is the foreign key attribute names. We use

V (G) and E(G) to denote the set of nodes and the set of edges of a graph G, respectively. In a relation schema
Ri, we call an attribute, defined on strings or full-text, a text attribute, to which keyword search is allowed. A
relation on relation schema Ri is an instance of the relation schema (a set of tuples) conforming to the relation
schema, denoted r(Ri). We use Ri to denote r(Ri) if the context is obvious. A relational database (RDB) is
a collection of relations. An RDB can be viewed as a data graph GD(V,E) on the schema graph GS . Here,
V (GD) represents a set of tuples, and E(GD) represents a set of edges between tuples. There is an edge between
two tuples ti and tj in GD, if there exists a foreign key reference from ti to tj or vice versa (undirected) in the
RDB. In general, two tuples, ti and tj are reachable if there exists a sequence of connections between ti and tj
in GD. The distance dist(ti, tj) between two tuples ti and tj is defined as the minimum number of connections
between ti and tj .

An l-keyword query is given as a set of keywords of size l, Q = {k1, k2, · · · , kl}, and searches inter-
connected tuples that contain the given keywords, where a tuple contains a keyword if a text attribute of the
tuple contains the keyword. To select all tuples from a relation R that contain a keyword k1, a predicate
contain(A, k1) is supported in SQL in IBM DB2, ORACLE, and Microsoft SQL-SERVER, where A is a text
attribute in R. The following SQL query, finds all tuples in R containing k1 provided that the attributes A1 and
A2 are all and the only text attributes in relation R. We say a tuple contains a keyword, for example k1, if the
tuple is included in the result of such a selection.

select * from R where contain(A1, k1) or contain(A2, k1)

An l-keyword query returns a set of answers, where an answer is a minimal total joining network of tuples
(MTJNT) [1, 16] that is defined as follows. Given an l-keyword query and a relational database with schema
graph GS , a joining network of tuples (JNT) is a connected tree of tuples where every two adjacent tuples,
ti ∈ r(Ri) and tj ∈ r(Rj) can be joined based on the foreign key reference defined on relational schema Ri and
Rj in GS (either Ri → Rj or Rj → Ri). An MTJNT is a joining network of tuples that satisfy the following
two conditions, total and minimal. By total, each keyword in the query must be contained in at least one tuple
of the joining network. By minimal, a joining network of tuples is not total if any tuple is removed.

Because it is meaningless if two tuples in an MTJNT are too far away from each other, a size control
parameter, Tmax, is introduced to specify the maximum number of tuples allowed in an MTJNT.

Given an RDB on the schema graph GS , in order to generate all the MTJNTs for an l-keyword query, Q,
keyword relation and Candidate Network (CN) are defined as follows. A keyword relation Ri{K ′} is a subset
of relation Ri containing tuples that only contain keywords K ′(⊆ Q)) and no other keywords, as defined below:

Ri{K ′} = {t|t ∈ r(Ri) ∧ ∀k ∈ K ′, t contains k ∧ ∀k ∈ (K −K ′), t does not contain k}
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where K is the set of keywords in Q, i.e. K = Q. K ′ can be ∅. In such a situation, Ri{} consists of tuples
that do not contain any keywords in Q and is called an empty keyword relation. A candidate network (CN) is a
connected tree of keyword relations where for every two adjacent keyword relations Ri{K1} and Rj{K2}, we
have (Ri, Rj) ∈ E(GS) or (Rj , Ri) ∈ E(GS). A candidate network must satisfy the following two conditions,
total and minimal. By total, each keyword in the query must be contained in at least one keyword relation of the
candidate network. By minimal, a candidate network is not total if any keyword relation is removed.

A CN can produce a set of (possibly empty) MTJNTs, and it corresponds to a relational algebra that joins
a sequence of relations to obtain MTJNTs over the relations involved. Given a keyword query Q and an RDB
with schema graph GS , let C = {C1, C2, · · · } be the set of all candidate networks for Q over GS , and let
T = {T1, T2, · · · } be the set of all MTJNTs for Q over the RDB. For every Ti ∈ T , there is exactly one Cj ∈ C
that produces Ti.

For an l-keyword query over an RDB, the number of MTJNTs can be very large even if Tmax is small. It is
ineffective to present users a huge number of results for a keyword query. In order to handle the effectiveness,
for each MTJNT, T , for a keyword query Q, it also allows a score function score(T,Q) defined on T in order to
rank results. A top-k keyword query retrieves k MTJNTs T = {T1, T2, ..., Tk} such that for any two MTJNTs
T and T ′ where T ∈ T and T ′ /∈ T , score(T,Q) ≤ score(T ′, Q).

Ranking issues for MTJNTs are discussed in many papers [14, 22, 23]. They aim at designing effective
ranking functions that capture both the textual information (e.g., IR-Styled ranking) and structural information
(e.g., the size of the MTJNT) for an MTJNT. There are two categories of ranking functions, namely, the attribute
level ranking function and the tree level ranking function. Given an MTJNT T and a keyword query Q, the
attribute level ranking function first assigns each text attribute for tuples in T an individual score and then
combines them together to get the final score [14, 22]. In other words, in the attribute level ranking functions,
each text attribute of an MTJNT is considered as a virtual document. Tree level ranking functions consider the
whole MTJNT as a virtual document rather than each individual text attribute [23].

In the framework of RDBMS, the two main steps of processing an l-keyword query are candidate network
generation and candidate network evaluation.

1. Candidate Network Generation: In the candidate network generation step, a set of candidate net-
works C = {C1, C2, · · · } is generated over a graph schema GS . The set of CNs shall be complete and
duplication-free. The former ensures that all MTJNTs are found, and the latter is mainly for efficiency
consideration.

2. Candidate Network Evaluation: In the candidate network evaluation step, all Ci ∈ C are evaluated.

We will introduce the two steps one by one in the next two sections.

2.1 Candidate Network Generation

In order to generate all candidate networks for an l-keyword query Q over an RDB with schema graph GS , algo-
rithms are designed to generate candidate networks C = {C1, C2, ...} that satisfy the following two conditions:

• Complete: For each solution T of the keyword query, there exists a candidate network Ci ∈ C that can
produce T .

• Duplication-Free: For every two CNs Ci ∈ C and Cj ∈ C, Ci and Cj are not isomorphic to each other.

The complete and duplication-free conditions ensure that (1) all results (MTJNTs) for a keyword query will
be produced by the set of CNs generated (due to completeness); and (2) any result T for a keyword query will
be produced only once, i.e., there does not exist two CNs Ci ∈ C and Cj ∈ C such that Ci and Cj both produce
T (due to the duplication-free condition).

The first algorithm to generate all CNs was proposed in DISCOVER [16]. It expands the partial CNs gener-
ated to larger partial CNs until all CNs are generated. As the number of partial CNs can be exponentially large,
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arbitrarily expanding will make the algorithm extremely inefficient. In DISCOVER [16], there are three pruning
rules for partial CNs.

• Rule-1: Duplicated CNs are pruned (based on tree isomorphism).

• Rule-2: A CN can be pruned if it contains all the keywords and there is a leaf node, Rj{K ′}, where
K ′ = ∅, because it will generate results that do not satisfy the condition of minimality.

• Rule-3: When there only exists a single foreign key reference between two relation schemas (for example,
Ri → Rj), CNs including Ri{K1} → Rj{K2} ← Ri{K3} will be pruned, where K1, K2, and K3 are
three subsets of Q, and Ri{K1}, Rj{K2}, and Ri{K3} are keyword relations.

The Rule-3 reflects the fact that the primary key defined on Ri and a tuple in the relation of Rj{K2} must refer
to the same tuple appearing in both relations Ri{K1} and Ri{K3}. As the same tuple cannot appear in two
sub-relations in a CN (otherwise, it will not produce a valid MTJNT because the minimal condition will not be
satisfied), the join results for Ri{K1} → Rj{K2} ← Ri{K3} will not contain any valid MTJNT.

The algorithm in [16] can generate a complete and duplication-free set of CNs, but the cost of generating
the set of CNs is high. S-KWS [24] proposes an algorithm (1) to reduce the number of partial results generated
by expanding from part of the nodes in a partial tree and (2) to avoid isomorphism testing by assigning a proper
expansion order.

2.2 Candidate Network Evaluation

After generating all candidate networks (CNs) in the first phase, the second phase is to evaluate all candidate
networks in order to get the final results. DBXplorer [1], DISCOVER [16], S-KWS [24], KDynamic [27] and
KRDBMS [25] compute all MTJNTs upon the set of CNs generated by specifying a proper execution plan.
DISCOVER-II [14] and SPARK [23] compute top-k MTJNTs.

2.2.1 Getting all MTJNTs in a relational database

In RDBMS, the problem of evaluating all CNs in order to get all MTJNTs is a multi-query optimization problem.
There are two main issues: (1) How to share common subexpressions among CNs generated in order to reduce
computational cost when evaluating. (2) How to find a proper join order to fast evaluate all CNs. For a keyword
query, the number of CNs generated can be very large. Given a large number of joins, it is extremely difficult to
obtain an optimal query processing plan, because one best plan for a CN may slow down others, if its subtrees
are shared by other CNs. As studied in DISCOVER [16], finding the optimal execution plan is an NP-complete
problem.

In DISCOVER [16], an algorithm is proposed to evaluate all CNs together using a greedy algorithm based
on the following observations: (1) subexpressions that are shared by most CNs should be evaluated first; and (2)
subexpressions that may generate the smallest number of results should be evaluated first. In S-KWS [24], in
order to share the computational cost of evaluating all CNs, Markowetz et al. construct an operator mesh. In a
mesh, there are n · 2l−1 clusters, where n is the number of relations in the schema graph GS and l is the number
of keywords. A cluster consists of a set of operator trees (left-deep trees) that share common expressions. When
evaluating all CNs in a mesh, a projected relation with the smallest number of tuples is selected to start and to
join. In KDynamic [27], a L-Lattice is introduced to share computational cost among CNs. Given a set of CNs,
C, it defines the root of each CN to be the node r such that the maximum length of the path from r to all leaf
nodes of the CN is minimized. There are three main differences between the Mesh and the L-Lattice. (1) The
maximum depth of a Mesh is Tmax − 1 and the maximum depth of an L-Lattice is ⌊Tmax/2 + 1⌋. (2) In a
mesh, only the left part of two CNs can be shared (except for the leaf nodes), while in an L-Lattice multiple
parts of two CNs can be shared. (3) The number of leaf nodes in a mesh is O((|V (GS)| · 2l)2) because there
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are O(|V (GS)| · 2l) clusters in a mesh and each cluster may contain O(|V (GS)| · 2l) leaf nodes. The number of
leaf nodes in an L-Lattice is O(2l).

After sharing computational cost using either the Mesh or the L-Lattice, all CNs are evaluated using joins
in DISCOVER or S-KWS. In KRDBMS [25], the authors observe that evaluating all CNs using only joins may
always generate a large number of temporary tuples. They propose to use semijoin/join sequences to evaluate a
CN.

Besides evaluating all CNs in a static environment, S-KWS and KDynamic focus on monitoring all MTJNTs
in a relational data stream, where tuples can be inserted/deleted frequently. In this situation, it is necessary to
find new MTJNTs or expire MTJNTs in order to monitor events that are implicitly interrelated over an open-
ended relational data stream for a user-given l-keyword query. In other words, it reports new MTJNTs when
new tuples are inserted, and, in addition, reports the MTJNTs that become invalid when tuples are deleted. A
sliding window (time interval), W , is specified. A tuple, t, has a lifespan from its insertion into the window
at time t.start to W + t.start − 1, if t is not deleted before then. Two tuples can be joined if their lifespans
overlap.

2.2.2 Getting top-k MTJNTs in a relational database

A naive approach to answer the top-k keyword queries is to first generate all MTJNTs using the algorithms
proposed in Section 2.2.1, and then calculate the score for each MTJNT, and finally output the top-k MTJNTs
with the highest scores. In DISCOVER-II [14] and SPARK [23], several algorithms are proposed to get top-k
MTJNTs efficiently. The aim of all the algorithms is to find a proper order of generating MTJNTs in order to
stop early before all MTJNTs are generated.

In DISCOVER-II, three algorithms are proposed to get top-k MTJNTs, namely, the Sparse algorithm, the
Single-Pipelined algorithm, and the Global-Pipelined algorithm. All algorithms are based on the attribute level
ranking function, which has the property of tuple monotonicity, defined as follows. For any two MTJNTs
T = t1 on t2 on ... on tl and T ′ = t′1 on t′2 on ... on t′l generated from the same CN C, if for any 1 ≤ i ≤ l,
score(ti, Q) ≤ score(t′i, Q), then we have score(T,Q) ≤ score(T ′, Q). With the tuple monotonicity, the
algorithms are designed to stop early where possible.

In SPARK [23], the authors study the tree level ranking function which does not satisfy tuple monotonicity.
In order to handle such non-monotonic score functions, a new monotonic upper bound function is introduced.
The intuition behind the upper bound function is that, if the upper bound score is already smaller than the score
of a certain result, then all the upper bound scores of unseen tuples will be smaller than the score of this result
due to the monotonicity of the upper bound function. Two new algorithms are proposed in SPARK: Skyline-
Sweeping and Block-Pipelined.

2.3 Other Keyword Search Semantics

In the above discussions, for an l-keyword query on an RDB, each result is an MTJNT. This is referred to as
the connected tree semantics. There are two other semantics to answer an l-keyword query on an RDB, namely
distinct root semantics and distinct core semantics.

Distinct Root Semantics: An l-keyword query finds a collection of tuples that contain all the keywords and that
are reachable from a root tuple (center) within a user-given distance (Dmax). The distinct root semantics implies
that the same root tuple determines the tuples uniquely [9,13,15,21,25]. Suppose that there is a result rooted at
tuple tr. For any of the l keywords, say ki, there is a tuple t in the result that satisfies the following conditions:
(1) t contains keyword ki, (2) among all tuples that contain ki, the distance between t and tr is minimum1, and
(3) the minimum distance between t and tr must be less than or equal to a user given parameter Dmax.

1If there is a tie, then a tuple is selected with a predefined order among tuples in practice.
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Distinct Core Semantics: An l-keyword query finds multi-center subgraphs, called communities [25]. A com-
munity, Ci(V,E), is specified as follows. V is a union of three subsets of tuples, V = Vc∪Vk∪Vp, where, Vk is a
set of keyword-tuples where a keyword-tuple vk ∈ Vk contains at least a keyword and all l keywords in the given
l-keyword query must appear in at least one keyword-tuple in Vk; Vc is a set of center-tuples where there exists
at least a sequence of connections between vc ∈ Vc and every vk ∈ Vk such that dist(vc, vk) ≤ Dmax; and Vp is
a set of path-tuples that appear on a shortest sequence of connections from a center-tuple vc ∈ Vc to a keyword-
tuple vk ∈ Vk if dist(vc, vk) ≤ Dmax. Note that a tuple may serve several roles as keyword/center/path tuples
in a community. E is a set of connections for every pair of tuples in V if they are connected over shortest paths
from nodes in Vc to nodes in Vk. A community, Ci, is uniquely determined by the set of keyword tuples, Vk,
which is called the core of the community, and denoted as core(Ci).

In [25], the authors showed tuple-reduction approaches to process different semantics using SQL in RDBMSs.

3 Graph-Based Keyword Search

A data graph GD can be considered as materialization of an RDB. In this section, we show how to answer
keyword queries using graph algorithms. We consider a weighted directed graph in this section, GD(V,E).
Weights are assigned to edges to reflect the (directional) proximity of the corresponding tuples, denoted as
we(⟨u, v⟩). A commonly used weighting scheme [4,10] is as follows. For a foreign key reference from tu to tv,
the weight for the directed edge ⟨u, v⟩ is given as Eq. 4, and the weight for the backward edge ⟨v, u⟩ is given as
Eq. 5.

we(⟨u, v⟩) = 1 (4)

we(⟨v, u⟩) = log2(1 +Nin(v)) (5)

where Nin(v) is the number of tuples that refer to tv, which is the tuple corresponding to node v. Nodes can
have weights. But, because the algorithms that deal with edge-weighted graphs can be easily modified to handle
additional node-weights, below we assume that only edges have weights. We denote the number of nodes and
the number of edges in graph, GD, using n = |V (GD)| and m = |E(GD)|.

There are different structures of tuples to be returned: (1) a reduced tree that contains all the keywords, that
we refer to as tree-based semantics; (2) a subgraph, such as r-radius steiner graph [21], and multi-center induced
graph [26], we call this subgraph-based semantics. In the following, we focus the tree-based semantics, and we
will discuss the subgraph-based semantics in Section 3.3.

In the tree-based semantics, an answer to Q (called a Q-SUBTREE) is defined as any subtree T of GD that
is reduced with respect to Q. Formally, there exists a sequence of l nodes in T , ⟨v1, · · · , vl⟩ where vi ∈ V (T )
and vi contains keyword term ki for 1 ≤ i ≤ l, such that the leaves of T can only come from those nodes,
i.e. leaves(T ) ⊆ {v1, v2, · · · , vl}, the root of T should also be from those nodes if it has only one child, i.e.
root(T ) ∈ {v1, v2, · · · , vl}.

The Q-SUBTREE is popularly used to describe answers to keyword queries. Two different weight functions
are proposed in the literature to rank Q-SUBTREEs in increasing weight order, and two semantics are proposed
based on the two weight functions, namely steiner tree-based semantics, and distinct root-based semantics.

Steiner Tree-Based Semantics: In this semantics, the weight of a Q-SUBTREE is defined as the total weight of
the edges in the tree; formally,

w(T ) =
∑

⟨u,v⟩∈E(T )

we(⟨u, v⟩) (6)

where E(T ) is the set of edges in T . The l-keyword query finds all (or top-k) Q-SUBTREEs in weight increasing
order, where the weight denotes the cost to connect the l keywords. Under this semantics, finding the Q-
SUBTREE with the smallest weight is the well-known optimal steiner tree problem which is NP-complete [11].
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Distinct Root-Based Semantics: Since the problem of keyword search under the steiner tree-based semantics
is generally a hard problem, many works resort to easier semantics. Under the distinct root-based semantics, the
weight of a Q-SUBTREE is the sum of the shortest distance from the root to each keyword node; more precisely,

w(T ) =
l∑

i=1

dist(root(T ), ki) (7)

where root(T ) is the root of T , dist(root(T ), ki) is the shortest distance from the root to the keyword node ki.
There are two differences between the two semantics. First is the weight function as shown above. The other

difference is the total number of Q-SUBTREEs for a keyword query. In theory, there can be exponentially many
Q-SUBTREEs under the steiner tree semantics, i.e., O(2m) where m is the number of edges in GD. But, under
the distinct root semantics, there can be at most n, which is the number of nodes in GD, Q-SUBTREEs, i.e. zero
or one Q-SUBTREE rooted at each node v ∈ V (GD). The potential Q-SUBTREE rooted at v is the union of the
shortest path from v to each keyword node ki.

3.1 Steiner Tree-Based Keyword Search

In this section, we show three categories of algorithms under the steiner tree-based semantics. First is the
backward search algorithm, where the first tree returned is an l-approximation of the optimal steiner tree. Second
is a dynamic programming approach, which finds the optimal (top-1) steiner tree in time O(3ln + 2l((l +
log n)n+m)). Third is enumeration algorithms with polynomial delay.

3.1.1 Backward Search

BANKS-I [4] enumerates Q-SUBTREEs using a backward search algorithm searching backwards from the nodes
that contain keywords. Given a set of l keywords, they first find the set of nodes that contain keywords, Si, for
each keyword term ki, i.e. Si is exactly the set of nodes in V (GD) that contain the keyword term ki. This
step can be accomplished efficiently using an inverted list index. Let S =

∪l
i=1 Si. Then, the backward search

algorithm concurrently runs |S| copies of Dijkstra’s single source shortest path algorithm, one for each keyword
node v in S with node v as the source. The |S| copies of Dijkstra’s algorithm run concurrently using iterators.
All the Dijkstra’s single source shortest path algorithms traverse graph GD in reverse direction. When an iterator
for keyword node v visits a node u, it finds a shortest path from u to the keyword node v. The idea of concurrent
backward search is to find a common node from which there exists a shortest path to at least one node in each
set Si. Such paths will define a rooted directed tree with the common node as the root and the corresponding
keyword nodes as the leaves.

The connected trees computed by BANKS-I are approximately sorted in increasing weight order. Comput-
ing all the connected trees followed by sorting would increase the computation time and also lead to a greatly
increased time to output the first result. A fixed-size heap is maintained as a buffer for the computed connected
trees. Newly computed trees are added into the heap. Whenever the heap is full, the top result tree is output and
removed. With BANKS-I, the first Q-SUBTREE output is an l-approximation of the optimal steiner tree, and
the Q-SUBTREEs are computed in increasing height order. The Q-SUBTREEs computed by BANKS-I is not
complete, as BANKS-I only considers the shortest path from the root of a tree to nodes containing keywords.

3.1.2 Dynamic Programming

Although finding the optimal steiner tree (top-1 Q-SUBTREE under the steiner tree-based semantics) or group
steiner tree is NP-complete in general, there are efficient algorithms to find the optimal steiner tree for l-keyword
queries [10,19], because l is small. The algorithm [10] solves the group steiner tree problem. Note that the group
steiner tree in a directed (or undirected) graph can be transformed into steiner tree problem in directed graph.
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Let k,k1,k2 denote a non-empty subset of the keyword nodes {k1, · · · , kl}. Let T (v,k) denote the tree
with the minimum weight (called it optimal tree) among all the trees rooted at v and containing all the keyword
nodes in k. We can find the optimal tree T (v,k) for each v ∈ V (GD) and k ⊆ Q. Initially, for each keyword
node ki, T (ki, {ki}) is a single node tree consisting of the keyword node ki with tree weight 0. For a general
case, the T (v,k) can be computed by the following equations.

T (v,k) = min(Tg(v,k), Tm(v,k)) (8)

Tg(v,k) = min
⟨v,u⟩∈E(GD)

{⟨v, u⟩ ⊕ T (u,k)} (9)

Tm(g,k1 ∪ k2) = min
k1∩k2=∅

{T (v,k1)⊕ T (v,k2)} (10)

Here, min means to choose the tree with minimum weight from all the trees in the argument. Note that, T (v,k)
may not exist for some v and k, which reflects that node v can not reach some of the keyword nodes in k, then
T (v,k) = ⊥ with weight∞. Tg(v,k) reflects the tree grow case, and Tm(v,k) reflects the tree merge case. An
algorithm called DPBF for Best-First Dynamic Programming is proposed in [10]. Consider a graph GD with n
nodes and m edges, DPBF finds the optimal steiner three containing all the keywords in Q = {k1, · · · , kl}, in
time O(3ln+ 2l((l + n) log n+m)) [10].

DPBF can be modified slightly to output k steiner trees in increasing weight order, denoted as DPBF-k, by
terminating DPBF after finding k steiner trees that contain all the keywords.

3.1.3 Enumerating Q-SUBTREEs with Polynomial Delay

Although BANKS-I can find an l-approximation of the optimal Q-SUBTREE and DPBF can find the optimal
Q-SUBTREE, the non-first results returned by these algorithms can not guarantee their quality (or approximation
ratio), and the delay between consecutive results can be very large. In [12, 18], the authors show three algo-
rithms to enumerate Q-SUBTREEs in increasing (or θ-approximate increasing) weight order with polynomial
delay: (1) an enumeration algorithm enumerates Q-SUBTREEs in increasing weight order with polynomial de-
lay under the data complexity, (2) an enumeration algorithm enumerates Q-SUBTREEs in (θ + 1)-approximate
weight order with polynomial delay under data-and-query complexity, (3) an enumeration algorithm enumer-
ates Q-SUBTREEs in 2-approximate height order with polynomial delay under data-and-query complexity. The
algorithms are adaption of the Lawler’s procedure [20] to enumerate Q-SUBTREEs in rank order.

3.2 Distinct Root-Based Keyword Search

In this section, we show approaches to find Q-SUBTREEs using the distinct root semantics, where the weight of a
tree is defined as the sum of the shortest distance from the root to each keyword node. As shown in the previous
section, the problem of keyword search under the directed steiner tree is, in general, a hard problem. Using the
distinct root semantics, there can be at most n Q-SUBTREEs for a keyword query, and in the worst case, all the
Q-SUBTREEs can be found in time O(l(n logn+m)). The approaches introduced in this section deal with very
large graphs in general, and they propose search strategies or indexing schemes to reduce the search time for an
online keyword query.

3.2.1 Bidirectional Search

BANKS-I algorithm can be directly applied to the distinct root semantics. It would explore an unnecessarily
large number of nodes in the following two scenarios. First, the query contains a frequently occurring keyword.
In BANKS-I, one iterator is associated with each keyword node. The algorithm would generate a large number
of iterators if a keyword matches a large number of nodes. Second, an iterator reaches a node with large fan-in

74



(incoming edges). An iterator may need to explore a large number of nodes if it hits a node with a very large fan-
in. BANKS-II [17] is proposed to overcome the drawbacks of BANKS-I. The main idea of bidirectional search
is to start forward searches from potential roots. The main differences of bidirectional search from BANKS-I
are as follows. First, all the single source shortest path iterators from the BANKS-I algorithm are merged into
a single iterator, called the incoming iterator. Second, an outgoing iterator runs concurrently, which follows
forwarding edges starting from all the nodes explored by the incoming iterator. Third, spreading activation is
proposed to prioritize the search, which chooses incoming iterator or outgoing iterator to be called next. It also
chooses the next node to be visited in the incoming iterator or outgoing iterator.

3.2.2 Bi-level Indexing

BLINKS [13] is proposed as a bi-level index to speed up BANKS-II, as no index (except the keyword-node
index) is used in BANKS-II. A naive index precomputes and indexes all the distances from the nodes to key-
words, but this will incur very large index size, as the number of distinct keywords is in the order of the size of
the data graph GD. A bi-level index can be built by first partitioning graph, and then building intra-block index
and block index. Two node-based partitioning methods are proposed to partition a graph into blocks, namely,
BFS-Based Partitioning, and METIS-Based Partitioning.

In [13], in a node-based partitioning of a graph, a node separator is called a portal node (or portal). A block
consists of all nodes in a partition as well as all portals incident to the partition. For a block, a portal can be
either “in-portal”, “out-portal”, or both. A portal is called in-portal if it has at least one incoming edge from
another block and at least one outgoing edge in this block. And a portal is called out-portal if it has at least one
outgoing edge to another block and at least one incoming edge from this block.

For each block b, the intra-block index (IB-index) is built.
In BLINKS [13], a priority queue Qi of cursors is created for each keyword term ki to simulate Dijkstra’s

algorithm by utilizing the distance information stored in the IB-index. Initially, for each keyword ki, all the
blocks that contain it are found by the keyword-block list, and a cursor is created to scan each intra-block
keyword-node list and put in queue Qi. When an in-portal u is visited, all the blocks that have u as their
out-portal need to be expanded, because a shorter path may cross several blocks.

3.2.3 External Memory Data Graph

Dalvi et al. study keyword search on graphs where the graph GD can not fit into main memory [9]. They build a
much smaller supernode graph on top of GD that can resident in main memory. The supernode graph is defined
as follows:

• SuperNode: The graph GD is partitioned into components by a clustering algorithm, and each cluster is
represented by a node called the supernode in the top-level graph. Each supernode thus contains a subset
of V (GD), and the contained nodes (nodes in GD) are called innernodes.

• SuperEdge: The edges between the supernodes called superedges are constructed as follows: if there is
at least one edge from an innernode of supernode s1 to an innernode of supernode s2, then there exists a
superedge from s1 to s2.

A supernode graph is constructed that fits into main memory, where each supernode has a fixed number of
innernodes and is stored on disk.

A multi-granular graph is used to exploit information presented in lower-level nodes (innernodes) that are
cache-resident at the time a query is executed. A multi-granular graph is a hybrid graph that contains both
supernodes and innernodes. A supernode is present either in expanded form, i.e., all its innernodes along with
their adjacency lists are present in the cache, or in unexpanded form, i.e., its innernodes are not in the cache.
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The innernodes and their adjacency lists are handled in the unit of supernodes, i.e. either all or none of the
innernodes of a supernode are presented in the cache.

When searching the multi-granular graph, the answers generated may contain supernodes, called supernode
answer. If an answer does not contain any supernodes, it is called pure answer. The final answer returned to
users must be pure answer. The Iterative Expansion Search algorithm (IES) [9] is a multi-stage algorithm that is
applicable to multi-granular graphs. Each iteration of IES can be broken up into two phases.

• Explore phase: Run an in-memory search algorithm on the current state of the multi-granular graph. The
multi-granular graph is entirely in memory, whereas the supernode graph is stored in main memory, and
details of expanded supernodes are stored in cache. When the search reaches an expanded supernode, it
searches on the corresponding innernodes in cache.

• Expand phase: Expand the supernodes found in top-n (n > k) results of the previous phase and add them
to input graph to produce an expanded multi-granular graph, by loading all the corresponding innernodes
into cache.

The graph produced at the end of Expand phase of iteration i acts as the graph for iteration i+1. The algorithm
stops when all top-k results are pure.

3.3 Subgraph-Based Keyword Search

The previous sections define the answer of a keyword query as Q-SUBTREE, which is a directed subtree. We
show two subgraph-based notions of answer definition for a keyword query in the following, namely, r-radius
steiner graph, and multi-center induced graph.

3.3.1 r-radius steiner graph

Li et al. in [21] define the result of an l-keyword query as an r-radius steiner subgraph. The graph is unweighted
and undirected, and the length of a path is defined as the number of edges in it. The definition of r-radius steiner
graph is based on centric distance and radius. The centric distance of v in G, denoted as CD(v), is the maximum
among the shortest distances between v and any node u ∈ V (G), i.e. CD(v) = maxu∈V (G) dist(u, v). The
radius of a graph G, denoted as R(G), is the minimum value among the centric distances of every node in G,
i.e. R(G) = minv∈V (G)CD(v). G is called an r-radius graph if its radius is exactly r.

Given an r-radius graph G and a keyword query Q, node v in G is called a content node if it contains some
of the input keywords. Node s is called steiner node if there exist two content nodes, u and v, and s in on the
simple path between u and v. The subgraph of G composed of the steiner nodes and associated edges is called
an r-radius steiner graph (SG). The radius of an r-radius steiner graph can be smaller than r.

The result of an l-keyword query, with a given radius, is a set of r-radius steiner graphs. The approaches to
find r-radius steiner graphs are based on finding r-radius subgraphs using the adjacency matrix, M = (mij)n×n,
with respect to GD, which is a n×n Boolean matrix. An element mij is 1, if and only if there is an edge between
vi and vj , mii is 1 for all i. M r = M ×M · · · ×M = (mij)n×n is the r-th power of adjacency matrix M . An
element mr

ij is 1, if and only if the shortest path between vi and vj is less than or equal to r. N r
i = {vj |mr

ij = 1}
is the set of nodes that have a path to vi with distance no larger than r. Gr

i denotes the subgraph induced by the
node set N r

i . We use Gi EGj to denote that Gi is a subgraph of Gj . The r-radius subgraph is defined based on
Gr

i ’s. The following lemma is used to find all the r-radius subgraphs [21].

Lemma 1: [21] Given a graph G, with R(G) ≥ r > 1, ∀i, 1 ≤ i ≤ |V (G)|, Gr
i is an r-radius subgraph, if,

∀vk ∈ N r
i , N r

i * N r−1
k .
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Note that, the above lemma is a sufficient condition for identifying r-radius subgraphs, but not a necessary
condition. [21] only considers n = |V (G)| subgraphs, each is uniquely determined by one node in G.

An r-radius subgraph Gr
i is maximal if and only if there is no other r-radius subgraph Gr

j that is a super graph
of Gr

i , i.e. Gr
i E Gr

j . [21] considers those maximal r-radius subgraphs Gr
i as the subgraphs that will generate

r-radius steiner subgraphs. All these maximal r-radius subgraphs Gr
i are found, which can be pre-computed and

indexed on the disk, because these maximal r-radius graph are query independent.

3.3.2 Multi-Center Induced Graph

In contrast to tree-based results that are single-center (root) induced trees, query answers can be multi-centered
induced subgraphs of GD. These are referred to as communities [26]. The nodes of a community R(V,E),
V (R) is a union of three subsets, V = Vc ∪ Vl ∪ Vp, where Vl represents a set of keyword nodes (knode), Vc

represents a set of center nodes (cnode) (for every cnode vc ∈ Vc, there exists at least a single path such that
dist(vc, vl) ≤ Rmax for any vl ∈ Vl, where Rmax is introduced to control the size of a community), and Vp

represents a set path nodes (pnode) that include all the nodes that appear on any path from a cnode vc ∈ Vc to a
knode vl ∈ Vl with dist(vc, vl) ≤ Rmax. E(R) is the set of edges induced by V (R).

A community, R, is uniquely determined by the set of knodes, Vl, which is called the core of the community.
The weight of a community R, w(R) is defined as the minimum value among the total edge weights from a
cnode to every knode; more precisely,

w(R) = min
vc∈Vc

∑
vl∈Vl

dist(vc, vl). (11)

Algorithms are proposed in [26] to compute communities by adopting the Lawler’s procedure [20].

4 Conclusion Remarks

In this article, we surveyed some main results on finding structural information in an RDB for an l-keyword
query. The current work focus on identifying primitive structures as answers and efficiently computing all and/or
top-k of such answers. One future work is how to compute more general structural information by making use
of the primitive structures. More information can be found in [5, 7, 28].
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Demonstration Proposals 

   22 March 2010 (5:00pm GMT, 10:00am PDT) Proposal submission 

   12 June 2010 Notification 

   11 July 2010 Camera-ready paper due 

Workshop Proposals  

   31 January 2010 (5:00pm GMT, 10:00am PDT) Proposal submission  

   31 March 2010 Notification 

Tutorial proposals    

   2 April 2010 (5:00pm GMT, 10:00am PDT) Proposal submission  

   12 June 2010 Notification  

Panel Proposals 

   2 April 2010 (5:00pm GMT, 10:00am PDT) Proposal submission 

   19 June 2010 Notification 

Conference  

   13 and 17 September 2010 Workshops 

   14 to 16 September 2010 Main Conference 
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