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Abstract

The popularity of location-based services and the need to perform real-time processing on them has
led to an interest in queries on road networks, such as finding shortest paths and finding nearest neigh-
bors. The challenge here is that the efficient execution of operations usually involves the computation of
distance along a spatial network instead of “as the crow flies,” which is not simple. This requires the
precomputation of the shortest paths and network distance between every pair of points (i.e., vertices)
with as little space as possible rather than having to store the n2 shortest paths and distances between
all pairs. This problem is related to a ‘holy grail’ problem in databases of how to incorporate road
networks into relational databases. A data structure called a road network oracle is introduced that
resides in a database and enables the processing of many operations on road networks with just the aid
of relational operators. Two implementations of road network oracles are presented.

1 Introduction

The growing popularity of online mapping services such as Google Maps, Microsoft Bing, and Yahoo! maps has
led to an interest in responding to queries in real time, such as finding shortest routes between locations along a
spatial network as well as finding nearest objects from a set S (e.g., gas stations, markets, and restaurants) where
the distance is measured along the shortest path in the network. Elements of S are usually constrained to lie on
the network or at the minimum to be easily accessible from the network. The online nature of these services
means that responses must be generated in real time. The challenge in performing queries on road networks is
that operations involve the computation of distance along a spatial network (i.e., network distance) instead of
“as the crow flies,” which is not simple.

Operations on road networks [3, 4, 12, 22, 13, 14, 16, 18, 17, 15, 19, 21, 20] are expensive because computing
distances between two objects (e.g., postal addresses) on the road network requires the invocation of a shortest
path algorithm [5, 8, 11, 24, 1, 6]. A popular shortest path algorithm is Dijkstra’s algorithm [5], which if
invoked between a source vertex q and a destination vertex v, ends up visiting every vertex that is closer to
q via the shortest path from q than v.In particular, it is not uncommon for Dijkstra’s algorithm to visit a very
large number of the vertices of the network in the process of finding the shortest path between vertices that are
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Figure 1: (a) Map of Silver Spring, MD where the highlighted vertices are those visited by Dijkstra’s algorithm
in determining the shortest path from X to V, (b) partition into regions ri such that the shortest path from X to
a vertex in ri passes through the same vertex among the six vertices adjacent to X (i.e., the shortest-path map of
X), and (c) leaf blocks in the shortest-path quadtree for the regions of the same partition.

reasonably far from each other in terms of network hops. For example, Figure ??(a) shows the vertices that
would be visited when finding the shortest path from the vertex marked by X to the vertex marked by V in a
spatial network corresponding to Silver Spring, MD. Here we see that in the process of obtaining the shortest
path from X to V of length 75 edges, 75.4% of the vertices in the network are visited (i.e., 3,191 out of a total of
4,233 vertices).

Methods such as the transit node routing of Bast et al. [1] and the landmark approach of Goldberg and
Harrelson [8] as well as [6] can significantly speedup shortest path computations on large road networks, up to
several orders of magnitude compared to Dijkstra’s algorithm. In spite of these newer approaches being much
faster than Dijkstra’s algorithm, they still involve searches on graphs during runtime. That is, when the user is
waiting for an answer, network distance computation still involves searching a graph space denoted by the road
network for a shortest path so that network distances can be obtained. Such a model for performing operations on
road networks is unsuitable for building a real-time large scale system because of the computational complexity
of computing network distances in road networks.

Therefore, it is not surprising that web services allow users to compute shortest paths, but if presented with
any task that is a bit more complicated (such as finding k nearest neighbors), then they resort to using the
Euclidean distance (i.e., as the crow flies); but the error due to this approximation is generally unacceptable.
If operations on road networks must compute the network distances on the fly, then requiring that the result be
obtained in real time (or almost real time) precludes the use of conventional algorithms that are graph-based (e.g.,
nearest neighbor finding methods such as the INE and IER methods [13] and improvements on them [4]), which
usually incorporate Dijkstra’s algorithm [5] in at least some parts of the solution [14]. We suggest precomputing
of the shortest paths between vertices in a road network as the only way of building scalable services that perform
real-time operations on road networks.

Road Networks in Databases: A source of frustration for database researchers with road networks is that
they cannot be integrated easily into a relational database system. Understanding why this is important requires
a bit more explanation. When we think of road networks, we view them as general graphs as there is an easy
transformation from a road network to a general graph equivalent G. The transformation is achieved by casting
road intersections as vertices, road segments as edges, and distances in miles or time taken to travel a road
segment in the road network as edge weights in G. Furthermore, additional constraints on road networks such
as one ways, no left hand turns etc., can be suitably handled by including directions with edges, or making small
changes to the topology of the graph equivalent G. Now, operations on road networks are cast as combinatorial
operations (i.e., graph operations) on G. From a database point of view, casting operations on road networks
as graph operations on G is not a good strategy. In particular, combinatorial operations on G cannot be cast in
terms of relational operators (i.e., select, project, join etc.), which constitute the basic operators of any relational
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database system. As a consequence, operations on road networks cannot be performed in the context of a
database system, which has the unfortunate implied consequence that operations on road networks cannot be
expressed using SQL.

Now, why is expressing operations on road networks using SQL important? Relational database systems
allow operations to be written in SQL, which is an English-like language. SQL is quite expressive which
means that people can build applications quickly, without having to concern themselves with how the queries
are actually processed. This translates easily for a database system as queries written in SQL can be easily
optimized by a query optimizer, since any query in SQL can be rewritten exclusively in terms of relational
operators. Given that the database knows how these few operators work (also maintain statistics to aid them),
it is fairly straightforward to optimize queries written in SQL. Being able to express operations using SQL is
especially critical to road networks given that many branches of science and engineering deal with road networks
and run expensive operations on them.

We argue that integrating road networks into a database makes good sense from a systems point of view.
Suppose that we want to develop an application that finds all restaurants within 10 miles of a given postal
address. If we were to design this algorithm, then we would store the restaurants as a relation in a database
system. When a query point q is given, we would have to first query the database to obtain the set of restaurants
that are likely to be within 10 miles of q, process this query in an external graph processing module, and then
possibly store the result in the database. It would make for a much cleaner system design if we could perform
all the operations in the context of a database system, which is really our goal here.

In Defense of Precomputation: As we pointed out earlier, integrating road networks into a relational database,
requires a reassessment of how we deal with them. In this context, precomputation gives us an opening to
transform road networks from a graph data structure to an alternate representation that can potentially make
redundant the “graph” (or topological) aspect of most operations on road networks. The key idea is that by
precomputing the shortest paths and distances between every pair of vertices in a road network, we can build a
data structure residing in a database that can perform operations on road networks using SQL.

The question that we explore next is whether precomputation a bad strategy. We argue that it is not, pointing
out that although the precomputation task is a big computational problem, it is not impossibly large. Of course,
there is no denying that precomputation can be massively expensive for large road networks, but it can be
achieved with a sufficient investment of time and hardware resources. We first argue that such a representation
is feasible to compute. In particular, given a graph G(V,E), where n = |V |, and m = |E|, Dijkstra’s algorithm
using a Fibonacci heap [7] takes O(n2 log n+nm) time to compute the shortest path between all pairs of vertices
in a spatial network. When m = O(n), as in road networks, the time complexity of Dijkstra’s algorithm would be
O(n2 logn). Empirical studies [25] have indicated that Dijkstra’s algorithm is no where close to being the fastest
algorithm for computing the all-pairs shortest paths on road networks. Moreover, recent developments in the
shortest paths algorithm literature have shown better theoretical bounds on the computational time. In particular,
Henzinger et al. [10] present a linear time shortest path algorithm for planar graphs, while Thorup [23] provides
a linear time shortest path algorithm for general graphs with integer edge weights. Moreover, a host of other
techniques such as parallel processing and the use of sophisticated hardware such as Graphics Processing Units
(GPU) [9] could further speed up the precomputation of all shortest paths of a graph.

The real problem with precomputation is that the resulting precomputed representation is an impossibly
large. Consider a spatial network G(V,E) containing n vertices. Storing the n2 shortest paths can require O(n3)
space, when we assume that each shortest path can potentially have O(n) vertices. Given that n is around 24
million vertices for the road network of USA, the anticipated size of the shortest path representation is around
13 billion trillion pieces of information, which is indeed impossibly large to store. Actually, one immediate
reduction in the storage requirement can be achieved by just storing an intermediate vertex w (“next hop”) on
the shortest path from source s to destination t. We can then obtain the entire shortest path between s and t, by
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repeatedly finding the next vertex in the shortest path between s and w, and w and t, and so on. This reduces
the total amount of space necessary to O(n2), which comes at the cost of making shortest path retrieval into an
iterative process taking O(k) time, where k is the length of the shortest path. Even such a representation is quite
large requiring 576 trillion pieces of storage for the road network of USA. In this article, we show that we can
substantially reduce this precomputed input into a much compact representation that is just linear in n [19, 21].

It is important to note that precomputation is actually a good idea arguing from the point of view of de-
coupling, which provides a cost justification to any precomputation strategy. In particular, suppose that we
precompute and store the shortest path and network distance between every pair of vertices in the road network
of Manhattan, NY. Such a representation can potentially be used by several datasets (possibly, millions of user
generated datasets) pertaining to postal addresses in Manhattan for query processing. Moreover, road networks
are usually static structures, while datasets of objects may be updated frequently. For example, when dealing
with a set of mobile hosts on a road network, the current positions of the objects are frequently updated, while
the road network would largely remain static. So, precomputation is largely a one-time affair. In effect, pre-
computation enables us to decouple the data from the underlying domain which allows for the datasets and the
network representation to be largely independent of each other.

2 Road Network Oracle

Our precomputed input representation of a road network containing n vertices is of size O(n3). Our goal here
is to convert it to a database friendly representation that is much smaller in size. The Road Network Oracle (or
simply Oracle) O of a road network G is a data structure that completely encapsulates all the n2 shortest paths
and network distances between every pair of vertices in G. The obvious storage choice for O in a relational
database system is a database relation. In the following, we provide a basic blueprint for an oracle without
making too many assumptions. Later in Section 3, we show how we can construct oracles for road networks.

The oracle O allows for two operations at the minimum, but of course support for additional functionalities
is clearly preferable. Given a source vertex u and a destination vertex v, O provides an intermediate vertex in
the shortest path between u and v. Next, given u and v, O also provides the network distance between u and v
or more likely an approximation of it. Now, the key restriction that we place on O is that its size should be small
so that both these operations can be be performed in a reasonable amount of time using database indices in O.

Without loss of generality, the scheme of oracle O can be deduced by observing that the input representation
contains O(n2) information, which consists of an intermediate vertex in the shortest path between every pair
of vertices, as well as the network distances between them. Of course, storing all of this information is not an
option here, which means that we need to find a way to obtain a compact equivalent representation by removing
redundancies from the input. One way to do this by aggregating a set of source vertices A and a set of destination
vertices in B, such that the shortest paths from a source vertex in A to a destination vertex in B share a common
vertex Ψ. Now, instead of recording the same intermediate vertex Ψ for every pair of source and destination
vertices in A to B, respectively, we can simply represent all the individual vertices in A by their group identity
(i.e., A), and all the individual vertices in B by their group identity (i.e., B). Similarly, network distances
between source vertices in A to destination vertices in B, that are more or less of the same value can also be
succinctly captured by just storing just a single network distance for the shortest paths from vertices in A to B.

The schema of a relation that captures the shortest paths is given by: O(AB,Ψ), where AB represents the
group identity of the vertices in the road network belonging to A and B, such that Ψ is the common intermedi-
ate vertex on the shortest paths between them. Another relation records the network distances separately using
another relation with the schema: O(AB, dapx), where again AB is the group identity of the source and desti-
nation vertices whose network distances are approximated with dapx. Of course, for the sake of simplicity, if we
assume (not without merit) that the vertices that make up AB in the relation storing the shortest paths are also
the same ones that make up AB in the relation storing the network distances, then we can combine these two
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relations into a single relation with the schema: O(AB,Ψ, dapx). The oracle O should capture all the O(n2)
shortest paths and network distances. Given any pair of vertices p and q in the road networks, there should be
exactly one tuple in O such that AB contains p and q. However, the groups AB should be maximal so that the
number of tuples in the schema should be at a minimum. Finally, the group AB to which the pair (p, q) belongs
should be unique so that it can be found quickly with the aid of the B-tree on the attribute AB in O.

Operations on Road Networks using SQL Given an implementation of O(AB,Ψ, dapx), we now show
how we can efficiently perform query processing on it using SQL. In particular, we demonstrate how many
operations on road networks can be expressed using SQL (and relational operators) in the context of a database
system. Our example assumes the following setup. Let R be a relation of restaurants with schema (id, type,
price), where id uniquely identifies restaurants on the road network, type is the kind of the cuisine served
by the restaurant, and price is the average cost. We also define another relation Q of movie theaters given
by the same schema (id, movie id) where id uniquely identifies the movie theater on the road network, and
movie id is a movie playing in the theater. Given a source p and destination q, let Z(p, q) map them to a
group key AB such that A contains p, and B contains q so that one can find a tuple in O with the aid of
B-tree on O.AB such that the value of AB equals Z(p, q). We present the following queries on a spatial network.

Approximate Network distance: Given a source p and destination q, obtain an approximate network distance
between them.

SELECT O.dapx FROM O WHERE O.AB = Z(p, q)

Region Search: Given a query location q, obtain all restaurants in R that are within 10 miles of q which serve
Italian cuisine. Of course, this query would make more sense if the oracle can give ϵ-guarantees on the quality
of the network distance answers.

SELECT R.id, O.dapx FROM R, O WHERE O.AB = Z(q,R.id) and R.type = “Italian” and O.dapx ≤ 10 miles

k-Nearest Neighbor Search: Given a query location q, determine the k closest restaurants in R to q which
serve Italian cuisine.

SELECT R.id, O.dapx FROM R, O WHERE O.AB = Z(q,R.id) and R.type = “Italian” ORDER BY O.dapx LIMIT k

Distance Join: Find the k closest pairs of restaurants in R and movie theaters in Q, such that Q is playing a
movie of movie id m.

SELECT R.id, Q.id, O.dapx FROM R, Q, O WHERE O.AB = Z(R.id, Q.id) AND Q.movie id = m ORDER BY O.dapx LIMIT k

For a discussion on how the query optimizer can optimize queries on O, the reader is referred to [20].

3 Oracle Implementations

Now that we have laid out the design of an oracle, we can try to implement a few oracles. First of all, the input
O(n2) can be stored as an oracle O(uv,Ψ, dG(u, v)), where u is a source vertex, v is a destination vertex such
that Ψ is an intermediate vertex in the shortest path from u to v and dG(u, v) is the network distance between u
and v. The main drawback of this oracle is that it contains O(n2) tuples, which renders it infeasible owing to its
large size.

We now present the design of two oracles both of which are based on the observation that road networks
also contain additional information in the form of the spatial positions of road intersections (vertices) and road
segments (edges). Shortest paths are related to the spatial information by the observation that the shortest paths
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Figure 2: Example illustrating the path coherence in a road network of Silver Spring, MD. The 30,000 shortest
paths (given in a darker shade) between every pair of vertices in A and B pass through a single vertex.

between spatially proximate source vertices and spatially proximate destination vertices will often pass through
a common vertex, which is termed path coherence. Moreover, when the proximate source vertices are far from
the proximate destination vertices we have the situation that the shortest paths between them have many common
segments.

Figure ??(b) shows a colored map obtained by applying a coloring algorithm to the vertices based on the
shortest path from a source vertex u in the road network G of Silver Spring, MD. Now, each vertex in G (other
than u) is assigned a color based on which outgoing edge of u forms the first link in the shortest path from u.
For example, u has six outgoing edges and hence, every vertex in G is assigned one of the 6 possible colors
based on which of the 6 outgoing edges of u form the first link in the shortest path from u. We see that the
resulting colored map has contiguous colored regions, which indicates that two destination vertices v, w in G
that are close to one another, but spatially far from u share common segments in the shortest path from u.

An oracle, termed the SILC Oracle, which captures the above scenario is obtained as follows. Given a source
vertex q, we perform such a coloring operation on all the vertices in the road network so that all the vertices
except q have a unique color. Next, we can construct a quadtree representation as shown in Figure ??(c) on the
colored vertices that keeps subdividing a block until all the vertices are of the same color, which means that they
share the same first edge from q. We record the identity of these blocks using a pointerless quadtree representa-
tion which in essence is a pair of numbers where one number corresponds to the path from the root of the tree
to the block and the other number corresponds to the depth of the block. These two numbers are concatenated
to form an integer and the result is known as the block’s Morton block representation. Let B represent one of
these Morton blocks. Next, the shortest-path quadtree of a vertex is stored in a relation O(q,B,Ψ, dapx), where
q corresponds to a source vertex, B is the Morton block representation of one of the blocks in the quadtree,
Ψ is the first link in the shortest path from q to the vertices contained in B, and dapx is a network distance
that approximates the network distances from q to all the vertices in B. We compute the shortest-path quadtree
for each vertex in the road network and store the tuples in O. The shortest-path quadtree reduces the storage
requirements from O(n2) to O(n1.5) [15]. O is indexed using a two-dimensional B-tree on q,B. Given a source
vertex u and a destination vertex v, O can retrieve the intermediate vertex and the approximate network distance
in O(log n) time. The only drawback of this oracle is that dapx is not of a bounded approximation, which means
that for some cases the errors can be large.

The next oracle, termed the path-distance oracle [21, 19], is obtained by utilizing the path coherence between
sets of source and destination vertices such that they share common vertices in the shortest paths between them.
Figure ?? shows a configuration of source vertices A and destination vertices B such that every shortest path
from a vertex u ∈ A to a vertex t ∈ B passes through a particular set of vertices, resulting in storing partial path
information of 30,000 shortest paths using O(1) storage. The triple (A,B, u) is said to form a Path-Coherent
Pair (PCP) if and only if all the shortest paths from source vertices in A to destination vertices in B have at
least one vertex or one edge in common u as shown in Figure ??. In particular, we can show [19] that a given
road network of size n, can be broken into O(n) such groups of O(1) size that capture all of the O(n2) shortest
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paths of the network. This partitioning of the vertices into appropriate subsets of source and destination vertices
is achieved by appealing to the Well-Separated Pair (WSP) decomposition [2], and conditions under which it is
satisfied for a spatial network are specified in [21]. Moreover, as the shortest paths between A and B share large
segments, the network distances between source vertices in A and destination vertices in B can be approximated
by a single network distance value dϵ that provides ϵ-guarantees on the quality of the answers [19, 21, 20]. The
end result is that given a road network G containing n vertices, we can break it up into O(s2n) sets (s is a small
value > 0) of the form (AB,Ψ, dϵ) such that AB encapsulates the set of source and destination vertices, Ψ is an
intermediate vertex common to all the shortest paths from A to B, and dϵ approximates all the network distances
between A and B. This oracle satisfies all the conditions that we laid out earlier in Section 2 as it is linear in size,
with no redundancy and can retrieve both the intermediate vertex and ϵ-approximate network distance quickly.

4 Concluding Remarks

In this paper we presented an alternate way of performing operations on road networks using road network
oracles, which reside in a database system and enable operations on road networks using SQL. Our approach
of converting road networks into oracles provides an opportunity to move away from traditional methods of
working with road networks towards a way that is scalable, efficient, database friendly, and being able to support
Internet-scale real time operations. We presented a few possible implementations of the oracle that use the spatial
information in a road network to provide group memberships to vertices in the road network. The path-distance
oracle [19, 20, 21] can be shown to be linear in n as well as being able to provide an intermediate vertex in the
shortest path as well as an ϵ-approximate network distance between any pair of vertices drawn from the road
network [21]. An interesting challenge is exploring whether there are other schemes of providing vertices in a
road network with group memberships (á la spatial information) so that given source and destination vertices,
one can find a tuple containing the pertinent shortest path and distance information using a B-tree. Another
open problem is whether dynamic oracles can be designed so that they can deal with updates as is the case when
road segments or vertices become closed or road segments become one way, as well as other dynamic traffic
conditions such as congestion which may make some routes more acceptable. Finally, there is the issue of how
to optimize operations involving the oracles so that operations can be optimized effectively in the context of a
relational database system. In particular, how can a query optimizer be taught more strategies to perform road
network queries more effectively.
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