
Privacy-preserving Digital Identity Management for Cloud
Computing

Elisa Bertino
CS Department

Purdue University
West Lafayette, Indiana
bertino@cs.purdue.edu

Federica Paci
CS Department

Purdue University
West Lafayette, Indiana

paci@cs.purdue.edu

Rodolfo Ferrini
CS Department

Purdue University
West Lafayette, Indiana

rferrini@purdue.edu

Ning Shang
CS Department

Purdue University
West Lafayette, Indiana
nshang@cs.purdue.edu

Abstract

Digital identity management services are crucial in cloud computing infrastructures to authenticate
users and to support flexible access control to services, based on user identity properties (also called
attributes) and past interaction histories. Such servicesshould preserve the privacy of users, while at the
same time enhancing interoperability across multiple domains and simplifying management of identity
verification. In this paper we propose an approach addressing such requirements, based on the use of
high-level identity verification policies expressed in terms of identity attributes, zero-knolwedge proof
protocols, and semantic matching techniques. The paper describes the basic techniques we adopt and
the architeture of a system developed based on these techniques, and reports performance experimental
results.

1 Introduction

Internet is not any longer only a communication medium but, because of the reliable, afforbable, and ubiquitous
broadband access, is becoming a powerful computing platform. Rather than running software and managing
data on a desktop computer or server, users are able to execute applications and access data on demand from the
“cloud” (the Internet) anywhere in the world. This new computing paradigm is referred to ascloud computing.
Examples of cloud computing applications are Amazon’s Simple Storage Service (S3), Elastic Computing Cloud
(EC2) for storing photos on Smugmug an on line photo service,and Google Apps for word-processing.

Cloud services make easier for users to access their personal information from databases and make it avail-
able to services distributed across Internet. The availability of such information in the cloud is crucial to provide

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



better services to users and to authenticate users in case ofservices sensitive with respect to privacy and secu-
rity. Users have typically to establish their identity eachtime they use a new cloud service, usually by filling
out an online form and providing sensitive personal information (e.g., name, home address, credit card number,
phone number, etc.). This leaves a trail of personal information that, if not properly protected, may be misused.
Therefore, the development of digital identity management(IdM for short) systems suitable for cloud comput-
ing is crucial. An important requirement is that users of cloud services must have control on which personal
information is disclosed and how this information is used inorder to minimize the risk of identity theft and
fraud.

Another major issue concerning IdM in cloud platforms is interoperability. Interoperability issues range from
the use of different identity tokens, such those encoded in X.509 certificates and SAML assertions, and different
identity negotiation protocols, such as the client-centric protocols and the identity-provider centric protocols, to
the use of different names for identity attributes. Anidentity attributeencodes a specific identity information
about an individual, such as the social-security-number; it consists of an attribute name, also called identity tag,
and a value. The use of different names for identity attributes, that we refer to asnaming heterogeneity, typically
occurs whenever users and cloud service providers use different vocabularies for identity attribute names. In
this case, whenever a cloud service provider requests from auser a set of identity attributes to verify the user
identity, the user may not understand which identity attributes he/she has to provide.

To address the problem of privacy-preserving management ofdigital identity attributes in domains with
heterogeneous name spaces, we propose a privacy-preserving multi-factor identity attribute verification protocol
supporting a matching technique based on look-up tables, dictionaries, and ontology mapping techniques to
match cloud service providers and clients vocabularies. The protocol uses an aggregate zero knowledge proofs
of knowledge (AgZKPK) cryptographic protocol to allow clients to prove with a single interactive proof the
knowledge of multiple identity attributes without the needto provide them in clear.

The rest of the paper is organized as follows. Section 2 introduces the notions on which our multi-factor
identity attribute verification protocol is based. Section3 presents the multi-factor identity attribute verifica-
tion protocol. Section 4 presents the system architecture and discuss implementation while Section 5 reports
experimental results. Finally, Section 6 concludes the paper and outlines some future work.

2 Preliminary concepts

Our approach, as many other approaches, assumes an IdM system that include several entities: Identity Providers
(IdPs), Cloud Service Providers (CSPs), Registars, and users. CSPs provide access to data and software that
reside on the Internet. IdPs issue certified identity attributes to users and control the sharing of such information.
Registrars are additional components that store and manageinformation related to identity attributes used in
our multi-factor identity attribute verification approach. Note that, unlike the IdPs, the information stored at the
Registrars does not include the values of the identity attributes in clear. Instead, such information only contains
the cryptographic semantically secure commitments1of the identity attributes which are then used by the clients
to construct zero knowledge proofs of knowledge (ZKPK)2of those attributes. The Registrar stores for each user
an Identity Record (IdR) containing an identity tuple for each user’s identity attributem. Each identity tuple
consists of atag, that is, an attribute name, the Pedersen commitment [5] ofm, denoted byMi, the signature of
the registrar onM , denoted byσi, two types of assurance, namelyvalidity assuranceandownership assurance,
and a set of nyms (also called weak identifiers){Wij}

3. Mi is computed asgmhr, wherem is the value of the

1A commitment scheme or a bit commitment scheme is a method that allows a user to commit to a value while keeping it hidden and
preserving the user’s ability to reveal the committed valuelater.

2A zero-knowledge proof or zero-knowledge protocol is an interactive method for one party to prove to another that a (usually
mathematical) statement is true, without revealing anything other than the veracity of the statement.

3Nyms are used to link together different identity tuples of the same individual for multi-factor authentication. Nyms do not need to
be protected.

2



identity attribute,r is a random number inZp and only known to the client, andg andh are generators of a
groupG of prime orderp. G, g, h andp are public parameters of the Registrar. Validity assurancecorresponds
to the confidence about the validity of the identity attribute based on the verification performed at the identity
attribute original issuer. Ownership assurance corresponds to the confidence about the claim that the principal
presenting an identity attribute is its true owner. The identity tuples of each registered client can be retrieved
from the Registrar by CSPs (online mode) or the Registrar can release to the client a certificatecontaining its
identity record (offlinemode).

3 Interoperable Multi-Factor Authentication

Our multi-factor authentication protocol takes place between a client and a CSP and consists of two phases.
In the first phase, the CSP matches the identity attributes inthe clients vocabulary with its own attributes to
help the client understand its identity verification policy. An identity verification policyconsists of the set of
identity attributes that the user must prove to know; if the values of these identity attributes are only needed for
verification purposes but not for the execution of the service required by the client, the CSP has no reason to
have to see these values in clear. In the second phase, the client executes the AgZKPK protocol to prove the CSP
the knowledge of the matched identity attributes. The use ofthis protocol allows the client to convince the CSP
that the client knows the values of the identity attributes without having to reveal to the CSP the values in clear.

3.1 The protocol for identity attribute matching

Our attribute name matching technique uses a combination oflook-up tables, dictionaries, and ontology map-
ping in order to address the different variations in identity attribute names.Syntactic variationsrefer to the
use of different character combinations to denote the same term. An example is the use of “CreditCard” and
“Credit Card”. Terminological variationsrefer to the use of different terms to denote the same concept. An
example of terminological variation is the use of the synonyms “Credit Card” and “Charge Card”.Semantic
variationsare related to the use of two different concepts in differentknowledge domains to denote the same
term. Syntactic variations can be identified by using look uptables. A look up table enumerates the possible
ways in which the same term can be written by using different character combinations. Terminological varia-
tions can be determined by the use of dictionaries or thesaurus such as WordNet [6]. Finally, semantic variations
can be solved by ontology matching techniques. An ontology is a formal representation of a domain in terms
of concepts and properties relating those concepts. Ontologies can be used to specify a domain of interest and
reason about its concepts and properties. Ontology mappingis the process whereby the concepts of an ontology
- the source ontology - are mapped onto the concepts of another ontology - the target ontology - according to
those semantic relations [4].

An important issue related to the identity matching protocol is which party has to execute the matching. In
our approach the matching is performed by the CSP, in that performing the matching at the client has the obvious
drawback that the client may lie and asserts that an identityattribute referred to in the CSP policy matches one of
its attribute, whereas this is not the case. The use of ZKPK protocols (see next section) preserves the privacy of
the user identity attributes by assuring that the CSP do not learn the values of these attributes; thus the CSP has
no incentive to lie about the mapping. A second issue is how totake advantage of previous interactions that the
client has performed with other CSPs. Addressing such issueis crucial in order to make the interactions between
clients and CSPs fast and convenient for the users. To address such issue, the matching protocol relies on the
use ofproof-of-identity certificates; these certificates encode the mapping between (some of) theuser identity
attributes and the identity attributes referred in the policies of CSPs with which the user has successfully carried
out past interactions.

Let AttrProof be the set of identity attributes that a CSP asks to a client inorder to verify the identity of the

3



user on behalf of which the client is running. Suppose that some attributes inAttrProof do not match any of the
attributes inAttrSet, the set of clients’ identity attributes. We refer to the setof component service’s identity
attributes that do not match a client attribute name to asNoMatchingAttr. The matching process consists of two
main phases. The first phase matches the identity attributesthat have syntactical and terminological variations.
During this phase, the CSP sends to the client, for each identity attributeai in theNoMatchingAttrset, the set
Synseti containing a set of alternative character combinations anda set of synonyms. The client verifies that
for each identity attributeai, there is an intersection betweenSynseti andAttrSet. If this is the case attributeai

is removed fromNoMatchingAttr. Otherwise, ifNoMatchingAttris not empty, the second phase is performed.
During the second phase the client sendsCertSet, the set of its proof-of-identity certificates to the CSP. Thus,
in the second phase of the matching process the CSP tries to match the concepts corresponding to the identity
attributes the client is not able to provide with concepts from the ontologies of the CSPs which have issued the
proof-of-identity certificates to the client. Only matchesthat have a confidence scores greater than a predefined
threshold, set by the CSP, are selected. The greater the threshold, the greater is the similarity between the two
concepts and thus higher is the probability that the match iscorrect. If the CSP is able to find mappings for its
concepts, it then verifies by using the information in the proof-of-identity certificates that each matching concept
matches a client’s attributeAttr. If this check fails, the CSP terminates the interaction with the client.

3.2 Multi-factor authentication

Once the client receivesMatch, the set of matched identity attributes from the CSP, it retrieves from the Registrar
or from itsRegCert, that is a certificate repository local to the client, the commitmentsMi satisfying the matches
and the corresponding signaturesσi. The client aggregates the commitments by computingM =

∏n
i=1

Mi =
gm1+m2+...+mihr1+r2+...+ri and the signatures intoσ =

∏n
i=1

σi, whereσi is the Registrar ’s signature on
the committed valueMi = gmihri . According to the ZPK protocol, the client randomly picksy, s in [1, ..q],
computesd = gyhs (modp), and sendsd, σ, M , Mi , 1 ≤ i ≤ t, to the CSP. The CSP sends back a random
challengee ∈ [1, .., q] to the client. Then the client computesu = y+em (modq) andv = s+er (modq) where
m = m1 + . . . mt andr = r1 + . . . rt and sendsu andv to the CSP. The CSP accepts the aggregated zero
knowledge proof ifguhv = dce. If this is the case, the CSP then checks thatσ =

∏n
i=1

σi. If also the aggregate
signature verification succeeds, the CSP releases a proof-of-identity certificate to the client. The certificate states
that client’s identity attributes in theMatchset are mapped onto concepts of the CSP ontology and that the client
has successfully proved the knowledge of those attributes.The CSP sends the proof-of-identity certificate to the
client and stores a copy of the certificate in its local repository CertRep. The proof-of-identity certificate can be
can be provided to another CSP to allow the client to prove theknowledge of an attribute without performing
the aggregate ZKP protocol. The CSP that receives the certificate has just to verify the validity of the certificate.

Example 1: Assume that a user Alice submits a request to herHospital Web portalto access her test results.
TheHospital Web portalretrieves the test results through theLaboratory service. TheLaboratory servicehas to
verify the identity of Alice in order to provide her test results. The identity verification policy of theLaboratory
servicerequires Alice to provideMedical Assurance, Social Security NumberandPatient ID identity attributes.
Alice provides the aggregated proof of the required identity attributes to theHospital Web portalwhich forwards
them to theLaboratory service. TheLaboratory servicethen verifies by carrying out an aggregate ZPK protocol
with Alice that she owns the required attributes and releases a proof-of-identity certificate. Such certificate
asserts Alice is the owner of theMedical Assurance, Social Security NumberandPatientID identity attributes
she has presented. The next time Alice would like to access her test results throughHospital Web portalportal
she will present the proof-of-identity certificate to theHospital Web portalwhich will forward the certificate to
theLaboratory service. TheLaboratory servicewill verify the validity of Alice’s certificate and return the test
results to theHospital Web portalwhich will display the results to Alice.

4



Figure 1: System architecture

4 System architecture and Implementation

In this section we discuss the system architecture that supports our multi-factor identity attributes authentication
for cloud services. The architecture consists of four main components: the Registrar, the Service Provider,
the User, and the Heterogeneity Management Service. The Registrar component manages the client’s identity
records and provide functions for retrieving the public parameters required by the AgZKPK protocol. The User
component consists of three main modules: the ZKP Commitment Generator, the ZKP Proof Calculator, and
the Vocabulary Conflicts Handler. The ZKP Commitment Generator provides the functions for computing the
Pedersen commitments of identity attributes; the ZKP ProofCalculator generates the AgZKPK to be provided to
CSPs, the Vocabulary Conflicts Handler module checks if there are client identity attributes names that matches
the Synsets sent by the Service Provider component and manages the proof-of-identity certificates stored in a
local repository. The Service Provider is composed of four modules the Request Manager, the Mapping Path
Manager, the Certificate Issuer and the ZKP Verifier, and three repositories, one to store the mappings with other
service provider ontologies, one to store the sets of synonymns Synsets, and one to store identity verification
policies. The Request Manager component handles clients’srequests and asks clients the identity attributes
necessary for identity verification. The ZKP Verifier performs the AgZKPK verification. The Heterogeneity
Management Services provides several functions shared by all CSPs. It consists of two modules: Synset SetUp
and Ontology Manager. Synset SetUp returns the set of synonyms of a given term by querying a local thesaurus

5



Figure 2: AgZKPK Verification versus Creation

while Ontology Manager provides the functionalities to perform the mapping between two ontologies.
The Service Provider application has been developed in JAVA. It implements the identity attribute name

matching protocol using the Falcon-AO v0.7 [2, 3] ontology mapping API and WordNet 2.1 English Lexical
database [6]. The User application has been implemented in JSP while the Registrar has been implemented as
a JAVA servlet. Finally, we have used Oracle 10g DBMS to storeclients’ identity records, ontology mappings,
set of synonyms, session data, and mapping certificates.

5 Experimental Evaluation

We have performed several experiments to evaluate the AgZKPK protocol that characterizes our approach to
multi-factor identity verification and the identity attribute names matching process. We have carried out the
following experimental evaluations:

• we have measured the time taken by the Client to generate the aggregate ZKP by varying the number of
identity attributes being aggregated from 1 to 50;

• we have measured the time taken by the cloud service for aggregate ZKP verification execution time
varying the number of identity attributes being aggregatedfrom 1 to 50 (see Figure 2).

The execution time has been measured in CPU time (milliseconds). Moreover, for each test case we have
executed twenty trials, and the average over all the trial execution times has been computed. Figure 2 reports
the times to create an AgZKP and to verify it for varying values in the number of identity attributes being
aggregated. The execution time to generate the AgZKP (represented by the blue line in the graph) is almost
constant for increasing values in the number of identity attributes. The reason is that the creation of AgZKP
only requires a constant number of exponentiations. By contrast, the time that the component Web service takes
to perform identity attributes verification linearly increases with the number of identity attributes to be verified.
The reason is that during the verification the component Web service is required to multiply all the commitments
to verify the resulting aggregate signature.

6 Concluding Remarks

In this paper we have proposed an approach to the verificationof digital identity for cloud platforms. Our
approach uses efficient cryptographic protocols and matching techniques to address heterogeneous naming. We

6



plan to extend this work in several directions. The first direction is to investigate the delegation of identity
attributes from clients to CSPs. Delegation would allow a CSP, called the source CSP, to invoke the services of
another CSP, called the receiving CSP, by passing to it the identity attributes of the client. However the receiving
CSP must be able to verify such identity attributes in case itdoes not trust the source CSP. One possibility would
be to allow the receiving CSP to directly interact with the client; however the source CSP may not be willing to
allow the client to know the CSPs it uses for offering its services. Therefore protocols are needed able to address
three requirements: confidentiality of business relationsamong the various CSPs, user privacy, and strenght of
identity verification. The second direction is the investigation of unlinkability techniques. Our approach does not
require that the values of the identity attributes only usedfor identity verification be disclosed to the CSPs; also
our approach allows the user to use pseudonyms when interacting with the CSPs, if the CSP policies allow the
use of pseudonyms and the user is interested in preserving his/her anonymity. However, if multiple transactions
are carried out by the same user with the same CSP, this CSP candetermine that they are from the same user,
even if the CSP does not know who this user is nor the identity attributes of the user. Different CSPs may
also collude and determine a profile of the transactions carried out by the same user. Such information when
combined with other available information about the user may lead to disclosing the actual user identity or the
values of some of his/her identity attributes, thus leadingto privacy breaches. We plan to address this problem
by investigating techniques that maintain unlinkability among multiple transactions carried out by the same user
with the same or different CSPs.

7 Acknowledgments

This material is based in part upon work supported by the National Science Foundation under the ITR Grant No.
0428554 “The Design and Use of Digital Identities”, upon work supported by AFOSR grant A9550-08-1-0260,
and upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Information Infrastructure Protection (I3P) research program.
The I3P is managed by Dartmouth College. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the U.S. Department of Homeland Security, the I3P, or Dartmouth College.

References

[1] Bhargav-Spantzel, A., Squicciarini, A.C, Bertino, E.:Establishing and Protecting Digital Identity in Feder-
ation Systems. Journal of Computer Security, IOSPress, 14(3), pp. 269–300, (2006)

[2] Choi, N., Song, I. Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35, (3), pp. 34–41.

[3] Falcon, http://iws.seu.edu.cn/projects/matching/

[4] Y. Kalfoglou, and M. Schorlemmer. ”Ontology mapping: the state of the art.” The Knowledge Engineering
Review, 18(1), pp. 1–31, (2003).

[5] Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. Advances in
Cryptology, Proc. CRYPTO ’91, pp. 129–140, (1991).

[6] WordNet, http://wordnet.princeton.edu/

7


