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Abstract

The emergence of the Cloud system has simplified the deployment of large-scale distributed systems
for software vendors. The Cloud system provides a simple andunified interface between vendor and user,
allowing vendors to focus more on the software itself ratherthan the underlying framework. Existing
Cloud systems seek to improve performance by increasing parallelism. In this paper, we explore an
alternative solution, proposing an indexing framework forthe Cloud system based on the structured
overlay. Our indexing framework reduces the amount of data transferred inside the Cloud and facilitates
the deployment of database back-end applications.

1 Introduction

The emergence of the Cloud system has simplified the deployment of large-scale distributed systems for soft-
ware vendors. The Cloud system provides a simple and unified interface between vendor and user, allowing
vendors to focus more on the software itself rather than the underlying framework. Applications on the Cloud
include Software as a Service system [1] and Multi-tenant databases [2]. The Cloud system dynamically allo-
cates computational resources in response to customers’ resource reservation requests and in accordance with
customers’ predesigned quality of service.

The Cloud system is changing the software industry, with far-reaching impact. According to an estimation
from Merrill Lynch [3], by 2011, the Cloud computing market should reach $160 billion, including $95 billion
in business and $65 billion in online advertising. Due to thecommercial potential of the Cloud system, IT
companies are increasing their investments in Cloud research. Existing Cloud infrastructures include Amazon’s
Elastic Computing Cloud (EC2) [4], IBM’s Blue Cloud [5] and Google’s MapReduce [6].

As a new computing infrastructure, the Cloud system requires further work for its functionalities to be
enhanced. An area that draws most attention is data storage and retrieval. Current Cloud systems rely on
underlying Distributed File Systems (DFS) to manage data. Examples include Google’s GFS [8] and Hadoop’s
HDFS [9]. Given a query, the corresponding data are retrieved from the DFS and sent to a set of processing
nodes for parallel scanning. Through parallel processing,the Cloud system can handle data intensive application
efficiently. The challenges here lie in how to partition dataamong nodes and how to have nodes collaborate for
a specific job. To simplify implementation, current proposals employ a simple query processing strategy, e.g.,
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Figure 1: Indexing Framework of the Cloud

parallel scanning the whole data set. Given enough processing nodes, even the simple strategy can provide good
performance. However, such an approach may only work in a dedicated system built for a specific purpose
of a single organization. For example, Google employs its MapReduce [6] to compute the pagerank of web
pages. In the system, nodes are dedicated to serving one organization. In contrast, in an open service Cloud
system, such as Amazon’s EC2, different clients deploy their own software products in the same Cloud system.
Processing nodes are shared among the clients. Data management becomes more complicated. Therefore,
instead of scanning, a more efficient data access service is required.

Following this direction, Aguilera et al.[7] proposed a fault-tolerant and scalable distributed B-tree for the
Cloud system. In their approach, nodes are classified into clients and servers. The client lazily replicates
all inner B+-tree nodes, and the servers synchronously maintain a B+-tree version table for validation. This
scheme incurs high memory overhead for the client machine byreplicating the inner nodes across the clients.
Moreover, it is not scalable when the updates follow skewed distribution, invoking more splitting and merging
on the inner nodes. In this paper, we examine the requirements for the Cloud systems and propose an indexing
framework based on our earlier work outlined in [10]. Firstly, this indexing framework supports all existing
index structures. Two commonly used indexes, hash index andB+-tree index, are employed as examples to
demonstrate the effectiveness of the framework. Secondly,processing nodes are organized in a structured P2P
(Peer-to-Peer) network. A portion of the local index is selected from each node and published based on the
overlay protocols. Consequently, we maintain a global index layer above the structured overlay. It effectively
reduces the index maintenance cost as well as the network traffic among processing nodes, resulting in dramatic
query performance improvement.

The rest of the paper is organized as follows: We present our indexing framework in the next section and
discuss the details of our indexing approach in Section 3. InSection 4, we focus on the adaptive indexing
approach. And some other implementation and research issues are introduced in section 5. Finally, we present
our preliminary experimental results in Section 6 and conclude the paper in Section 7.

2 System Architecture

Figure 1 illustrates our proposed indexing framework for the Cloud system. There are three layers in our design.
In the middle layer, thousands of processing nodes are maintained in the Cloud system to provide their compu-
tational resources to users. Users’ data are partitioned into some data chunks and these chunks are disseminated
to different nodes based on DFS protocols. Each node builds some local index for its data. Besides the local
index, each node shares parts of its storage for maintainingthe global index. The global index is a set of index
entries, selected from the local index and disseminated in the cluster. The middle layer needs to implement the
following interfaces:

Map(v)/Map(r) Map a value or data range into a remote node

GetLI(v)/GetLI(r) Given a value or data range, return the corresponding local index

GetGI(v)/GetGI(r) Given a value or data range, return the corresponding globalindex

InsertGI(I) Insert an index entry into the global index
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All the methods exceptGetLI rely on theMap function. Given a value (hash based index) or a range (B+-tree
based index),Mapdefines how to locate a processing node responsible for the value or range. Its implementation
depends on the lower layer’s interface.

To provide an elegant interface for users, we apply the structured overlay to organize nodes and manage the
global index. In the lower layer, processing nodes are loosely connected in a structured overlay. After a new node
joins the Cloud, the node performs the join protocol of the overlay. Specifically, the node will accept a few other
nodes as its routing neighbors and notify others about its joining. This process is similar to the construction of a
P2P network. However, our system differs significantly fromthe P2P network. In the Cloud system, services are
administrated by the service provider, and nodes are added into the system to provide computational resources.
On joining the network, nodes must remain online unless the hardware fails. In contrast, in the P2P network, peer
nodes are fully autonomous and unstable. A peer joins the P2Pnetwork for its own purpose (e.g., to download
files or watch videos) and leaves the network on finishing its task. In our system, the P2P overlay is adopted
only for routing purposes. The interfaces exposed for the upper layers are:

lookup(v)/lookup(r) Given a value or a range, locate the responsible node

join Join the overlay network

leave Leave the overlay network

In principle, any structured overlays are applicable. However, to support B+-tree based index, range search is
required. Therefore, we adopt structured overlays that support range queries, such as CAN[11] and BATON[12].

In the upper layer, we provide a data access interface to the user’s applications based on the global index.
The user can select different data access methods for different queries. Scanning is suitable for the analysis of
large data sets while index-based access is more preferred for online queries.

3 Indexing Framework

In this section, we shall discuss the implementation issuesof the middle layer in the framework. Algorithm 1
shows the general idea of the indexing scheme. First, we apply an adaptive method to select some index values
(the adaptive approach will be discussed in the next section). For a specific index valuev, we retrieve its index
entry through theGetLI method. The index entry is a value record in the hash based index or a tree node in
the B+-tree based index. Then, we apply theMap function to locate a processing node and forward the index
entry to the node, where it will be added to the global index. Algorithm 2 shows the query processing algorithm
via the global index. The query is forwarded to the nodes returned by theMap function, where the query is
processed through the global index in parallel. As the algorithms show, theMap function plays an important
role in the index construction and retrieval. In this section, we discuss how to define a properMap function for
different types of indexes.

Algorithm 1 EstablishGlobalIndex(node n)
1: ValueSet S=getIndexValue()
2: for ∀v ∈ S do
3: I=GetLI(v)
4: publish I to Map(v)

5: end for

3.1 Hash Based Indexing

The hash index is used to support exact key-match queries. Suppose we use the hash functionhl to build the
local hash index. For an index valuev, we can simply define theMap function as:

Map(v)=lookup(hg (v))
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Algorithm 2 SearchGlobalIndex(range r)
1: NodeSet N=Map(r)
2: for ∀n ∈ N do
3: I=n.GetGI(r)
4: process queries based on I

5: end for

wherehg is a global hash function for the Cloud system andlookup is the basic interface of the structured
overlay. In the structured overlay, for routing purpose, each node is responsible for a key space. For the hash
index, all nodes applyhg to generate a keyk for an index value. Given a key,lookupreturns the node responsible
for the key. Note thathg does not need to be equivalent to the hash functionhl as each node may build their
local hash index based on different hash functions.

3.2 B+-tree Based Indexing

The B+-tree based index is built for supporting range search. In anm-order B+-tree, all the internal nodes,
except the root node, may haved children, wherem ≤ d ≤ 2m. The leaf nodes keep the pointers to the disk
blocks of the stored keys. To define theMap function for the B+-tree index, a range is generated for each tree
node. Basically, B+-tree nodes can inherit a range from their parents. In Figure2, noded is nodea’s third child.
So its range is from the second key to the upper bound ofa, namely (35,45). The range ofa is from the lower
bound of the domain to the first key of its parent. Thus,a’s range is (0,45). Specifically, the range of the root
node is set to be the domain range.
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45 60 80r (0, 100)

c (12,35) d (35,45)

49 52 55
e 

(45,60)

Figure 2: Node Range in B+-tree
After generating the range for a B+-tree noden, we define theMap function as:

Map(n)=lookup(range(n))

To support the above mapping relation, the underlying overlay must provide thelookup interface for a specific
range. In this case, only the structured overlays that support range search are applicable, such as BATON [12],
CAN [11] and P-Ring [13].

3.3 Multi-dimensional Indexing

A multi-dimensional index, such as the R-tree [14], is useful for spatial and multi-dimensional applications. In
the R-tree, each node is associated with a Minimal Boundary Rectangle (MBR), which is similar to the range
defined for the B+-tree node. Given an R-tree node, we need to define aMap function to locate the processing
node. Depending on the characteristics of the underlying overlays, we have two solutions:

If the underlying overlay, such as CAN [11], supports multi-dimensional routing, we can directly use its
lookupinterface. For an R-tree noden, theMap function is defined as:

Map(n)=lookup(getMBR(n))

However, most structured overlays have not been designed for supporting multi-dimensional data indexing. In
this case, the alternative solution is to map the multi-dimensional rectangle into a set of single dimensional
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ranges. The space filling curve [15] is commonly used for thistask. Given a rectangleR, we can define a
function f based on the space filling curve, which mapsR to a range setS. Finally, theMap function returns
the corresponding node set:

Map(n)={lookup(r)|∀r ∈ S}

4 Index Tuning

The local index size is proportional to the data size. Therefore, we cannot publish all the local indexes into the
global index. In this section, we discuss the index tuning problem in the framework.

Algorithm 3 IndexTuning(node n)
1: IndexSet I=n.getAllIndexEntry()
2: for ∀e ∈ I do
3: if needSplit(e)then
4: IndexSet I’=getLowerLevelIndexEntry(e)
5: remove e and insert I’ into global index
6: else
7: if needMerge(e)then
8: IndexEntry e’=getUpperLevelIndexEntry(e)
9: remove e and its siblings; insert e’ into global index

10: end if
11: end if

12: end for

Algorithm 3 shows the general strategy of index tuning. If anindex entry needs to be split due to the high
benefit for query processing, we replace the index entry withits lower level index entries. In contrast, if it needs
to be merged with its siblings, we remove all the corresponding index entries and insert their upper layer entry.
In this way, we dynamically expand and collapse the local index in the global index. In the above process, we
manage the local index in a hierarchical manner. Existing index structures can be easily extended to support
such operations. Again, we use hash index and B+-tree index as the examples in our discussion.

4.1 Multi-level Hash Indexing
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Figure 3: Hierarchical Hash Functions
Linear hashing and extendible hashing can be considered as multi-level hash functions. As shown in Fig-

ure 3, the hash function at leveli is defined ash(x)=x mod2i. Given two data itemsv1 andv2, if hi(v1) = hi(v2),
v1 andv2 are mapped to the same bucket in leveli. As a matter of fact, the index data are only stored in the
buckets of the last level (e.g., level 3 in Figure 3). The other level buckets store a Bloom Filter [16] to verify
membership and are maintained virtually. We generate an ID for each bucket based on its ancestors’ hash values.
For example, the bucketBi = {3, 9} in level 2 has an ID “00” and the bucketBj = {8} in level 3 has an ID
“110”. Instead of using the hash value as the key to publish the data, we use the bucket ID as the key. Initially,
only level 1 buckets (e.g., bucket “0” and “1”) are inserted into the global index. If bucket 0 has a high query
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load, it will be split into two buckets in level 2. Then, the query load is shared between the two buckets. The
index lookup is performed in a similar way. We generate a search key based on the hash function. For example,
to perform search for 9 and 6, we generate keys “000” and “100”, respectively. Query for “000” will be sent to
the bucket “00”, whose id is the prefix of the query.

4.2 Dynamic Expansion of the B+-tree based Indexes
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Figure 4: Adaptive Expansion of B+-tree

In the index tuning process, the B+-tree based global index can be considered a result of the dynamic
expansion of the local B+-trees. Figure 4 illustrates the idea. Due to network cost and storage cost, we cannot
publish all the leaf nodes into the global index. Therefore,it is more feasible and efficient to select and publish
some tree nodes based on the cost model. Based on Algorithm 3,the tuning process is similar to tree expansion
or collapse. When a new processing node joins the cluster, itinserts the root node of its local B+-tree into the
global index. Then, it adjusts its index by expanding the tree dynamically. Figure 4 shows a snapshot of an
expanding tree.

4.3 Cost Modeling

In our indexing framework, a cost model is essential to evaluate the cost and benefit of maintaining the global
index. In As different system configurations will lead to different cost models, we describe a general approach to
estimate the cost. Basically, maintenance costs can be classified into two types, query processing cost and index
maintenance cost. Algorithm 2 indicates that query processing cost includes the routing cost incurred byMap
and the index lookup cost incurred byGetGI. Based on the protocol of structured overlays, the cost ofMap is
O(logN) network I/O, whereN is the number of nodes in the Cloud. The cost ofGetGI is the local I/O cost of
processing the query via the global index, and it depends on the structure of current global index. For example,
in anL-level B+-tree index, if oneh-level tree nodeni is inserted into the global index, query processing viani

requires additionalL − h I/O cost. Thus, the cost ofGetGI must be estimated on the fly. Once the local index
is modified, we need to update the corresponding global index. A typical update operation triggersO(logN)
network I/Os and some local I/Os. The total index maintenance cost is a function of the update pattern. We
employ the random walk model and the bayesian network model to predict update activities in the B+-tree index
and the multi-level hash index, respectively. Finally, thecost of a specific index entry is computed as the sum
of its query cost and maintenance cost. And to limit the storage cost, we set a threshold for the size of global
index. Then, the optimal indexing scheme is transformed into a knapsack problem. And a greedy algorithm can
be used to solve the problem.

5 Other Implementation Issues

5.1 Concurrent Access

In an open service Cloud system, registered users are allowed to deploy their own softwares. If some users’
instances access the global index concurrently, we need to guarantee the correctness of their behaviors. Suppose
an index entry receives an update request and read request simultaneous from different instances. We need to

6



generate a correct serialized order for the operations. A possible solution is to group the relative operations in a
transaction and apply the distributed 2-phase locking protocol. However, 2-phase locking protocol reduces the
performance significantly. If consistency is not the major concern, more efficient solutions may be possible [17].

5.2 Routing Performance

As discussed in the cost model,Map incursO(logN) network I/O, whereN is the number of nodes in the Cloud.
Although nodes in the Cloud are connected via a high bandwidth LAN, the network cost is still dominating the
index lookup cost. Some systems [18] apply the routing buffer to reduce the network cost. Generally, after a
success lookup operation, the node keeps the destination’smetadata in its local routing buffer. In the future
processing, if a new lookup request hits the buffer, we can retrieve the corresponding data within 1 network I/O.
However, the application of routing buffer incurs new research problems such as how to keep the routing buffer
up to date and how to customize the routing algorithm.

5.3 Failure Recovery

In the Cloud system, as the processing nodes are low-cost workstations, there may be node failures at any time.
In this case, a master node is used to monitor the status of nodes. And each node will record its running status
into a log file occasionally. If a node fails, it will be rebooted by the master node and automatically resume its
status from the log file. To keep the high availability of the global index, we write the global index into the log
file as well. Moreover, we exploit the replication protocol of the overlay network to create multiple copies of
the global index. Therefore, a single node’s failure will not affect the availability of the global index. One of the
replicas is considered as the master copy, while the other are slave copies. The updates are sent to the master
copy and then broadcasted to the slave copies. Once a master copy fails, one of the slave copies is promoted to
be the master one. And after a node recovers its global index via the log file, it will become a slave copy and ask
the master one for the missing updates.

6 A Performance Evaluation
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Figure 5: Experiment Result

To illustrate the effectiveness of the framework, we have implemented our indexing framework on BATON
[12] for the Cloud system (see [10] for more details). In our Cloud system, each node builds a local B+-tree
index for its data chunks. The global index is composed by a portion of local B+-tree indexes. We deploy
our system on Amazon’s EC2 [4] platform. In our system, each node hosts 500k data in its local database. A
simulator is employed to issue queries. From the start of theexperiment, the node will continuously obtain a
new query from the simulator after it finishes its current one. The major metrics in the experiment are query
throughput and update throughput. To test the scalability of our approach, Cloud systems with different numbers
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of processing nodes are created. In Figure 5(a), we generatedifferent query sets by varying the selectivity of
the search. Whens = 0, the query is exact search query. Whens = 0.01, one percent of the data space is
searched in the query. Query throughput increases almost linearly as the number of processing nodes increases.
Figure 5(b) shows the update throughput. We generate the insertion request for each local B+-tree uniformly. In
our system, the updates can be processed by different nodes in parallel.

7 Conclusions

In this paper, we study and present a general indexing framework for the Cloud system. In the indexing frame-
work, processing nodes are organized in a structured overlay network, and each processing node builds its local
index to speed up data access. A global index is built by selecting and publishing a portion of the local in-
dex in the overlay network. The global index is distributed over the network, and each node is responsible
for maintaining a subset of the global index. Due to storage cost and other maintenance issues, an adaptive
indexing approach is used to tune the global index based on the cost model. Two experiments on a real Cloud
environment, Amazon’s EC2, illustrate the effectiveness and potential of the framework.
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