
Business Processes Meet Operational Business Intelligence

Umeshwar Dayal, Kevin Wilkinson, Alkis Simitsis, Malu Castellanos
HP Labs, Palo Alto, CA, USA

Abstract

As Business Intelligence architectures evolve from off-line strategic decision-making to on-line opera-
tional decision-making, the design of the backend Extract-Transform-Load (ETL) processes is becoming
even more complex. We describe the challenges in ETL design and implementation, and the approach
we are taking to meet these challenges. Our approach is centered around a layered methodology that
starts with modeling the business processes of the enterprise, and their information requirements and
service level objectives, and proceeds systematically through logical design to physical implementation.
A key element of this approach is the explicit specification of a variety of quality objectives (we call
these collectively the QoX objectives) at the business level, and the use of these objectives to drive the
optimization of the design at the logical and physical levels.

1 Introduction

Today’s Business Intelligence (BI) architecture typically consists of a data warehouse that consolidates data from
several operational databases and serves a variety of querying, reporting, and analytic tools. The back-end of the
architecture is a data integration pipeline for populating the data warehouse by extracting data from distributed
and usually heterogeneous operational sources; cleansing, integrating, and transforming the data; and loading
it into the data warehouse. The traditional data integration pipeline is a batch process, usually implemented by
extract-transform-load (ETL) tools [1, 2]. Traditionally, BI systems are designed to support off-line, strategic
“back-office” decision-making where information requirements are satisfied by periodic reporting and historical
analysis queries. The operational business processes and analytic applications are kept separate: the former
touch the OLTP databases; the latter run on the data warehouse; and ETL provides the mappings between
them. We have learnt from discussions with consultants who specialize in BI projects that often 60-70% of the
effort goes into ETL design and implementation. As enterprises become more automated, data-driven and real-
time, the BI architecture must evolve to support operational Business Intelligence, that is, on-line, “front-office”
decision-making integrated into the operational business processes of the enterprise [3]. This imposes even more
challenging requirements on the integration pipeline. We describe some of these challenges and propose a new
approach to ETL design to address them.

To motivate our approach, we use a simple, example workflow. Consider a hypothetical, on-line, retail
enterprise and a business process for accepting a customer order, fulfilling and shipping the order and booking
the revenue. Such an Order-to-Revenue process involves a number of steps, utilizing various operational (OLTP)
databases and an enterprise data warehouse (Figure 1(a)). Assume a customer has been browsing the retailer
web site and adding items to a shopping cart.

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



Figure 1: (a) Order-to-Revenue business process and (b) Layered methodology for ETL

Eventually, the customer is ready to make a purchase, which initiates the CheckOut process. This submits
an entry to the order database and then the customer status is checked to validate the order. Next, the inventory
database is checked to ensure the product is in stock. At this point, the order can be fulfilled so the customer
payment is processed. Once confirmed, the Delivery process is initiated. The items are retrieved from inventory
and packed. Finally, the order is shipped and the order revenue is added to the financial revenue database. In our
example, revenue is not counted until the order is shipped.

Operational BI imposes new requirements on ETL that are difficult to meet using today’s conventional
approach. We describe three challenges.

End-to-end operational views of the enterprise. In the conventional BI architecture, the data warehouse
provides an historical view of the enterprise; e.g., it can be used to provide reports on weekly sales, the top
selling items, seasonal trends or to build customer segmentation models. The architecture may even incorporate
an operational data store to provide a near-real time view of transactional data in the OLTP databases. Still,
it does not provide the integrated, near real-time view of the entire (end-to-end) enterprise needed by the new
breed of operational BI applications. For example, suppose we want to make special offers to particular cus-
tomers based on their purchasing history, recent browsing actions, today’s revenue, and current inventory. This
operation requires data from the OLTP databases (current inventory, customer’s recent browsing actions), the
data warehouse (customer segment, purchasing history), and in-flight data (today’s revenue, including orders
that haven’t yet shipped) that may be in staging areas on its way to the data warehouse. Such enterprise views
are very complicated to design, implement, and maintain, and current BI tools provide little support for them.

Design by objective. The focus for ETL so far has been on correct functionality and adequate performance,
i.e., the functional mappings from data sources to warehouse must be correct and their execution must complete
within a certain time window. However, a focus on just functionality and performance misses other important
business objectives (e.g., recoverability, maintainability, reliability) that, while harder to quantify, are needed
for a successful ETL deployment. This is especially true for operational BI where there may be a wide range
of competing objectives. Fraud detection may require a high degree of provenance for certain parts of the ETL
flow. High reliability may be needed for parts of the flow related to revenue, e.g., the loss of click-stream data is
acceptable whereas the loss of payment is not. Consequently, what is needed is a more general approach where
the ETL design is driven by objectives and can be optimized considering their tradeoffs.

Design evolution. A typical ETL engagement consumes many months starting with business requirements
and design objectives, infrastructure surveys, conceptual and logical design, and culminating in a physical design
and implementation. In an ideal world, the requirements never change. In the real world and especially in
operational BI, requirements change rapidly as the business evolves and grows. For example, assume the order-
to-revenue process was implemented with an expected latency for the (external) payment approval process, but
months later the credit agency doubles the latency. This affects the entire downstream ETL pipeline and perhaps
substantial redesign to maintain service level objectives. A methodology that requires many additional months
to adapt to such a change would not be useful in operational BI.

In [4], we describe a layered methodology that proceeds in successive, stepwise refinements from high-

2



level business requirements, through several levels of more concrete specifications, down to execution models
(Figure 1(b)). At each level of design, different qualities (QoX objectives) are introduced or refined from higher
levels [5]. This layered approach presents opportunities for QoX-driven optimization at each successive level.
By connecting the designs and objectives at successive levels of refinement we are better able to track objectives
and rapidly generate new designs as the business evolves.

An important feature of our design methodology is the use of business process models for the conceptual
(high level) design. This has several advantages. It provides a unified formalism for modeling both production
(operational) processes such as Order-to-Revenue as well as the processes that populate the data warehouse
and intermediate enterprise states. It enables ETL design starting from a business view that hides the low-
level implementation details and therefore facilitates the specification of SLAs (Service Level Agreements) and
metrics by business analysts.

In brief, our approach leverages business process models to enable operational business intelligence. It
captures end-to-end views of enterprise data and associates them with high-level design objectives, which are
used to optimize the ETL processes and implementation. In the following sections, we elaborate on these ideas.

2 QoX-driven integrated business views

This section discusses our approach to obtain an integrated, end-to-end view of the enterprise at the conceptual
level and, from that, how to get a logical ETL design. The facts in a data warehouse define the business objects
and events of interest for decision-making. The data sources for these facts are objects in the OLTP databases
manipulated by operational business processes, e.g., CheckOut, Delivery. ETL flows define the mappings be-
tween the source objects and the facts in the warehouse. However, ETL tools today do not support the modeling
of these mappings at the conceptual level (i.e., in terms of business objects). Rather, they support only logical
ETL design at the level of objects such as tables, indexes, files, communication links. We believe that modeling
ETL at a conceptual level can benefit operational BI in a number of ways. First, it enables users of the warehouse
to see the provenance of the warehouse data in business terms they understand. Second, it provides an up-to-
date view of the enterprise by exposing the intermediate state of the ETL pipeline, the data under transformation
before it is loaded to the warehouse. This intermediate view creates new opportunities for real-time operational
applications in that it can be used at any time for operational decision-making, avoiding a wait for the warehouse
to be refreshed. Third, this conceptual model can be used to derive the logical model for ETL.

Our approach is to use BPMN1 for the conceptual model. Since BPMN can also be used to model operational
business processes, this provides a common formalism to model the complete information supply chain for the
enterprise. For each fact (and dimension, view, etc.) object in the warehouse, there is a corresponding BPMN
business fact process that shows how that object is created out of the operational business processes. Probes
inserted in the operational business process are used to send messages to all fact processes that need data from
that point in the process. But, there are three challenges with using BPMN.

The first challenge is that to derive the logical ETL flow, we need a way to map fragments of a BPMN fact
process to the corresponding logical ETL operators. To do this, we employ three techniques: (1) an expression
language to specify method invocation in the nodes of a fact process; expressions can be easily mapped to logical
ETL operators; (2) macro expansion; e.g., Figure 2(a) illustrates an example for the frequent ETL operation of
surrogate key generation; and (3) templates for mapping specific patterns to ETL operations; e.g., a compare
method followed by a true/false branch where one branch terminates the flow is recognized as an ETL filter
operator (see Figure 2(b)). These examples for macro expansion and templates are discussed later. Note that a
legend for BPMN notation is provided in Figure 3.

The second challenge is that BPMN models process flow, but ETL is fundamentally a data flow. So, we
need to augment our BPMN diagrams to convey the necessary data flow information, in particular, the input,

1Business Process Modeling Notation, http://www.bpmn.org/

3



(a) (b)

Figure 2: Example (a) macro expansion for a SK operator and (b) template for filters

output, and parameters of ETL operators. To do this, we augment our BPMN fact process with input, output and
parameter schemas as follows: we assume that each BPMN message is described by an XML schema; when a
message is received by a method, it is included as part of the node’s input schema. We use the BPMN annotation
capability to annotate methods with XML schemas for other inputs, outputs and any other parameters. In going
from process flows to data flows, we also have to consider that a business process typically creates a new process
instance per business event or transaction, whereas an ETL process typically uses a single data flow to process a
batch of records. Consequently, to create a batch of objects, we introduce a spool method that inputs a sequence
of objects and outputs a set of objects.

The third challenge derives from our ultimate goal of producing an optimized physical ETL implementation.
For this purpose, we must also incorporate the QoX objectives into the BPMN fact processes and the derived
logical ETL flows.

Example. We illustrate our ideas by presenting the BPMN diagram2 for a DailyRevenue fact process (see
Figure 3). This process computes the revenue for each product sold per day. We assume that the business
requirements include a QoX measure for freshness. This specifies how frequently the warehouse should be
updated (e.g., daily for high freshness, monthly for low freshness, etc.). Thus, the DailyRevenue process is
initiated once per freshness interval. Recall that revenue is counted when a product is shipped. Thus, a probe
must be added to the Delivery business process to send the order details to the DailyRevenue process. The spool
method separates order details into an order summary and its constituent lineitems and accumulates this data
for the freshness period. Afterward, the set of spooled lineitems is forwarded to the partitioning method which
groups lineitems by date and product number. For each group, it creates an instance of the DailyRevenue process
and sends the process its lineitems.

The DailyRevenue process does the work of creating one new fact. It iterates through the lineitems, aggre-
gating their details. The GetKey method converts production keys to surrogate keys. Note that GetKey method
is a macro expansion and the corresponding BPMN diagram is shown in Figure 2(a). Internal orders, denoted
by a null shipping address, should not be counted as revenue so they are filtered out. The template that is used to
recognize this pattern as a filter operation is shown in Figure 2(b). When all lineitems in the group are processed,
the totals are added to the warehouse as a new fact.

Given the DailyRevenue process description along with annotations for the data flow, the logical ETL flow,
DailyRevenue ETL, can be generated using a relatively straightforward translation. The details are omitted in
this paper. The logical ETL flow is depicted in Figure 4(a). Here we use the notation of an open source ETL tool
(i.e., Pentaho’s Kettle). Designing a tool-agnostic, logical ETL flow language is itself an interesting challenge.

Operational BI example. As discussed, the BPMN fact process enables new opportunities for real-time
decision-making without waiting for warehouse refresh. As an example, suppose the on-line retailer wants
to include special offers in the shipping package such as product rebates, free shipping or discounts on new

2Our BPMN diagrams are intended for presentation and are not necessarily entirely consistent with the specifications.

4



Figure 3: Example operational business processes (CheckOut, Delivery) and business fact process (DailyRev-
enue, spool)

products. And suppose these offers depend on today’s current daily revenue. The current day’s revenue is not
available in the warehouse so the special offers process must access the intermediate state of the enterprise.

To accomplish this, we need to link the RetrieveAndPack method in the Delivery process to a new process,
ShippingInserts (Figure 4(b)). This new process returns a set of offers to include in the shipping package
according to the business rules. In our example, we assume rebates are offered for orders that had an exceptional
delay and free shipping is provided for orders that exceed twice the average order amount. We need to adjust
the freshness interval to ensure that the DailyRevenue is updated hourly (or possibly more frequently) so that
the running totals can be tracked. Note this requires a slight modification of the DailyRevenue fact process (not
shown) to maintain a running total, i.e., it should process multiple groups from the spooler and only update the
warehouse once in each refresh cycle.

3 QoX-driven optimization

After having captured the business requirements and produced an appropriate logical ETL design, the next step
involves the optimization of the ETL design based on the QoX metrics. The challenges in doing this include
the definition of cost models for evaluating the QoX metrics, definition of the design space, and algorithms for
searching the design space to produce the optimal design. In [5], we showed how tradeoffs among the QoX
objectives can lead to very different designs. Here, we summarize some of the optimization techniques and
tradeoffs.

5



Figure 4: (a) Logical ETL flow and (b) Real-time offers

Optimizing for performance (i.e., improving the execution time of an ETL flow) typically exploits algebraic
rewriting (e.g., postponing the getKey method for revKey until after the aggregation to decrease the amount
of data) or flow restructuring (e.g., partitioning the flow for parallelization). The optimizer must select among
many choices for rewriting and restructuring the flow (e.g., how and where to partition). An ETL workflow may
fail due to operational or system errors. Designing for recoverability typically involves the addition of recovery
points at several places in the workflow from which the ETL process resumes after a failure and continues
its operation. However, I/O costs are incurred for maintaining recovery points, and hence there are tradeoffs
between recoverability and performance. The optimizer must decide on the number and placement of recovery
points. Sometimes, we cannot afford to use recovery points, as for example when high freshness is required. In
such cases, it might be best to design for fault-tolerance through the use of redundancy (i.e., replication, fail-
over, diversity). There are many challenges such as determining which parts of the workflow to replicate and
achieving a balance between the use of recovery points and redundancy. Freshness is a critical requirement for
operational BI, and designing for freshness is an important area of research [6, 7]. Alternative techniques here
include the use of partitioned parallelism, the avoidance of blocking operations and recovery points, streaming
implementations of transformation operators such as joins (e.g., [8]) or the loading phase (e.g., [9]). Also,
scheduling of the ETL flows and execution order of transformations becomes crucial [10].

Figure 5: Example design space for
QoX metrics [5]

Optimizing for each of the QoX metrics is a challenge by itself be-
cause of the large design space. However, the main challenge is to con-
sider these implementation alternatives together in order to optimize
against a combination of QoX objectives specified by the business re-
quirements. Figure 5 illustrates some of the tradeoffs in optimizing for
freshness, performance, recoverability, and fault-tolerance for a spe-
cific flow [5]. The solid blue line represents the baseline performance
of the original flow. For improving freshness (i.e., reducing the latency
of an update at the target site - y axis), we need to increase the num-
ber of loads (x axis). In doing so, the best performance (i.e., lowest
latency) may be achieved with parallelization (black dotted line). Us-
ing recovery points hurts freshness more or less depending on whether
we use a high (green line with larger dashes) or a low (red line with
smaller dashes) number of recovery points, respectively. The alternative of using triple modular redundancy (red
line with larger dashes) for fault-tolerance achieves nearly the same level of freshness as the original design.

6



4 Summary

We described a layered methodology for designing ETL processes in operational Business Intelligence systems.
A key feature of this methodology is the use of a unified formalism for modeling the operational business pro-
cesses of the enterprise as well as the processes for generating the end-to-end information views (e.g., business
facts) required by operational decision-making. The methodology starts with a conceptual specification from
which the logical definition and physical implementation are systematically derived. Included in the conceptual
model is the specification of QoX objectives, which drive the design and optimization at the logical and physical
levels.

Our ongoing research addresses the following problems: (1) Conceptual modeling formalism: We have illus-
trated our approach using BPMN. However, as we discussed, BPMN is not especially well suited to expressing
the data flow mappings for constructing information views. Also, the modeling formalism must support annota-
tion of the process and data flows with quality objectives. (2) Logical modeling formalism: This must include
the typical operators required by the mappings, but must be agnostic to any specific implementation engine,
and it must enable QoX-driven optimization. (3) Automatic derivation of the logical model from the conceptual
model. (4) QoX-driven optimization: This includes a cost model for expressing the QoX metrics, and algo-
rithms for optimizing against these metrics. (5) Techniques for validating the design against the business level
specifications. (6) Techniques for evolving the design as business level requirements change.

References

[1] W. Inmon, Building the Data Warehouse. John Wiley, 1993.

[2] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Clean-
ing, Conforming, and Delivering Data. John Wiley, 2004.

[3] C. White, “The Next Generation of Business Intelligence: Operational BI,” DM Review Magazine, May
2005.

[4] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson, “Data Integration Flows for Business Intelli-
gence,” in EDBT, 2009, pp. 1–11.

[5] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “QoX-driven ETL Design: Reducing the Cost of
ETL Consulting Engagements,” in SIGMOD Conference, 2009, pp. 953–960.

[6] D. Agrawal, “The Reality of Real-time Business Intelligence,” in BIRTE (Informal Proceedings), 2008.

[7] P. Vassiliadis and A. Simitsis, New Trends in Data Warehousing and Data Analysis. Springer, 2008, ch.
Near Real Time ETL, pp. 1–31.

[8] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.-E. Frantzell, “Supporting Streaming
Updates in an Active Data Warehouse,” in ICDE, 2007, pp. 476–485.

[9] C. Thomsen, T. B. Pedersen, and W. Lehner, “RiTE: Providing On-Demand Data for Right-Time Data
Warehousing,” in ICDE, 2008, pp. 456–465.

[10] L. Golab, T. Johnson, and V. Shkapenyuk, “Scheduling Updates in a Real-Time Stream Warehouse,” in
ICDE, 2009, pp. 1207–1210.

7


