Privacy-preserving Digital |dentity Management for Cloud

Computing
Elisa Bertino Federica Paci Rodolfo Ferrini
CS Department CS Department CS Department
Purdue University Purdue University Purdue University
West Lafayette, Indiana West Lafayette, Indiana West Lafayette, Indiana
bertino@cs.purdue.edu paci@cs.purdue.edu rferrini@purdue.edu
Ning Shang

CS Department
Purdue University
West Lafayette, Indiana
nshang@cs.purdue.edu

Abstract

Digital identity management services are crucial in cloumhmputing infrastructures to authenticate
users and to support flexible access control to servicessdas user identity properties (also called
attributes) and past interaction histories. Such serviatesuld preserve the privacy of users, while at the
same time enhancing interoperability across multiple domand simplifying management of identity
verification. In this paper we propose an approach addressinch requirements, based on the use of
high-level identity verification policies expressed innterof identity attributes, zero-knolwedge proof
protocols, and semantic matching techniques. The papearibes the basic techniques we adopt and
the architeture of a system developed based on these tegsyignd reports performance experimental
results.

1 Introduction

Internet is not any longer only a communication medium betawse of the reliable, afforbable, and ubiquitous
broadband access, is becoming a powerful computing ptatfdRather than running software and managing
data on a desktop computer or server, users are able to exagplications and access data on demand from the
“cloud” (the Internet) anywhere in the world. This new cortipg paradigm is referred to asoud computing
Examples of cloud computing applications are Amazon'’s &rforage Service (S3), Elastic Computing Cloud
(EC2) for storing photos on Smugmug an on line photo serand,Google Apps for word-processing.

Cloud services make easier for users to access their péiatoranation from databases and make it avail-
able to services distributed across Internet. The avéithabf such information in the cloud is crucial to provide

Copyright 2009 IEEE. Personal use of this material is petewit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the |[EEE Computer Society Technical Committee on Data Engineering

better services to users and to authenticate users in caseviges sensitive with respect to privacy and secu-
rity. Users have typically to establish their identity edithe they use a new cloud service, usually by filling
out an online form and providing sensitive personal infdioma(e.g., name, home address, credit card number,
phone number, etc.). This leaves a trail of personal inftionahat, if not properly protected, may be misused.
Therefore, the development of digital identity managengit¥l for short) systems suitable for cloud comput-
ing is crucial. An important requirement is that users oludaervices must have control on which personal
information is disclosed and how this information is usedider to minimize the risk of identity theft and
fraud.

Another major issue concerning IdM in cloud platforms iemoperability. Interoperability issues range from
the use of different identity tokens, such those encoded®@Xcertificates and SAML assertions, and different
identity negotiation protocols, such as the client-cenpriotocols and the identity-provider centric protocats, t
the use of different names for identity attributes. Wlentity attributeencodes a specific identity information
about an individual, such as the social-security-numhegnsists of an attribute name, also called identity tag,
and a value. The use of different names for identity attebuthat we refer to asaaming heterogeneityypically
occurs whenever users and cloud service providers useeatiffgocabularies for identity attribute names. In
this case, whenever a cloud service provider requests frasera set of identity attributes to verify the user
identity, the user may not understand which identity attéls he/she has to provide.

To address the problem of privacy-preserving managemedtgthl identity attributes in domains with
heterogeneous name spaces, we propose a privacy-preseniti-factor identity attribute verification protocol
supporting a matching technique based on look-up tabletipdaries, and ontology mapping techniques to
match cloud service providers and clients vocabularieg grbtocol uses an aggregate zero knowledge proofs
of knowledge (AgZKPK) cryptographic protocol to allow alis to prove with a single interactive proof the
knowledge of multiple identity attributes without the ndegrovide them in clear.

The rest of the paper is organized as follows. Section 2dnites the notions on which our multi-factor
identity attribute verification protocol is based. Sectbpresents the multi-factor identity attribute verifica-
tion protocol. Section 4 presents the system architectndedéiscuss implementation while Section 5 reports
experimental results. Finally, Section 6 concludes theepapd outlines some future work.

2 Preliminary concepts

Our approach, as many other approaches, assumes an Idvhshatenclude several entities: Identity Providers
(IdPs), Cloud Service Providers (CSPs), Registars, an.useSPs provide access to data and software that
reside on the Internet. IdPs issue certified identity atteb to users and control the sharing of such information.
Registrars are additional components that store and manégenation related to identity attributes used in
our multi-factor identity attribute verification approadiote that, unlike the IdPs, the information stored at the
Registrars does not include the values of the identitylaitteis in clear. Instead, such information only contains
the cryptographic semantically secure commitmeéatshe identity attributes which are then used by the clients
to construct zero knowledge proofs of knowledge (ZKPB#fthose attributes. The Registrar stores for each user
an Identity Record (IdR) containing an identity tuple fockaiser’s identity attributen. Each identity tuple
consists of dag, that is, an attribute name, the Pedersen commitment [&], afenoted by\/;, the signature of
the registrar on\/, denoted by;, two types of assurance, namefglidity assurancendownership assurange
and a set of nyms (also called weak identifie[rﬁ)’ij}3. M; is computed ag™h", wherem is the value of the

1A commitment scheme or a bit commitment scheme is a methaalibavs a user to commit to a value while keeping it hidden and
preserving the user’s ability to reveal the committed vdder.

%A zero-knowledge proof or zero-knowledge protocol is arrattive method for one party to prove to another that a {lysua
mathematical) statement is true, without revealing amgttither than the veracity of the statement.

3Nyms are used to link together different identity tupleshef same individual for multi-factor authentication. Nynusrebt need to
be protected.

identity attribute,r is a random number i, and only known to the client, angland » are generators of a
groupG of prime orderp. G, g, h andp are public parameters of the Registrar. Validity assuraoceesponds

to the confidence about the validity of the identity attrédobiased on the verification performed at the identity
attribute original issuer. Ownership assurance corredpomthe confidence about the claim that the principal
presenting an identity attribute is its true owner. The tderuples of each registered client can be retrieved
from the Registrar by CSPsrfline mode) or the Registrar can release to the client a certifmatéaining its
identity record 6ffline mode).

3 Interoperable Multi-Factor Authentication

Our multi-factor authentication protocol takes place katw a client and a CSP and consists of two phases.
In the first phase, the CSP matches the identity attributékarclients vocabulary with its own attributes to
help the client understand its identity verification paolicyn identity verification policyconsists of the set of
identity attributes that the user must prove to know; if thiues of these identity attributes are only needed for
verification purposes but not for the execution of the serviequired by the client, the CSP has no reason to
have to see these values in clear. In the second phase,@heelecutes the AgZKPK protocol to prove the CSP
the knowledge of the matched identity attributes. The ughisfprotocol allows the client to convince the CSP
that the client knows the values of the identity attributetheut having to reveal to the CSP the values in clear.

3.1 The protocol for identity attribute matching

Our attribute name matching technique uses a combinatidmo&fup tables, dictionaries, and ontology map-
ping in order to address the different variations in idgnéttribute names.Syntactic variationgefer to the
use of different character combinations to denote the same. tAn example is the use of “CreditCard” and
“Credit.Card”. Terminological variationgefer to the use of different terms to denote the same concdept
example of terminological variation is the use of the symosy'Credit Card” and “Charge Card"Semantic
variations are related to the use of two different concepts in diffeferdwledge domains to denote the same
term. Syntactic variations can be identified by using lookalges. A look up table enumerates the possible
ways in which the same term can be written by using differéiaracter combinations. Terminological varia-
tions can be determined by the use of dictionaries or thasauch as WordNet [6]. Finally, semantic variations
can be solved by ontology matching techniques. An ontolsgy formal representation of a domain in terms
of concepts and properties relating those concepts. Quieda@an be used to specify a domain of interest and
reason about its concepts and properties. Ontology majgpthg process whereby the concepts of an ontology
- the source ontology - are mapped onto the concepts of anotielogy - the target ontology - according to
those semantic relations [4].

An important issue related to the identity matching protegaevhich party has to execute the matching. In
our approach the matching is performed by the CSP, in th&tnmeing the matching at the client has the obvious
drawback that the client may lie and asserts that an idegttitypute referred to in the CSP policy matches one of
its attribute, whereas this is not the case. The use of ZKPkopols (see next section) preserves the privacy of
the user identity attributes by assuring that the CSP dogaohlthe values of these attributes; thus the CSP has
no incentive to lie about the mapping. A second issue is ha&ke advantage of previous interactions that the
client has performed with other CSPs. Addressing such isstrecial in order to make the interactions between
clients and CSPs fast and convenient for the users. To addueh issue, the matching protocol relies on the
use ofproof-of-identity certificatesthese certificates encode the mapping between (some ofistdradentity
attributes and the identity attributes referred in theged of CSPs with which the user has successfully carried
out past interactions.

Let AttrProof be the set of identity attributes that a CSP asks to a clieotder to verify the identity of the

user on behalf of which the client is running. Suppose thatesattributes irAttrProof do not match any of the
attributes inAttrSet, the set of clients’ identity attributes. We refer to the @etomponent service’s identity
attributes that do not match a client attribute name tN@dlatchingAttr The matching process consists of two
main phases. The first phase matches the identity attrilthave syntactical and terminological variations.
During this phase, the CSP sends to the client, for eachiigeitribute a; in the NoMatchingAttrset, the set
Synset containing a set of alternative character combinationsardt of synonyms. The client verifies that
for each identity attribute;, there is an intersection betwe8gnsetandAttrSet If this is the case attribute;

is removed fromNoMatchingAttr Otherwise, ifNoMatchingAttris not empty, the second phase is performed.
During the second phase the client se@@stSet the set of its proof-of-identity certificates to the CSPugh

in the second phase of the matching process the CSP triestth th@ concepts corresponding to the identity
attributes the client is not able to provide with conceptsrfithe ontologies of the CSPs which have issued the
proof-of-identity certificates to the client. Only matchbat have a confidence scorgreater than a predefined
threshold, set by the CSP, are selected. The greater trehtide the greater is the similarity between the two
concepts and thus higher is the probability that the matcorisect. If the CSP is able to find mappings for its
concepts, it then verifies by using the information in theoiaf-identity certificates that each matching concept
matches a client’s attributéttr. If this check fails, the CSP terminates the interactiorhwhie client.

3.2 Multi-factor authentication

Once the client receivaédatch the set of matched identity attributes from the CSP, iteretts from the Registrar

or from itsRegCerjthat is a certificate repository local to the client, the omtments)M,; satisfying the matches
and the corresponding signatures The client aggregates the commitments by computifig= []"_, M, =
gmitmatdmipritrat4i gnd the signatures inte = [, o, Whereo; is the Registrar 's signature on
the committed valué/Z; = g™ h". According to the ZPK protocol, the client randomly pickss in [1, ..q],
computesd = gYh* (modyp), and sendd, o, M, M; ,1 < i < t, to the CSP. The CSP sends back a random
challengee € [1, .., ¢] to the client. Then the client computes= y+ em (modq) andv = s+ er (modq) where
m=mi+ ... mgandr =ry + ... r, and sends andv to the CSP. The CSP accepts the aggregated zero
knowledge proof ifg“h¥ = dc®. If this is the case, the CSP then checks that [[;", o;. If also the aggregate
signature verification succeeds, the CSP releases a pradésdity certificate to the client. The certificate states
that client’s identity attributes in thdlatchset are mapped onto concepts of the CSP ontology and thdtehe ¢
has successfully proved the knowledge of those attrib(tes.CSP sends the proof-of-identity certificate to the
client and stores a copy of the certificate in its local refpogiCertRep The proof-of-identity certificate can be
can be provided to another CSP to allow the client to provekttmsvledge of an attribute without performing
the aggregate ZKP protocol. The CSP that receives the cattifhas just to verify the validity of the certificate.

Example 1. Assume that a user Alice submits a request toHhespital Web portato access her test results.
TheHospital Web portatetrieves the test results through tteoratory service ThelLaboratory servicéhas to
verify the identity of Alice in order to provide her test rdétsu The identity verification policy of theaboratory
servicerequires Alice to providéMedical AssuranceSocial Security NumbeandPatient ID identity attributes.
Alice provides the aggregated proof of the required idgiitributes to thédospital Web portalvhich forwards
them to theLaboratory service TheLaboratory servicahen verifies by carrying out an aggregate ZPK protocol
with Alice that she owns the required attributes and releaseroof-of-identity certificate. Such certificate
asserts Alice is the owner of thdedical AssuranceSocial Security Numbeand PatientID identity attributes
she has presented. The next time Alice would like to accessgeberesults throughlospital Web portaportal
she will present the proof-of-identity certificate to tHespital Web portaivhich will forward the certificate to
the Laboratory service ThelLaboratory servicewill verify the validity of Alice’s certificate and return thtest
results to theHospital Web portaivhich will display the results to Alice.

User = Cloud Service Provider
Vs ——
7 g ek St
e e i .
o e = ZKP Verifier - =
2 IdRT g N 5 e = Ontol‘?gy
g) a Repository i @- “B Certificate Issuer | 4 Mapping
= 5 o ‘ac I s | Repository
g3 l————— [*°|2
8§ %E, Palicy
2 Certificate EX Heposinny
= Repository g
w
F g e
N\ — R PR
| e P
(
f <« 4
I e
| p Q Cloud Service Provider
o g
| = =) »
| @ 2|5 : = —
o8 = @ ZKP Verifier e
c = @ ntolo
‘ S| | woraNet | | 8| |3 Mecbng
\ & = £ Repository
B Ee
@
\ z Palicy
\ — Repository
i LS Repository
\ Request Manager

Registrar

\ === = ==
i IdRs
Storage

Cloud Service Provider

=
Ontology
Mapping
Repaository

ZKP Verifier

Certificate Issuer

Palicy
Repository
LS Repositary

il

i

Request Manager

Figure 1: System architecture

4 System architecture and I mplementation

In this section we discuss the system architecture thatostgopur multi-factor identity attributes authentication
for cloud services. The architecture consists of four mampgonents: the Registrar, the Service Provider,
the User, and the Heterogeneity Management Service. ThistRegcomponent manages the client’s identity
records and provide functions for retrieving the publicgmaeters required by the AgZKPK protocol. The User
component consists of three main modules: the ZKP Commiti@enerator, the ZKP Proof Calculator, and
the Vocabulary Conflicts Handler. The ZKP Commitment Getoerprovides the functions for computing the
Pedersen commitments of identity attributes; the ZKP P@ai€ulator generates the AgZKPK to be provided to
CSPs, the Vocabulary Conflicts Handler module checks ikthee client identity attributes names that matches
the Synsets sent by the Service Provider component and esutiag) proof-of-identity certificates stored in a
local repository. The Service Provider is composed of foodutes the Request Manager, the Mapping Path
Manager, the Certificate Issuer and the ZKP Verifier, ancethepositories, one to store the mappings with other
service provider ontologies, one to store the sets of symmsySynsets, and one to store identity verification
policies. The Request Manager component handles clierggisests and asks clients the identity attributes
necessary for identity verification. The ZKP Verifier perfar the AgZKPK verification. The Heterogeneity
Management Services provides several functions sharetl 6%Bs. It consists of two modules: Synset SetUp
and Ontology Manager. Synset SetUp returns the set of symey a given term by querying a local thesaurus

—Web Implementation Create Proof —SP Verification

0.1
0.09
0.08
0.07
0.06

—

Time (sec

coooo
ooooo
g N R I

o

NEAD DR AP R A A DD PP

Num of Identity Attributes in AgZKP

Figure 2: AgZKPK Verification versus Creation

while Ontology Manager provides the functionalities tofpemn the mapping between two ontologies.

The Service Provider application has been developed in JAvinplements the identity attribute name
matching protocol using the Falcon-AO vO0.7 [2, 3] ontologgpping APl and WordNet 2.1 English Lexical
database [6]. The User application has been implemente8Rnwhile the Registrar has been implemented as
a JAVA servlet. Finally, we have used Oracle 10g DBMS to stbients’ identity records, ontology mappings,
set of synonyms, session data, and mapping certificates.

5 Experimental Evaluation

We have performed several experiments to evaluate the AgZptBtocol that characterizes our approach to
multi-factor identity verification and the identity atttite names matching process. We have carried out the
following experimental evaluations:

e we have measured the time taken by the Client to generatggthregate ZKP by varying the number of
identity attributes being aggregated from 1 to 50;

e we have measured the time taken by the cloud service for gaigreZKP verification execution time
varying the number of identity attributes being aggregé#tech 1 to 50 (see Figure 2).

The execution time has been measured in CPU time (millise)orMoreover, for each test case we have
executed twenty trials, and the average over all the triatetion times has been computed. Figure 2 reports
the times to create an AgZKP and to verify it for varying valuie the number of identity attributes being
aggregated. The execution time to generate the AgZKP @epted by the blue line in the graph) is almost
constant for increasing values in the number of identityilattes. The reason is that the creation of AgZKP
only requires a constant number of exponentiations. Byrasthtthe time that the component Web service takes
to perform identity attributes verification linearly inages with the number of identity attributes to be verified.
The reason is that during the verification the component Wehce is required to multiply all the commitments
to verify the resulting aggregate signature.

6 Concluding Remarks

In this paper we have proposed an approach to the verificafiahgital identity for cloud platforms. Our
approach uses efficient cryptographic protocols and magdieichniques to address heterogeneous naming. We

6

plan to extend this work in several directions. The first dim is to investigate the delegation of identity
attributes from clients to CSPs. Delegation would allow @?Clled the source CSP, to invoke the services of
another CSP, called the receiving CSP, by passing to it tditgt attributes of the client. However the receiving
CSP must be able to verify such identity attributes in cadeés not trust the source CSP. One possibility would
be to allow the receiving CSP to directly interact with thiewt; however the source CSP may not be willing to
allow the client to know the CSPs it uses for offering its s&8. Therefore protocols are needed able to address
three requirements: confidentiality of business relatam®ng the various CSPs, user privacy, and strenght of
identity verification. The second direction is the inveatign of unlinkability techniques. Our approach does not
require that the values of the identity attributes only useddentity verification be disclosed to the CSPs; also
our approach allows the user to use pseudonyms when inteyacith the CSPs, if the CSP policies allow the
use of pseudonyms and the user is interested in presengfttehianonymity. However, if multiple transactions
are carried out by the same user with the same CSP, this CSetamrmine that they are from the same user,
even if the CSP does not know who this user is nor the identitjbates of the user. Different CSPs may
also collude and determine a profile of the transactiongethout by the same user. Such information when
combined with other available information about the usey tead to disclosing the actual user identity or the
values of some of his/her identity attributes, thus leadongrivacy breaches. We plan to address this problem
by investigating techniques that maintain unlinkabilitg@g multiple transactions carried out by the same user
with the same or different CSPs.

7 Acknowledgments

This material is based in part upon work supported by theddatiScience Foundation under the ITR Grant No.
0428554 “The Design and Use of Digital Identities”, upon kveupported by AFOSR grant A9550-08-1-0260,
and upon work supported by the U.S. Department of Homelandrig under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Inféiondnfrastructure Protection (I3P) research program.
The 13P is managed by Dartmouth College. The views and ceiatia contained in this document are those
of the authors and should not be interpreted as necessapitggenting the official policies, either expressed or
implied, of the U.S. Department of Homeland Security, thHe & Dartmouth College.

References

[1] Bhargav-Spantzel, A., Squicciarini, A.C, Bertino, Establishing and Protecting Digital Identity in Feder-
ation Systems. Journal of Computer Security, IOSPres8)1di. 269-300, (2006)

[2] Choi, N., Song, I. Y., Han, H.: A survey on ontology mappirsIGMOD Record 35, (3), pp. 34-41.
[3] Falcon, http://iws.seu.edu.cn/projects/matching/

[4] Y. Kalfoglou, and M. Schorlemmer. "Ontology mappingethtate of the art.” The Knowledge Engineering
Review, 18(1), pp. 1-31, (2003).

[5] Pedersen, T.P.: Non-Interactive and Information-Treéo Secure Verifiable Secret Sharing. Advances in
Cryptology, Proc. CRYPTO '91, pp. 129-140, (1991).

[6] WordNet, http://wordnet.princeton.edu/

