
On the Varieties of Clouds for Data Intensive Computing

Robert L. Grossman
University of Illinois at Chicago

and Open Data Group

Yunhong Gu
University of Illinois at Chicago

Abstract

By a cloud we mean an infrastructure that provides resources or services over a network, often the
Internet, usually at the scale and with the reliability of a data center. We distinguish between clouds
that provide on-demand computing instances (such as Amazon’s EC2 service) and clouds that provide
on-demand computing capacity (such as provided by Hadoop). We give a quick overview of clouds and
then describe some open source clouds that provide on-demand computing capacity. We conclude with
some research questions.

1 Introduction

1.1 Types of Clouds

There is not yet a standard definition for cloud computing, but a good working definition is to say thatclouds
provide on demand resources or services over a network, often the Internet, usually at the scale and with the
reliability of a data center.

There are quite a few different types of clouds and again there is no standard way of characterizing the
different types of clouds. One way to distinguish differenttypes of clouds is to categorize the architecture model,
computing model, management model and payment model. We discuss each of these below. See Table 1.

1.2 Architectural Model

We begin with the architecture model. There are at least two different, but related, architectures for clouds:
the first architecture is designed to provide computinginstances on demand, while the second architecture is
designed to provide computingcapacity on demand.

Amazon’s EC2 services [1] provides computing instances on demand and is an example of the first archi-
tectural model. A small EC2 computing instance costs $0.10 per hour and provides the approximate computing
power of 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor, with 1.7 GB memory, 160 GB of available disk
space and moderate I/O performance [1].

Google’s MapReduce provides computing capacity on demand and is an example of the second architectural
model for clouds. MapReduce was introduced by Google in the paper [8]. This paper describes a sorting
application that was run on a cluster containing approximately 1800 machines. Each machine had two 2 GHz
Intel Xeon processors, 4 GB memory, and two 160 GB IDE disks. The TeraSort benchmark [10] was coded

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Model Variants
Architecture Model clouds that provide on-demand computing in-

stances; clouds that provide on-demand comput-
ing capacity

Programming Model Using queues to pass message; MapReduce over
storage clouds; UDFs over storage clouds; mes-
sage passing

Management Model private vs shared; internal vs hosted
Payment Model pay as you go; subscribe for a specified period of

time; buy

Table 1: Some different types of clouds.

using MapReduce, a parallel programming model which is described in more detail below. The goal of the
TeraSort benchmark is to sort1010 100-byte records, which is about 1 TB of data. The application required
about 891 seconds to complete [8] on this cluster.

The Eucalyptus system [19] is an open source cloud that provides on demand computing instances and shares
the same APIs as Amazon’s EC2 cloud. The Hadoop system is an open source cloud that implements a version
of MapReduce [16].

Notice that both types of clouds consist of loosely coupled commodity computers, but that the first archi-
tecture is designed to scale out by providing additional computing instances, while the second architecture is
designed to support data or compute intensive applicationsby scaling computing capacity. By scaling computing
capacity, we mean the ability to aggregate a large number of loosely coupled computers so that the aggregate
infrastructure can manage very large datasets, sustain very large aggregate input/output, and perform a very large
aggregate number of computing tasks.

1.3 Programming Model

Clouds that provide on-demand computing instances can support any computing model compatible with loosely
coupled clusters. For example, instances in an Amazon EC2 can communicate using web services [3], using
queues [2], or using message passing. It is important to notethough that the performance using message passing
on loosely coupled systems is much slower than message passing or tightly coupled clusters.

Clouds that provide on-demand computing capacity can also support any computing model compatible with
loosely coupled clusters. Programming using web services and message passing can be complicated though and
beginning with [8], a programming model called MapReduce has become the dominant programming model
used in clouds that provide on-demand computing capacity. MapReduce assume that many common program-
ming applications can be coded as processes that manipulatelarge datasets consisting of<key, value> pairs.
Map is a process that maps each<key, value> pair in the dataset into a new pair of<key′, value′>. Reduce is
a process that merges values with the same key. Although thisis a seemingly simple model, it has been used to
support a large number of data intensive applications, especially applications that must manipulate web related
data. MapReduce is described in more detail in Section 2.1 below.

Stream-based parallel programming models in which a User Defined Function (UDF) is applied to all the
data managed by the cloud have also proved to be quite useful [14].

2

1.4 Payment Model

Amazon popularized a cloud that provides on-demand computing instances with a “pay as you go” economic
model. By simply setting up a Amazon Web Services account that links to a credit card, one can set up a
computing instance, with attached storage and network connectivity and pay about 10 cents an hour for just
those hours that you actually use the resources.

Of course, you can also buy, set up, and run your own cloud. Alternately, you can make arrangements with
a third party to pay for the exclusive use of cloud resources for a specified period of time.

1.5 Management Model

The hardware for clouds can be by provided internally by an organization (internal clouds) or externally by a
third party (hosted clouds). A cloud may be restricted to a single organization or group (private clouds) or shared
by multiple groups or organizations (shared clouds). All combinations of these management options arise.

1.6 What’s New?

Local and remote loosely coupled clusters have been available for quite some time and there is a large amount
of middleware available for such clusters. Because of this,it is important to ask what is new with clouds.

The first thing that is new is the scale. Google and Yahoo have reported computing on clouds that contain
1000, 2000 and up to 10,000 loosely coupled computers. With Hadoop, datasets that are tens to hundreds of
terabytes can be managed easily, something that requires significant effort with a database.

The second thing that is new is the simplicity that clouds provide. For example, with just a credit card
and a browser connected to the Internet, you can use Amazon’sEC2, S3, and SQS to bring up 100 computing
instances, perform a computation, and return the results without any capital investment, without hiring a system
administrator, and without installing and mastering any complex middleware. Useful machine images containing
precisely the pre-installed software required can be invoked by simply referencing an Amazon Machine Image
identifier, such as ami-3c47a355.

As another example, with MapReduce, a new software engineercan be analyzing a 10 TB dataset of web
data on 100 nodes with less than a day of instruction by using simple, small MapReduce programs.

It is interesting to note that this style of cloud computing came from industry’s need for a simple to use, yet
powerful platform for high performance computing, not fromacademic research in high performance computing.

2 Clouds That Provide On-Demand Computing Capacity

2.1 Google’s Storage, Compute and Table Cloud Services

The basic architecture for clouds that provide on-demand computing capacity was articulated in a series of
Google technical reports. See Figure 1. A cloud storage service called the Google File System (GFS) was
described in [9]. GFS was designed to scale to clusters containing thousands of nodes and was optimized for
appending and for reading data.

For computing with data managed by GFS, a parallel programming framework for loosely coupled systems
called MapReduce was described in [8]. A good way to describeMapReduce is through an example: Assume
that nodei in a cloud stores web pagespi,1, pi,2, pi,3, . . ., pi,n. Assume also that web pagepi contains wordsw1,
w2, wij , A basic structure important in information retrieval is aninverted index, which is a data structure
consisting of a word followed by a list of web pages

(w1; p1,1, p2,1, p3,2, . . .)

3

cloud storage services

table-based data services

relational data services

app app

app app app app app app

app app

cloud compute services (MapReduce

& generalizations)

Figure 1: Clouds that provide on-demand computing capacityoften layer services as shown in the diagram.

(w2; p1,1, p1,2, p3,1, . . .)

(w3; p1,3, p2,2, p3,3, . . .)

with the properties:

1. The inverted index is sorted by the wordwj;

2. If a wordwj occurs in a web pagepi, then the web pagepi is on the list associated with the wordwj .

A mapping function processes each web page independently, on its local storage node, providing data paral-
lelism. The mapping function emits multiple<key, value> pairs (<keyword, pageid> in this example) as the
outputs. This is called the Map Phase.

A partition functionm(w), which given a wordw, assigns a machine labeled withm(w), is then used to
send the outputs to multiple common locations for further processing. This second step is usually called the
Shuffle Phase.

In the third step, the processorm(wi) sorts all the<key, value> pairs according to the key. (Note that
there may be multiple keys sent to the same node, i.e.,m(wi) = m(wj).) Pairs with same key (keyword in this
example) are then merged together to generate a portion of the inverted index<wi: px,y, . . .)>. This is called
the Reduce Phase.

To use MapReduce, a programmer simply defines the (input) Record Reader (for parsing), Map, Partition,
Sort (or Comparison), and Reduce functions and the infrastructure takes care of the rest.

Since many applications need access to rows and columns of data (not just bytes of data provided by the
GFS), a GFS-application called BigTable [5] that provides data services that scale to thousands of nodes was
developed. BigTable is optimized for appending data and forreading data. Instead of the ACID requirements of
traditional databases, BigTable choose an eventual consistency model.

2.2 Open Source Clouds That Provide On-Demand Computing Capacity

The Google’s GFS, MapReduce and BigTable are proprietary and not generally available. Hadoop [16] is an
Apache open source cloud that provides on-demand computingcapacity and that generally follows the design
described in the technical reports [9] and [8]. There is alsoan open source application called HBase that runs
over Hadoop and generally follows the BigTable design described in [8].

Sector is another open source system that provides on-demand computing capacity [18]. Sector was not
developed following the design described in the Google technical reports, but instead was designed to manage
and distribute large scientific datasets, especially over wide area high performance networks. One of the first

4

Design Decision Google’s GFS, MapRe-
duce, BigTable

Hadoop Sector

data management block-based file system block-based file system data partitioned into
files; native file system
used

communication TCP TCP UDP-Based Data Trans-
port (UDT) and SSL

programming model MapReduce MapReduce User defined functions,
MapReduce

replication strategy at the time of writing at the time of writing periodically
security not mentioned yes yes (HIPAA capable)
language C++ Java C++

Table 2: Some of the similarities and differences between Google’s GFS and MapReduce, Hadoop and Sector.

Sector applications was the distribution of the 10+ TB SloanDigital Sky Survey [15]. Sector is based upon a
network protocol called UDT that is designed to be fair and friendly to other flows (including TCP flows), but
to use all the otherwise available bandwidth in wide area high performance network [13].

The Hadoop Distributed File System (HDFS), like Google’s GFS, implements a block-based distributed file
system, which is a fairly complex undertaking. HDFS splits files to into large data blocks (usually 64MB each)
and replicates each block on several nodes (the default is touse three replicas). In contrast, Sector assumes
that the user has split a dataset into several files, with the size and number of files depending upon the number
of nodes available, the size of the dataset, and the anticipated access patterns. Although this imposes a small
burden on the user, the result is a much simpler design can be used for the underlying system.

On top of the Sector Distributed File System is a parallel programming framework that can invoke user
defined functions (UDFs) over the data managed by Sector. Three specific, but very important UDFs, are the
Map, Shuffle and Reduce UDFs described above, which are available in Sector.

Table 2 contains a summary of some of these similarities and differences.

2.3 Experimental Studies

In this section, we describe some experimental studies comparing the performance of Sector and Hadoop. The
experiments were performed on the Open Cloud Testbed, a testbed managed by the Open Cloud Consortium
[17]. The Open Cloud Testbed consists of four geographically distributed racks located in Chicago (two loca-
tions), San Diego and Baltimore and connected by 10 Gb/s networks. Each contains 30 Dell 1435 computers
with 4GB memory, 1TB disk, 2.0GHz dual-core AMD Opteron 2212, with 1 Gb/s network interface cards. Since
the tests were done, the current equipment in the Open Cloud Testbed has been upgraded and and additional sites
have been added.

Table 3 contains some experimental studies comparing Sector and Hadoop using the Terasort benchmark
[10]. The tests placed 10GB of data on each node. The tests were run on a single rack, two racks connected by
a Metropolitan Area Network in Chicago, three racks connected by a Wide Area Network, and four racks con-
nected by a Wide Area Network. In all cases, the networks provided 10 Gb/s of bandwidth. Notice that although
there is a penality incurred for the computing across geographhically distributed racks, it is not prohibitive. It is
about 20% when using Sector and about 64% when using Hadoop, when wide area high performance networks
are available.

Table 4 contains some experimental studies that were done using CreditStone [4], which is a benchmark
that can be used for testing clouds that provide on-demand computing capacity. CreditStone provides code that
generates synthetic events that are roughly modeled on credit card transactions and flags some of the transactions.

5

Number of
nodes

Sector Hadoop

WAN-2 (UIC, SL, UCSD, JHU) 118 3702 sec 1526 sec
WAN-1 (UIC, SL, UCSD) 88 3069 sec 1430 sec
MAN (UIC, SL) 58 2617 sec 1301 sec
LAN (UIC) 29 2252 sec 1265 sec

Table 3: The table shows the time required to complete the Terasort benchmark. The tests were run on the Open
Cloud Testbed. The time required to generate the data is excluded. The test used 10 GB of data per node. The
four racks on the testbed were connected by a 10 Gb/s network.

Locations Sector Hadoop # Events
1 location, 30 nodes,
LAN

36 min 126 min 15 billion

4 locations, 117 nodes,
WAN

71 min 189 min 58.5 billion

Table 4: Some experimental studies using the CreditStone benchmark comparing Hadoop and Sector run on the
Open Cloud Testbed. Hadoop was configured to use one replica for these experiments.

The benchmark requires that certain ratios of unflagged to flagged transactions be computed, a computation that
is quite straightforward to do using MapReduce, UDFs, or similar programming models.

3 Research Questions

In this section, we discuss several research questions.

1. In Section 2, we discussed two parallel programming models for clouds that provide on-demand comput-
ing capacity (MapReduce and invoking UDFs on dataset segments managed by a storage cloud), both of
which are more limited than parallel programming using message passing but which most programmers
find easier to use. A research question is to investigate other parallel programming models for these types
of clouds that cover a different class of applications but are also quite easy to use.

2. Most clouds today are designed to do the computation within one data center. A interesting research
question is to develop appropriate network protocols, architectures and middleware for wide area clouds
that span multiple data centers.

3. Another research question is to investigate how different clouds can interoperate; that is, how two different
clouds, perhaps managed by two different organizations, can share information.

4. A practical question is to develop standards and standards based architectures for cloud services for clouds
that provide on-demand computing capacity so, for example,alternate storage, compute, or table services
could be used in a cloud application.

References

[1] Amazon. Amazon Elastic Compute Cloud (amazon ec2). ams.amazon.com/ec2, 2008.

6

[2] Amazon. Amazon Seb Services Queue Service. Retrieved from http://aws.amazon.com/sqs, 2008.

[3] Amazon. Amazon Web Services Developer Connection. Retrieved from http://aws.amazon.com, 2008.

[4] Collin Bennett, Robert L Grossman, Jonathan Seidman, and Steve Vejcik. Creditstone: A benchmark for
clouds that provide on-demand capacity. to appear, 2008.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data.
In OSDI’06: Seventh Symposium on Operating System Design and Implementation, 2006.

[6] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, and Kunle
Olukotun. Map-reduce for machine learning on multicore. InNIPS, volume 19, 2007.

[7] Data Mining Group. Predictive Model Markup Language (pmml), version 3.2. http://www.dmg.org, 2008.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifieddata processing on large clusters. InOSDI’04:
Sixth Symposium on Operating System Design and Implementation, 2004.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. InSOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pages 29–43, New York, NY,
USA, 2003. ACM.

[10] Jim Gray. Sort benchmark home page. http://research.microsoft.com/barc/SortBenchmark/, 2008.

[11] Robert L Grossman and Yunhong Gu. Data mining using highperformance clouds: Experimental studies
using sector and sphere. InProceedings of The 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2008). ACM, 2008.

[12] Robert L Grossman, Mark Hornick, and Gregor Mayer. Datamining standards initiatives.Communications
of the ACM, 45(8):59–61, 2002.

[13] Yunhong Gu and Robert L Grossman. UDT: UDP-based data transfer for high-speed wide area networks.
Computer Networks, 51(7):1777—1799, 2007.

[14] Yunhong Gu and Robert L Grossman. Sector and sphere: Towards simplified storage and processing of
large scale distributed data.Philosophical Transactions of the Royal Society A, also arxiv:0809.1181,
2009.

[15] Yunhong Gu, Robert L Grossman, Alex Szalay, and Ani Thakar. Distributing the sloan digital sky survey
using udt and sector. InProceedings of e-Science 2006, 2006.

[16] Hadoop. Welcome to Hadoop! hadoop.apache.org/core/,2008.

[17] Open Cloud Consortium. http://www.opencloudconsortium.org, 2009.

[18] Sector. http://sector.sourceforge.net, 2008.

[19] Rich Wolski, Chris Grzegorczyk, and Dan Nurmi et. al. Eucalyptus. retrieved from
http://eucalyptus.cs.ucsb.edu/, 2008.

7

