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Abstract

Similarity search is a general class of problems in which a given object, called a query object, is com-
pared against a collection of objects in order to retrieve those that most closely resemble the query
object. This paper reviews recent work on an instance of this class of problems, where the objects in
question are business process models. The goal is to identify process models in a repository that most
closely resemble a given process model or a fragment thereof.

1 Introduction

As organizations reach higher levels of Business Process Management (BPM) maturity, they tend to accumulate
considerable amounts of business process models — reportedly in the hundreds or thousands in the case of multi-
national companies. These models constitute a valuable asset to support business analysis and system design
activities. In organizations with high degrees of BPM maturity, such process models are centrally managed in
dedicated process model repositories that provide advanced browsing and search features.

In this paper we review recent developments pertaining to one particular search feature over process model
repositories, namely similarity search [3]. In this context, similarity search is defined as follows: given a process
model P (the query) and a collection of process models C, retrieve the models in C' that are most similar to
P and rank them according to their degree of similarity. Similarity search is relevant in the context of model
maintenance. For example, before adding a model to a repository one needs to check that a similar model does
not already exist so as to prevent duplication. Similarly, in the context of company mergers, process analysts
need to find overlapping processes across the merged companies in order identify opportunities for consolidation.

Similarity search queries are defined with respect to a similarity measure between pairs of process models.
The similarity between pairs of process models can be measured on the basis of three complementary aspects
of process models: (i) the labels attached to tasks, events and other model elements; (ii) their graph structure;
(iii) their execution semantics. The next three sections discuss a number of similarity search techniques classi-
fied according to these three criteria. We then summarize the results of an experimental evaluation covering a
representative subset of these techniques. Finally, we outline some interesting open research directions.
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2 Label Similarity

One way of measuring the similarity between a pair of process models is by first computing an alignment
between these models, that is, a relation between elements in one model and elements in the other model. For
example, consider the two process models in Figure 1, captured using the Business Process Modeling (BPMN)
notation.! A possible alignment is the one that matches task “Order” in the first model with the task with the
same label in the second model, and task “Verify Invoice” with “Verification Invoice”. Given such an alignment,
the similarity between two models can be defined as a ratio between the size of the alignment, and the size of
the process models. For example, we could define a similarity measure as follows: UE\XTE'J/I’ where A is an
alignment and | P| and | P’| denote the number of compared model elements in models P and P’ respectively. In
the above example, this formula gives 0.66 if we only compare tasks (gateways are ignored).
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Figure 1: Sample pair of process models

Note that “Verify Invoice” does not perfectly match “Verification Invoice”. So instead of giving a weight
of one to this match, we should give it a weight equal to the similarity between these two labels (a number
between zero and one). The resulting similarity measure is then 22(”’@51‘8113?'1(””) where Sim; is a similar-
ity measure between pairs of model elements. The similarity between model elements can be computed from
their labels using syntactic similarity measures, semantic measures, or a combination of both. Syntactic mea-
sures are based on string-edit distance, n-gram, morphological analysis (stemming), and stop-word elimination
techniques, whereas semantic techniques are based on synonym and other semantic relations captured in the-
sauri (e.g. Wordnet).? For example, “Verify Invoice” and “Verification Invoice” have a high syntactic similarity
because they are almost identical after stemming, whereas “Verify Invoice” and “Check Invoice” have a high
semantic similarity since “Verify” and “Check” are synonyms.

Variations of the above similarity measure have been proposed by Ehrig et al. [7] and Dijkman et al. [6]. In
this latter work, the problem of finding a mapping between model elements is reduced to the linear assignment
problem [9] for which efficient algorithms exist. In other work, label similarity measures are used in conjunction
with structural or behavioural similarity measures (e.g. [8]).

3 Structural Similarity

Since process models are graphs, we can use graph matching as a basis for defining similarity measures. Specif-
ically, given two process models, we can define their similarity as the opposite of their graph-edit distance [12]
(i.e. one minus their normalized graph-edit distance). The graph-edit distance of two graphs is the minimum
number of operations (insertions, deletions, substitutions) needed in order to transform one graph into the other.
Unfortunately, the problem of computing the graph-edit distance is NP-hard. Thus, one needs to strike a tradeoff
between computational complexity and accuracy. Below we review several possible tradeoffs.

"http://www.bpmn.org
These linguistic matching techniques are also widely employed in the field of schema matching [14].



3.1 A* Algorithm

An exact method to compute the graph edit distance is by applying the A* search algorithm [12]. In the context
of graph-edit distance calculation, the algorithm aims at constructing an alignment (mapping) between the nodes
of the two graphs. Given a mapping, the graph-edit distance is calculated by considering that all non-mapped
nodes have been deleted (or added), and that all pairs of nodes in the mapping correspond either to identical
nodes or to node substitutions. The goal is to find the mapping with the smallest graph-edit distance. To this
end, the A* graph matching algorithm starts with an empty mapping, which has a maximal edit distance since
it implies that to go from one graph to the other, all nodes in one graph should be deleted and all nodes in the
second graph should be added (no identical nodes and no substitutions). The algorithm incrementally constructs
partial mappings of larger size, until it can no longer find a way of creating a larger mapping with a lower edit-
distance. At each step, a number of new mappings are constructed by using the current partial mapping with the
smallest edit-distance and adding new possible pairs to this mapping. It can be proved that this strategy leads to
an optimal final mapping.

A major issue with this algorithm is the large number of partial mappings that must be maintained during the
search — O(m') in the worst case [12], where m and n are the numbers nodes in the two graphs that are being
compared. Our own experiments have shown that this is problematic for process models with over 20 nodes [4].
We addressed this issue by forbidding pairs of nodes to be added to a mapping if their labels are too different
from one another — but this breaks the optimality property of the algorithm.

In its basic form, the A* graph-edit distance algorithm only considers elementary graph-edit operations
(deletion, insertion and substitution), meaning that only 1-to-1 node mappings are constructed. In [8] the set of
graph-edit operations is extended with node splitting and node merging, i.e. N-to-M mappings are constructed.
In [5], we observed that the number of partial mappings grows combinatorially when node splitting/merging
operations are integrated and proposed an alternative two-step approach. First, the basic A-star algorithm is
used to obtain a 1-to-1 mapping. In the second step, all deleted/inserted nodes are combined with adjacent nodes
trying to improve the mapping. Combining a deleted node with a matched one is similar to node merging, while
combining an inserted node with a matched one is similar to node splitting. In this way, the N-to-M mapping
can be computed while maintaining the memory requirements of the 1-to-1 mapping approach.

3.2 Heuristic Search

Given the scalability limitations of exact graph matching techniques, several heuristics have been developed.
In [4], we studied three such heuristics. The first one is a greedy heuristics, in which a mapping is created
starting from an empty mapping and adding, at each iteration, the pair of most similar nodes that do not yet
appear in the current mapping. The other two heuristics are closer to the A* graph matching algorithm in the
sense that they explore several possible mappings (instead of just one current mapping as the greedy approach).
However, these heuristics include a pruning function which is triggered when the number of currently considered
mappings is larger than a given threshold. Only the most promising alignments are kept after a pruning phase.

3.3 Similarity Flooding

Given that process similarity can be measured on the basis of an alignment, the problem of similarity search
can be related to alignment problems such as schema matching [14]. Similarity flooding is a graph matching
technique that has been shown to yield good accuracy when applied to the problem of schema matching [11].
The idea behind similarity flooding is that a pair of nodes or edges of two graphs are similar when their adjacent
elements are similar. The algorithm builds a matrix for similarity propagation which is updated iteratively by
fixpoint computation. At the end, the matrix can be used to construct an alignment, e.g. construct a mapping
with pairs of nodes whose similarity is greater than a given threshold. However, as stated in [11] the algorithm
works fine for directed labelled graphs and degrades when edge labelling is uniform or absent.



Madushan et al. [10] have studied the application of similarity flooding for process model similarity search.
In their work, process models are represented using an ontology-based notation in which process models are
represented as graphs with labelled nodes and labelled edges. However, mainstream process modeling notations
(e.g. BPMN) are such that edges have no labels, thus hindering the applicability of similarity flooding.

4 Behavioral Similarity

Process models define a part of the behavior of an organization. Therefore, another possibility for measuring
their similarity is by measuring the similarity of their behavioral semantics. There are a number of behavioral
semantics of business processes. For each of these behavioral semantics similarity metrics can be defined.

4.1 Comparison of traces

A simple way to define the execution semantics of a process model is in terms of the set of (completed) traces
that it can accept. Assuming process models with finite sets of traces, we can define similarity measures in terms
of this trace-based semantics. For example, we can define the similarity between two process models P1 and
P2 as the ratio % where T'(P) is the set of traces generated by process P. However, this simple
measure leads to unsatisfactory results. For example, the sets of traces of the two models shown in Figure 1 have
an empty intersection. A more suitable alternative is to consider partial traces. Wombacher [16] studied the use
of N-grams (partial traces consisting of n-items) as a basis to compare process models. Another technique based

on a notion of “partially fitting traces” is presented in [1].

4.2 Simulation

A second way of defining behavioral semantics is in terms of a labelled transition system that captures all the
states in which the process model can be, and all transitions that can cause the process model to change state.
To determine if two process models are equivalent, we can then take the state-space of two process models and
check if they can simulate one another (i.e. if they allow the same transitions in equivalent states). If the process
models are not equivalent, we will find states which can be reached through the same sequence of transitions,
and yet do not allow the same transitions. By counting such states, we can measure how dissimilar two process
models are. This idea is applied by Nejati et al [13] in order to match statechart diagrams and could in principle
be applied to process models.

4.3 Causal footprints

Trace- and state-based semantics aim to describe the behavior of a process as precisely as possible. However,
their use can lead to performance problems due to large sets of traces and state explosion, while their level of
precision is not required for measuring similarity. An approximation of the behavioral semantics of business
processes would be sufficient for similarity measure. A possible approximation of this behavioral semantics is
given by the concept of causal footprint [15].

A causal footprint of a business process is a triple (F, Ly, Lj,), where: FE is the set of elements of the
business process (e.g. tasks); Ly, € P(E) x E is the set of look-back links, such that (Ib, e) denotes that at
least one element from /b must have occurred before e can occur; and L;, C E x P(FE) is the set of look-ahead
links, such that (e, la) denotes that after e has occurred at least one element from la must occur. For example,
if we identify the tasks in the example in figure 1 by the first letter of their label, a causal footprint for the
leftmost process could be: ({O, R,V, S}, {({O}, R), {R},V), {R},9)},{(O,{R}),(R,{V}),(R,{S}H})}.
Note that, if we add ({O}, V) to the look-back links, the resulting causal footprint is still a valid footprint for
the process. This illustrates that causal footprints are an approximate semantics.



The similarity search method based on causal footprints differs from other similar search methods in that it
does not compute the similarity between each pair of process models. Instead, each process model in a collection
is represented as a point in a vector space, and the problem of process model similarity search is reduced to the
nearest-neighbour problem, that is, finding the nearest points to the query. This technique is often employed
in the field of information retrieval for text documents. In the case of causal footprints, the dimensions (also
known as the terms) of the vector space are the elements (e.g. tasks), the look ahead-links and the look-back
links that appear in at least one business process in the collection. For a given business process, the values for
the dimensions (also known as the weights of the terms) are determined based on the presence of the term in
the process in question and the ‘importance’ of that term. Look-back and look-ahead links that consist of fewer
elements are considered more important than those that consist of more elements.

5 Comparison

Table 1 summarises the results of an empirical evaluation of 8 similarity search techniques covering the three
categories reviewed above. The evaluation involved 10 queries executed over a set of 100 process models.
Details of the dataset and the evaluation method are given in [6, 4]. The table shows the mean average precision
obtained for each technique across all 10 queries. Average precision is a measure commonly used to evaluate
the quality of search techniques that return ranked lists of results [2]. The mean average precision for a given
technique is the arithmetic mean of the average precisions obtained for each query using that technique.

Table 1: Mean average precision of representative search techniques (adapted from [4, 6])

Algorithm Mean avg. precision | Algorithm Mean avg. precision
Syntactic label sim. | 0.8 A-star GM 0.86
Semantic label sim. | 0.78 Sim. Flooding 0.56
Greedy GM 0.84 Causal Footprint 0.86
Heuristic GM 0.83 Text search engine | 0.76

The table suggests that structural and behavioural techniques slightly outperform pure label-based ones. An
exception is similarity flooding, which performs poorly, whereas it is known to have good performance in the
context of schema matching. This can be explained by the fact that similarity flooding heavily relies on edge
labels (in addition to node labels) whereas process models generally lack edge labels. The last row shows the
result obtained by using a full-text search engine on the same set of queries. As expected, the average precision
is lower than that obtained using any of the reviewed similarity search techniques (except similarity flooding).

6 Outlook

Existing process model similarity search techniques focus on process models composed of atomic tasks and
connectors. Little attention has been paid to other process modelling constructs such as sub-process invocation
and exception handlers. Perhaps more limiting is the fact that existing process model similarity search techniques
tend to focus on the control-flow view of process models, neglecting data manipulation (e.g. data inputs/outputs)
and resource allocation. Addressing this limitation is an avenue for further work.

As emphasized in this paper, the problem of similarity search of process models can be related to that of
schema matching. Although some differences exist between these problems — particularly the general lack of
edge labels in process models — there is an opportunity to transpose schema matching techniques to the process
model similarity search problem. Several techniques reviewed in this paper are also found in automated schema
matching tools. However, many other schema matching techniques have not yet been considered in the context
of process model similarity search.



All process model similarity search techniques we know of employ linear search. In other words, the query
model is compared to each model in the collection. An avenue for future work is to study the applicability and
performance gains of graph indexing techniques [12] in the context of process model similarity search.
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