
Bulletin of the Technical Committee on

Data
Engineering
March 2009 Vol. 32 No. 1 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .. .David Lomet 1
Letter from the Guest EditorsBeng Chin Ooi and Srinivasan Parthasarathy2

Special Issue on Data Management on Cloud Computing Platforms

Data Management in the Cloud: Limitations and Opportunities .Daniel J. Abadi 3
Deploying Database Appliances in the Cloud

Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Farooq Minhas, Peter Kokosielis and Sunil Kamath13
Privacy-preserving Digital Identity Management for CloudComputing .

. .Elisa Bertino, Federica Paci, Rodolfo Ferrini and Ning Shang 21
Towards a Scalable Enterprise Content Analytics Platform.. .

.Kevin Beyer, Vuk Ercegovac, Rajasekar Krishnamurthy, Sriram Raghavan, Jun Rao, Fred-
erick Reiss, Eugene J. Shekita, David Simmen, Sandeep Tata,Shivakumar Vaithyanathan and Huaiyu Zhu28

Building a Cloud for Yahoo! .. .
.Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P.P.S. Narayan, Chuck
Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein, Utkarsh Srivastava and Raymie Stata36

On the Varieties of Clouds for Data Intensive ComputingRobert L. Grossman and Yunhong Gu44
Optimizing Utility in Cloud Computing through Autonomic Workload Execution. .

.Norman W. Paton, Marcelo A. T. de Aragão, Kevin Lee, Alvaro A. A. Fernandes and Rizos Sakellariou51
Implementation Issues of A Cloud Computing PlatformBo Peng, Bin Cui and Xiaoming Li59
Dataflow Processing and Optimization on Grid and Cloud Infrastructures .M. Tsangaris,

G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Polydoras, E. Sitaridi, V. Stoumpos and Y. Ioannidis67
An Indexing Framework for Efficient Retrieval on the CloudSai Wu and Kun-Lung Wu75

Conference and Journal Notices
ICDE 2009 Conference .. .back cover

Editorial Board
Editor-in-Chief

David B. Lomet
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
lomet@microsoft.com

Associate Editors
Sihem Amer-Yahia
Yahoo! Research
111 40th St, 17th floor
New York, NY 10018

Beng Chin Ooi
Department of Computer Science
National University of Singapore
Computing 1, Law Link, Singapore 117590

Jianwen Su
Department of Computer Science
University of California - Santa Barbara
Santa Barbara, CA 93106

Vassilis J. Tsotras
Dept. of Computer Science and Engr.
University of California - Riverside
Riverside, CA 92521

The TC on Data Engineering
Membership in the TC on Data Engineering is open

to all current members of the IEEE Computer Society
who are interested in database systems. The TC on
Data Engineering web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data

Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

The Data Engineering Bulletin web site is at
http://tab.computer.org/tcde/bull_about.html.

TC Executive Committee
Chair

Paul Larson
Microsoft Research
One Microsoft Way
Redmond WA 98052, USA
palarson@microsoft.com

Vice-Chair
Calton Pu
Georgia Tech
266 Ferst Drive
Atlanta, GA 30332, USA

Secretary/Treasurer
Thomas Risse
L3S Research Center
Appelstrasse 9a
D-30167 Hannover, Germany

Past Chair
Erich Neuhold
University of Vienna
Liebiggasse 4
A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.
Anastassia Ailamaki
École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Geographic Coordinators
Karl Aberer (Europe)
École Polytechnique Fédérale de Lausanne
Batiment BC, Station 14
CH-1015 Lausanne, Switzerland

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
Tokyo 106, Japan

SIGMOD Liason
Yannis Ioannidis
Department of Informatics
University Of Athens
157 84 Ilissia, Athens, Greece

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

i

Letter from the Editor-in-Chief

International Conference on Data Engineering

ICDE (the International Conference on Data Engineering) isthe flagship database conference of the IEEE. The
2009 ICDE will be held in Shanghai, China at the end of March. Iwould encourage readers to check the ”Call
for Participation” on the back inside cover of this issue of the Bulletin for more details. ICDE has become not
only one of the best database conferences, but one of the largest as well. I attend this conference every year and
always find my time well spent. Not only is the research program first-rate, but there is an industrial program,
demos, and workshops as well.

The Current Issue

This issue revisits “cloud” based data management. An earlier Bulletin issue (December, 2006) gave a prelimi-
nary look at this general area, outlining some of the promiseand opportunity, but largely before there was much
in the way of real data management in the cloud. That is no longer the case. The past few years have seen an
explosion of interest and work in this area. But while we now have some experience and insight as well, this is
an area that will continue to be a challenge and opportunity for a long time.

Why a long time? This is a combination of: (1) the cloud is a platform that will be of increasing importance
over a very long period, as our industry makes a phase change from in-house data management to cloud-hosted
data management; (2) the problems associated with dealing with cloud data are formidable, from performance
issues to security and privacy, from metadata management tohigh availability. These aspects to issues make
them great research areas– importance and challenge. Providing solutions will help to enable the dream not only
of ”information at your fingertips”, but also ”available wherever you happen to be”.

Beng Chin Ooi and Srinivasan Parthasarathy have assembled an issue that contains a very interesting cross
section of the work that is going on right now, both at academic institutions and in industry. There are consortia
that have emerged that make it possible for researchers, regardless of where they are, to join in the “cloud” effort.
So I hope these papers provide a way to entice some of you to enroll in this effort. Beng Chin and Srinivasan
have done a fine job assembling this issue, very successfullyinvolving both academia and industry. I am sure
you will find it of great interest.

David Lomet
Microsoft Corporation

1

Letter from the Guest Editors

This special issue brings to bear recent advances in the fieldof cloud computing that are applicable to data
management, data retrieval, data intensive applications and data analysis applications.

Cloud computing represents an important step towards realizing McCarthy’s dream that all aspects of com-
putation may some day be organized as a public utility service. It embraces concepts such assoftware as a
serviceandplatform as a service, which incorporate services for workflow facilities for application design and
development, deployment and hosting services, data integration, and network-based access to and management
of software. Customers of clouds, much like customers of utility companies, can subscribe to different services
at different service levels to guarantee the desired quality of service.

Search and electronic commerce companies such as Google, Microsoft, Amazon and Yahoo have adopted
cloud computing technology in a major way as have Fortune 500companies such as IBM, General Electric and
Procter and Gamble. Academic units and government agenciesare also key players, and several joint efforts
among them are at the forefront of cloud computing technology.

In this special issue, we hope to offer readers a brief glimpse into this exciting new technology, specifically
from the perspective of data management and data intensive applications. The articles in this issue cover a wide
array of issues on topics that range from specific instantiations of cloud computing technology to the broader
perspective of the opportunities and possibilities that the technology open up.

Abadi reviews and discusses the limitations of the cloud computing paradigm, and offers a perspective on
the potential opportunities for data management and analysis applications within the paradigm.

Aboulnagaet al. discuss the challenges in deploying database appliances onInfrastructure as a Service
clouds, as well as the tools and techniques for addressing the issues.

Bertinoet al. highlight the important issue of privacy preservation in cloud computing systems and describe
an approach to privacy preservation in such systems while atthe same time enhancing interoperability across
domains and simplifying existing identity verification policies.

Beyeret al. describe the key features of an enterprise content analysisplatform being developed at IBM
Almaden which targets the analysis of semi-structured content.

Cooperet al. highlight the significant challenges with building a commercial cloud computing system at
Yahoo that emphasizes data storage, processing and querying capabilities.

Grossman and Gu provide a nice overview of cloud computing and what differentiates it from past work.
They also distinguish among different types of cloud technology in existence today, and conclude with a discus-
sion on open research problems in the arena.

Patonet al. describe an autonomic utility-based approach to adaptive workload execution (scheduling), and
illustrate the benefits of their approach on workloads comprising workflows and queries.

Peng, Cui and Li discuss lessons learned from constructing acloud computing platform in an academic
environment, and discuss potential improvements to facilitate massive data processing and enhanced system
throughput in the context of a specific web and text mining application domain.

Tsangariset al. describe an ongoing system project called Athena Distributed Processing (ADP), its key
components and its challenges within the context of supporting user defined operators and enabling efficient
dataflow processing and optimization on grid and cloud infrastructures.

Wu and Wu propose a new indexing framework for cloud computing systems based on the Peer-to-Peer struc-
tured overlay network concept that supports efficient dynamic network expansion and shrinkage, and demon-
strate its viability on the Amazon EC2 cloud.

We would like to thank Shirish Tatikonda and Sai Wu for their help in assembling this issue. We hope you
enjoy reading it.

Beng Chin Ooi and Srinivasan Parthasarathy
National University of Singapore and Ohio State University

2

Data Management in the Cloud: Limitations and Opportunities

Daniel J. Abadi
Yale University

New Haven, CT, USA
dna@cs.yale.edu

Abstract

Recently the cloud computing paradigm has been receiving significant excitement and attention in the
media and blogosphere. To some, cloud computing seems to be little more than a marketing umbrella,
encompassing topics such as distributed computing, grid computing, utility computing, and software-
as-a-service, that have already received significant research focus and commercial implementation.
Nonetheless, there exist an increasing number of large companies that are offering cloud computing
infrastructure products and services that do not entirely resemble the visions of these individual compo-
nent topics.

In this article we discuss the limitations and opportunities of deploying data management issues on
these emerging cloud computing platforms (e.g., Amazon WebServices). We speculate that large scale
data analysis tasks, decision support systems, and application specific data marts are more likely to
take advantage of cloud computing platforms than operational, transactional database systems (at least
initially). We present a list of features that a DBMS designed for large scale data analysis tasks running
on an Amazon-style offering should contain. We then discusssome currently available open source and
commercial database options that can be used to perform suchanalysis tasks, and conclude that none of
these options, as presently architected, match the requisite features. We thus express the need for a new
DBMS, designed specifically for cloud computing environments.

1 Introduction

Though not everyone agrees on the exact definition of cloud computing [32], most agree the vision encompasses
a general shift of computer processing, storage, and software delivery away from the desktop and local servers,
across the network, and into next generation data centers hosted by large infrastructure companies such as
Amazon, Google, Yahoo, Microsoft, or Sun. Just as the electric grid revolutionized access to electricity one
hundred years ago, freeing corporations from having to generate their own power, and enabling them to focus on
their business differentiators, cloud computing is hailedas revolutionizing IT, freeing corporations from large IT
capital investments, and enabling them to plug into extremely powerful computing resources over the network.

Data management applications are potential candidates fordeployment in the cloud. This is because an on-
premises enterprise database system typically comes with alarge, sometimes prohibitive up-front cost, both in

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

hardware and in software. For many companies (especially for start-ups and medium-sized businesses), the pay-
as-you-go cloud computing model, along with having someoneelse worrying about maintaining the hardware,
is very attractive. In this way, cloud computing is reminiscent of the application service provider (ASP) and
database-as-a-service (DaaS) paradigms. In practice, cloud computing platforms, like those offered by Amazon
Web Services, AT&T’s Synaptic Hosting, AppNexus, GoGrid, Rackspace Cloud Hosting, and to an extent, the
HP/Yahoo/Intel Cloud Computing Testbed, and the IBM/Google cloud initiative, work differently than ASPs
and DaaS. Instead of owning, installing, and maintaining the database software for you (often in a multi-tenancy
architecture), cloud computing vendors typically maintain little more than the hardware, and give customers a
set of virtual machines in which to install their own software. Resource availability is typically elastic, with
a seemingly infinite amount compute power and storage available on demand, in a pay-only-for-what-you-use
pricing model.

This article explores the advantages and disadvantages of deploying database systems in the cloud. We look
at how the typical properties of commercially available cloud computing platforms affect the choice of data
management applications to deploy in the cloud. Due to the ever-increasing need for more analysis over more
data in today’s corporate world, along with an architectural match in currently available deployment options, we
conclude that read-mostly analytical data management applications are better suited for deployment in the cloud
than transactional data management applications. We thus outline a research agenda for large scale data analysis
in the cloud, showing why currently available systems are not ideally-suited for cloud deployment, and arguing
that there is a need for a newly designed DBMS, architected specifically for cloud computing platforms.

2 Data Management in the Cloud

Before discussing in Section 3 the features a database system must implement for it to run well in the cloud, in
this section we attempt to narrow the scope of potential database applications to consider for cloud deployment.
Our goal in this section is to decide which data management applications are best suited for deployment on top
of cloud computing infrastructure. In order to do this, we first discuss three characteristics of a cloud computing
environment that are most pertinent to the ensuing discussion.

2.1 Cloud Characteristics

Compute power is elastic, but only if workload is parallelizable. One of the oft-cited advantages of cloud
computing is its elasticity in the face of changing conditions. For example, during seasonal or unexpected spikes
in demand for a product retailed by an e-commerce company, orduring an exponential growth phase for a social
networking Website, additional computational resources can be allocated on the fly to handle the increased
demand in mere minutes (instead of the many days it can take toprocure the space and capital equipment
needed to expand the computational resources in-house). Similarly, in this environment, one only pays for what
one needs, so increased resources can be obtained to handle spikes in load and then released once the spike has
subsided. However, getting additional computational resources is not as simple as a magic upgrade to a bigger,
more powerful machine on the fly (with commensurate increases in CPUs, memory, and local storage); rather,
the additional resources are typically obtained by allocating additional server instances to a task. For example,
Amazon’s Elastic Compute Cloud (EC2) apportions computingresources in small, large, and extra large virtual
private server instances, the largest of which contains no more than four cores. If an application is unable to take
advantage of the additional server instances by offloading some of its required work to the new instances which
run in parallel with the old instances, then having the additional server instances available will not be much help.
In general, applications designed to run on top of a shared-nothing architecture (where a set of independent
machines accomplish a task with minimal resource overlap) are well suited for such an environment. Some
cloud computing products, such as Google’s App Engine, provide not only a cloud computing infrastructure, but

4

also a complete software stack with a restricted API so that software developers are forced to write programs
that can run in a shared-nothing environment and thus facilitate elastic scaling.

Data is stored at an untrusted host.Although it may not seem to make business sense for a cloud computing
host company to violate the privacy of its customers and access data without permission, such a possibility nev-
ertheless makes some potential customers nervous. In general, moving data off premises increases the number
of potential security risks, and appropriate precautions must be made. Furthermore, although the name “cloud
computing” gives the impression that the computing and storage resources are being delivered from a celestial
location, the fact is, of course, that the data is physicallylocated in a particular country and is subject to local
rules and regulations. For example, in the United States, the US Patriot Act allows the government to demand
access to the data stored on any computer; if the data is beinghosted by a third party, the data is to be handed
over without the knowledge or permission of the company or person using the hosting service [1]. Since most
cloud computing vendors give the customer little control over where data is stored (e.g., Amazon S3 only allows
a customer to choose between US and EU data storage options),the customer has little choice but to assume the
worst and that unless the data is encrypted using a key not located at the host, the data may be accessed by a
third party without the customer’s knowledge.

Data is replicated, often across large geographic distances Data availability and durability is paramount for
cloud storage providers, as data loss or unavailability canbe damaging both to the bottom line (by failing to hit
targets set in service level agreements [2]) and to businessreputation (outages often make the news [3]). Data
availability and durability are typically achieved through under-the-covers replication (i.e., data is automatically
replicated without customer interference or requests). Large cloud computing providers with data centers spread
throughout the world have the ability to provide high levelsof fault tolerance by replicating data across large
geographic distances. Amazon’s S3 cloud storage service replicates data across “regions” and “availability
zones” so that data and applications can persist even in the face of failures of an entire location. The customer
should be careful to understand the details of the replication scheme however; for example, Amazon’s EBS
(elastic block store) will only replicate data within the same availability zone and is thus more prone to failures.

2.2 Data management applications in the cloud

The above described cloud characteristics have clear consequences on the choice of what data management ap-
plications to move into the cloud. In this section we describe the suitability of moving the two largest components
of the data management market into the cloud: transactionaldata management and analytical data management.

2.2.1 Transactional data management

By “transactional data management”, we refer to the bread-and-butter of the database industry, databases that
back banking, airline reservation, online e-commerce, andsupply chain management applications. These appli-
cations typically rely on the ACID guarantees that databases provide, and tend to be fairly write-intensive. We
speculate that transactional data management applications arenot likely to be deployed in the cloud, at least in
the near future, for the following reasons:

Transactional data management systems do not typically usea shared-nothing architecture. The transac-
tional database market is dominated by Oracle, IBM DB2, Microsoft SQL Server, and Sybase [29]. Of these
four products, neither Microsoft SQL Server nor Sybase can be deployed using a shared-nothing architecture.
IBM released a shared-nothing implementation of DB2 in the mid-1990s which is now available as a “Database
Partitioning Feature” (DPF) add-on to their flagship product [4], but is designed to help scale analytical ap-
plications running on data warehouses, not transactional data management [5]. Oracle had no shared-nothing
implementation until very recently (September 2008 with the release of the Oracle Database Machine that uses

5

a shared-nothing architecture at the storage layer), but again, this implementation is designed only to be used for
data warehouses [6].

Implementing a transactional database system using a shared-nothing architecture is non-trivial, since data
is partitioned across sites and, in general, transactions can not be restricted to accessing data from a single site.
This results in complex distributed locking and commit protocols, and in data being shipped over the network
leading to increased latency and potential network bandwidth bottlenecks. Furthermore the main benefit of a
shared-nothing architecture is its scalability [24]; however this advantage is less relevant for transactional data
processing for which the overwhelming majority of deployments are less than 1 TB in size [33].

It is hard to maintain ACID guarantees in the face of data replication over large geographic distances.
The CAP theorem [19] shows that a shared-data system can onlychoose at most two out of three properties:
consistency, availability, and tolerance to partitions. When data is replicated over a wide area, this essentially
leaves just consistency and availability for a system to choose between. Thus, the ’C’ (consistency) part of ACID
is typically compromised to yield reasonable system availability.

In order to get a sense of the inherent issues in building a replicated database over a wide area network,
it is interesting to note the design approaches of some recent systems. Amazon’s SimpleDB [11] and Yahoo’s
PNUTS [15] both implement shared-nothing databases over a wide-area network, but overcome the difficulties of
distributed replication by relaxing the ACID guarantees ofthe system. In particular, they weaken the consistency
model by implementing various forms of eventual/timeline consistency so that all replicas do not have to agree
on the current value of a stored value (avoiding distributedcommit protocols). Similarly, the research done by
Brantner et. al. found that they needed to relax consistencyand isolation guarantees in the database they built on
top of Amazon’s S3 storage layer [12]. Google’s Bigtable [6]implements a replicated shared-nothing database,
but does not offer a complete relational API and weakens the ’A’ (atomicity) guarantee from ACID. In particular,
it is a simple read/write store; general purpose transactions are not implemented (the only atomic actions are
read-modify-write sequences on data stored under a single row key). SimpleDB and Microsoft SQL Server Data
Services work similarly. The H-Store project [33] aims to build wide-area shared-nothing transactional database
that adheres to strict ACID guarantees by using careful database design to minimize the number of transactions
that access data from multiple partitions; however, the project remains in the vision stage, and the feasibility of
the approach on a real-world dataset and query workload has yet to be demonstrated.

There are enormous risks in storing transactional data on anuntrusted host. Transactional databases
typically contain the complete set of operational data needed to power mission-critical business processes. This
data includes detail at the lowest granularity, and often includes sensitive information such as customer data or
credit card numbers. Any increase in potential security breaches or privacy violations is typically unacceptable.

We thus conclude that transactional data management applications are not well suited for cloud deployment.
Despite this, there are a couple of companies that will sell you a transactional database that can run in Amazon’s
cloud: EnterpriseDB’s Postgres Plus Advanced Server and Oracle. However, there has yet to be any published
case studies of customers successfully implementing a mission critical transactional database using these cloud
products and, at least in Oracle’s case, the cloud version seems to be mainly intended for database backup [27].

2.2.2 Analytical data management

By “analytical data management”, we refer to applications that query a data store for use in business planning,
problem solving, and decision support. Historical data along with data from multiple operational databases
are all typically involved in the analysis. Consequently, the scale of analytical data management systems is
generally larger than transactional systems (whereas 1TB is large for transactional systems, analytical systems
are increasingly crossing the petabyte barrier [25, 7]). Furthermore, analytical systems tend to be read-mostly
(or read-only), with occasional batch inserts. Analyticaldata management consists of $3.98 billion [35] of the
$14.6 billion database market [29] (27%) and is growing at a rate of 10.3% annually [35]. We speculate that

6

analytical data management systems are well-suited to run in a cloud environment, and will be among the first
data management applications to be deployed in the cloud, for the following reasons:

Shared-nothing architecture is a good match for analyticaldata management.Teradata, Netezza, Green-
plum, DATAllegro (recently acquired by Microsoft), Vertica, and Aster Data all use a shared-nothing architecture
(at least in the storage layer) in their analytical DBMS products, with IBM DB2 and recently Oracle also adding
shared-nothing analytical products. The ever increasing amount of data involved in data analysis workloads is the
primary driver behind the choice of a shared-nothing architecture, as the architecture is widely believed to scale
the best [24]. Furthermore, data analysis workloads tend toconsist of many large scan scans, multidimensional
aggregations, and star schema joins, all of which are fairlyeasy to parallelize across nodes in a shared-nothing
network. Finally, the infrequent writes in the workload eliminates the need for complex distributed locking and
commit protocols.

ACID guarantees are typically not needed.The infrequent writes in analytical database workloads, along
with the fact that it is usually sufficient to perform the analysis on a recent snapshot of the data (rather than on
up-to-the-second most recent data) makes the ’A’, ’C’, and ’I’ (atomicity, consistency, and isolation) of ACID
easy to obtain. Hence the consistency tradeoffs that need tobe made as a result of the distributed replication of
data in transactional databases are not problematic for analytical databases.

Particularly sensitive data can often be left out of the analysis. In many cases, it is possible to identify
the data that would be most damaging should it be accessed by athird party, and either leave it out of the
analytical data store, include it only after applying an anonymization function, or include it only after encrypting
it. Furthermore, less granular versions of the data can be analyzed instead of the lowest level, most detailed data.

We conclude that the characteristics of the data and workloads of typical analytical data management applica-
tions are well-suited for cloud deployment. The elastic compute and storage resource availability of the cloud
is easily leveraged by a shared-nothing architecture, while the security risks can be somewhat alleviated. In
particular, we expect the cloud to be a preferred deploymentoption for data warehouses for medium-sized busi-
nesses (especially those that do not currently have data warehouses due to the large up-front capital expenditures
needed to get a data warehouse project off the ground), for sudden or short-term business intelligence projects
that arise due to rapidly changing business conditions (e.g., a retail store analyzing purchasing patterns in the
aftermath of a hurricane), and for customer-facing data marts that contain a window of data warehouse data
intended to be viewed by the public (for which data security is not an issue).

3 Data Analysis in the Cloud

Now that we have settled on analytic database systems as a likely segment of the DBMS market to move into the
cloud, we explore various currently available software solutions to perform the data analysis. We focus on two
classes of software solutions: MapReduce-like software, and commercially available shared-nothing parallel
databases. Before looking at these classes of solutions in detail, we first list some desired properties and features
that these solutions should ideally have.

3.1 Cloud DBMS Wish List

Efficiency. Given that cloud computing pricing is structured in a way so that you pay for only what you use,
the price increases linearly with the requisite storage, network bandwidth, and compute power. Hence, if data
analysis software product A requires an order of magnitude more compute units than data analysis software
product B to perform the same task, then product A will cost (approximately) an order of magnitude more than
B. Efficient software has a direct effect on the bottom line.

7

Fault Tolerance. Fault tolerance in the context of analytical data workloadsis measured differently than fault
tolerance in the context of transactional workloads. For transactional workloads, a fault tolerant DBMS can
recover from a failure without losing any data or updates from recently committed transactions, and in the
context of distributed databases, can successfully committransactions and make progress on a workload even
in the face of worker node failure. For read-only queries in analytical workloads, there are no write transactions
to commit, nor updates to lose upon node failure. Hence, a fault tolerant analytical DBMS is simply one
that does not have to restart a query if one of the nodes involved in query processing fails. Given the large of
amount of data that needs to be accessed for deep analytical queries, combined with the relatively weak compute
capacity of a typical cloud compute server instance (e.g., adefault compute unit on Amazon’s EC2 service is
the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor), complex queries can involve hundreds
(even thousands) of server instances and can take hours to complete. Furthermore, clouds are typically built
on top of cheap, commodity hardware, for which failure is notuncommon. Consequently, the probability of
a failure occurring during a long-running data analysis task is relatively high; Google, for example, reports an
average of 1.2 failures per analysis job [7]. If a query must restart each time a node fails, then long, complex
queries are difficult to complete.

Ability to run in a heterogeneous environment.The performance of cloud compute nodes is often not consis-
tent, with some nodes attaining orders of magnitude worse performance than other nodes. There are a variety of
reasons why this could occur, ranging from hardware failurecausing degraded performance on a node [31], to
an instance being unable to access the second core on a dual-core machine [8], to contention for non-virtualized
resources. If the amount of work needed to execute a query is equally divided amongst the cloud compute nodes,
then there is a danger that the time to complete the query willbe approximately equal to time for the slowest
compute node to complete its assigned task. A node observingdegraded performance would thus have a dispro-
portionate affect on total query latency. A system designedto run in a heterogeneous environment would take
appropriate measures to prevent this from occurring.

Ability to operate on encrypted data. As mentioned in Section 2.2.2, sensitive data may be encrypted before
being uploaded to the cloud. In order to prevent unauthorized access to the sensitive data, any application running
in the cloud should not have the ability to directly decrypt the data before accessing it. However, shipping entire
tables or columns out of the cloud for decryption is bandwidth intensive. Hence, the ability of the data analysis
system to operate directly on encrypted data (such as in [10,20, 18, 23, 28]) so that a smaller amount of data
needs to ultimately be shipped elsewhere to be decrypted could significantly improve performance.

Ability to interface with business intelligence products. There are a variety of customer-facing business
intelligence tools that work with database software and aidin the visualization, query generation, result dash-
boarding, and advanced data analysis. These tools are an important part of the analytical data management
picture since business analysts are often not technically advanced and do not feel comfortable interfacing with
the database software directly. These tools typically interface with the database using ODBC or JDBC, so
database software that want to work these products must accept SQL queries over these connections.

Using these desired properties of our cloud data analysis software, we now examine how close two currently
available solutions come to attaining these properties: MapReduce-like software, and commercially available
shared-nothing parallel databases.

3.2 MapReduce-like software

MapReduce [7] and related software such as the open source Hadoop [9], useful extensions [30], and Microsoft’s
Dryad/SCOPE stack [13] are all designed to automate the parallelization of large scale data analysis workloads.
Although DeWitt and Stonebraker took a lot of criticism for comparing MapReduce to database systems in their
recent controversial blog posting [17] (many believe that such a comparison is apples-to-oranges), a comparison

8

is warranted since MapReduce (and its derivatives) is in fact a useful tool for performing data analysis in the
cloud [9]. The MapReduce programming model and framework implementation satisfies many of the previously
stated desired properties:

Fault Tolerance. MapReduce is designed with fault tolerance as a high priority. A data analysis job is divided
into many small tasks and upon a failure, tasks assigned to a failed machine are transparently reassigned to
another machine. Care is taken to make sure that partially executed tasks are not doubly accounted for in the
final query result. In a set of experiments in the original MapReduce paper, it was shown that explicitly killing
200 out of 1746 worker processes involved in a MapReduce job resulted in only a 5% degradation in query
performance [7].

Ability to run in a heterogeneous environment. MapReduce is also carefully designed to run in a hetero-
geneous environment. Towards the end of a MapReduce job, tasks that are still in progress get redundantly
executed on other machines, and a task is marked as completedas soon as either the primary or the backup ex-
ecution has completed. This limits the effect that “straggler” machines can have on total query time, as backup
executions of the tasks assigned to these machines will complete first. In a set of experiments in the original
MapReduce paper, it was shown that backup task execution improves query performance by 44% by alleviating
the adverse affect caused by slower machines.

Ability to operate on encrypted data. Neither MapReduce, nor its derivatives, come with a native ability to
operate on encrypted data. Such an ability would have to be provided using user-defined code.

Ability to interface with business intelligence products. Since MapReduce is not intended to be a database
system, it is not SQL compliant and thus it does not easily interface with existing business intelligence products.

Efficiency. The efficiency and raw performance of MapReduce is a matter ofdebate. A close inspection of
the experimental results presented in the MapReduce paper [7] would seem to indicate that there is room for
performance improvement. Figure 2 of the paper shows the performance of a simple grep query where a rare
string is searched for inside a 1TB dataset. In this query, 1TB of data is read off of the 3600 disks in the cluster
(in parallel) and a very simple pattern search is performed.Disk should clearly be the bottleneck resource since
the string is rare, so query results do not need to be shipped over the network, and the query is computationally
trivial. Despite these observations, the entire grep querytakes 150 seconds to complete. If one divides the 1TB
of data by the 3600 disks and 150 seconds to run the query, the average throughput with which data is being
read is less than 2 MB/s/disk. At peak performance, MapReduce was reading data at 32GB/s which is less
than 10MB/s/disk. Given the long start-up time to get to peakperformance, and the fact that peak performance
is four to six times slower than how fast disks in the cluster could actually be read, there indeed is room for
improvement. Other benchmarks [36] (albeit not performed up to the standards of publishable academic rigor)
have also shown MapReduce to be about an order of magnitude slower than alternative systems.

Much of the performance issues of MapReduce and its derivative systems can be attributed to the fact that
they were not initially designed to be used as complete, end-to-end data analysis systems over structured data.
Their target use cases include scanning through a large set of documents produced from a web crawler and
producing a web index over them [7]. In these applications, the input data is often unstructured and a brute force
scan strategy over all of the data is usually optimal. MapReduce then helps automate the parallelization of the
data scanning and application of user defined functions as the data is being scanned.

For more traditional data analysis workloads of the type discussed in Section 2.2.2 that work with data
produced from business operational data stores, the data isfar more structured. Furthermore, the queries tend
to access only a subset of this data (e.g., breakdown the profits of storeslocated in the Northeast). Using data
structures that help accelerate access to needed entities (such as indexes) and dimensions (such as column-
stores), and data structures that precalculate common requests (such as materialized views) often outperform a
brute-force scan execution strategy.

Many argue that the lack of these “helper” data structures inMapReduce is a feature, not a limitation. These

9

additional structures generally require the data to be loaded into to data analysis system before it can be used.
This means that someone needs to spend time thinking about what schema to use for the data, define the schema
and load the data into it, and decide what helper data structures to create (of course self-managing/self-tuning
systems can somewhat alleviate this burden). In contrast, MapReduce can immediately read data off of the file
system and answer queries on-the-fly without any kind of loading stage.

Nonetheless, at the complexity cost of adding a loading stage, indexes, columns, and materialized views
unquestionably can improve performance of many types of queries. If these data structures are utilized to
improve the performance of multiple queries, then the one-time cost of their creation is easily outweighed by
the benefit each time they are used.

The absence of a loading phase into MapReduce has additionalperformance implications beyond precluding
the use of helper data structures. During data load, data canbe compressed on disk. This can improve perfor-
mance, even for brute-force scans, by reducing the I/O time for subsequent data accesses. Furthermore, since
data is not loaded in advance, MapReduce needs to perform data parsing at runtime (using user-defined code)
each time the data is accessed, instead of parsing the data just once at load time.

The bottom line is that the performance of MapReduce is dependent on the applications that it is used for. For
complex analysis of unstructured data (which MapReduce wasinitially designed for) where brute-force scans is
the right execution strategy, MapReduce is likely a good fit.But for the multi-billion dollar business-oriented
data analysis market, MapReduce can be wildly inefficient.

3.3 Shared-Nothing Parallel Databases

A more obvious fit for data analysis in the cloud are the commercially available shared-nothing parallel databases,
such as Teradata, Netezza, IBM DB2, Greenplum, DATAllegro,Vertica, and Aster Data, that already hold a rea-
sonable market share for on-premises large scale data analysis [35]. DB2, Greenplum, Vertica, and Aster Data
are perhaps the most natural fit since they sell software-only products that could theoretically run in the data
centers hosted by cloud computing providers. Vertica already markets a version of its product designed to run
in Amazon’s cloud [34].

Parallel databases implement a largely complimentary set of properties from our wish list relative to MapReduce-
like software:

Ability to interface with business intelligence products. Given that the business intelligence products are
designed to work on top of databases, this property essentially comes for free. More mature databases, such as
DB2, tend to have carefully optimized and certified interfaces with a multitude of BI products.

Efficiency At the cost of the additional complexity in the loading phasediscussed in Section 3.2, parallel
databases implement indexes, materialized views, and compression to improve query performance.

Fault Tolerance. Most parallel database systems restart a query upon a failure. This is because they are gen-
erally designed for environments where queries take no morethan a few hours and run on no more than a few
hundred machines. Failures are relatively rare in such an environment, so an occasional query restart is not
problematic. In contrast, in a cloud computing environment, where machines tend to be cheaper, less reliable,
less powerful, and more numerous, failures are more common.Not all parallel databases, however, restart a
query upon a failure; Aster Data reportedly has a demo showing a query continuing to make progress as worker
nodes involved in the query are killed [26].

Ability to run in a heterogeneous environment. Parallel databases are generally designed to run on homo-
geneous equipment and are susceptible to significantly degraded performance if a small subset of nodes in the
parallel cluster are performing particularly poorly.

Ability to operate on encrypted data. Commercially available parallel databases have not caughtup to (and
do not implement) the recent research results on operating directly on encrypted data. In some cases simple op-

10

erations (such as moving or copying encrypted data) are supported, but advanced operations, such as performing
aggregations on encrypted data, is not directly supported.It should be noted, however, that it is possible to
hand-code encryption support using user defined functions.

3.4 A Call For A Hybrid Solution

It is now clear that neither MapReduce-like software, nor parallel databases are ideal solutions for data analysis
in the cloud. While neither option satisfactorily meets allfive of our desired properties, each property (except
the primitive ability to operate on encrypted data) is met byat least one of the two options. Hence, a hybrid
solution that combines the fault tolerance, heterogeneouscluster, and ease of use out-of-the-box capabilities of
MapReduce with the efficiency, performance, and tool plugability of shared-nothing parallel database systems
could have a significant impact on the cloud database market.

There has been some recent work on bringing together ideas from MapReduce and database systems,
however, this work focuses mainly on language and interfaceissues. The Pig project at Yahoo [30] and the
SCOPE project at Microsoft [13] aim to integrate declarative query constructs from the database community
into MapReduce-like software to allow greater data independence, code reusability, and automatic query op-
timization. Greenplum and Aster Data have added the abilityto write MapReduce functions (instead of, or in
addition to, SQL) over data stored in their parallel database products [22]. Although these four projects are with-
out question an important step in the direction of a hybrid solution, there remains a need for a hybrid solution at
the systems level in addition to at the language level.

One interesting research question that would stem from sucha hybrid integration project would be how to
combine the ease-of-use out-of-the-box advantages of MapReduce-like software with the efficiency and shared-
work advantages that come with loading data and creating performance enhancing data structures. Incremental
algorithms are called for, where data can initially be read directly off of the file system out-of-the-box, but each
time data is accessed, progress is made towards the many activities surrounding a DBMS load (compression,
index and materialized view creation, etc.).

Another interesting research question is how to balance thetradeoffs between fault tolerance and perfor-
mance. Maximizing fault tolerance typically means carefully checkpointing intermediate results, but this usu-
ally comes at a performance cost (e.g., the rate which data can be read off disk in the sort benchmark from the
original MapReduce paper is half of full capacity since the same disks are being used to write out intermediate
Map output). A system that can adjust its levels of fault tolerance on the fly given an observed failure rate could
be one way to handle the tradeoff.

The bottom line is that there is both interesting research and engineering work to be done in creating a hybrid
MapReduce/parallel database system.

4 Acknowledgments

We thank Andy Pavlo and Samuel Madden for their feedback on this article. The author is funded by the NSF
under grants IIS-0845643 and IIS-0844480.

References

[1] http://news.bbc.co.uk/1/hi/technology/7421099.stm.
[2] http://aws.amazon.com/s3-sla/.
[3] http://wiki.cloudcommunity.org/wiki/CloudComputing:Incidents_Database.
[4] http://en.wikipedia.org/wiki/IBM_DB2.
[5] http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/

index.html.

11

[6] http://www.oracle.com/solutions/business_intelligence/exadata.html.
[7] http://www.sybase.com/detail?id=1054047.
[8] http://developer.amazonwebservices.com/connect/thread.jspa?threadID=16912.
[9] http://www.lexemetech.com/2008/08/elastic-hadoop-clusters-with-amazons.html.

[10] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. InProc. of SIGMOD,
pages 563–574, 2004.

[11] Amazon Web Services. SimpleDB. Web Page.http://aws.amazon.com/simpledb/.
[12] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a Database on S3. InProc. of SIGMOD,

pages 251–264, 2008.
[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: Easy and efficient

parallel processing of massive data sets. InProc. of VLDB, 2008.
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: a distributed storage system for structured data. In Proceedings of OSDI, 2006.
[15] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and

R. Yerneni. Pnuts: Yahoo!s hosted data serving platform. InProceedings of VLDB, 2008.
[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. pages 137–150, December 2004.

[17] D. DeWitt and M. Stonebraker. MapReduce: A major step backwards. DatabaseColumn Blog.http://www.
databasecolumn.com/2008/01/mapreduce-a-major-step-back.html.

[18] T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. InProc. of VLDB, pages 519–530,
2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services.SIGACT News, 33(2):51–59, 2002.

[20] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-provider
model. InProc. of SIGMOD, pages 216–227, 2002.

[21] Hadoop Project. Welcome to Hadoop! Web Page.http://hadoop.apache.org/core/.
[22] J. N. Hoover. Start-Ups Bring Google’s Parallel Processing To Data Warehousing. InformationWeek, August 29th,

2008.
[23] M. Kantarcoglu and C. Clifton. Security issues in querying encrypted data. In19th Annual IFIP WG 11.3 Working

Conference on Data and Applications Security, 2004.
[24] S. Madden, D. DeWitt, and M. Stonebraker. Database parallelism choices greatly impact scalability. DatabaseColumn

Blog. http://www.databasecolumn.com/2007/10/database-parallelism-choices.html.
[25] C. Monash. The 1-petabyte barrier is crumbling.http://www.networkworld.com/community/node/

31439.
[26] C. Monash. Introduction to Aster Data and nCluster. DBMS2 Blog.http://www.dbms2.com/2008/09/02/

introduction-to-aster-data-and-ncluster/.
[27] C. Monash. Oracle Announces an Amazon Cloud Offering. DBMS2 Blog. http://www.dbms2.com/2008/

09/22/oracle-announces-an-amazon-cloud-offering/.
[28] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. InIFIP WG 11.3 on Data and

Application Security, 2006.
[29] C. Olofson. Worldwide RDBMS 2005 vendor shares. Technical Report 201692, IDC, May 2006.
[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing.

In SIGMOD Conference, pages 1099–1110, 2008.
[31] RightScale. Top reasons amazon ec2 instances disappear. http://blog.rightscale.com/2008/02/02/

top-reasons-amazon-ec2-instances-disappear/.
[32] Slashdot. Multiple Experts Try Defining Cloud Computing. http://tech.slashdot.org/article.pl?

sid=08/07/17/2117221.
[33] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of an architectural

era (it’s time for a complete rewrite). InVLDB, Vienna, Austria, 2007.
[34] Vertica. Performance On-Demand with Vertica AnalyticDatabase for the Cloud.http://www.vertica.com/

cloud.
[35] D. Vesset. Worldwide data warehousing tools 2005 vendor shares. Technical Report 203229, IDC, August 2006.
[36] E. Yoon. Hadoop Map/Reduce Data Processing Benchmarks. Hadoop Wiki. http://wiki.apache.org/

hadoop/DataProcessingBenchmarks.

12

Deploying Database Appliances in the Cloud

Ashraf Aboulnaga∗ Kenneth Salem∗ Ahmed A. Soror∗ Umar Farooq Minhas∗

Peter Kokosielis† Sunil Kamath†

∗University of Waterloo
†IBM Toronto Lab

Abstract

Cloud computing is an increasingly popular paradigm for accessing computing resources. A popular
class of computing clouds is Infrastructure as a Service (IaaS) clouds, exemplified by Amazon’s Elastic
Computing Cloud (EC2). In these clouds, users are given access to virtual machines on which they can
install and run arbitrary software, including database systems. Users can also deploy database appli-
ances on these clouds, which are virtual machines with pre-installed pre-configured database systems.
Deploying database appliances on IaaS clouds and performance tuning and optimization in this environ-
ment introduce some interesting research challenges. In this paper, we present some of these challenges,
and we outline the tools and techniques required to address them. We present an end-to-end solution to
one tuning problem in this environment, namely partitioning the CPU capacity of a physical machine
among multiple database appliances running on this machine. We also outline possible future research
directions in this area.

1 Introduction

Cloud computing has emerged as a powerful and cost-effective paradigm for provisioning computing power
to users. In the cloud computing paradigm, users use an intranet or the Internet to access a shared computing
cloud that consists of a large number (thousands or tens of thousands) of interconnected machines organized as
one or more clusters. This provides significant benefits bothto providers of computing power and to users of
this computing power. For providers of computing power, thepush to cloud computing is driven by economies
of scale. By operating massive clusters in specially designed and carefully located data centers, providers can
reduce administrative and operating costs, such as the costs of power and cooling [15, 16]. In addition, the
per-unit costs of hardware, software and networking becomesignificantly cheaper at this scale [4]. For users,
cloud computing offers simple and flexible resource provisioning without up-front equipment and set up costs
and on-going administrative and maintenance burdens. Users can run software in the cloud, and they can grow
and shrink the computing power available to this software inresponse to growing and shrinking load [4].

There are different flavors of cloud computing, depending onhow much flexibility the user has to customize
the software running in the cloud. In this paper, we focus on computing clouds where the user sees a bare-
bones machine with just an operating system and gets full flexibility in installing and configuring software on
this machine. These clouds are known asInfrastructure as a Service (IaaS)clouds. A very prominent example

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

13

of this type of cloud is Amazon’s Elastic Computing Cloud (EC2) [2], which enables users to rent computing
power from Amazon to run their software. Other providers of this style of cloud computing include GoGrid [13]
and AppNexus [3]. Additionally, many organizations are building IaaS clouds for their internal use [6, 22].

In IaaS clouds, users are typically given access tovirtual machines (VMs)[5, 23] on which they can install
and run software. These virtual machines are created and managed by avirtual machine monitor (VMM)which
is a layer of software between the operating system and the physical machine. The VMM controls the resources
of the physical machine, and can create multiple VMs that share these physical machine resources. The VMs
have independent operating systems running independent applications, and are isolated from each other by the
VMM. The VMM controls the allocation of physical machine resources to the different VMs. The VMM also
provides functionality such as saving and restoring the image of a running VM, or migrating VMs between
physical machines.

A common model for deploying software in virtual machine environments is thevirtual appliancemodel.
A virtual appliance is a VM image with a pre-installed pre-configured application. Deploying the application
simply requires copying this VM image to a physical machine,starting the VM, and performing any required
configuration tasks. The cost of installing and configuring the application on the VM is incurred once, when the
appliance is created, and does not need to be incurred again by users of the appliance. Adatabase appliance
is a virtual appliance where the installed application is a database system. With the increasing popularity of
virtualization and cloud computing, we can expect that a common way of providing database services in the
future will be throughdatabase appliances deployed in IaaS clouds. As an example of this deployment mode,
Amazon offers MySQL, Oracle, and Microsoft SQL Server virtual appliances for deployment in its EC2 cloud.

An important question to ask is how to get the best database system performance in this environment. Cloud
providers are interested in two related performance objectives: maximizing the utilization of cloud resources
and minimizing the resources required to satisfy user demand. Users are interested in minimizing application
response time or maximizing application throughput. Deploying database appliances in the cloud and tuning the
database and virtualization parameters to optimize performance introduces some interesting research challenges.
In this paper, we outline some of these challenges (Section 2), and we present the different tools and techniques
required to address them (Section 3). We present our work on partitioning CPU capacity among database
appliances as an example end-to-end tuning solution for virtualized environments (Section 4). We conclude by
outlining some possible future research directions in thisarea (Section 5).

2 Deployment and Tuning Challenges

Our focus is on deploying and tuning virtual machines running database systems (i.e., database appliances) on
large clusters of physical machines (i.e., computing clouds). This raises deployment and computing challenges,
which we describe next.

2.1 Deployment Challenges

Creating a database appliance that can easily be deployed ina cloud, and obtaining an accessible, usable database
instance from this appliance require addressing many issues related to deployment. These issues are not the
research focus of our work, but we present them here since these seemingly simple and mundane tasks can be
very tricky and time consuming. These issues include:

Localization:
When we start a VM from a copy of a database appliance, we need to give this new VM and the database system
running on it a distinct “identity.” We refer to this processas localization. For example, we need to give the
VM a MAC address, an IP address, and a host name. We also need toadapt (or localize) the database instance
running on this VM to the VM’s new identity. For example, somedatabase systems require every database

14

instance to have a unique name, which is sometimes based on the host name or IP address. The VMM and the
underlying operating system and networking infrastructure may help with issues such as assigning IP addresses,
but there is typically little support for localizing the database instance. The specific localization required varies
from database system to database system, which increases the effort required for creating database appliances.

Routing:
In addition to giving every VM and database instance a distinct identity, we must be able to route application
requests to the VM and database instance. This includes the IP-level routing of packets to the VM, but it also
includes making sure that database requests are routed to the correct port and not blocked by any firewall, that
the display is routed back to the client console if needed, that I/O requests are routed to the correct virtual storage
device if the “compute” machines of the IaaS cloud are different from the storage machines, and so on.

Authentication:
The VM must be aware of the credentials of all clients that need to connect to it, independent of where it is run
in the cloud.

2.2 Tuning Challenges

Next, we turn our attention to the challenges related to tuning the parameters of the virtualization environment
and the database appliance to achieve the desired performance objectives. These are the primary focus of our
research work, and they include:

Placement:
Virtualization allows the cloud provider to run a user’s VM on any available physical machine. The mapping
of virtual machines to physical machines can have a significant impact on performance. One simple problem
is to decide how many virtual machines to run on each physicalmachine. The cloud provider would like to
minimize the number of physical machines used, but running more VMs on a physical machine degrades the
performance of these VMs. It is important to balance these conflicting objectives: minimizing the number of
physical machines used while maintaining acceptable performance for users.

A more sophisticated mapping of virtual machines to physical machines could consider not only the number
of VMs per physical machine, but also the resource requirements of these VMs. The placement algorithm
could, for example, avoid mapping multiple I/O intensive VMs to the same physical machine to minimize I/O
interference between these VMs. This type of mapping requires understanding the resource usage characteristics
of the application running in the VM, which may be easier to dofor database systems than for other types of
applications since database systems have a highly stylizedand often predictable resource usage pattern.

Resource Partitioning:
Another tuning challenge is to decide how to partition the resources of each physical machine among the virtual
machines that are running on it. Most VMMs provide tools or APIs for controlling the way that physical
resources are allocated. For example VMM scheduling parameters can be used to apportion the total physical
CPU capacity among the VMs, or to control how virtual CPUs aremapped to physical CPUs. Other VMM
parameters can be used to control the amount of physical memory that is available to each VM. To obtain the
best performance, it is useful to take into account the characteristics of the application running in the VM so that
we can allocate resources where they will provide the maximum benefit. Database systems can benefit from this
application-informed resource partitioning, as we will show in Section 4.

Service Level Objectives:
To optimize the performance of a database appliance in a cloud environment, it is helpful to be able to ex-
press differentservice level objectives. The high-level tuning goal is to minimize the cloud resources required
while maintaining adequate performance for the database appliance. Expressing this notion of “adequate per-
formance” is not a trivial task. A database system is typically part of a multi-layer software stack that is used to

15

serve application requests. Service level agreements are typically expressed in terms of end-to-end application
performance, with no indication of how much of this performance budget is available to the database system vs.
how much is available to other layers of the software stack (e.g., the application server and the web server). De-
riving the performance budget that is available to the database system for a given application request is not easy,
since an application request can result in a varying number of database requests, and these database requests can
vary greatly in complexity depending on the SQL statements being executed. Tuning in a cloud environment
therefore requires developing practical and intuitive ways of expressing database service level objectives. Differ-
ent workloads can have different service level objectives,and the tuning algorithms need to take these different
service level objectives into account.

Dynamically Varying Workloads:
Tuning the performance of a database appliance (e.g., placement and resource partitioning) requires knowledge
of the appliance’s workload. The workload can simply be the full set of SQL statements that execute at the appli-
ance. However, it is an interesting question whether there can be a more succinct but still useful representation
of the workload. Another interesting question is whether some tuning decisions can be made without knowledge
of the SQL statements (e.g., if this is a new database instance). It is also important to detect when the nature of
the workload has changed, possibly by classifying the workload [11] and detecting when the workload class has
changed. The tuning algorithms need to be able to deal with dynamically changing workloads that have different
service level objectives.

3 Tools and Techniques

Next, we turn our attention to the tools and techniques that are needed to address the tuning challenges outlined
above. These include:

Performance Models:
Predicting the effect of different tuning actions on the performance of a database appliance is an essential com-
ponent of any tuning solution. This requires developing accurate and efficient performance models for database
systems in virtualized environments. There are two generalclasses of models: white box models, which are
based on internal knowledge of the database system, and black box models, which are typically statistical mod-
els based on external, empirical observations of the database system’s performance.

White box modeling is especially attractive for database systems for two reasons. First, database systems
have a stylized and constrained interface for user requests: they accept and execute SQL statements. This
simplifies defining the inputs to the performance model. Second, and more importantly, database systems already
have highly refined internal models of performance. One way to build a white box model is to expose these
internal models to the tuning algorithm and adapt them to thetuning task at hand. For example, the query
optimizer cost model, which has been used extensively as a what-if cost model for automatic physical database
design [7], can be used to quantify the effect of allocating different shares of physical resources to a database
appliance (see the next section for more details). Self-managing database systems have other internal models that
can be exposed for use in performance tuning in a cloud environment. These include the memory consumption
model used by a self-tuning memory manager [8, 21] or the model used for automatic diagnosis of performance
problems [10].

The disadvantage of white box modeling is that the required performance models do not always exist in the
database system, and developing white box models from scratch is difficult and time consuming. Even when
internal models do exist in the database system, these models are sometimes not calibrated to accurately pro-
vide the required performance metric, and they sometimes make simplifying assumptions that ignore important
aspects of the problem. For example, the query optimizer cost model is designed primarily to compare query
execution plans, not to accurately estimate resource consumption. This cost model focuses on one query at a

16

time, ignoring the sometimes significant effect of concurrently running interacting queries [1]. Because of these
shortcomings of white box modeling, it is sometimes desirable to build black box models of performance by
fitting statistical models to the observed results of performance experiments [1]. When building these models
it is important to carefully decide which performance experiments to conduct to collect samples for the model,
since these experiments can be costly and they have a considerable impact on model accuracy [18]. However,
the illusion of infinite computing resources provided by IaaS clouds can actually simplify black box experimen-
tal modeling of database systems, since we can now easily provision as many machines as we need to run the
performance experiments required for building an accuratemodel.

An interesting research question is whether it is possible to combine the best features of black box and white
box modeling, by using the internal models of the database system as a starting point, but then refining these
models based on experimental observations [12].

Optimization and Control Algorithms:
Solving the performance tuning problems of a cloud environment requires developing combinatorial optimiza-
tion or automatic control algorithms that use the performance models described above to decide on the best
tuning action. These algorithms can be static algorithms that assume a fixed workload, or they can be dynamic
algorithms that adapt to changing workloads. The algorithms can simply have as a goal the best-effort maximiza-
tion of performance [20], or they can aim to satisfy different service level objectives for different workloads [17].

Tools for System Administrators:
In addition to the models and algorithms described above, system administrators need tools for deploying and
tuning database appliances. These tools should expose not only the performance characteristics of the VM, but
also the performance characteristics of the database system running on this VM. For example, it would be useful
to expose the what-if performance models of the database system to system administrators so that they can make
informed tuning decisions, diagnose performance problems, or refine the recommendations of automatic tuning
algorithms.

Co-tuning and Hint Passing:
The focus of the previous discussion has been on tuning virtual machine parameters. It is also important to tune
the parameters of the database system running on this virtual machine. For example, if we decide to decrease
the memory available to a VM running a database system, we need to decrease the sizes of the different memory
pools of this database system. Thisco-tuningof VM and database system parameters is important to ensure
that the tuning actions at one layer are coordinated with thetuning action at the other layer. Another way to
coordinate VM tuning with database system tuning is to passhints that can be used for tuning from the database
system to the virtualization layer. These hints would contain information that is easy to obtain for the database
system and useful for tuning at the virtualization layer. For example, these hints could be used to ensure that
VM disks storing database objects (i.e., tables or indexes)that are accessed together are not mapped to the same
physical disk. Information about which objects are accessed together is easily available to the database system
and very useful to the virtualization layer.

4 Virtual Machine Configuration

In this section, we consider the following tuning problem: Given N virtual machines that share one physical
machine, with each VM running an independent database system instance, how can we optimally partition the
available CPU capacity of the physical machine among the virtual machines? Recall that the VMM provides
mechanisms for deciding how much CPU capacity is allocated to each VM. We outline a solution to this resource
partitioning problem below. Full details of our solution can be found in [19, 20].

We decide the partitioning of the available CPU capacity of the physical machine among theN virtual
machines with the goal of maximizing the aggregate throughput of theN workloads (or minimizing their total

17

completion time). This is a best-effort performance goal that does not consider explicit service level objectives
for the different workloads.

The benefit that each database system will obtain from an increase in CPU allocation depends on that sys-
tem’s workload. We assume that we are given the set of SQL statements that make up the workload of each
of theN database systems. These workloads represent the SQL statements executed by the different database
systems in the same time interval, so the number of statements in a workload corresponds to its intensity (i.e., the
rate of arrival of SQL statements). We assume that the workloads are fixed, and we do not deal with dynamically
varying workloads.

To determine the best CPU partitioning, we need a model of theperformance of a database workload as
a function of the CPU capacity allocated to the VM running this workload. In our solution, we use the cost
model of the database system’s query optimizer as a what-if model to predict performance under different CPU
allocations. This requires the query optimizer cost model to be aware of the effect of changing CPU capacity
on performance. The cost model relies on one or more modelingparameters to describe CPU capacity and
estimate the CPU cost of a query. We use different values of these CPU modeling parameters for different CPU
allocations, thereby adding awareness of CPU allocation tothe query optimizer cost model. We call such a cost
modelvirtualization aware. The calibration procedure required to determine the values of the CPU modeling
parameters to use for each CPU allocation is performed only once for every database system and physical
machine configuration, and can be used for any workload that runs on this database system.

We use the virtualization aware cost models of theN database systems on theN VMs in a greedy search
algorithm to determine the best partitioning of CPU capacity among the VMs. We also provide heuristics for
refining the cost models based on comparing estimated performance to actual observed performance. We apply
these refinement heuristics periodically, and we obtain a new partitioning of CPU capacity after each refinement
of the cost model.

To illustrate the effectiveness of our approach, consider the following example (Figure 1). Using the Xen
VMM [5] we created two virtual machines, each running an instance of PostgreSQL. We ran both VMs on the
same physical machine, a Sun server with two 2.2GHz dual coreAMD Opteron Model 275 x64 processors
and 8GB memory, running SUSE Linux 10.1. For this example, weused a TPC-H database with scale factor
1. On one PostgreSQL instance we ran a workload consisting ofthree instances of TPC-H queryQ4. On the
other instance, we ran a workload consisting of nine instances of TPC-H queryQ13. First, we allocated 50%
of the available CPU capacity to each of the two virtual machines, ran the two workloads, and measured the
total execution time of each workload. The results are illustrated by the bars on the left for each of the two
workloads in Figure 1. Next, we repeated the experiment, butthis time we allocated CPU capacity according
to the recommendations of our CPU partitioning algorithm. The algorithm recommended giving 25% of the
available CPU capacity to the first PostgreSQL instance (Workload 1) and the remaining 75% to the second
instance (Workload 2). The execution times of the two workloads under this CPU allocation are shown in
Figure 1 by the bars on the right for each of the two workloads.This change in CPU allocation reduces the
execution time of the second workload by approximately 30%,while having little impact on the first workload.
Thus, we can see the importance of correctly partitioning CPU capacity and the effectiveness of our approach to
solving this problem.

5 Future Directions

The previous section illustrates a simple performance tuning problem in a cloud computing environment and its
solution. Extending the research outlined in the previous section opens up many possibilities for future work,
which we are exploring in our ongoing research activities. Instead of partitioning the resources of one physical
machine among the VMs, we can considermultiplephysical machines and partition their resources among the
VMs, that is, decide which physical machine to use for each VMand what share of this machine’s resources are

18

Figure 1: Effect of varying CPU allocation on workload performance.

allocated to the VM. We can also extend the work to deal with dynamically varying workloads, possibly with
different explicit service level objectives. Another interesting research direction is improving the way we refine
the query-optimizer-based cost model in response to observed performance.

Another interesting research direction is optimizing the allocation of I/O resources to different VMs. Some
VMMs, such as VMWare ESX server [23], provide mechanisms forcontrolling how much of the I/O bandwidth
of a physical machine is allocated to each VM running on this machine. Another mechanism to control the
allocation of I/O resources to VMs is controlling the mapping of VM disks to physical disks. Using these two
mechanisms to optimize the performance of database appliances is an interesting research direction, especially
since many database workloads are I/O bound.

It would also be interesting to explore whether we can exposeinternal database system models other than
the query optimizer cost model and use these models for tuning VM parameters or co-tuning VM and database
system parameters. For example, the memory manager performance model can be used to control memory
allocation.

The cloud environment also offers new opportunities, beyond the challenges of tuning database appliances.
For example, since we can provision VMs on-demand, it would be interesting to explore the possibility of scaling
out a database system to handle spikes in the workload by starting new replicas of this database system on newly
provisioned VMs. This requires ensuring consistent accessto the database during and after the replication
process, coordinating request routing to the old and new VMs, and developing policies for when to provision
and de-provision new replicas.

Finally, this idea of application-informed tuning of the virtualized environment is not restricted to database
systems. This idea can be used for other types of applications that run in a cloud environment, such as large
scale data analysis programs running on Map-Reduce style platforms [7, 9].

6 Conclusion

As cloud computing becomes more popular as a resource provisioning paradigm, we will increasingly see
database systems being deployed as virtual appliances on Infrastructure as a Service (IaaS) clouds such as
Amazon’s EC2. In this paper, we outlined some of the challenges associated with deploying these appliances
and tuning their performance, and we discussed the tools andtechniques required to address these challenges.
We presented an end-to-end solution to one tuning problem, namely partitioning the CPU capacity of a physical
machine among the database appliances running on this machine. We also described some future directions
for this research area. It is our belief that the style of application-informed tuning described in this paper can
provide significant benefits to both providers and users of cloud computing.

19

References

[1] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Modeling and exploiting query interac-
tions in database systems. InProc. ACM Int. Conf. on Information and Knowledge Management (CIKM), 2008.

[2] Amazon EC2. http://aws.amazon.com/ec2/.

[3] AppNexus. http://www.appnexus.com/.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.Joseph, Randy H. Katz, Andrew Konwinski, Gunho
Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and MateiZaharia. Above the clouds: A Berkeley view of cloud
computing. Technical report, EECS Department, Universityof California, Berkeley, Feb 2009.

[5] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield. Xen and the art of virtualization. InProc. ACM Symp. on Operating Systems Principles
(SOSP), 2003.

[6] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet: The Google cluster architecture.IEEE
Micro, Jan/Feb 2003.

[7] Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index selection tool for Microsoft SQL Server.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), 1997.

[8] Benoı̂t Dageville and Mohamed Zaı̈t. SQL memory management in Oracle9i. InProc. Int. Conf. on Very Large Data
Bases (VLDB), 2002.

[9] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplifieddata processing on large clusters. InProc. Symp. on
Operating System Design and Implementation (OSDI), 2004.

[10] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Graham Wood. Automatic performance
diagnosis and tuning in Oracle. InProc. Conf. on Innovative Data Systems Research (CIDR), 2005.

[11] Said Elnaffar, Patrick Martin, and Randy Horman. Automatically classifying database workloads. InProc. ACM Int.
Conf. on Information and Knowledge Management (CIKM), 2002.

[12] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, JanetWiener, Armando Fox, Michael Jordan, and David Pat-
terson. Predicting multiple metrics for queries: Better decisions enabled by machine learning. InProc. IEEE Int.
Conf. on Data Engineering (ICDE), 2009.

[13] GoGrid. http://www.gogrid.com/.

[14] Hadoop. http://hadoop.apache.org/.

[15] James R. Hamilton. Cost of power in large-scale data centers, Nov 2008.
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx.

[16] Randy H. Katz. Tech titans building boom.IEEE Spectrum, Feb 2009.

[17] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant, and
Kenneth Salem. Adaptive control of virtualized resources in utility computing environments. InProc. European
Conf. on Computer Systems (EuroSys), 2007.

[18] Piyush Shivam, Varun Marupadi, Jeffrey S. Chase, Thileepan Subramaniam, and Shivnath Babu. Cutting corners:
Workbench automation for server benchmarking. InProc. USENIX Annual Technical Conference, 2008.

[19] Ahmed A. Soror, Ashraf Aboulnaga, and Kenneth Salem. Database virtualization: A new frontier for database tuning
and physical design. InProc. Workshop on Self-Managing Database Systems (SMDB), 2007.

[20] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, Peter Kokosielis, and Sunil Kamath.
Automatic virtual machine configuration for database workloads. InProc. ACM SIGMOD Int. Conf. on Management
of Data, 2008.

[21] Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao, and Maheswaran Surendra. Adaptive self-
tuning memory in DB2. InProc. Int. Conf. on Very Large Data Bases (VLDB), 2006.

[22] Virtual Computing Lab. http://vcl.ncsu.edu/.

[23] VMware. http://www.vmware.com/.

20

Privacy-preserving Digital Identity Management for Cloud
Computing

Elisa Bertino
CS Department

Purdue University
West Lafayette, Indiana
bertino@cs.purdue.edu

Federica Paci
CS Department

Purdue University
West Lafayette, Indiana

paci@cs.purdue.edu

Rodolfo Ferrini
CS Department

Purdue University
West Lafayette, Indiana

rferrini@purdue.edu

Ning Shang
CS Department

Purdue University
West Lafayette, Indiana
nshang@cs.purdue.edu

Abstract

Digital identity management services are crucial in cloud computing infrastructures to authenticate
users and to support flexible access control to services, based on user identity properties (also called
attributes) and past interaction histories. Such servicesshould preserve the privacy of users, while at the
same time enhancing interoperability across multiple domains and simplifying management of identity
verification. In this paper we propose an approach addressing such requirements, based on the use of
high-level identity verification policies expressed in terms of identity attributes, zero-knolwedge proof
protocols, and semantic matching techniques. The paper describes the basic techniques we adopt and
the architeture of a system developed based on these techniques, and reports performance experimental
results.

1 Introduction

Internet is not any longer only a communication medium but, because of the reliable, afforbable, and ubiquitous
broadband access, is becoming a powerful computing platform. Rather than running software and managing
data on a desktop computer or server, users are able to execute applications and access data on demand from the
“cloud” (the Internet) anywhere in the world. This new computing paradigm is referred to ascloud computing.
Examples of cloud computing applications are Amazon’s Simple Storage Service (S3), Elastic Computing Cloud
(EC2) for storing photos on Smugmug an on line photo service,and Google Apps for word-processing.

Cloud services make easier for users to access their personal information from databases and make it avail-
able to services distributed across Internet. The availability of such information in the cloud is crucial to provide

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

21

better services to users and to authenticate users in case ofservices sensitive with respect to privacy and secu-
rity. Users have typically to establish their identity eachtime they use a new cloud service, usually by filling
out an online form and providing sensitive personal information (e.g., name, home address, credit card number,
phone number, etc.). This leaves a trail of personal information that, if not properly protected, may be misused.
Therefore, the development of digital identity management(IdM for short) systems suitable for cloud comput-
ing is crucial. An important requirement is that users of cloud services must have control on which personal
information is disclosed and how this information is used inorder to minimize the risk of identity theft and
fraud.

Another major issue concerning IdM in cloud platforms is interoperability. Interoperability issues range from
the use of different identity tokens, such those encoded in X.509 certificates and SAML assertions, and different
identity negotiation protocols, such as the client-centric protocols and the identity-provider centric protocols, to
the use of different names for identity attributes. Anidentity attributeencodes a specific identity information
about an individual, such as the social-security-number; it consists of an attribute name, also called identity tag,
and a value. The use of different names for identity attributes, that we refer to asnaming heterogeneity, typically
occurs whenever users and cloud service providers use different vocabularies for identity attribute names. In
this case, whenever a cloud service provider requests from auser a set of identity attributes to verify the user
identity, the user may not understand which identity attributes he/she has to provide.

To address the problem of privacy-preserving management ofdigital identity attributes in domains with
heterogeneous name spaces, we propose a privacy-preserving multi-factor identity attribute verification protocol
supporting a matching technique based on look-up tables, dictionaries, and ontology mapping techniques to
match cloud service providers and clients vocabularies. The protocol uses an aggregate zero knowledge proofs
of knowledge (AgZKPK) cryptographic protocol to allow clients to prove with a single interactive proof the
knowledge of multiple identity attributes without the needto provide them in clear.

The rest of the paper is organized as follows. Section 2 introduces the notions on which our multi-factor
identity attribute verification protocol is based. Section3 presents the multi-factor identity attribute verifica-
tion protocol. Section 4 presents the system architecture and discuss implementation while Section 5 reports
experimental results. Finally, Section 6 concludes the paper and outlines some future work.

2 Preliminary concepts

Our approach, as many other approaches, assumes an IdM system that include several entities: Identity Providers
(IdPs), Cloud Service Providers (CSPs), Registars, and users. CSPs provide access to data and software that
reside on the Internet. IdPs issue certified identity attributes to users and control the sharing of such information.
Registrars are additional components that store and manageinformation related to identity attributes used in
our multi-factor identity attribute verification approach. Note that, unlike the IdPs, the information stored at the
Registrars does not include the values of the identity attributes in clear. Instead, such information only contains
the cryptographic semantically secure commitments1of the identity attributes which are then used by the clients
to construct zero knowledge proofs of knowledge (ZKPK)2of those attributes. The Registrar stores for each user
an Identity Record (IdR) containing an identity tuple for each user’s identity attributem. Each identity tuple
consists of atag, that is, an attribute name, the Pedersen commitment [5] ofm, denoted byMi, the signature of
the registrar onM , denoted byσi, two types of assurance, namelyvalidity assuranceandownership assurance,
and a set of nyms (also called weak identifiers){Wij}3. Mi is computed asgmhr, wherem is the value of the

1A commitment scheme or a bit commitment scheme is a method that allows a user to commit to a value while keeping it hidden and
preserving the user’s ability to reveal the committed valuelater.

2A zero-knowledge proof or zero-knowledge protocol is an interactive method for one party to prove to another that a (usually
mathematical) statement is true, without revealing anything other than the veracity of the statement.

3Nyms are used to link together different identity tuples of the same individual for multi-factor authentication. Nyms do not need to
be protected.

22

identity attribute,r is a random number inZp and only known to the client, andg andh are generators of a
groupG of prime orderp. G, g, h andp are public parameters of the Registrar. Validity assurancecorresponds
to the confidence about the validity of the identity attribute based on the verification performed at the identity
attribute original issuer. Ownership assurance corresponds to the confidence about the claim that the principal
presenting an identity attribute is its true owner. The identity tuples of each registered client can be retrieved
from the Registrar by CSPs (online mode) or the Registrar can release to the client a certificatecontaining its
identity record (offlinemode).

3 Interoperable Multi-Factor Authentication

Our multi-factor authentication protocol takes place between a client and a CSP and consists of two phases.
In the first phase, the CSP matches the identity attributes inthe clients vocabulary with its own attributes to
help the client understand its identity verification policy. An identity verification policyconsists of the set of
identity attributes that the user must prove to know; if the values of these identity attributes are only needed for
verification purposes but not for the execution of the service required by the client, the CSP has no reason to
have to see these values in clear. In the second phase, the client executes the AgZKPK protocol to prove the CSP
the knowledge of the matched identity attributes. The use ofthis protocol allows the client to convince the CSP
that the client knows the values of the identity attributes without having to reveal to the CSP the values in clear.

3.1 The protocol for identity attribute matching

Our attribute name matching technique uses a combination oflook-up tables, dictionaries, and ontology map-
ping in order to address the different variations in identity attribute names.Syntactic variationsrefer to the
use of different character combinations to denote the same term. An example is the use of “CreditCard” and
“Credit Card”. Terminological variationsrefer to the use of different terms to denote the same concept. An
example of terminological variation is the use of the synonyms “Credit Card” and “Charge Card”.Semantic
variationsare related to the use of two different concepts in differentknowledge domains to denote the same
term. Syntactic variations can be identified by using look uptables. A look up table enumerates the possible
ways in which the same term can be written by using different character combinations. Terminological varia-
tions can be determined by the use of dictionaries or thesaurus such as WordNet [6]. Finally, semantic variations
can be solved by ontology matching techniques. An ontology is a formal representation of a domain in terms
of concepts and properties relating those concepts. Ontologies can be used to specify a domain of interest and
reason about its concepts and properties. Ontology mappingis the process whereby the concepts of an ontology
- the source ontology - are mapped onto the concepts of another ontology - the target ontology - according to
those semantic relations [4].

An important issue related to the identity matching protocol is which party has to execute the matching. In
our approach the matching is performed by the CSP, in that performing the matching at the client has the obvious
drawback that the client may lie and asserts that an identityattribute referred to in the CSP policy matches one of
its attribute, whereas this is not the case. The use of ZKPK protocols (see next section) preserves the privacy of
the user identity attributes by assuring that the CSP do not learn the values of these attributes; thus the CSP has
no incentive to lie about the mapping. A second issue is how totake advantage of previous interactions that the
client has performed with other CSPs. Addressing such issueis crucial in order to make the interactions between
clients and CSPs fast and convenient for the users. To address such issue, the matching protocol relies on the
use ofproof-of-identity certificates; these certificates encode the mapping between (some of) theuser identity
attributes and the identity attributes referred in the policies of CSPs with which the user has successfully carried
out past interactions.

Let AttrProof be the set of identity attributes that a CSP asks to a client inorder to verify the identity of the

23

user on behalf of which the client is running. Suppose that some attributes inAttrProof do not match any of the
attributes inAttrSet, the set of clients’ identity attributes. We refer to the setof component service’s identity
attributes that do not match a client attribute name to asNoMatchingAttr. The matching process consists of two
main phases. The first phase matches the identity attributesthat have syntactical and terminological variations.
During this phase, the CSP sends to the client, for each identity attributeai in theNoMatchingAttrset, the set
Synseti containing a set of alternative character combinations anda set of synonyms. The client verifies that
for each identity attributeai, there is an intersection betweenSynseti andAttrSet. If this is the case attributeai
is removed fromNoMatchingAttr. Otherwise, ifNoMatchingAttris not empty, the second phase is performed.
During the second phase the client sendsCertSet, the set of its proof-of-identity certificates to the CSP. Thus,
in the second phase of the matching process the CSP tries to match the concepts corresponding to the identity
attributes the client is not able to provide with concepts from the ontologies of the CSPs which have issued the
proof-of-identity certificates to the client. Only matchesthat have a confidence scores greater than a predefined
threshold, set by the CSP, are selected. The greater the threshold, the greater is the similarity between the two
concepts and thus higher is the probability that the match iscorrect. If the CSP is able to find mappings for its
concepts, it then verifies by using the information in the proof-of-identity certificates that each matching concept
matches a client’s attributeAttr. If this check fails, the CSP terminates the interaction with the client.

3.2 Multi-factor authentication

Once the client receivesMatch, the set of matched identity attributes from the CSP, it retrieves from the Registrar
or from itsRegCert, that is a certificate repository local to the client, the commitmentsMi satisfying the matches
and the corresponding signaturesσi. The client aggregates the commitments by computingM =

∏n
i=1 Mi =

gm1+m2+...+mihr1+r2+...+ri and the signatures intoσ =
∏n

i=1 σi, whereσi is the Registrar ’s signature on
the committed valueMi = gmi hri . According to the ZPK protocol, the client randomly picksy, s in [1, ..q],
computesd = gyhs (modp), and sendsd, σ, M , Mi , 1 ≤ i ≤ t, to the CSP. The CSP sends back a random
challengee ∈ [1, .., q] to the client. Then the client computesu = y+em (modq) andv = s+er (modq) where
m = m1 + . . . mt andr = r1 + . . . rt and sendsu andv to the CSP. The CSP accepts the aggregated zero
knowledge proof ifguhv = dce. If this is the case, the CSP then checks thatσ =

∏n
i=1 σi. If also the aggregate

signature verification succeeds, the CSP releases a proof-of-identity certificate to the client. The certificate states
that client’s identity attributes in theMatchset are mapped onto concepts of the CSP ontology and that the client
has successfully proved the knowledge of those attributes.The CSP sends the proof-of-identity certificate to the
client and stores a copy of the certificate in its local repository CertRep. The proof-of-identity certificate can be
can be provided to another CSP to allow the client to prove theknowledge of an attribute without performing
the aggregate ZKP protocol. The CSP that receives the certificate has just to verify the validity of the certificate.

Example 1: Assume that a user Alice submits a request to herHospital Web portalto access her test results.
TheHospital Web portalretrieves the test results through theLaboratory service. TheLaboratory servicehas to
verify the identity of Alice in order to provide her test results. The identity verification policy of theLaboratory
servicerequires Alice to provideMedical Assurance, Social Security NumberandPatient ID identity attributes.
Alice provides the aggregated proof of the required identity attributes to theHospital Web portalwhich forwards
them to theLaboratory service. TheLaboratory servicethen verifies by carrying out an aggregate ZPK protocol
with Alice that she owns the required attributes and releases a proof-of-identity certificate. Such certificate
asserts Alice is the owner of theMedical Assurance, Social Security NumberandPatientID identity attributes
she has presented. The next time Alice would like to access her test results throughHospital Web portalportal
she will present the proof-of-identity certificate to theHospital Web portalwhich will forward the certificate to
theLaboratory service. TheLaboratory servicewill verify the validity of Alice’s certificate and return the test
results to theHospital Web portalwhich will display the results to Alice.

24

Figure 1: System architecture

4 System architecture and Implementation

In this section we discuss the system architecture that supports our multi-factor identity attributes authentication
for cloud services. The architecture consists of four main components: the Registrar, the Service Provider,
the User, and the Heterogeneity Management Service. The Registrar component manages the client’s identity
records and provide functions for retrieving the public parameters required by the AgZKPK protocol. The User
component consists of three main modules: the ZKP Commitment Generator, the ZKP Proof Calculator, and
the Vocabulary Conflicts Handler. The ZKP Commitment Generator provides the functions for computing the
Pedersen commitments of identity attributes; the ZKP ProofCalculator generates the AgZKPK to be provided to
CSPs, the Vocabulary Conflicts Handler module checks if there are client identity attributes names that matches
the Synsets sent by the Service Provider component and manages the proof-of-identity certificates stored in a
local repository. The Service Provider is composed of four modules the Request Manager, the Mapping Path
Manager, the Certificate Issuer and the ZKP Verifier, and three repositories, one to store the mappings with other
service provider ontologies, one to store the sets of synonymns Synsets, and one to store identity verification
policies. The Request Manager component handles clients’srequests and asks clients the identity attributes
necessary for identity verification. The ZKP Verifier performs the AgZKPK verification. The Heterogeneity
Management Services provides several functions shared by all CSPs. It consists of two modules: Synset SetUp
and Ontology Manager. Synset SetUp returns the set of synonyms of a given term by querying a local thesaurus

25

Figure 2: AgZKPK Verification versus Creation

while Ontology Manager provides the functionalities to perform the mapping between two ontologies.
The Service Provider application has been developed in JAVA. It implements the identity attribute name

matching protocol using the Falcon-AO v0.7 [2, 3] ontology mapping API and WordNet 2.1 English Lexical
database [6]. The User application has been implemented in JSP while the Registrar has been implemented as
a JAVA servlet. Finally, we have used Oracle 10g DBMS to storeclients’ identity records, ontology mappings,
set of synonyms, session data, and mapping certificates.

5 Experimental Evaluation

We have performed several experiments to evaluate the AgZKPK protocol that characterizes our approach to
multi-factor identity verification and the identity attribute names matching process. We have carried out the
following experimental evaluations:

• we have measured the time taken by the Client to generate the aggregate ZKP by varying the number of
identity attributes being aggregated from 1 to 50;

• we have measured the time taken by the cloud service for aggregate ZKP verification execution time
varying the number of identity attributes being aggregatedfrom 1 to 50 (see Figure 2).

The execution time has been measured in CPU time (milliseconds). Moreover, for each test case we have
executed twenty trials, and the average over all the trial execution times has been computed. Figure 2 reports
the times to create an AgZKP and to verify it for varying values in the number of identity attributes being
aggregated. The execution time to generate the AgZKP (represented by the blue line in the graph) is almost
constant for increasing values in the number of identity attributes. The reason is that the creation of AgZKP
only requires a constant number of exponentiations. By contrast, the time that the component Web service takes
to perform identity attributes verification linearly increases with the number of identity attributes to be verified.
The reason is that during the verification the component Web service is required to multiply all the commitments
to verify the resulting aggregate signature.

6 Concluding Remarks

In this paper we have proposed an approach to the verificationof digital identity for cloud platforms. Our
approach uses efficient cryptographic protocols and matching techniques to address heterogeneous naming. We

26

plan to extend this work in several directions. The first direction is to investigate the delegation of identity
attributes from clients to CSPs. Delegation would allow a CSP, called the source CSP, to invoke the services of
another CSP, called the receiving CSP, by passing to it the identity attributes of the client. However the receiving
CSP must be able to verify such identity attributes in case itdoes not trust the source CSP. One possibility would
be to allow the receiving CSP to directly interact with the client; however the source CSP may not be willing to
allow the client to know the CSPs it uses for offering its services. Therefore protocols are needed able to address
three requirements: confidentiality of business relationsamong the various CSPs, user privacy, and strenght of
identity verification. The second direction is the investigation of unlinkability techniques. Our approach does not
require that the values of the identity attributes only usedfor identity verification be disclosed to the CSPs; also
our approach allows the user to use pseudonyms when interacting with the CSPs, if the CSP policies allow the
use of pseudonyms and the user is interested in preserving his/her anonymity. However, if multiple transactions
are carried out by the same user with the same CSP, this CSP candetermine that they are from the same user,
even if the CSP does not know who this user is nor the identity attributes of the user. Different CSPs may
also collude and determine a profile of the transactions carried out by the same user. Such information when
combined with other available information about the user may lead to disclosing the actual user identity or the
values of some of his/her identity attributes, thus leadingto privacy breaches. We plan to address this problem
by investigating techniques that maintain unlinkability among multiple transactions carried out by the same user
with the same or different CSPs.

7 Acknowledgments

This material is based in part upon work supported by the National Science Foundation under the ITR Grant No.
0428554 “The Design and Use of Digital Identities”, upon work supported by AFOSR grant A9550-08-1-0260,
and upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Information Infrastructure Protection (I3P) research program.
The I3P is managed by Dartmouth College. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the U.S. Department of Homeland Security, the I3P, or Dartmouth College.

References

[1] Bhargav-Spantzel, A., Squicciarini, A.C, Bertino, E.:Establishing and Protecting Digital Identity in Feder-
ation Systems. Journal of Computer Security, IOSPress, 14(3), pp. 269–300, (2006)

[2] Choi, N., Song, I. Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35, (3), pp. 34–41.

[3] Falcon, http://iws.seu.edu.cn/projects/matching/

[4] Y. Kalfoglou, and M. Schorlemmer. ”Ontology mapping: the state of the art.” The Knowledge Engineering
Review, 18(1), pp. 1–31, (2003).

[5] Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. Advances in
Cryptology, Proc. CRYPTO ’91, pp. 129–140, (1991).

[6] WordNet, http://wordnet.princeton.edu/

27

Towards a Scalable Enterprise Content Analytics Platform

Kevin Beyer Vuk Ercegovac Rajasekar Krishnamurthy Sriram Raghavan Jun Rao Frederick Reiss
Eugene J. Shekita David Simmen

Sandeep Tata Shivakumar Vaithyanathan Huaiyu Zhu

{kbeyer, vercego, rajase, rsriram, junrao, frreiss, shekita, simmen, stata, vaithyan, huaiyu}@us.ibm.com

IBM Almaden Research Center
650 Harry Road, San Jose
California, 95120, USA

Abstract

With the tremendous growth in the volume of semi-structuredand unstructured content within enterprises
(e.g., email archives, customer support databases, etc.),there is increasing interest in harnessing this
content to power search and business intelligence applications. Traditional enterprise infrastruture
or analytics is geared towards analytics on structured data(in support of OLAP-driven reporting and
analysis) and is not designed to meet the demands of large-scale compute-intensive analytics over semi-
structured content. At the IBM Almaden Research Center, we are developing an “enterprise content
analytics platform” that leverages the Hadoop map-reduce framework to support this emerging class of
analytic workloads. Two core components of this platform are SystemT, a high-performance rule-based
information extraction engine, and Jaql, a declarative language for expressing transformations over
semi-structured data. In this paper, we present our overallvision of the platform, describe how SystemT
and Jaql fit into this vision, and briefly describe some of the other components that are under active
development.

1 Introduction

As the volume of semi-structured and unstructured content within enterprises continues to grow, there is increas-
ing interest and commercial value in harnessing this content to power the next generation of search and business
intelligence applications. Some examples of enterprise repositories with valuable unstructured content include
email archives, call center transcripts, customer feedback databases, enterprise intranets, and collaboration and
document-management systems.

The use of content from such repositories for enterprise applications is predicated on the ability to perform
analytics. For example, transcripts of customer calls can yield valuable business insights in areas such as product
perception, customer sentiment, and customer support effectiveness. However, analytics is essential to extract
the appropriate information from the raw text of the transcripts and transform this information into a form

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

28

that can be consumed by BI analysis and reporting applications. As another example, increased legislation
around corporate data governance is requiring enterprisesto invest in applications for regulatory compliance
and legal discovery [5]. Such applications require advanced analytics (such as automatic recognition of persons,
organizations, addresses, etc.) to support search and retrieval over enormous email archives. Finally, as we
describe in Section 3, sophisticated analytics on intranetWeb pages is critical to effective search over complex
enterprise intranets.

Notice that in each of these applications, the common underlying theme is the need to perform analytics on
large amounts of unstructured content. For instance, emailarchives can range in size from a few tens to several
hundreds of terabytes, depending on the size of the company and the applicable regulations. Similarly, we know
of close to 100M distinct URLs within the IBM intranet, whichtranslates to approx. 3TB of plain HTML
content. Factoring in non-HTML content as well as the data stored in numerous enterprise content management
systems will result in a couple of orders of magnitude increase in size.

Traditional enterprise infrastructure for analytics (ETLengines, warehouses and marts, data cubes, etc.) is
geared towards OLAP-driven reporting over structured dataand is not designed to meet the demands of large-
scale analytics over unstructured content. To this end, at the IBM Almaden Research Center, we are developing
anenterprise content analytics platformto support muti-stage analytic workflows over large volumesof unstruc-
tured and semi-structured content. In building this platform, we are leveraging the tremendous innovation in the
industry around scale-out based data processing paradigms– in particular, the open source Hadoop implemen-
tation of the Map/Reduce framework pioneered by Google.

The design goals for our platform are motivated by the following two observations:

1. Compute intensive information extraction:A common aspect of analytics over unstructured content is the
need forinformation extraction– to identify and extract structured data (“annotations”) from text. For
example, in the ES2 intranet search application described in Section 3, several hundred patterns involving
regular expressions and dictionary matches are applied on the titles, URLs, and other features of intranet
Web pages to extract high quality annotations for a search index. In general, information extraction is a
compute intensive process involving several complex character-level operations such as tokenization and
pattern matching. The ability to support scalable information extraction over large content repositories is
a key design goal for our platform.

2. Dynamic and evolving workflows:Due to the inherent heterogeneous nature of text collections, analytic
workflows will need to continuously evolve over time to adaptto changes in the incoming content. For
instance, when documents in newer formats or languages are added to a content source, appropriate mod-
ifications to the analytic workflow will be needed to incorporate new parsers, introduce language-specific
tokenizers, and appropriately modify information extraction rule patterns. As a sample data point, the an-
alytic workflow that powers the ES2 intranet search application (cf. Section 3) has gone through hundreds
of changes to its processing workflow over the past year, in response to changes in the type and nature of
content being published to the IBM intranet.

In this paper, we present a high-level architecture of our platform and describe some of the components that
are currently under active development.

2 Overview of the Platform

The enterprise content analytics platform is designed to facilitate the specification and evaluation of complex
analytic data flows over massive volumes (terabytes to petabytes) of content from enterprise repositories. We
are developing new data processing tools for this purpose: SystemT [9] to extract information from content
and Jaql [8] to flexibly specify analysis workflows. Both tools are used declaratively to insulate the user from
optimization decisions needed for efficient and scalable processing.

29

Distributed File System
Distributed
Database

Distributed
Indexing

Development and Administrative Hub

Document-centric Analysis Abstraction Layer

Hadoop Map-Reduce Layer

Data Manipulation Language Information Extraction

JAQL System T

Distributed Storage

Ingest Export

Figure 1: Architecture

In addition to SystemT and Jaql, the content analytics platform includes the additional tools shown in Fig-
ure 1. Prior to analysis, content is ingested and written to distributed storage services. For example, the semantic
search application described in Section 3 uses Nutch [1], a distributed crawler based on Hadoop, to ingest data.
In addition, we plan to ingest data in enterprise content management systems like FileNet, Documentum, and
OpenText into the platform using special load APIs.

For scalable storage and processing, we have bootstrapped the content analytics platform using the Apache
Hadoop [9] project’s HDFS, a distributed file system, and map-reduce, a parallel programming framework pop-
ularized by Google [4]. Files provide the platform with scan-based access and map-reduce is used to implement
parallel aggregations and joins by re-partitioning data across a cluster. In Section 4, we describe our active
research and development efforts to extend the available storage services with a distributed database and index
as well as extend map-reduce to incorporate query processing techniques from the database literature.

Following analysis, the results are transformed and exported according to application requirements. For
example, a search application requires inverted indexes tobe built. For those search applications that further
expose structured information discovered during extraction, exporting to a relational database is appropriate.
For such cases, we plan to support customizable export toolsto accommodate varying application requirements.

While SystemT and Jaql are the core tools used for analysis tasks, we envision higher-level abstractions
and tooling to assist users in developing analytic workflows. For content analytics, adocumentis the unit of
analysis and therefore we are designing many of the operators (e.g., SystemT) to be document-centric. With
regard to tooling, we plan to build a set of services and GUI toassist with analytics development, evaluation,
and administration.

The current focus at the Almaden Research Center is on SystemT and Jaql. We now describe these in more
detail.

30

JAQL Function Wrapper

SystemT
Runtime

Input
Adapter

Output
Adapter

{
label: “http://www.ibm ...”,
text: “<html>\n<head> …”

}

{
label: “http://www.ibm ...”,
text: “<html>\n<head> …”
Person:

[
{ firstName: [10, 15],

lastName: [16, 25] },
…
{ firstName: [1042, 1045],

lastName: [1046, 1050] }
],

Hyperlink:
[

{ anchorText: [25, 33] },
…
{ anchorText: [990, 997] }

],
H1: …

}

Input Record Output Record

AQL SystemT
Optimizer

Compiled
Plan

Figure 2: SystemT invoked from Jaql

2.1 Information Extraction using SystemT

SystemT is a system for rule-based information extraction that has been under development at IBM Almaden
Research Center since 2006. SystemT is used to extract structured information from unstructured text, finding,
for example, project home pages in corporate intranet web pages or person-phone number relationships in email
messages. At the core of SystemT is a declarative rule language, AQL, for building extractors, and an optimizer
that compiles these extractors for an algebra-based execution engine.

SystemT scales to massive document corpora by extracting information from multiple documents in parallel.
The current version of the system supports two approaches toparallel scaleout: Direct embedding in a map-
reduce job, and parallel execution as part of a Jaql query.

The direct embedding scaleout approach encapsulates the SystemT engine in a single “map” stage of a
Hadoop map-reduce flow. The input to each mapper is a stream ofdocuments, and the output of the mapper
augments these documents with the structured information the system extracts from them. SystemT provides a
layer of input/output adapters that support variety of input and output formats.

SystemT can also use Jaql’s automatic parallelization to enable scalable information extraction (see Fig-
ure 2). SystemT’s Jaql integration code encapsulates the information extraction runtime as a Jaql function.
This function maps a record containing a document to an augmented record containing the document plus ex-
tracted structure. Jaql handles the mapping of the SystemT function call into a map-reduce framework, possibly
executing a SystemT annotator and several other operationsin a single map job.

2.2 Data Processing using Jaql

For flexibility during the ingestion, analysis, transformation, and exporting of data, we require a lightweight
description language that supports semi-structured data and is easy to extend with new operators as well as
sources and sinks of data. For this purpose, we are designingJaql, a general purpose data-flow language that
manipulates semi-structured information in the form of abstract JSON values.

JSON consists of atomic values like numbers and strings and two container types: arrays and records of
name-value pairs (sometimes called maps or hashes). The values in a container are arbitrary JSON values; for
example, arrays can have different types in each element andan element could itself be another array. The JSON

31

������� ������
		
���� ����� ��� ������ �� ����� � ������ �� ������������� !�"# $���%�&&������'(()"�*��� +,����� - .,/)����#"0�1 #�#��1� +��2����3 +3 4$����&�'5(6�78��� +,����&�)��0�8 9� +� : +(���0 ;������< +�3 ����&< =0��� +((>6����� !�"# $������?�������'((@

M

R

M M

R

A BCDE FG HIJKLE MNOPGQLRQE ST UV LRWXYZL [KJX \JL]WH T^_GBCDE `G HIJKLE MNabGQLRQE ScLVKd IZWCXLD QeWQ \JL T^_GBCDE bG HIJKLE MNf`GQLRQE S\JL IWZZLD CV WVD T^_GTg A BYLKHJVE S\JL^G QJQWZE `_GBYLKHJVE ScLVKd^G QJQWZE F_GTgh�8�� i�0=j0**�=��0�k l��8�� i8��#0�m����0�#k
m�8n����=� j*�#���

Figure 3: Jaql query compiled to map-reduce

model provides easy migration of data to and from most popular scripting languages like Javascript, Python,
Perl, and Ruby because these languages all directly supportdynamic arrays and records; other programming
languages also have support for these constructs in their standard libraries. Therefore, Jaql is easily extended
with operators written in most programming languages because JSON has a much lower impedance mismatch
than say XML, yet much richer than relational tables.

Jaql provides a framework for reading and writing data in custom formats that is used while ingesting
and exporting. We do not expect large volumes of JSON data to be stored on disk, but most data, like comma-
separated files (CSVs), relational tables, or XML have a natural interpretation as JSON values. Unlike traditional
database systems, Jaql processes data in its original format; the user is not required to load it into some internal
form before manipulating it.

Jaql provides support for common input/output formats likeCSVs, as well as many common operators in-
cluding: filtering, transforming, sorting, grouping, aggregating, joining, merging, distincting, expanding nested
data, and top-k. By composing these simple operators plus calls to custom operators into a rich data flow, the
user expresses complex analyses and transforms the data to produce the exported data. Jaql compiles an entire
flow of these operators into a graph of Map/Reduce jobs for Hadoop to process.

Figure 3 shows an example Jaql query which computes the number of times each person is mentioned in
a given document collection. Using SystemT to detect mentions of a person’s name, Jaql computes this count
using the standard operator palette and produces the outputin a JSON array.

3 Example Application: Semantic Search

One of the driving applications of the analytics platform atIBM is ES2, a semantic search engine for the en-
terprise. ES2 leverages the content analytics platform anduses sophisticated analytics along with an intelligent
index-building strategy to provide high-precision results for navigational queries [10]. ES2 uses Nutch [1] as its
ingest mechanism to crawl the pages on the IBM intranet. The pages crawled by Nutch are stored in HDFS and

32

are available for processing using System T and Jaql. In thissection, we briefly describe how System T and Jaql
form critical building blocks for the analytics in a system like ES2.

Analytics The analysis in ES2 consists of two distinct types: local analysis which processes a single document
at a time and global analysis which operates over the data extracted from the entire collection. The information
obtained from these analyses is used as an input in the indexing phase. Together, local and global analyses allow
us to reason about the document collection better and bring back significantly more precise results [10] than
would be possible using traditional IR strategies such astf-idf andPageRank[3].

In Local analysis each page is individually analyzed to extract clues that help decide whether that page is a
candidate navigational page. In ES2, four different local analysis algorithms namelyTitleHomePage, Personal-
HomePage, URLHomePage, AnchorHomeandNavLinkare used to extract certain features from the pages. These
algorithms use rules based on regular expression patterns,dictionaries, and information extraction tools [9] to
identify candidate navigational pages. For instance, using a regular expression like “\ A\ W*(.+)\s<Home>”
(Java regular expression syntax), thePersonalHomePagealgorithm can detect that a page with a title “G. J.
Chaitin’s Home” indicates that this is the home page of G. J. Chaitin. The algorithm outputs the name of a
feature (“Personal Home Page”) and associates a value with this feature (“G. J. Chaitin”). Readers interested in
more details about local analysis algorithms may refer to [10]. These analysis tasks are expressed using AQL
and are optimized and executed using SystemT.

Note that multiple pages in the collection may produce the same extracted feature during local analysis. Con-
sider the case where homepage authors use the same title for many of their webpages. Continuing the example
from the previous paragraph, “GJ Chaitin home page” is the title for many of the pages on GJ Chaitin’s website.
Local analysis for personal homepages considers all such pages to be candidates. ES2 uses global analysis to
determine an appropriate subset of pages as navigational and indexes them appropriately. [10] describes two
algorithms:site root analysisandanchor text analysis. In ES2, we express these algorithms using Jaql which
automatically compiles into map-reduce jobs that execute over the entire cluster.

Smart Indexing ES2 employs a collection of algorithms to intelligently generate variants of terms extracted
during local analysis and global analysis before insertingthe document in the index. Consider an example where
ES2 identifies a page as the home page of a person named “G J Chaitin” using local and global analysis. During
variant generation, a special set of rules is applied to suchperson names to enumerate other syntactic variants
(e.g., skipping middle initials, merging multiple initials, only listing the last name, etc.). By inserting such
variants into the index, ES2 can match the search term “GJ Chaitin” with the given page, despite the lack of
space between “G” and “J”. Note that generating variants by skipping white space, when applied to arbitrary
pieces of text, is likely to yield noisy search results. We only apply this approach to pages produced through a
specific analysis workflow – in this case one that uses resultsfrom PersonalHomePagelocal analysis andsite root
global analysis. Indexing is done in a distributed fashion by leveraging map-reduce. Jaql is used to transform
the outputs of different analytic tasks and produce appropriate search indexes over the extracted values. The
output from this workflow is typically a set of navigational indexes that are then copied over to a separate set of
machines to serve queries.

4 Future Challenges

While SystemT and Jaql constitute a majority of our current effort, we are also investigating other components
of the platform including the distributed runtime, distributed storage layer, and the user-interaction hub. We
broadly outline the challenges in these areas.

33

4.1 Enhancing Map-reduce Runtime

The map-reduce paradigm was popularized by the distributedsystem community. Compared with a database
system, map-reduce based data processing platforms have better support for fault-tolerance, elasticity, and load
balancing. However, many computations in the two systems are quite similar. We are investigating techniques
that bridge the gap between the two systems, by applying whatthe database community has learned over the last
three decades to map-reduce. One of our areas of focus is to improve join processing in map-reduce.

Although map-reduce was originally designed to process a single collection of data, many analytic applica-
tions require joining multiple data sources together. Hereis a straightforward way of mapping a join operation
into map-reduce: the map function iterates over the recordsfrom both input sources. For each record, it extracts
the join key as the output key, tags each record with the originating source, and saves it as the output value.
Records from both sources for a given join key are eventuallymerged together and fed to a reduce task. The
reduce function first separates the input records into two sets according to the tag, and then performs a cross-
product between records in those sets. This implementationis similar to a repartitioned sort-merge join in a
database system. This algorithm incurs a significant overhead since all input records have to be sorted and most
of them have to be sent across the network.

For a long time, the database community has been exploiting hash-based joins to avoid sorting and broad-
casting joins to avoid the communication overhead. Leveraging those ideas, an alternative approach is to do the
join in a map-only job. At the beginning of each map task, we load the smaller input source into a hash table.
The map function then iterates through records from the larger input source, and for each record, probes the hash
table to do the join. This approach avoids sorting and movingdata from the larger input source. Our experimen-
tal results show that it can reduce the time taken by the straightforward approach by up to 70%. As the smaller
input source gets larger, the map-only job becomes less efficient since more data has to be broadcasted to every
node. For certain applications, we find that semi-join techniques can be used to improve the performance further.
We are preparing a research paper to summarize those resultsin detail. We are also investigating techniques to
extend Jaql compiler to automatically select the best join strategy among the many available.

4.2 Distributed Content Database

Different phases of an analytics workflow tend to have different database requirements. For example, during
ingestion, new documents are incrementally inserted into the database. Then during analysis, documents are
often processed in batch mode as part of one or more map-reduce jobs. Finally, in applications like search,
users often want to interactively look at documents returned by search queries. A key question is whether one
content-oriented database is sufficient to satisfy all these requirements. With relational databases, it is common
to maintain at least two databases, one for warehouse applications and another for interactive applications. We
suspect that much the same will happen here. This is because content analytics tend to be very resource heavy,
making it difficult to support interactive applications on the same database without running into performance
problems.

Assuming separate content databases are maintained for analytics and interactive applications, then we think
it will be interesting to explore different database architectures. One architecture would be tuned for batch ana-
lytics, while the other would be tuned for interactive applications. Generally speaking, interactive applications
present a bigger design challenge in a distributed environment, especially if support for transactions are included.
This is because of the well known tension between availability and consistency [2]. In contrast, analytics appli-
cations tend to work on a stable collection of documents, where consistency and availability tradeoffs are not
an issue. Content-oriented databases without support for high-performance transactions like HBase [7] leverage
the underlying distributed filesystem.

34

4.3 Development and Administrative Hub

We plan to build a development and administrative hub that facilitates the formation of user communities and
management of resources on the platform. The hub would provide services for managing users (user services);
for launching, monitoring, and diagnosing content analytics jobs (job services); for uploading and cataloging
assets such as content analytic flows, data sources, data sinks, sandboxes, annotators, and user functions (direc-
tory services); and for performing miscellaneous tasks such as sandbox creation, load/unload of data to/from the
cluster, and collection of data distribution statistics used to optimize analytic flows (utility services).

Providing a design interface that allows workflows to be created iteratively, and interactively, in the context
of a ”sandbox” is one of the challenges being tackled. A sandbox includes representative cluster configuration
information, as well as representative samples from relevant data sources. We are also examining tools that
would assist in the collaborative development of analytic components.

5 Summary

With increasing interest from enterprises to harness the value in their structured and semi-structured content,
we believe that there is a rapidly emerging need for an enterprise content analytics platform. We identify two
key features that are needed from such a platform: 1) the ability to perform compute intensive information
extraction, and 2) build and maintain evolving workflows that process large amounts of data. We describe the
efforts underway at IBM’s Almaden Research Center to address these requirements by way of SystemT and
Jaql. In addition, we also laid out the broad challenges thatlay ahead in building a dynamic, scalable, high-
performance, and usable content analytics platform for enterprises.

References

[1] Apache Foundation. Nutch. http://lucene.apache.org/nutch/.

[2] Eric Brewer. Keynote speech: Towards robust distributed systems. InPODC, 2000.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.Computer
Networks and ISDN Systems, 30(1-7):107 – 117, 1998. Proceedings of the Seventh International World
Wide Web Conference.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifieddata processing on large clusters.Commun.
ACM, 51(1):107–113, 2008.

[5] Electronic Discovery. Electronic discovery. http://www.discoveryresources.org/.

[6] Apache Foundation. Hadoop. http://hadoop.apache.org/core/.

[7] Apache Foundation. Hbase. hadoop.apache.org/hbase.

[8] JAQL. Jaql. http://code.google.com/p/jaql/.

[9] Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, and Shivakumar Vaithyanathan.
An algebraic approach to rule-based information extraction. In ICDE, pages 933–942, 2008.

[10] Huaiyu Zhu, Sriram Raghavan, Shivakumar Vaithyanathan, and Alexander Löser. Navigating the intranet
with high precision. InWWW, pages 491–500, 2007.

35

Building a Cloud for Yahoo!

Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P.P.S. Narayan,
Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein,

Utkarsh Srivastava, and Raymie Stata

Yahoo! Inc.

Abstract

Yahoo! is building a set of scalable, highly-available datastorage and processing services, and de-
ploying them in a cloud model to make application development and ongoing maintenance significantly
easier. In this paper we discuss the vision and requirements, as well as the components that will go into
the cloud. We highlight the challenges and research questions that arise from trying to build a com-
prehensive web-scale cloud infrastructure, emphasizing data storage and processing capabilities. (The
Yahoo! cloud infrastructure also includes components for provisioning, virtualization, and edge content
delivery, but these aspects are only briefly touched on.)

1 Introduction

Every month, over half a billion different people check their email, post photos, chat with their friends, and
do a myriad other things on Yahoo! sites. We are constantly innovating by evolving these sites and building
new web sites, and even sites that start small may quickly become very popular. In addition to the websites
themselves, Yahoo! has built services (such as platforms for social networking) that cut across applications.
Sites have typically solved problems such as scaling, data partitioning and replication, data consistency, and
hardware provisioning individually.

In the cloud services model, all Yahoo! offerings should be built on top of cloud services, and only those
who build and run cloud services deal directly with machines. In moving to a cloud services model, we are
optimizing for human productivity (across development, quality assurance, and operations): it should take but a
few people to build and rapidly evolve a Web-scale application on top of the suite of horizontal cloud services. In
the end-state, the bulk of our effort should be on rapidly developing application logic; the heavy-lifting of scaling
and high-availability should be done in the cloud services layer, rather than at the application layer, as is done
today. Observe that while there are some parallels with the gains to be had by building and re-using common
software platforms, the cloud services approach goes an important step further: developers are insulated from
the details of provisioning servers, replicating data, recovering from failure, adding servers to support more load,
securing data, and all the other details of making a neat new application into a web-scale service that millions of
people can rely on.

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

36

In this paper, we describe the requirements, how the pieces of the cloud fit together, and the research chal-
lenges, especially in the areas of data storage and processing. We note that while Yahoo!’s cloud can be used to
support externally-facing cloud services, our first goal isto provide a common, managed, powerful infrastructure
for Yahoo! sites and services, i.e., to support internal developers. It is also our goal to open source as many com-
ponents of the cloud as possible. Some components (such as Hadoop) are already in open source. This would
allow others outside of Yahoo! to build their own cloud services, while contributing fixes and enhancements that
make the cloud more useful to Yahoo!

2 Requirements

Yahoo! has been providing several centrally managed data management services for years, and while these
services are not properly “cloud services” they have many ofthe characteristics. For example, our database
of user profiles is run as a central service. Accessing the user database requires only the proper permissions
and a client library, avoiding the need to set up and manage a separate user information repository for every
application. Experience with these “proto-cloud” services have helped inform the set of requirements we laid
out for our cloud:

Multitenancy We must be able to support many applications (tenants) on thesame hardware and software
infrastructure. These tenants must be able to share information but have their performance isolated from one
another, so that a big day for Yahoo! Mail does not result in a spike in response time for Yahoo! Messenger
users. Moreover, adding a new tenant should require little or no effort beyond ensuring that enough system
capacity has been provisioned for the new load.

Elasticity The cloud infrastructure is sized based on the estimates of tenant requirements, but these require-
ments are likely to change frequently. We must be able to quickly and gracefully respond to requests from
tenants for additional capacity, e.g., a growing site asks for additional storage and throughput.

Scalability We must be able to support very large databases, with very high request rates, at very low latency.
The system should be able to scale to take on new tenants or handle growing tenants without much effort beyond
adding more hardware. In particular, the system must be ableto automatically redistribute data to take advantage
of the new hardware.

Load and Tenant Balancing We must be able to move load between servers so that hardware resources do not
become overloaded. In particular, in a multi-tenant environment, we must be able to allocate one application’s
unused or underused resources to another to provide even faster absorption of load spikes. For example, if a
major event is doubling or quadrupling the load on one of our systems (as the 2008 Olympics did for Yahoo!
Sports and News), we must be able to quickly utilize spare capacity to support that extra load.

Availability The cloud must always be on. If a major component of the cloud experiences an outage, it will not
just be a single application that suffers but likely all of them. Although there may be server or network failures,
and even a whole datacenter may go offline, the cloud servicesmust continue to be available. In particular, the
cloud will be built out of commodity hardware, and we must be able to tolerate high failure rates.

Security A security breach of the cloud will impact all of the applications running on it; security is therefore
critical.

Operability The systems in the cloud must be easy to operate, so that a central team can manage them at scale.
Moreover, the interconnections between cloud systems mustalso be easy to operate.

37

Figure 1: Components of the Yahoo! data and processing cloud.

Metering We must be able to monitor the cloud usage of individual applications. This information is important
to make provisioning decisions. Moreover, the cloud will bepaid for by those applications that use it, so usage
data is required to properly apportion cost.

Global Yahoo! has users all over the world, and providing a good userexperience means locating services in
datacenters near our users. This means that cloud services must span continents, and deal with network delays,
partitions and bottlenecks as they replicate data and services to far flung users.

Simple APIs We must expose simple interfaces to ease the development cost of using the cloud, and avoid
exposing too many parameters that must be tuned in order for tenant applications to get good performance.

3 Overall architecture

Yahoo!’s cloud focuses on “horizontal services,” which arecommon platforms shared across a variety of appli-
cations. Those applications may themselves be “vertical services,” which are task-specific applications shared
by a variety of end users. For example, we view Yahoo! Mail as avertical service, while a blob store (such as
our MObStor system) is a horizontal service that can store attachments from Mail, photos from Flickr, movie
trailers from Yahoo! Movies, and so on.

Figure 1 shows a block diagram of the main services in our cloud. As the figure shows, there are three tiers
of services: core services; messaging; and edge services. While the bottom tier provides the heavy lifting for
server-side data management, the edge services help reducelatency and improve delivery to end users. These
edge services include edge caching of content as well as edge-aware routing of requests to the nearest server and
around failures. The messaging tier helps tie disparate services together. For example, updates to an operational
store may result in a cache invalidation, and the messaging tier carries the invalidation message to the cache.

The bottom tier of core services in Figure 1 is further subdivided into three groups of systems. Batch
processing systems manage CPU cycles on behalf of large parallel jobs. Specifically, we have deployed Hadoop,
an open source version of MapReduce [3], and its HDFS filesystem. Operational storage systems manage the
storage and querying of data on behalf of applications. Applications typically have two kinds of operational
data: structured records and unstructured blobs. In our infrastructure, structured data is managed by Sherpa

38

(also known as PNUTS [2]), while blobs are stored in MObStor.Provisioning systems manage the allocation
of servers for all of the other service components. One way toprovision servers is to deploy them as virtual
machines, and our provisioning framework includes the ability to deploy either to a VM or to a “bare” machine.

The horizontal services in our cloud provide platforms to store, process and effectively deliver data to users.
A typical vertical application will likely combine multiple horizontal services to satisfy all of its data needs. For
example, Flickr might store photos in MObStor and photo tagsin Sherpa, and use Hadoop to do offline analysis
to rank photos in order of popularity or “interestingness.”The computed ranks may then be stored back in
Sherpa to be used when responding to user requests. A key architecture question as we move forward deploying
the cloud is how much of this “glue” logic combining different cloud services should be a part of the cloud as
well.

In the rest of this article, we focus on the operational storage and batch computation components, and
examine these components in more detail.

4 Pieces of the cloud

4.1 Hadoop

Hadoop [1] is an open source implementation of the MapReduceparallel processing framework [3]. Hadoop
hides the details of parallel processing, including distributing data to processing nodes, restarting subtasks after
a failure, and collecting the results of the computation. This framework allows developers to write relatively
simple programs that focus on their computation problem, rather than on the nuts and bolts of parallelization.
Hadoop data is stored in the Hadoop File System (HDFS), an open source implementation of the Google File
System (GFS) [4].

In Hadoop, developers write their MapReduce program in Java, and divide the logic between two compu-
tation phases. In the Map phase, an input file is fed to a task, which produces a set of key-value pairs. For
example, we might want to count the frequency of words in a webcrawl; the map phase will parse the HTML
documents and output a record(term,1) for each occurrence of a term. In the Reduce phase, all records with
the same key are collected and fed to the same reduce process,which produces a final set of data values. In the
term frequency example, all of the occurrences of a given term (say, “cloud”) will be fed to the same reduce
task, which can count them as they arrive to produce the final count.

The Hadoop framework is optimized to run on lots of commodityservers. Both the MapReduce task pro-
cesses and the HDFS servers are horizontally scalable: adding more servers adds more compute and storage
capacity. Any of these servers may fail at any time. If a Map orReduce task fails, it can be restarted on another
live server. If an HDFS server fails, data is recovered from replicas on other HDFS servers. Because of the high
volume of inter-server data transfer necessary for MapReduce jobs, basic commodity networking is insufficient,
and extra switching resources must be provisioned to get high performance.

Although the programming paradigm of Hadoop is simple, it enables many complex programs to be written.
Hadoop jobs are used for data analysis (such as analyzing logs to find system problems), data transformation
(such as augmenting shopping listings with geographical information), detecting malicious activity (such as
detecting click fraud in streams of ad clicks) and a wide variety of other activities.

In fact, for many applications, the data transformation task is sufficiently complicated that the simple frame-
work of MapReduce can become a limitation. For these applications, the Pig language [5] can be a better frame-
work. Pig provides relational-style operators for processing data. Pig programs are compiled down to Hadoop
MapReduce jobs, and thus can take advantage of the scalability and fault tolerance of the Hadoop framework.

39

4.1.1 Hadoop in the cloud

Hadoop runs on a large cluster of centrally managed servers in the Yahoo! cloud. Although users can download
and run their own Hadoop instance (and often do for development purposes) it is significantly easier to run
Hadoop jobs on the centrally managed processing cluster. Infact, the convenience of storing and processing
data in the cloud means that much of the data in our cluster is Hadoop from birth to death: the data is stored
in HDFS at collection time, processed using MapReduce, and delivered to consumers without being stored in
another filesystem or database. Other applications find it more effective to transfer their data between Hadoop
and another cloud service. For example, a shopping application might receive a feed of items for sale and store
them in Sherpa. Then, the application can transfer large chunks of listings to Hadoop for processing (such as
geocoding or categorization), before being stored in Sherpa again to be served for web pages.

Hadoop is being used across Yahoo by multiple groups for projects such as response prediction for advertis-
ing, machine learned relevance for search, content optimization, spam reduction and others. The Yahoo! Search
Webmap is a Hadoop application that runs on a more than 10,000core Linux cluster and produces data that is
now used in every Yahoo! Web search query. This is the largestHadoop application in production, processing
over a trillion page links, with over 300 TB of compressed data. The results obtained were 33 percent faster
than the pre-Hadoop process on a similar cluster. This and a number of other production system deployments
in Yahoo! and other organizations demonstrate how Hadoop can handle truly Internet scale applications in a
cost-effective manner1.

4.2 MObStor

Almost every Yahoo! application uses mass storage to store large, unstructured data files. Examples include
Mail attachments, Flickr photos, restaurant reviews for Yahoo! Local, clips in Yahoo! Video, and so on. The
sheer number of files that must be stored means they are too cumbersome to store and organize on existing
storage systems; for example, while a SAN can provide enoughstorage, the simple filesystem interface layered
on top of a SAN is not expressive enough to manage so many files.Moreover, to provide a good user experience,
files should be stored near the users that will access them.

The goal of MObStor is to provide a scalable mass storage solution. The system is designed to be scalable
both in terms of total data stored, as well as the number of requests per second for that data. At its core, MObStor
is a middleware layer which virtualizes mass storage, allowing the underlying physical storage to be SAN, NAS,
shared nothing cluster filesystems, or some combination of these. MObStore also manages the replication of
data between storage clusters in geographically distributed datacenters. The application can specify fine-grained
replication policies, and the MObStor layer will replicatedata according to the policies.

Applications create collections of files, and each file is identified with a URL. This URL can be embedded
directly in a web page, enabling the user’s browser to retrieve files from the MObStore system directly, even if
the web page itself is generated by a separate HTTP or application server. URLs are also virtualized, so that
moving or recovering data on the back end filesystem does not break the URL. MObStor also provides services
for managing files, such as expiring old data or changing the permissions on a file.

4.2.1 MObStor in the cloud

As with the other cloud systems, MObStor is a centrally managed service. Storage capacity is pre-provisioned,
and new applications can quickly create new collections andbegin storing and serving data. Mobstor uses a flat
domain based access model. Applications are given a unique domain and can organize their data in any format
they choose. A separate metadata store provides filesystem-like semantics: users can create, list and delete files
through the REST interface.

1Thanks to Ajay Anand from the Hadoop team for these statistics.

40

Mobstor is optimized for serving data to internet users at Yahoo! scale. A key component of the architecture
is a caching layer that also supports streaming. This enables the system to offload hot objects to the caching
infrastructure, allowing the I/O subsystem to scale. Like other cloud services, Mobstor strives to locate data
close to users to reduce latency. However due to the cost of the underlying storage and the fact that users are less
sensitive to latency with large files, Mobstor does not have to support the same level of replication as the other
cloud services.

There are many Yahoo! applications currently using MObStor. Examples include:

• Display ads for the APT platform

• Tile images for Yahoo! Maps

• Files shared between Yahoo! Mail users

• Configuration files for some parts of the Yahoo! homepage

• Social network invites for the Yahoo! Open platform

Each of these use cases benefits from the ability to scalably store and replicate a large number of unstructured
objects and to serve them with low latency and high throughput.

4.3 Sherpa

The Sherpa system, also called PNUTS in previous publications [2, 6], presents a simplified relational data
model to the user. Data is organized into tables of records with attributes. In addition to typical data types,
“blob” is a valid data type, allowing arbitrary structures inside a record, but not necessarily large binary objects
like images or audio; MObStor is a more appropriate store forsuch data. We observe that blob fields, which are
manipulated entirely in application logic, are used extensively in practice. Schemas are flexible: new attributes
can be added at any time without halting query or update activity, and records are not required to have values for
all attributes. Sherpa allows applications to declare tables to be hashed or ordered, supporting both workloads
efficently.

The query language of Sherpa supports selection and projection from a single table. We designed our query
model to avoid operations (such as joins) which are simply too expensive in a massive scale system. While
restrictive compared to relational systems, our queries infact provide very flexible access that covers most of
the web workloads we encounter. The system is designed primarily for online serving workloads that consist
mostly of queries that read and write single records or smallgroups of records. Thus, we expect most scans to
be of just a few tens or hundreds of records, and optimize accordingly. Scans can specify predicates which are
evaluated at the server. Similarly, we provide a “multiget”operation which supports retrieving multiple records
(from one or more tables) in parallel by specifying a set of primary keys and an optional predicate, but again
expect that the number of records retrieved will be a few thousand at most.

While selections can be by primary key or specify a range, updates and deletes must specify the primary key.
Consider a social networking application: A user may updateher own record, resulting in access by primary
key. Another user may scan a set of friends in order by name, resulting in range access.

Data in Sherpa is replicated to globally distributed datacenters. This replication is done asynchronously:
updates are allowed to a given replica, and success is returned to the user before the update is propagated to
other replicas. To ensure the update is not lost, it is written to multiple disks on separate servers in the local
datacenter.

Asynchronously replicated data adds complexity for the developer. Sherpa provides a consistency model to
simplify the details of reading and writing possibly stale data, and to hide the details of which replica is being
accessed from the applciation.

41

4.3.1 Sherpa in the cloud

Sherpa is a hosted service, and the software and servers are managed by a central group. Applications that wish
to use Sherpa can develop against a single-server standalone instance. However, all production data is served
from cloud servers. This allows application developers to focus on their application logic, and leave the details
of designing, deploying and managing a data architecture toa specialized group. In order to support this hosted
model, the Sherpa operations group must provision enough capacity to support all the applications that will use
it. Currently, we work with customers to estimate their capacity needs and then pre-provision servers for their
use. We are moving to a model with extra servers in a “free pool,” and if an application’s load on Sherpa begins
to increase, we can automatically move servers from the freepool into active use for that application.

Sherpa is designed to work well with the other cloud services. For example, Hadoop can use Sherpa as
a data store instead of the native HDFS, allowing us to run MapReduce jobs over Sherpa data. We also have
implemented a bulk loader for Sherpa which runs in Hadoop, allowing us to transfer data from HDFS into a
Sherpa table. Similarly, Sherpa can be used as a record storefor other cloud services. As an example, MObStor
is investigating using Sherpa to store metadata about files.

5 Open questions

Many research questions have arisen as we build the cloud, both at the level of individual components and across
components. In this section, we discuss some key questions that span cloud components. Although many of our
cloud components are in production or nearing completion, these questions will have to be resolved in order for
the cloud to reach its full potential.

Interacting with the cloud How do users interact with the cloud? One possibility is thateach application
chooses individual cloud systems, and manages their interactions at the application level. For example, suppose
a user has a record-oriented data set and an OLTP workload. Hetherefore loads it into a Sherpa database.
Periodically, he does extensive OLAP work. At these times, he loads the data set from Sherpa to HDFS, and
runs Hadoop jobs.

However, one of the advantages of using the cloud is that it can provide seamless integration between mul-
tiple services. The job of the developer is easier if he does not have to explicitly manage data storage. For
applications that will use multiple services, a nicer abstraction may be that data is placed “in the cloud” and is
accessible to any service the application needs. In the above example, the data may be stored in Sherpa, but
when an OLAP job is submitted, the cloud software decides whether to move the data to HDFS or to run a
MapReduce job directly over Sherpa. This approach makes thecloud more complex, as it is an optimization
problem which must take into account the query workload as well as information about the current capabilities
and load on each of the services; the profile of future queriesfrom the same application; the load from other
services; and so on.

Another way we can make it easier for developers to use cloud services is to provide a common API for
the various services. For example, we may develop a query language which spans multiple services (e.g.,
some combination of Pig, SQL, and the simple Sherpa and MObStor access languages) which then compiles to
operations on individual services as well as actions to movedata between them. If we hide many of the data
placement and service selection decisions behind a declarative query language, we may not always make the
best decisions without at least some input from the developer. We will likely need a mechanism for profiling the
performance of the system, so that developers can readily identify which components are becoming a bottleneck.
Such a mechanism will need to monitor an entire application as it interacts across multiple cloude services. In
addition, a hint mechanism will be needed which allows the application to guide data placement and allocation
decisions based on observations of the bottlenecks.

42

Quality of service A key question for any shared infrastructure is how we can isolate the performance of
different applications. Applications will place variableload on the cloud, and a spike in one application’s
workload will affect other applications sharing the same hardware. One approach to this problem is to place
quotas on applications’ resource usage. This approach is too inflexible, since spare resources cannot be used to
absorb load spike beyond an application’s quota. We could also use some version of weighted fair sharing (like
that used in networking systems), which allows spare resources to be allocated to needy applications. However,
the infrastructure needed to monitor and dynamically allocate resources is complex. A third approach is to
have a small number (e.g. two) of application classes. “Gold” applications can use as many resources as they
like, while “bronze” applications are served by the remaining resources in a best effort manner. This moves
resource allocation decisions into the hands of the business people, who must carefully choose just a few gold
applications. Whatever approach we use will have to effectively enforce QoS for an application, even as it
crosses over between Sherpa, Hadoop and MObStor, and other components of the cloud.

Other open issues There are several other issues which we are investigating:
• Automating operations- Our central operations group will be managing many servers, many different

services, and many applications. Tools and processes whichautomate things like failover and resource
allocation will make their jobs significantly easier.

• Growth- Applications which start small can grow to become quite large. Although our cloud services are
designed to scale elastically, we must investigate how wellthey tolerate growth of one, two or more orders
of magnitude.

• Privacy - Each system in the cloud has its own data model and thus its own model of enforcing privacy
for that data. When data starts moving between systems, we must ensure that the change to a different
data model does not cause a privacy breach. Moreover, we mustensure that multi-tenant applications can
only see each other’s data if doing so does not violate the user’s privacy.

• Capacity management- It is difficult to know how much hardware to dedicate to the cloud to meet the
anticipated load. Even if one resource (e.g. CPU) is plentiful, another resource (e.g. in-memory cache
space) may be scarce. Similarly, a shift in the load, such as amove from sequential to random record
access, can create a new bottleneck in a previously plentiful resource. We need to develop effective and
comprehensive models for planning the capacity needs of thecloud.

6 Conclusion

We believe that the Yahoo! cloud will be a key to both lower costs and increased innovation. The Cloud
Computing and Data Infrastructure division has the charterto develop cloud services such as Hadoop, MObStor
and Sherpa, make them elastic, robust and reliable, and integrate them into a comprehensive cloud infrastructure.
Many cloud components are already adopted widely, and we areseeing further rapid growth on the horizon.

References
[1] Hadoop. hadoop.apache.org.
[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. PNUTS: Yahoo!s hosted data serving platform. InProc. VLDB, 2008.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. InOSDI, 2004.
[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google FileSystem. InProc. SOSP, 2003.
[5] C. Olston et al. Pig Latin: A not-so-foreign language fordata processing. InProc. SIGMOD, 2008.
[6] A. Silberstein et al. Efficient bulk insertion into a distributed ordered table. InProc. SIGMOD, 2008.

43

On the Varieties of Clouds for Data Intensive Computing

Robert L. Grossman
University of Illinois at Chicago

and Open Data Group

Yunhong Gu
University of Illinois at Chicago

Abstract

By a cloud we mean an infrastructure that provides resources or services over a network, often the
Internet, usually at the scale and with the reliability of a data center. We distinguish between clouds
that provide on-demand computing instances (such as Amazon’s EC2 service) and clouds that provide
on-demand computing capacity (such as provided by Hadoop).We give a quick overview of clouds and
then describe some open source clouds that provide on-demand computing capacity. We conclude with
some research questions.

1 Introduction

1.1 Types of Clouds

There is not yet a standard definition for cloud computing, but a good working definition is to say thatclouds
provide on demand resources or services over a network, often the Internet, usually at the scale and with the
reliability of a data center.

There are quite a few different types of clouds and again there is no standard way of characterizing the
different types of clouds. One way to distinguish differenttypes of clouds is to categorize the architecture model,
computing model, management model and payment model. We discuss each of these below. See Table 1.

1.2 Architectural Model

We begin with the architecture model. There are at least two different, but related, architectures for clouds:
the first architecture is designed to provide computinginstanceson demand, while the second architecture is
designed to provide computingcapacityon demand.

Amazon’s EC2 services [1] provides computing instances on demand and is an example of the first archi-
tectural model. A small EC2 computing instance costs $0.10 per hour and provides the approximate computing
power of 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor, with 1.7 GB memory, 160 GB of available disk
space and moderate I/O performance [1].

Google’s MapReduce provides computing capacity on demand and is an example of the second architectural
model for clouds. MapReduce was introduced by Google in the paper [8]. This paper describes a sorting
application that was run on a cluster containing approximately 1800 machines. Each machine had two 2 GHz
Intel Xeon processors, 4 GB memory, and two 160 GB IDE disks. The TeraSort benchmark [10] was coded

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

44

Model Variants
Architecture Model clouds that provide on-demand computing in-

stances; clouds that provide on-demand comput-
ing capacity

Programming Model Using queues to pass message; MapReduce over
storage clouds; UDFs over storage clouds; mes-
sage passing

Management Model private vs shared; internal vs hosted
Payment Model pay as you go; subscribe for a specified period of

time; buy

Table 1: Some different types of clouds.

using MapReduce, a parallel programming model which is described in more detail below. The goal of the
TeraSort benchmark is to sort1010 100-byte records, which is about 1 TB of data. The application required
about 891 seconds to complete [8] on this cluster.

The Eucalyptus system [19] is an open source cloud that provides on demand computing instances and shares
the same APIs as Amazon’s EC2 cloud. The Hadoop system is an open source cloud that implements a version
of MapReduce [16].

Notice that both types of clouds consist of loosely coupled commodity computers, but that the first archi-
tecture is designed to scale out by providing additional computing instances, while the second architecture is
designed to support data or compute intensive applicationsby scaling computing capacity. By scaling computing
capacity, we mean the ability to aggregate a large number of loosely coupled computers so that the aggregate
infrastructure can manage very large datasets, sustain very large aggregate input/output, and perform a very large
aggregate number of computing tasks.

1.3 Programming Model

Clouds that provide on-demand computing instances can support any computing model compatible with loosely
coupled clusters. For example, instances in an Amazon EC2 can communicate using web services [3], using
queues [2], or using message passing. It is important to notethough that the performance using message passing
on loosely coupled systems is much slower than message passing or tightly coupled clusters.

Clouds that provide on-demand computing capacity can also support any computing model compatible with
loosely coupled clusters. Programming using web services and message passing can be complicated though and
beginning with [8], a programming model called MapReduce has become the dominant programming model
used in clouds that provide on-demand computing capacity. MapReduce assume that many common program-
ming applications can be coded as processes that manipulatelarge datasets consisting of<key, value> pairs.
Map is a process that maps each<key, value> pair in the dataset into a new pair of<key′, value′>. Reduce is
a process that merges values with the same key. Although thisis a seemingly simple model, it has been used to
support a large number of data intensive applications, especially applications that must manipulate web related
data. MapReduce is described in more detail in Section 2.1 below.

Stream-based parallel programming models in which a User Defined Function (UDF) is applied to all the
data managed by the cloud have also proved to be quite useful [14].

45

1.4 Payment Model

Amazon popularized a cloud that provides on-demand computing instances with a “pay as you go” economic
model. By simply setting up a Amazon Web Services account that links to a credit card, one can set up a
computing instance, with attached storage and network connectivity and pay about 10 cents an hour for just
those hours that you actually use the resources.

Of course, you can also buy, set up, and run your own cloud. Alternately, you can make arrangements with
a third party to pay for the exclusive use of cloud resources for a specified period of time.

1.5 Management Model

The hardware for clouds can be by provided internally by an organization (internal clouds) or externally by a
third party (hosted clouds). A cloud may be restricted to a single organization or group (private clouds) or shared
by multiple groups or organizations (shared clouds). All combinations of these management options arise.

1.6 What’s New?

Local and remote loosely coupled clusters have been available for quite some time and there is a large amount
of middleware available for such clusters. Because of this,it is important to ask what is new with clouds.

The first thing that is new is the scale. Google and Yahoo have reported computing on clouds that contain
1000, 2000 and up to 10,000 loosely coupled computers. With Hadoop, datasets that are tens to hundreds of
terabytes can be managed easily, something that requires significant effort with a database.

The second thing that is new is the simplicity that clouds provide. For example, with just a credit card
and a browser connected to the Internet, you can use Amazon’sEC2, S3, and SQS to bring up 100 computing
instances, perform a computation, and return the results without any capital investment, without hiring a system
administrator, and without installing and mastering any complex middleware. Useful machine images containing
precisely the pre-installed software required can be invoked by simply referencing an Amazon Machine Image
identifier, such as ami-3c47a355.

As another example, with MapReduce, a new software engineercan be analyzing a 10 TB dataset of web
data on 100 nodes with less than a day of instruction by using simple, small MapReduce programs.

It is interesting to note that this style of cloud computing came from industry’s need for a simple to use, yet
powerful platform for high performance computing, not fromacademic research in high performance computing.

2 Clouds That Provide On-Demand Computing Capacity

2.1 Google’s Storage, Compute and Table Cloud Services

The basic architecture for clouds that provide on-demand computing capacity was articulated in a series of
Google technical reports. See Figure 1. A cloud storage service called the Google File System (GFS) was
described in [9]. GFS was designed to scale to clusters containing thousands of nodes and was optimized for
appending and for reading data.

For computing with data managed by GFS, a parallel programming framework for loosely coupled systems
called MapReduce was described in [8]. A good way to describeMapReduce is through an example: Assume
that nodei in a cloud stores web pagespi,1, pi,2, pi,3, . . ., pi,n. Assume also that web pagepi contains wordsw1,
w2, wij , A basic structure important in information retrieval is aninverted index, which is a data structure
consisting of a word followed by a list of web pages

(w1; p1,1, p2,1, p3,2, . . .)

46

cloud storage services

table-based data services
relational data services

app app

app app app app app app

app app

cloud compute services (MapReduce
& generalizations)

Figure 1: Clouds that provide on-demand computing capacityoften layer services as shown in the diagram.

(w2; p1,1, p1,2, p3,1, . . .)

(w3; p1,3, p2,2, p3,3, . . .)

with the properties:

1. The inverted index is sorted by the wordwj;

2. If a wordwj occurs in a web pagepi, then the web pagepi is on the list associated with the wordwj .

A mapping function processes each web page independently, on its local storage node, providing data paral-
lelism. The mapping function emits multiple<key, value> pairs (<keyword, pageid> in this example) as the
outputs. This is called the Map Phase.

A partition functionm(w), which given a wordw, assigns a machine labeled withm(w), is then used to
send the outputs to multiple common locations for further processing. This second step is usually called the
Shuffle Phase.

In the third step, the processorm(wi) sorts all the<key, value> pairs according to the key. (Note that
there may be multiple keys sent to the same node, i.e.,m(wi) = m(wj).) Pairs with same key (keyword in this
example) are then merged together to generate a portion of the inverted index<wi: px,y, . . .)>. This is called
the Reduce Phase.

To use MapReduce, a programmer simply defines the (input) Record Reader (for parsing), Map, Partition,
Sort (or Comparison), and Reduce functions and the infrastructure takes care of the rest.

Since many applications need access to rows and columns of data (not just bytes of data provided by the
GFS), a GFS-application called BigTable [5] that provides data services that scale to thousands of nodes was
developed. BigTable is optimized for appending data and forreading data. Instead of the ACID requirements of
traditional databases, BigTable choose an eventual consistency model.

2.2 Open Source Clouds That Provide On-Demand Computing Capacity

The Google’s GFS, MapReduce and BigTable are proprietary and not generally available. Hadoop [16] is an
Apache open source cloud that provides on-demand computingcapacity and that generally follows the design
described in the technical reports [9] and [8]. There is alsoan open source application called HBase that runs
over Hadoop and generally follows the BigTable design described in [8].

Sector is another open source system that provides on-demand computing capacity [18]. Sector was not
developed following the design described in the Google technical reports, but instead was designed to manage
and distribute large scientific datasets, especially over wide area high performance networks. One of the first

47

Design Decision Google’s GFS, MapRe-
duce, BigTable

Hadoop Sector

data management block-based file system block-based file system data partitioned into
files; native file system
used

communication TCP TCP UDP-Based Data Trans-
port (UDT) and SSL

programming model MapReduce MapReduce User defined functions,
MapReduce

replication strategy at the time of writing at the time of writing periodically
security not mentioned yes yes (HIPAA capable)
language C++ Java C++

Table 2: Some of the similarities and differences between Google’s GFS and MapReduce, Hadoop and Sector.

Sector applications was the distribution of the 10+ TB SloanDigital Sky Survey [15]. Sector is based upon a
network protocol called UDT that is designed to be fair and friendly to other flows (including TCP flows), but
to use all the otherwise available bandwidth in wide area high performance network [13].

The Hadoop Distributed File System (HDFS), like Google’s GFS, implements a block-based distributed file
system, which is a fairly complex undertaking. HDFS splits files to into large data blocks (usually 64MB each)
and replicates each block on several nodes (the default is touse three replicas). In contrast, Sector assumes
that the user has split a dataset into several files, with the size and number of files depending upon the number
of nodes available, the size of the dataset, and the anticipated access patterns. Although this imposes a small
burden on the user, the result is a much simpler design can be used for the underlying system.

On top of the Sector Distributed File System is a parallel programming framework that can invoke user
defined functions (UDFs) over the data managed by Sector. Three specific, but very important UDFs, are the
Map, Shuffle and Reduce UDFs described above, which are available in Sector.

Table 2 contains a summary of some of these similarities and differences.

2.3 Experimental Studies

In this section, we describe some experimental studies comparing the performance of Sector and Hadoop. The
experiments were performed on the Open Cloud Testbed, a testbed managed by the Open Cloud Consortium
[17]. The Open Cloud Testbed consists of four geographically distributed racks located in Chicago (two loca-
tions), San Diego and Baltimore and connected by 10 Gb/s networks. Each contains 30 Dell 1435 computers
with 4GB memory, 1TB disk, 2.0GHz dual-core AMD Opteron 2212, with 1 Gb/s network interface cards. Since
the tests were done, the current equipment in the Open Cloud Testbed has been upgraded and and additional sites
have been added.

Table 3 contains some experimental studies comparing Sector and Hadoop using the Terasort benchmark
[10]. The tests placed 10GB of data on each node. The tests were run on a single rack, two racks connected by
a Metropolitan Area Network in Chicago, three racks connected by a Wide Area Network, and four racks con-
nected by a Wide Area Network. In all cases, the networks provided 10 Gb/s of bandwidth. Notice that although
there is a penality incurred for the computing across geographhically distributed racks, it is not prohibitive. It is
about 20% when using Sector and about 64% when using Hadoop, when wide area high performance networks
are available.

Table 4 contains some experimental studies that were done using CreditStone [4], which is a benchmark
that can be used for testing clouds that provide on-demand computing capacity. CreditStone provides code that
generates synthetic events that are roughly modeled on credit card transactions and flags some of the transactions.

48

Number of
nodes

Sector Hadoop

WAN-2 (UIC, SL, UCSD, JHU) 118 3702 sec 1526 sec
WAN-1 (UIC, SL, UCSD) 88 3069 sec 1430 sec
MAN (UIC, SL) 58 2617 sec 1301 sec
LAN (UIC) 29 2252 sec 1265 sec

Table 3: The table shows the time required to complete the Terasort benchmark. The tests were run on the Open
Cloud Testbed. The time required to generate the data is excluded. The test used 10 GB of data per node. The
four racks on the testbed were connected by a 10 Gb/s network.

Locations Sector Hadoop # Events
1 location, 30 nodes,
LAN

36 min 126 min 15 billion

4 locations, 117 nodes,
WAN

71 min 189 min 58.5 billion

Table 4: Some experimental studies using the CreditStone benchmark comparing Hadoop and Sector run on the
Open Cloud Testbed. Hadoop was configured to use one replica for these experiments.

The benchmark requires that certain ratios of unflagged to flagged transactions be computed, a computation that
is quite straightforward to do using MapReduce, UDFs, or similar programming models.

3 Research Questions

In this section, we discuss several research questions.

1. In Section 2, we discussed two parallel programming models for clouds that provide on-demand comput-
ing capacity (MapReduce and invoking UDFs on dataset segments managed by a storage cloud), both of
which are more limited than parallel programming using message passing but which most programmers
find easier to use. A research question is to investigate other parallel programming models for these types
of clouds that cover a different class of applications but are also quite easy to use.

2. Most clouds today are designed to do the computation within one data center. A interesting research
question is to develop appropriate network protocols, architectures and middleware for wide area clouds
that span multiple data centers.

3. Another research question is to investigate how different clouds can interoperate; that is, how two different
clouds, perhaps managed by two different organizations, can share information.

4. A practical question is to develop standards and standards based architectures for cloud services for clouds
that provide on-demand computing capacity so, for example,alternate storage, compute, or table services
could be used in a cloud application.

References

[1] Amazon. Amazon Elastic Compute Cloud (amazon ec2). ams.amazon.com/ec2, 2008.

49

[2] Amazon. Amazon Seb Services Queue Service. Retrieved from http://aws.amazon.com/sqs, 2008.

[3] Amazon. Amazon Web Services Developer Connection. Retrieved from http://aws.amazon.com, 2008.

[4] Collin Bennett, Robert L Grossman, Jonathan Seidman, and Steve Vejcik. Creditstone: A benchmark for
clouds that provide on-demand capacity. to appear, 2008.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data.
In OSDI’06: Seventh Symposium on Operating System Design and Implementation, 2006.

[6] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, and Kunle
Olukotun. Map-reduce for machine learning on multicore. InNIPS, volume 19, 2007.

[7] Data Mining Group. Predictive Model Markup Language (pmml), version 3.2. http://www.dmg.org, 2008.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifieddata processing on large clusters. InOSDI’04:
Sixth Symposium on Operating System Design and Implementation, 2004.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. InSOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pages 29–43, New York, NY,
USA, 2003. ACM.

[10] Jim Gray. Sort benchmark home page. http://research.microsoft.com/barc/SortBenchmark/, 2008.

[11] Robert L Grossman and Yunhong Gu. Data mining using highperformance clouds: Experimental studies
using sector and sphere. InProceedings of The 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2008). ACM, 2008.

[12] Robert L Grossman, Mark Hornick, and Gregor Mayer. Datamining standards initiatives.Communications
of the ACM, 45(8):59–61, 2002.

[13] Yunhong Gu and Robert L Grossman. UDT: UDP-based data transfer for high-speed wide area networks.
Computer Networks, 51(7):1777—1799, 2007.

[14] Yunhong Gu and Robert L Grossman. Sector and sphere: Towards simplified storage and processing of
large scale distributed data.Philosophical Transactions of the Royal Society A, also arxiv:0809.1181,
2009.

[15] Yunhong Gu, Robert L Grossman, Alex Szalay, and Ani Thakar. Distributing the sloan digital sky survey
using udt and sector. InProceedings of e-Science 2006, 2006.

[16] Hadoop. Welcome to Hadoop! hadoop.apache.org/core/,2008.

[17] Open Cloud Consortium. http://www.opencloudconsortium.org, 2009.

[18] Sector. http://sector.sourceforge.net, 2008.

[19] Rich Wolski, Chris Grzegorczyk, and Dan Nurmi et. al. Eucalyptus. retrieved from
http://eucalyptus.cs.ucsb.edu/, 2008.

50

Optimizing Utility in Cloud Computing through Autonomic
Workload Execution

Norman W. Paton, Marcelo A. T. de Aragão, Kevin Lee, Alvaro A. A. Fernandes, Rizos Sakellariou
School of Computer Science, University of Manchester, U.K.

(norm,maragao,klee,rizos,alvaro)@cs.man.ac.uk

Abstract

Cloud computing provides services to potentially numerousremote users with diverse requirements. Al-
though predictable performance can be obtained through theprovision of carefully delimited services,
it is straightforward to identify applications in which a cloud might usefully host services that support
the composition of more primitive analysis services or the evaluation of complex data analysis requests.
In such settings, a service provider must manage complex andunpredictable workloads. This paper
describes how utility functions can be used to make explicitthe desirability of different workload evalu-
ation strategies, and how optimization can be used to selectbetween such alternatives. The approach is
illustrated for workloads consisting of workflows or queries.

1 Introduction

Cloud computing essentially provides services; shared computational resources execute potentially diverse re-
quests on behalf of users who may have widely differing expectations. In such a setting, someplace in the
architecture, decisions have to be made as to which requestsfrom which users are to be executed on which
computational resources, and when. From the perspective ofthe service provider, such decision making may be
eased through the provision of restrictive interfaces to cloud services, as discussed for cloud data services in the
Claremont Report on Database Research [1]:

Early cloud data services offer an API that is much more restricted than that of traditional database
systems, with a minimalist query language and limited consistency guarantees. This pushes more
programming burden on developers, but allows cloud providers to build more predictable services,
and to offer service level agreements that would be hard to provide for a full-function SQL data
service. More work and experience will be needed on several fronts to explore the continuum
between today’s early cloud data services and more full-functioned but probably less predictable
alternatives.

This paper explores part of this space, by describing an approach to workload execution that is applicable
to different types of workload and that takes account of: (i)the properties of the workload; (ii) the nature of the
service level agreement associated with user tasks; and (iii) competition for the use of finite, shared resources.

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

51

A u t o n o m i c
W o r k l o a d
M a p p e r

E x e c u t i o n
S i t e

E x e c u t i o n
S i t e

r e q u e s t s

t a s k s

t a s k s

f e e d b a c k o n p r o g r e s s

f e e d b a c k o n p r o g r e s s

Figure 1: High level architecture.

In so doing, we explore functionalities that in future may besupported within a cloud, rather than by layering
rich application functionality over lean cloud interfaces, as in Brantneret al. [4].

Wherever services are provided, service users have expectations; Service Level Agreements (SLAs) make
explicit what expectations users can realistically place on a service provider [16], and may be associated with a
charging model that determines the remuneration associated with certain Qualities of Service (QoS). Whether
or not formal agreements are in place, decisions must nonetheless be made that influence the behaviors users
experience, and service providers must put in place mechanisms that make such decisions.

In this paper, we assume the abstract architecture illustrated in Figure 1, where anautonomic workload map-
per provides workload evaluation services implemented withina cloud. For the moment, we are non-specific
about the nature of these services, but in due course detailswill be provided about support for workloads con-
sisting of collections of queries or workflows. Theautonomic workload mapperadaptively assigns tasks in the
workload to execution sites. Given some objective, such as to minimize total execution times or, more gener-
ally, to optimize for some QoS target (whether these objectives are imposed by an SLA or not), the autonomic
workload mapper must determine which tasks to assign to eachof the available execution sites, revising the as-
signment during workload execution on the basis of feedbackon the overall progress of the submitted requests.

In this paper, we investigate the use ofutility functions[9] to make explicit the desirability of the state of a
system at a point in time. In essence, a utility function mapseach possible state of a system to a common scale;
the scale may represent response times, numbers of QoS goalsmet, income based on some charging model
for the requests, etc. In this setting, it is the goal of theautonomic workload mapperto explore the space of
alternative mappings with a view to maximizing utility as measured by the utility function. We propose that
utility functions, combined with optimization algorithmsthat seek to maximize utility for a workload given
certain resources, may provide an effective paradigm for managing workload execution in cloud computing.

The remainder of this paper is structured as follows. Section 2 describes a methodology for developing
utility based autonomic workload execution. Sections 3 and4 describe the application of the methodology to
workloads consisting of sets of workflows and queries, respectively. Section 5 presents some conclusions.

2 Utility Driven Workload Execution

When a utility-based approach is adopted, the following steps are followed by designers; instantiations of each
of these steps are detailed for workloads consisting of workflows and queries in Sections 3 and 4, respectively.

Utility Property Selection: Identify the property that it would be desirable to maximize– useful utility mea-

52

sures may be cast in terms of response time, number of QoS targets met, profit, etc.

Utility Function Definition: Define a functionUtility(w, a) that computes the utility of an assignmenta of
tasks to execution sites for a workloadw expressed in terms of the chosen property – for workload map-
ping, such a function can be expected to include expressionsover variablesve that describe the environ-
ment and the assignmenta that characterizes the mapping for the components ofw from abstract requests
to tasks executing on specific execution sites.

Cost Model Development: Develop a cost model that predicts the performance of the workload given the in-
formation about the environmentve and assignmenta, taking into account the costs associated with adap-
tations.

Representation Design:Design a representation for the assignmenta of workload components to computa-
tional resources, where adaptations to the assignment can be cast as modifications to this representation.
For example, if a workload consists of a collection of tasks,then an assignmenta of tasks to sites may be
represented as a vectorv where each elementvi represents taski, and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: Select an optimization algorithm that, given values forve, searches the
space of possible assignmentsa with a view to maximizing the utility function; one benefit ofthe utility-
based approach is that standard optimization algorithms can be used to explore the space of alternative
mappings. Note that one benefit of the methodology is that it decouples the problem of meeting certain
objectives under certain constraints into a modeling problem (i.e., to come up with a utility function) and
an optimization problem (where standard mathematical techniques can be used).

Control Loop Implementation: Implement an autonomic controller [8] that:monitors the progress of the
workload and/or properties of the environment of relevanceto the utility function;analysesthe monitored
information to identify possible problems or opportunities for adaptation;plansan alternative workload
execution strategy, by seeking to maximizeUtility(w, a) in the context of the monitored values forve;
andupdatesthe workload execution strategy where planning has identified an assignment that is predicted
to increase utility.

Several researchers have reported the use of utility functions in autonomic computing, typically to support
systems management tasks (e.g. [19, 3]); to the best of our understanding this is the first attempt to provide a
methodology for the use of utility functions for adaptive workload execution.

3 Autonomic Workflow Execution

A cloud may host computational services in a specific domain;for example, the CARMEN e-Science cloud
provides a collection of data and analysis services for neuroscience, and applications are constructed using
workflow enactment engines hosted within the cloud [20]. In such a setting, autonomic workflow execution
must determine how best to map workflows to the resources provided by the cloud.

3.1 Problem Statement

A workloadw consists of a set of workflow instancesi, each of which consists of a collection of tasks,i.tasks,
and is evaluated through an allocation of tasks to a set of execution sites. The role of the autonomic workload
mapper is to adaptively assign the tasks to specific sites.

53

3.2 Methodology Application

The methodology from Section 2 can be applied in this exampleas follows.

Utility Property Selection: Two utility properties are considered here, namelyresponse timeand profit. In
practice, a single utility function is used by an autonomic workload mapper, but alternatives are shown
here to illustrate how the approach can be applied to addressdifferent system goals.

Utility Function Definition: A utility function is defined for each of the properties underconsideration. For
response timewe have:

UtilityRT
w (w, a) = 1/(Σi∈wP RTw(i, ai))

where,w is the set of workflows,a is a set of assignments for the workflows instancesi in w, ai is the
assignment for workflow instancei, andP RTw estimates the predicted response time of the workflow for
the given assignment.

For profit we have:

UtilityP rofit
w (w, a) = Σi∈w(Income(i, ai) − EvaluationCost(i, ai))

whereIncome estimates the income that will be received as a result of evaluatingi using allocationai,
andEvaluationCost(w, a) estimates the financial cost of the resources used to evaluate i. In this utility
function, we assume that income is generated by evaluating workflows within a response time target, but
that anEvaluationCost is incurred for the use of the resources to evaluate the workflows. As the income
depends on the number of QoS targets met, which in turn depends on reponse time, the definition of
Income is defined in terms ofP RTw. In cloud computing, the evaluation cost could reflect the fact that
at times of low demand all requests can be evaluated using (inexpensive) resources within the cloud, but
that at times of high demand it may be necessary to purchase (expensive) cycles from another cloud in
order to meet QoS targets.

Cost Model Development: The cost model must implementP RTw(i, ai); the predicted response time of a
workflow depends on the predicted execution times of each of the tasks on their assigned execution site,
the time taken to move data between execution sites, the other assignments of workflows inw, etc. The
description of a complete cost model is beyond the scope of this paper, but cost models for workflows
have been widely studied (e.g. [12, 18, 21]).

Representation Design:For each workflow instancei ∈ w, the assignment of the tasksi.tasks can be rep-
resented by a vectorv where each elementvi represents taski, and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: The optimization algorithm seeks to maximizeUtility(w, a) by exploring
the space of alternative assignmentsa. As the assignments are represented as collections of categorical
variables, each representing the assignment of a task to a specific execution site, an optimization algorithm
must be chosen for searching such discrete spaces (e.g. [2]).

Control Loop Implementation: In autonomic workflow management [13], there is a requirement to halt an
existing workflow, record information on the results produced to date, deploy the revised workflow in
such a way that it can make use of results produced to date, andcontinue with the evaluation.

54

In practice, the utility functions described above prioritize different behaviors, and effective optimization
can be expected to yield results that reflect those priorities. For example,UtilityRT

w (w, a) will always seek
the fastest available solution, even if this involves the use of costly computational resources. As a result,
UtilityP rofit

w (w, a) will typically yield response times that are slower than those obtained byUtilityRT
w (w, a),

as it will only use expensive resources when these are predicted to give net benefits when considered together
with the income they make possible. A detailed description of utility-based workflow execution in computa-
tional grids, including an experimental comparison of behaviors exhibited by different utility functions, is given
by Leeet al. [12].

4 Autonomic Query Workload Execution

Early cloud data services are typically associated with fairly restrictive data access models with a view to en-
abling predictable behaviors, and do not provide full queryevaluation [1]. However, more comprehensive data
access services could provide access either to arbitrary query evaluation capabilities or to parameterized queries,
thus giving rise to a requirement for query workload management, where collections of query evaluation re-
quests can be managed by [11]: (i) anadmission controller, which seeks to identify and disallow access to
potentially problematic requests; (ii) aquery scheduler, which determines when jobs are released from a queue
for execution; and (iii) anexecution controller, which determines the level of resource allocated to queries while
they are executing. In this paper we discuss how utility functions can be used to direct the behavior of anex-
ecution controller. In comparison with recent work on workload management, a utility-driven approach can
provide relatively fine-grained control over queries; for example, Krompasset al. [10] describe an execution
controller in which the actions carried out at query runtimeare job-level (i.e., reprioritize, kill and resubmit),
whereas here the optimization makes global decisions (taking into account all the queries in the workload) that
adaptively determine the resource allocations of individual queries on the basis of (fine-grained, collected per
query) progress and load data.

4.1 Problem Statement

A workloadw consists of a set of queriesq ∈ w, each of which are evaluated on a collection of execution sites,
potentially exploiting both partitioned and pipelined parallelism. Each query is associated with a distribution
policy dp(q), of the form[v1, v2, . . . , v|S|], where0 ≤ vi ≤ 1 and(Σ|S|

i=1vi) ∈ {0, 1} where|S| is the number of
available execution sites. If the sum ofvi yields1 then eachvi represents the fraction of the workload that is to
be evaluated on theith site using partitioned parallelism, and if the sum is0 this represents the suspension of the
plan. Wherevi is 0 for somei this represents the fact that execution sitei is not being used forq. The role of the
autonomic workload mapper in Figure 1 is to adaptively compute distribution policies for each of the queries in
the workload.

4.2 Methodology Application

The methodology from Section 2 can be applied in this exampleas follows.

Utility Property Selection: Two utility properties are considered here, namelyresponse timeandnumber of
QoS targets met. In the second case, we assume that each query is associated with a response time target.

Utility Function Definition: A utility function is defined for each of the properties underconsideration. For
response timewe have:

UtilityRT
q (w, dp) = (1/Σq∈wP RTq(q, dp(q)))

55

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Response Time

U
til

ity
Figure 2:QoSEstimate for a target response time of50.

where,w is the set of queries,dp is a distribution policy for the queriesq ∈ w, andP RTq estimates the
predicted response time of the query for the given distribution policy.

For quality of servicewe have:

UtilityQoS
q (w, a) = Σq∈wQoSEstimate(q, dp(q))

whereQoSEstimate(q, dp(q)) estimates the likelihood that the query will meet its QoS target using the
given distribution policy from its predicted response timeP RTq. In practice,QoSEstimate(q, dp(q))
can be modeled using a curve such as that illustrated in Figure 2, which gives a score near to1 for all
queries estimated to be significantly within the target response time, and a score near to0 for all queries
estimated to take significantly longer than their target response time [3].

Cost Model Development: The cost model must implementP RTq(q, dp(q)) for queries during their evalua-
tion, and can build on results on query progress monitors (e.g. [5, 7]).

Representation Design:For each queryq ∈ w, the distribution policy can be represented by a vectorv where
each elementvi represents the fraction of the work forq that is to be assigned to execution sitei.

Optimization Algorithm Selection: The optimization algorithm seeks to maximize the utility function by ex-
ploring the space of distribution policiesdp. As the assignments are represented as fractions, each repre-
senting the portion of the work to be assigned to a specific execution site, an optimization technique must
be chosen for searching such spaces (e.g., sequential quadratic programming [6]).

Control Loop Implementation: The implementation of the control loop must be able to suspend an evaluating
query, relocate operator state to reflect changes to the distribution policy, and continue evaluation using
the updated plan. A full description of such a protocol is provided in the paper on Flux [17].

As an example of the behaviors exhibited by workflow execution management techniques, we have experi-
mentally evaluated several such techniques using a simulator of a parallel query evaluation engine [15]. Figure
3 shows results for five different strategies:No Adapt, in which no runtime adaptation takes place;Adapt 1in
which workloads are managed using action based control strategies (i.e.if-then rules based on Flux [17]) that
seek to minimize response times by adapting whenever load imbalance is detected;Adapt 2in which utility
functions are used to minimize response times, as inUtilityRT

q ; Adapt 3in whichAdapt 2is applied only when
it is predicted that response time targets will be missed; and Adapt 4in which which utility functions are used
to maximize the number of response time targets met, as inUtilityQoS

q . In this experiment, four queries each
containing a single join are submitted at the same time to a cluster containing12 execution sites, where one

56

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

QoS tolerance

N
um

be
r

of
 q

ue
rie

s
m

ee
tin

g
Q

oS
 g

oa
l

 Number of QoS goals met

No Adapt
Adapt 1 (Action)
Adapt 2 (ActionQos)
Adapt 3 (Utility)
Adapt 4 (UtilityQoS)

Figure 3: Numbers of Quality of Service Targets met by adaptive techniques [15].

of the sites is subject to periodic interference from other jobs broadly half of the time. In the experiment, the
queries are associated with varying QoS targets (shown on the horizontal axis, with the more stringent targets to
the left), and the number of queries meeting their reponse time targets is illustrated on the vertical axis.

The following can be observed: (i) Where no runtime workloadexecution adaptation takes place, no queries
meet their QoS targets expressed in terms of response time. (ii) Queries managed byUtilityQoS

q continue
to meet (some) stringent QoS targets where the other methodsfail – this is because optimization selectively
discriminates against some queries where this is necessaryto enable others to meet their targets. (iii) Queries
managed byUtilityRT

q meet more QoS targets than the action based strategies because the optimizer considers
the combined costs or benefits of collections of adaptationsin a way that is not considered by the action-based
approaches. A broader and more detailed description of the approaches and associated experiments is provided
by Patonet al. [15]. For the purposes of this paper, we note that optimization based on a utility function that aims
to maximize the number of QoS targets met has been shown to out-perform action-based strategies and utility
based strategies that target different goals, thus illustrating how utility based techniques can target application
requirements.

5 Conclusion

This paper presents a utility-based approach for adaptive workload execution, and has illustrated its application
to workloads consisting of workflows or queries. Recent research that explicitly focuses on data intensive
cloud computing has addressed issues such as evaluation primitives (e.g. [14]) or the development of layered
architectures (e.g. [4]). However, results from many different parts of the database community may usefully be
revisited in the context of clouds; this paper considers workload management [11], and in particular the use of
utility functions for coordinating workload execution. Inthis setting, a utility-based approach has been shown
to be applicable to different types of workload, and utility-based techniques can be applied both to coordinate
adaptations at different granularities and to address context-specific optimization goals. These context-specific
goals allow utility functions to direct system behavior in away that reflects the requirements of the contracts or
SLAs that are likely to be prominent in cloud computing.

References

[1] R. Agrawal et al. The claremont report on database research. ACM SIGMOD Record, 37(3):9–19, 2008.

[2] C. Audet and J. E. Dennis. Mesh adaptive direct search algorithms for constrained optimization.SIAM J.
on Optimization, 17(1):188–217, 2006.

57

[3] M.N. Bennani and D.A. Menasce. Resource allocation for autonomic data centres using analytic perfor-
mance models. InProc. 2nd ICAC, pages 229–240. IEEE Press, 2005.

[4] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska. Building a database on s3. InSIGMOD
Conference, pages 251–264, 2008.

[5] S. Chaudhuri, V.R. Narasayya, and R. Ramamurthy. Estimating Progress of Long Running SQL Queries.
In Proc. SIGMOD, pages 803–814, 2004.

[6] R. Fletcher.Practical Methods of Optimization. John Wiley&Sons, 1987.

[7] A. Gounaris, N.W. Paton, A.A.A. Fernandes, and R. Sakellariou. Self-monitoring query execution for
adaptive query processing.Data Knowl. Eng., 51(3):325–348, 2004.

[8] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. IEEE Computer, 36(1):41–50, 2003.

[9] J.O. Kephart and R. Das. Achieving self-management via utility functions. IEEE Internet Computing,
11(1):40–48, 2007.

[10] S. Krompass, U. Dayal, H. A. Kuno, and A. Kemper. Dynamicworkload management for very large data
warehouses: Juggling feathers and bowling balls. InVLDB, pages 1105–1115, 2007.

[11] S. Krompass, A. Scholz, M.-Cezara Albutiu, H. A. Kuno, J. L. Wiener, U. Dayal, and A. Kemper. Quality
of service-enabled management of database workloads.IEEE Data Eng. Bull., 31(1):20–27, 2008.

[12] K. Lee, N.W. Paton, R. Sakellariou, and A.A.A. Fernandes. Utility Driven Adaptive Workflow Execution.
In Proc. 9th CCGrid. IEEE Press, 2009.

[13] K. Lee, R. Sakellariou, N.W. Paton, and A.A.A. Fernandes. Workflow Adaptation as an Autonomic Com-
puting Problem. InProc. 2nd Workshop on Workflows in Support of Large-Scale Science (WORKS 07),
Proc. of HPDC & Co-Located Workshops, pages 29–34. ACM Press, 2007.

[14] H. Liu and D. Orban. Gridbatch: Cloud computing for large-scale data-intensive batch applications. In
CCGRID, pages 295–305. IEEE Computer Society, 2008.

[15] N.W. Paton, Marcelo A. T. de Aragão, and A.A.A. Fernandes. Utility-driven adaptive query workload
execution. InSubmitted for Publication, 2009.

[16] R. Sakellariou and V. Yarmolenko. Job scheduling on thegrid: Towards sla-based scheduling. In
L. Grandinetti, editor,High Performance Computing and Grids in Action, pages 207–222. IOS, 2008.

[17] M.A. Shah, J.M. Hellerstein, S.Chandrasekaran, and M.J. Franklin. Flux: An adaptive partitioning operator
for continuous query systems. InProc. ICDE, pages 353–364. IEEE Press, 2003.

[18] P. Shivam, S. Babu, and J. S. Chase. Active and accelerated learning of cost models for optimizing scientific
applications. InVLDB, pages 535–546, 2006.

[19] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. Utility functions in autonomic systems. InProc. ICAC,
pages 70–77. IEEE Press, 2004.

[20] P. Watson, P. Lord, F. Gibson, P. Periorellis, and G. Pitsilis. Cloud Computing for e-Science with CAR-
MEN. In 2nd Iberian Grid Infrastructure Conference Proceedings, pages 3–14, 2008.

[21] M. Wieczorek, A. Hoheisel, and P. Prodan. Towards a general model of the multi-criteria workflow schedul-
ing on the grid.Future Generation Computer Systems, 25(3):237–256, 2009.

58

Implementation Issues of A Cloud Computing Platform

Bo Peng, Bin Cui and Xiaoming Li
Department of Computer Science and Technology, Peking University

{pb,bin.cui,lxm}@pku.edu.cn

Abstract

Cloud computing is Internet based system development in which large scalable computing resources
are provided “as a service” over the Internet to users. The concept of cloud computing incorporates
web infrastructure, software as a service (SaaS), Web 2.0 and other emerging technologies, and has
attracted more and more attention from industry and research community. In this paper, we describe our
experience and lessons learnt in construction of a cloud computing platform. Specifically, we design a
GFS compatible file system with variable chunk size to facilitate massive data processing, and introduce
some implementation enhancement on MapReduce to improve the system throughput. We also discuss
some practical issues for system implementation. In association of the China web archive (Web InfoMall)
which we have been accumulating since 2001 (now it contains over three billion Chinese web pages),
this paper presents our attempt to implement a platform for adomain specific cloud computing service,
with large scale web text mining as targeted application. And hopefully researchers besides our selves
will benefit from the cloud when it is ready.

1 Introduction

As more facets of work and personal life move online and the Internet becomes a platform for virtual human
society, a new paradigm of large-scale distributed computing has emerged. Web-based companies, such as
Google and Amazon, have built web infrastructure to deal with the internet-scale data storage and computation.
If we consider such infrastructure as a “virtual computer”,it demonstrates a possibility of new computing model,
i.e., centralize the data and computation on the “super computer” with unprecedented storage and computing
capability, which can be viewed as a simplest form of cloud computing.

More generally, the concept of cloud computing can incorporate various computer technologies, including
web infrastructure, Web 2.0 and many other emerging technologies. People may have different perspectives from
different views. For example, from the view of end-user, thecloud computing service moves the application
software and operation system from desktops to the cloud side, which makes users be able to plug-in anytime
from anywhere and utilize large scale storage and computingresources. On the other hand, the cloud computing
service provider may focus on how to distribute and schedulethe computer resources. Nevertheless, the storage
and computing on massive data are the key technologies for a cloud computing infrastructure.

Google has developed its infrastructure technologies for cloud computing in recent years, including Google
File System (GFS) [8], MapReduce [7] and Bigtable [6]. GFS isa scalable distributed file system, which

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

59

emphasizes fault tolerance since it is designed to run on economically scalable but inevitably unreliable (due
to its sheer scale) commodity hardware, and delivers high performance service to a large number of clients.
Bigtable is a distributed storage system based on GFS for structured data management. It provides a huge
three-dimensional mapping abstraction to applications, and has been successfully deployed in many Google
products. MapReduce is a programming model with associatedimplementation for massive data processing.
MapReduce provides an abstraction by defining a “mapper” anda “reducer”. The “mapper” is applied to every
input key/value pair to generate an arbitrary number of intermediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate key to generate output key/value pairs. MapReduce is an
easy-to-use programming model, and has sufficient expression capability to support many real world algorithms
and tasks. The MapReduce system can partition the input data, schedule the execution of program across a set
of machines, handle machine failures, and manage the inter-machine communication.

More recently, many similar systems have been developed. KosmosFS [3] is an open source GFS-Like
system, which supports strict POSIX interface. Hadoop [2] is an active Java open source project. With the
support from Yahoo, Hadoop has achieved great progress in these two years. It has been deployed in a large
system with 4,000 nodes and used in many large scale data processing tasks.

In Oct 2007, Google and IBM launched “cloud computing initiative” programs for universities to promote
the related teaching and research work on increasingly popular large-scale computing. Later in July 2008, HP,
Intel and Yahoo launched a similar initiative to promote anddevelop cloud computing research and education.
Such cloud computing projects can not only improve the parallel computing education, but also promote the
research work such as Internet-scale data management, processing and scientific computation. Inspired by this
trend and motivated by a need to upgrade our existing work, wehave implemented a practical web infrastructure
as cloud computing platform, which can be used to store largescale web data and provide high performance
processing capability. In the last decade, our research andsystem development focus is on Web search and Web
Mining, and we have developed and maintained two public web systems, i.e.,TianwangSearch Engine [4] and
Web Archive systemWeb infomall[1] as shown in Figure 1.

(a) Tianwang (b) Web infomall

Figure 1: Search engine and Chines web archive developed at SEWM group of PKU

During this period, we have accumulated more than 50 TB web data, built a PC cluster consisting of 100+
PCs, and designed various web application softwares such aswebpage text analysis and processing. With the
increase of data size and computation workload in the system, we found the cloud computing technology is a
promising approach to improve the scalability and productivity of the system for web services. Since 2007, we

60

started to design and develop our web infrastructure system, named “Tplatform”, including GFS-like file system
“TFS” [10] and MapReduce computing environment. We believeour practice of cloud computing platform
implementation could be a good reference for researchers orengineers who are interested in this area.

2 TPlatform: A Cloud Computing Platform

In this section, we briefly introduce the implementation andcomponents of our cloud computing platform,
named “Tplatform”. We first present the overview of the system, followed by the detailed system implementation
and some practical issues.

Figure 2: The System Framework of Tplatform

Fig 2 shows the overall system framework of the “Tplatform”,which consists of three layers, i.e., PC cluster,
infrastructure for cloud computing platform, and data processing application layer. The PC cluster layer provides
the hardware and storage devices for large scale data processing. The application layer provides the services to
users, where users can develop their own applications, suchas Web data analysis, language processing, cluster
and classification, etc. The second layer is the main focus ofour work, consisting of file system TFS, distributed
data storage mechanism BigTable, and MapReduce programming model. The implementation of BigTable is
similar to the approach presented in [6], and hence we omit detailed discussion here.

2.1 Implementation of File System

The file system is the key component of the system to support massive data storage and management. The
designed TFS is a scalable, distributed file system, and eachTFS cluster consists of a single master and multiple
chunk servers and can be accessed by multiple client.

61

2.1.1 TFS Architecture

In TFS, files are divided into variable-size chunks. Each chunk is identified by an immutable and globally unique
64 bit chunk handle assigned by the master at the time of chunkcreation. Chunk servers store the chunks on
the local disks and read/write chunk data specified by a chunkhandle and byte range. For the data reliability,
each chunk is replicated on multiple chunk servers. By default, we maintain three replicas in the system, though
users can designate different replication levels for different files.

The master maintains the metadata of file system, which includes the namespace, access control information,
the mapping from files to chunks, and the current locations ofchunks. It also controls system-wide activities
such as garbage collection of orphaned chunks, and chunk migration between chunk servers. Each chunk server
periodically communicates with the master in HeartBeat messages to report its state and retrieve the instructions.

TFS client module is associated with each application by integrating the file system API, which can commu-
nicate with the master and chunkservers to read or write dataon behalf of the application. Clients interact with
the master for metadata operations, but all data-bearing communication goes directly to the chunkservers.

The system is designed to minimize the master’s involvementin file accessing operations. We do not provide
the POSIX API. Besides providing the ordinary read and writeoperations, like GFS, we have also provided
an atomic record appending operation so that multiple clients can append concurrently to a file without extra
synchronization among them. In the system implementation,we observe that the record appending operation is
the key operation for system performance. We design our own system interaction mechanism which is different
from GFS and yields better record appending performance.

2.1.2 Variable Chunk Size

In GFS, a file is divided into fixed-size chunks (e.g., 64 MB). When a client uses record appending operation to
append data, the system checks whether appending the recordto the last chunk of a certain file may make the
chunk overflowed, i.e., exceed the maximum size. If so, it pads all the replica of the chunk to the maximum size,
and informs the client that the operation should be continued on the new chunk. (Record appending is restricted
to be at most one-fourth of the chunk size to keep worst case fragmentation at an acceptable level.) In case of
write failure, this approach may lead to duplicated recordsand incomplete records.

In our TFS design, the chunks of a file are allowed to have variable sizes. With the proposed system in-
teraction mechanism, this strategy makes the record appending operation more efficient. Padding data, record
fragments and record duplications are not necessary in our system. Although this approach brings some extra
cost, e.g., every data structure of chunk needs a chunk size attribute, the overall performance is significantly
improved, as the read and record appending operations are the dominating operations in our system and can
benefit from this design choice.

2.1.3 File Operations

We have designed different file operations for TFS, such as read, record append and write. Since we allow
variable chunk size in TFS, the operation strategy is different from that of GFS. Here we present the detailed
implementation of read operation to show the difference of our approach.

To read a file, the client exchanges messages with the master,gets the locations of chunks it wants to read
from, and then communicates with the chunk servers to retrieve the data. Since GFS uses the fixed chunk size,
the client just needs to translate the file name and byte offset into a chunk index within the file, and sends the
master a request containing the file name and chunk index. Themaster replies with the corresponding chunk
handle and locations of the replicas. The client then sends arequest to one of the replicas, most likely the closest
one. The request specifies the chunk handle and a byte range within that chunk. Further reads of the same chunk
do not require any more client-master interaction unless the cached information expires or the file is reopened.

62

In our TFS system, the story is different due to the variable chunk size strategy. The client can not translate
the byte offset into a chunk index directly. It has to know allthe sizes of chunks in the file before deciding which
chunk should be read. Our solution is quite straightforward, when a client opens a file using read mode, it gets
all the chunks’ information from the master, including chunk handle, chunk size and locations, and use these
information to get the proper chunk. Although this strategyis determined by the fact of variable chunk size,
its advantage is that the client only needs to communicate with the master once to read the whole file, which is
much efficient than GFS’ original design. The disadvantage is that when a client has opened a file for reading,
later appended data by other clients is invisible to this client. But we believe this problem is negligible, as the
majority of the files in web applications are typically created and appended once, and read by data processing
applications many times without modifications. If in any situation this problem becomes critical, it can be easily
overcome by set an expired timestamp for the chunks’ information and refresh it when invalid.

The TFS demonstrates our effort to build an infrastructure for large scale data processing. Although our
system has the similar assumptions and architectures as GFS, the key difference is that the chunk size is variable,
which makes our system able to adopt different system interactions for record appending operation. Our record
appending operation is based on chunk level, thus the aggregate record appending performance is no longer
restricted by the network bandwidth of the chunk servers that store the last chunk of the file. Our experimental
evaluation shows that our approach significantly improves the concurrent record appending performance for
single file by 25%. More results on TFS have been reported in [10]. We believe the design can apply to other
similar data processing infrastructures.

2.2 Implementation of MapReduce

MapReduce system is another major component of the cloud computing platform, and has attracted more and
more attentions recently [9, 7, 11]. The architecture of ourimplementation is similar to Hadoop [2], which is
a typical master-worker structure. There are three roles inthe system: Master, Worker and User. Master is the
central controller of the system, which is in charge of data partitioning, task scheduling, load balancing and fault
tolerance processing. Worker runs the concrete tasks of data processing and computation. There exist many
workers in the system, which fetch the tasks from Master, execute the tasks and communicate with each other
for data transfer. User is the client of the system, implements the Map and Reduce functions for computation
task, and controls the flow of computation.

2.2.1 Implementation Enhancement

We make three enhancements to improve the MapReduce performance in our system. First, we treat intermediate
data transfer as an independent task. Every computation task includes map and reduce subtasks. In a typical
implementation such as Hadoop, reduce task starts the intermediate data transfer, which fetches the data from
all the machines conducting map tasks. This is an uncontrollable all-to-all communication, which may incur
network congestion, and hence degrade the system performance. In our design, we split the transfer task from the
reduce task, and propose a “Data transfer module” to executeand schedule the data transfer task independently.
With appropriate scheduling algorithm, this method can reduce the probability of network congestion. Although
this approach may aggravate the workload of Master when the number of transfer tasks is large, this problem can
be alleviated by adjusting the granularity of transfer taskand integrating data transfer tasks with the same source
and target addresses. In practice, our new approach can significantly improve the data transfer performance.

Second, task scheduling is another concern on MapReduce system, which helps to commit resources be-
tween a variety of tasks and schedule the order of task execution. To optimize the system resource utility, we
adopt multi-level feedback queue scheduling algorithm in our design. Multiple queues are used to allocate the
concurrent tasks, and each of them is assigned with a certainpriority, which may vary for different tasks with
respect to the resources requested. Our algorithm can dynamically adjust the priority of running task, which

63

balances the system workload and improves the overall throughput.
The third improvement is on data serialization. In MapReduce framework, a computation task consists of

four steps: map, partition, group and reduce. The data is read in by map operation, intermediate data is gener-
ated and transferred in the system, and finally the results are exported by reduce operation. There exist frequent
data exchanges between memory and disk which are generally accomplished by data serialization. In our imple-
mentation of MapReduce system, we observed that the simple native data type is frequently used in many data
processing applications. Since memory buffer is widely used, most of the data already reside in the memory
before they are de-serialized into a new data object. In other words, we should avoid expensive de-serialization
operations which consume large volume of memory space and degrade the system performance. To alleviate
this problem, we define the data type for key and value as void*pointer. If we want to de-serialize the data
with native data type, a simple pointer assignment operation can replace the de-serialization operation, which
is much more efficient. With this optimization, we can also sort the data directly in the memory without data
de-serialization. This mechanism can significantly improve the MapReduce performance, although it introduces
some cost overhead for buffer management.

2.2.2 Performance Evaluation on MapReduce

Due to the lack of benchmark which can represent the typical applications, performance evaluation on MapRe-
duce system is not a trivial task. We first use PennySort as thesimple benchmark. The result shows that the
performance of intermediate data transfer in the shuffle phase is the bottle neck of the system, which actually
motivated us to optimize the data transfer module in MapReduce. Furthermore, we also explore a real applica-
tion for text mining, which gathers statistics of Chinese word frequency in webpages. We run the program on a
200GB Chinese Web collection. Map function analyzes the content of web page, and produces every individual
Chinese word as the key value. Reduce function sums up all aggregated values and exports the frequencies. In
our testbed with 18 nodes, the job was split into 3385 map tasks, 30 reduce tasks and 101550 data transfer tasks,
the whole job was successfully completed in about 10 hours, which is very efficient.

2.3 Practical Issues for System Implementation

The data storage and computation capability are the major factors of the cloud computing platform, which
determine how well the infrastructure can provide servicesto end users. We met some engineering and technical
problems during the system implementation. Here we discusssome practical issues in our work.

2.3.1 System Design Criteria

In the system design, our purpose is to develop a system whichis scalable, robust, high-performance and easy to
be maintained. However, some system design issues may be conflicted, which places us in a dilemma in many
cases. Generally, we take three major criteria into consideration for system design: 1) For a certain solution,
what is bottleneck of the procedure which may degenerate thesystem performance? 2) Which solution has better
scalability and flexibility for future change? 3) Since network bandwidth is the scarce resource of the system,
how to fully utilize the network resource in the implementation? In the following, we present an example to
show our considerations in the implementation.

In the MapReduce system, fault tolerance can be conducted byeither master or workers. Master takes the
role of global controller, maintains the information of thewhole system and can easily decide whether a failed
task should be rerun, and when/where to be rerun. Workers only keep local information, and take charge of
reporting the status of running tasks to Master. Our design combines the advantages of these two factors. The
workers can rerun a failed task for a certain number of times,and are even allowed to skip some bad data records
which cause the failure. This distributed strategy is more robust and scalable than centralized mechanism, i.e.,
only re-schedule failed tasks in the Master side.

64

2.3.2 Implementation of Inter-machine Communication

Since the implementation of cloud computing platform is based on the PC cluster, how to design the inter-
machine communication protocol is the key issue of programming in the distributed environment. The Remote
Procedure Call (RPC) middle ware is a popular paradigm for implementing the client-server model of distributed
computing, which is an inter-process communication technology that allows a computer program to cause a
subroutine or procedure to execute on another computer in a PC cluster without the programmer explicitly
coding the details for this remote interaction. In our system, all the services and heart-beat protocols are RPC
calls. We exploit Internet Communications Engine (ICE), which is an object-oriented middleware that provides
object-oriented RPC, to implement the RPC framework. Our approach performs very well under our system
scale and can support asynchronous communication model. The network communication performance of our
system with ICE is comparable to that of special asynchronous protocols with socket programming, which is
much more complicated for implementation.

2.3.3 System Debug and Diagnosis

Debug and Diagnosis in distributed environment is a big challenge for researchers and engineers. The overall
system consists of various processes distributed in network, and these processes communicate each other to
execute a complex task. Because of the concurrent communications in such system, many faults are generally
not easy to be located, and hence can hardly be debugged. Therefore, we record complete system log in our
system. In All the server and client sides, important software boundaries such as API and RPC interfaces are all
logged. For example, log for RPC messages can be used to checkintegrality of protocol, log for data transfer can
be used to validate the correctness of transfer. In addition, we record performance log for performance tuning.
In our MapReduce system, log in client side records the details of data read-in time, write-out time of all tasks,
time cost of sorting operation in reduce task, which are tuning factors of our system design.

In our work, the recorded log not only helps us diagnose the problems in the programs, but also helps
find the performance bottleneck of the system, and hence we can improve system implementation accordingly.
However, distributed debug and diagnosis are still low efficient and labor consuming. We expect better tools and
approaches to improve the effectiveness and efficiency of debug and diagnosis in large scale distributed system
implementation.

3 Conclusion

Based on our experience with Tplatform, we have discussed several practical issues in the implementation
of a cloud computing platform following Google model. It is observed that while GFS/MapReduce/BigTable
provides a great conceptual framework for the software coreof a cloud and Hadoop stands for the most popular
open source implementation, there are still many interesting implementation issues worth to explore. Three are
identified in this paper.

• The chunksize of a file in GFS can be variable instead of fixed. With careful implementation, this design
decision delivers better performance for read and append operations.

• The data transfer among participatory nodes in reduce stagecan be made ”schedulable” instead of ”un-
controlled”. The new mechanism provides opportunity for avoiding network congestions that degrade
performance.

• Data with native types can also be effectively serialized for data access in map and reduce functions, which
presumably improves performance in some cases.

65

While Tplatform as a whole is still in progress, namely the implementation of BigTable is on going, the
finished parts (TFS and MapReduce) are already useful. Several applications have shown the feasibility and
advantages of our new implementation approaches. The source code of Tplatform is available from [5].

Acknowledgment

This work was Supported by 973 Project No. 2007CB310902, IBM2008 SUR Grant for PKU, and National
Natural Science foundation of China under Grant No.60603045 and 60873063.

References

[1] China Web InfoMall. http://www.infomall.cn, 2008.

[2] The Hadoop Project. http://hadoop.apache.org/, 2008.

[3] The KosmosFS Project. http://kosmosfs.sourceforge.net/, 2008.

[4] Tianwang Search. http://e.pku.edu.cn, 2008.

[5] Source Code of Tplatform Implementation. http://net.pku.edu.cn/˜ webg/tplatform, 2009.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured data. InOSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation, pages 15–15, 2006.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. InOSDI ’04: Proceed-
ings of the 5th USENIX Symposium on Operating Systems Designand Implementation, pages 137–150,
2004.

[8] G. Sanjay, G. Howard, and L. Shun-Tak. The google file system. InProceedings of the 17th ACM Sympo-
sium on Operating Systems Principles, pages 29–43, 2003.

[9] H. Yang, A. Dasdan, R. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational data processing
on large clusters. InSIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1029–1040, 2007.

[10] Z. Yang, Q. Tu, K. Fan, L. Zhu, R. Chen, and B. Peng. Performance gain with variable chunk size in
gfs-like file systems. InJournal of Computational Information Systems, pages 1077–1084, 2008.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving mapreduce performance in
heterogeneous environments. InOSDI ’07: Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, pages 29–42, 2007.

66

Dataflow Processing and Optimization on Grid and Cloud
Infrastructures ∗

M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris,
P. Polydoras, E. Sitaridi, V. Stoumpos, Y. Ioannidis

Dept. of Informatics & Telecom, MaDgIK Lab, University of Athens, Hellas (Greece)
{mmt,gkakas,herald,g.papanikos,frank,p.polydoras,evas,stoumpos,yannis}@di.uoa.gr

http://madgik.di.uoa.gr/

Abstract

Complex on-demand data retrieval and processing is a characteristic of several applications and com-
bines the notions of querying & search, information filtering & retrieval, data transformation & analysis,
and other data manipulations. Such rich tasks are typicallyrepresented by data processing graphs, hav-
ing arbitrary data operators as nodes and their producer-consumer interactions as edges. Optimizing
and executing such graphs on top of distributed architectures is critical for the success of the corre-
sponding applications and presents several algorithmic and systemic challenges. This paper describes
a system under development that offers such functionality on top of Ad-hoc Clusters, Grids, or Clouds.
Operators may be user defined, so their algebraic and other properties as well as those of the data they
produce are specified in associated profiles. Optimization is based on these profiles, must satisfy a vari-
ety of objectives and constraints, and takes into account the particular characteristics of the underlying
architecture, mapping high-level dataflow semantics to flexible runtime structures. The paper highlights
the key components of the system and outlines the major directions of its development.

1 Introduction

Imagine you have developed an innovative web-based search service that you would like to offer to the world.
Cloud Computing enables you to host this service remotely and deal with scale variability: as your business
grows or shrinks, you can acquire or release Cloud resourceseasily and relatively inexpensively. On the other
hand, implementation and maintenance of data services thatare scalable and adaptable to such dynamic condi-
tions becomes a challenge. This is especially the case for data services that are compositions of other, possibly
third-party services (e.g., Google Search or Yahoo Image Search), where the former become data processing
graphs that use the latter as building blocks (nodes) and invoke them during their execution. Running services
under various quality-of-service (QoS) constraints that different customers may desire adds further complica-
tions. Handcrafting data processing graphs that implementsuch services correctly, make optimal use of the

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Partially supported by the European Commission under contracts INFRA-2007-212488, FP6-IST-027749, and FP6-IST-004260, for
the D4Science, Health-e-Child, and DILIGENT projects, respectively.

67

resources available, and satisfy all QoS and other constraints is a daunting task. Automatic dataflow optimiza-
tion and execution are critical for data services to be scalable and adaptable to the Cloud environment.

This is in analogy to query optimization and execution in traditional databases but with the following dif-
ferences: component services may represent arbitrary operations on data with unknown semantics, algebraic
properties, and performance characteristics, and are not restricted to come from a well-known fixed set of opera-
tors (e.g., those of relational algebra); optimality may besubject to QoS or other constraints and may be based on
multiple diverse relevant criteria, e.g., monetary cost ofresources, staleness of data, etc., and not just solely on
performance; the resources available for the execution of adata processing graph are flexible and reservable on
demand and are not fixed a-priori. These differences make dataflow optimization essentially a new challenging
problem; they also generate the need for run-time mechanisms that are not usually available.

This paper presentsADP (Athena Distributed Processing), a distributed dataflow processing system that at-
tempts to address the above challenges on top of Ad-Hoc Clusters (physical computer nodes connected with a
fast local or wide-area network), Grids [5], and Clouds [9],each time adapting itself to the particular character-
istics or constraints of the corresponding architecture. These architectures do not represent arbitrary unrelated
choices, but can be considered as distinct points in an evolutionary path. While an Ad-Hoc cluster simply pro-
vides raw compute power, the Grid additionally provides mechanisms for managing computational, storage, and
other resources in a synergistic way. When evolving from Grids to Clouds, additional resources are made avail-
able for lease, offering opportunities for more complex systemic scenarios, but also making service scalability,
and performance, and composability even more challenging.

The paper begins with the internal representations of ADP queries. It continues with the runtime system of
ADP, the stand-alone representations of operator properties, and the key features of its query optimization. It
concludes with the implementation status of ADP, a comparison with related work, and some future directions.

2 ADP Query Language Abstractions

User requests to ADP take the form of queries in some high-level declarative or visual language, not described
here. Internally, they are represented by equivalent queries in procedural languages at various abstraction levels:

Operator Graphs: These are the queries inADFL (Athena Data Flow Language), the main internal ADP
language. Their nodes are dataoperators and their (directed) edges are operator interactions in theform of
producing and consumingdataflows (or simplyflows). Operators encapsulate data processing algorithms and
may be custom-made by end users. Flows originate from operators, are transformed by operators, and are
delivered as results by the root operator of a query. A flow is afinite sequenceof records. ADP treats records as
abstract data containers during processing. Their properties (e.g., type name, type compatibility, keys, size) are
stored inrecord profiles and play an important role when establishing operator-to-(operator or end-user) flows.

Figure 1: The Query Operator Graph

Example: Suppose a user wants to search the Web for images of authors of IEEE and ACM papers. Figure 1
shows an ADFL query that corresponds to this need. The query is essentially a chain (composition) of operators:
First, there is a custom operator, AUTHORSEARCH, communicating with some particular external digital-
library service to retrieve author names, filtered to selectonly authors of IEEE and ACM papers. Then, the
standard operator UNIQUE eliminates duplicate author names. Next, the resulting flow of author names is sent
to another custom operator, IMAGESEARCH, which uses the names to identify corresponding images in an

68

external database. Finally, a face detection operator, FACEFILTER, is used to identify images that contain only
faces and forced to output only the best match (topk=”1”). Intext form, the query in Figure 1 is expressed as

FACEFILTER{topk=”1”} ON IMAGESEARCH ON UNIQUE ON AUTHORSEARCH{pub=”IEEE” or ”ACM” } �
Concrete Operator Graphs: These are similar to operator graphs but their nodes areconcrete operators,

i.e., software components that implement operators in a particular way and carry all necessary details for their
execution. The UNIQUE operator, for example, has to store all records (or record keys) seen so far; it may be
realized as two alternative Java implementations, one based on main memory (fast but limited by memory size)
and one based on external storage (slower but limited only bydisk size). Choosing among them becomes an
optimization decision, based for example, on expected input flow sizes.

Subject to its initialization, as part of its execution, a concrete operator may be contacting external services
to retrieve data from them. In that case, it must deal with allphysical, security, and semantic issues related to
such external communication. This is transparent, however, to the operator that consumes the flow resulting
from such external services: all sources of flows appear the same, independent of any external interactions.

Execution Plans: These are similar to concrete operator graphs, but their nodes are concrete operators that
have been allocated resources for execution and have all their initialization parameters set.

3 ADP Runtime Environment

Concrete operator graph queries are eventually evaluated by theART (ADP Run Time) subsystem, which has
two main software parts:Containers are responsible for supervising concrete operators and providing the nec-
essary execution context for them (memory resources, security credentials, communication mechanisms, etc.).
ResultSetsare point-to-point links to transport polymorphic recordsbetween concrete operators and implement
the query flows. While different manifestations of data are supported, e.g., native objects, byte-streams, or XML
content, ResultSets are type agnostic.

Containers are the units of resource allocation between ARTand the processing nodes of the underlying
distributed infrastructure. Based on the optimizer’s decisions, ART dynamically creates or destroys containers
to reflect changes in the system load. Thus, a complex query may be distributed across multiple containers
running on different computer systems, each container being responsible for one or more of the query’s concrete
operators and ResultSets. Likewise, based on the optimizer’s decisions, ResultSets control the mode of record
transportation, ranging from pipelining (totally synchronous producer/consumer operation) to store & forward
(full buffering of entire flow before making it available to the consumer).

Containers feature the same set of tools to support ADFL query evaluation but are implemented differently
depending on the characteristics of the underlying distributed infrastructure architecture, hiding all lower-level
architectural details and the corresponding technology diversity. Containers on Ad-Hoc clusters or Clouds, for
example, may simply be just processes, while on Grid, they may be Web Service containers. ResultSets may
utilize WebService transport (SOAP) on Grids, or simply TCPsockets on Ad-Hoc Clusters or Clouds. The
optimizer may try to minimize Cloud resource lease cost by shutting down some or not using several containers,
while this is not an issue in other architectures.

The runtime mechanisms provided for query execution have a major impact on application development
in that they liberate implementers from dealing with execution platform or data communication details. Note
that there is a particularly good match between Cloud architectures and certain characteristics of ADP: Cus-
tom operators within ADFL queries are an easy and attractiveway to use ad hoc third-party services (e.g.,
AUTHORSEARCH or FACEFILTER), which is an important featureof Clouds. More importantly, dynamic
acquisition and release of resources (containers and virtual machines) by ADP as a systemic response to load or
QoS requirements fits very well with the canonical Cloud business model; the presence of Service Level Agree-
ments (SLAs) that must be met requires such flexible resourceallocation, which in turn, calls for sophisticated
optimization of the kind ADP is designed to offer. The need for advanced optimization strategies is less marked

69

in other architectures, e.g., in Grid, where simple matching of operations to resources usually suffices.

4 Operator Profiles

Given the ad hoc nature of most ADP operators, no pertinent information about them is hardwired into the
system; instead it is all provided by users and stored inoperator profiles. Typically, for each level of internal
language abstraction, there is relevant information in an operator’s profile. Accordingly, ADP uses the profile
contents recursively to drive the corresponding stages of query optimization and execution. Below, we indicate
some fundamental properties that may be found in (or derivedfrom) an operator’s profile for each abstraction
level, emphasizing primarily those that generate equivalent alternatives that the optimizer must examine when
a query with that operator is considered. We avoid describing the precise structure/schema of the profile or the
language used to express some of its contents; instead, we use a stylized pseudo-language for easy exposition.

Operator Graphs: At this level, in addition to its signature (input/output flows with specific record profiles),
of great importance are algebraic equivalences that operators satisfy. These include typicalalgebraic transfor-
mations, e.g., associativity, commutativity, or distributivity,(de)compositions, i.e., operators being abstractions
of whole operator graphs that involve compositions, aggregations, and other interactions of more specific opera-
tors, andpartitions , i.e., operators being amenable to replication and parallel processing by each replica of part
of the original input, in conjunction with some pre- and post-processing operators.

Example: Consider the following information being known about the operators of Figure 1:

• Algebraic transformation - Filtered on multiple publishers, AUTHORSEARCH is equivalent to merging
the results of itself filtered on each one of them separately:
operator AUTHORSEARCH{pub=x or y} is MERGE on AUTHORSEARCH{pub=x} and AUTHORSEARCH{pub=y};

• Operator decomposition - Filtered on IEEE or ACM, AUTHORSEARCH is equivalent to another operator
that searches directly the IEEE or ACM Digital Libraries, respectively:
operator AUTHORSEARCH{pub=“IEEE”} is IEEESEARCH;
operator AUTHORSEARCH{pub=“ACM”} is ACMSEARCH;

• Operator partition - FACEFILTER is trivially parallelizable on its input, with operators SPLIT and MERGE
performing the necessary flow pre- and post-processing, before and after the parallel execution of an arbi-
trary (unspecified) number of FACEFILTER instances:
operator FACEFILTER is splitable with{pre-process = SPLIT ; post-process = MERGE}; �

Concrete Operator Graphs: At this level, capturing an operator’s available implementation(s) is the critical
information. In general, there may be multiple concrete operators implementing an operator, e.g., a low-memory
but expensive version and a high-memory but fast one; a multi-threaded version and a single-threaded one; or
two totally different but logically equivalent implementations of the same operator. For example, there may be a
standard UNIQUE implementation determining record equality based on the entire record, while an alternative
custom implementation may only look at a specific key record attribute. Also, IMAGESEARCH may have just
a multi-threaded implementation associated with it, but FACEFILTER may have both a single-threaded and a
multi-threaded one. All these concrete operators should berecorded in the corresponding operator’s profile.

Execution Plan: At this level, the profile of a concrete operator stores information about its multiple poten-
tial instantiations in a container, its initialization parameter values, and any constraints on resources it may use,
e.g., number of threads, size of memory, software licenses,input/output rates, communication channels, etc. It
also stores information about how the optimizer may evaluate a particular instantiation of the concrete opera-
tor. For example, the multi-threaded concrete operators for IMAGESEARCH and FACEFILTER have several
additional degrees of freedom at the execution plan level, as they can use multiple local CPUs and cores.

70

5 Query Optimization

Evaluation Parameters: Evaluation of query execution plans is at the heart of query optimization, regarding
both the objective function being optimized and any (QoS or other) constraints being satisfied. Depending on the
application, such evaluation may be based on a variety of parameters, e.g., monetary cost of resources or fresh-
ness of data, and not just solely as is traditional on performance metrics. Given the ad hoc nature of operators,
their profiles store mathematical formulas to describe suchparameters and any properties of their inputs and
outputs that are deemed relevant, e.g., image resolution for FACEFILTER cpu cost, or image database age for
IMAGESEARCH freshness. Consequently, for any parameter that may be important to the operators’ evalution,
statistics should be either maintained or obtained, for example, on the fly through some sampling. Similarly,
the mathematical formulas associated with the evaluation of an operator may be either explictly inserted into its
profile by some user or predicted based on some sample or priorexecutions of the operator. ADP is designed to
offer generic functionality for synthesizing appropriateformulas and propagating parameter values through the
operators of an execution plan to obtain its final evaluation.

Space of Alternatives: Transformation of an ADFL query to an execution plan that can generate the re-
quested results goes through several stages, corresponding to the levels of internal language abstractions, where
every alternative in one level has multiple alternative mappings to the next lower level according to the proper-
ties in the profiles of the operators involved. There are several operator graphs that are algebraicly equivalent to
the original query, each one mapping to several concrete operator graphs (based on the corresponding mappings
of its operators), each one mapping to several execution plans by instantiating containers and ResultSets and
assigning the instantiated concrete operators and flows of the concrete operator graph to them.

Example: The algebraic properties in the profiles of AUTHORSEARCH and FACEFILTER (assuming 3-
way parallelism for the latter) generate the operator graphindicated in Figure 2 as an alternative to Figure 1.
Instantiating an execution plan for that graph requires choosing concrete operators and then: container instantia-
tion - the set of containers available to the query are chosen, through dynamic release or acquisition of containers
and (virtual) hosts, or reuse of existing ones; concrete operator instantiation - all concrete operators are initial-
ized (e.g., the number of threads for the multi-threaded implementations of IMAGESEARCH and FACEFILTER
is set) and assigned to containers; flow instantiation - connected as inputs and outputs of concrete operators, the
endpoints of each flow are instantiated via technology-specific endpoint implementations of the ResultSet, fine-
tuned for the flow’s and connected operators’ needs. Figures2 and 3 indicate particular alternatives with respect
to these choices, at the level of the operator graph and the execution plan, respectively.�

Figure 2: Query Operator Graph after all operator transformations and assignments to containers

Optimization Stages: In principle, optimization could proceed in one giant step, examining all execution
plans that could answer the original query and choosing the one that is optimal and satisfies the required con-
straints. Alternatively, given the size of the alternatives’ space, optimization could proceed in multiple smaller
steps, each one operating at some level and making assumptions about the levels below. ADP optimization
currently proceeds in three distinct steps, correspondingexactly to the three language abstraction levels of ADP.

71

Figure 3: Query Execution Plan with explicit mapping of operators to containers on Cloud (virtual) hosts

The techniques developed for the first two steps are not discussed here due to space limitations.
Execution Plan Instantiation: Assignment of concrete operators to containers is currently modeled and im-

plemented in ADP as a constraint satisfaction problem (CSP)as follows: ConsiderN containersL1, L2, . . . , LN ,
each with a current resource capabilityCAP (Li), 1 ≤ i ≤ N , and a hostH(Li) where it resides. Let
NET CAP (Li, Lj), 1 ≤ i, j ≤ N be the network capacity (bandwidth) betweenH(Li) and H(Lj). Let
P1, P2, . . . , PM be the set of concrete operators present in the respective operator graph andDEMAND(Pi),
1 ≤ i ≤ M , be the resources that operatorPi requires. The CSP solved is to assign each concrete operatorto a
container (C(Pi) = L) so that a user-defined cost function (e.g.,

∑
1≤i,j≤M NET COST (Pi, Pj), network cost

between operators) is optimized subject to the constraints:

• container resource capability is not exhausted:
∑

C(Pi)=L DEMAND(Pi) ≤ CAP (L),

• internode bandwidth is not exhausted:
∑

C(Pi)=L, C(Pj)=L′ NET COST (Pi, Pj) ≤ NET CAP (L, L′).

The above problem can naturally be expanded to model more complex situations, e.g., taking into account oper-
ator gravity (preference for operators to be assigned to thesame container), or different optimization objectives.

In high-load conditions, we deploy an admission control algorithm to ensure optimal balancing of workload.
Before entering the CSP solution process, the optimizer broadcasts information on the concrete operator graph
and “asks” containers to declare which operators they can instantiate (if asked to do so). Containers monitor
these requests as well as the actual optimizer decisions anduse this information to restrict the number and type
of concrete operators they are willing to instantiate. Eachcontainer makes potentially a different decision, which
are all then used to restrict the space of possible CSP solutions. If the existing containers’ decisions do not allow
all concreted operators of a query to be instantiated so thatan execution plan may be obtained, then the query
is automatically resubmitted after a short time expecting greater container availability. If this is not the case,
additional containers are requested based on the number andtype of concrete operators that are unassigned.

The algorithm used by containers to restrict the amount and type of operators they are willing to instantiate
follows the lines of [7]. In critical load situations, it effectivelly diverts resources used by concrete operators that
are rarely requested to the ones that are frequently used. This is achieved using the following microeconomics-
inspired mechanism: Assuming thatC is the number of concrete operators, containers internallyhold a private
vector~p ∈ RC

+ of virtual concrete operator prices. These prices are neverdisclosed; they only provide to the
admission control algorithm the means to measure the contribution of a concrete operator to the performance
of the whole distributed system. As demand for a concrete operator increases/decreases, its respective prices
increase/decrease as well. Each container uses its privately held prices to periodically (everyt units of time)
select a vector~s ∈ NC of operators to admit. This vector is different for each container, represents the type and
number of operators admitted, and is the one that maximizes the virtual price (~s · ~p) of the admitted operators
under the resource constraints of each container. That is, each container solvesmax~s ~s · ~p so that~s is feasible,
i.e., the container has enough resources to instantiate allconreate operators in~s within t units of time.

72

6 Implementation Status

An initial implementation of ADP is in operation for a year now and is used by data mining and digital library
search applications. The ADFL language enables ad-hoc operators to be introduced, without the need to change
its parser. Operator profiles contain information such as the java classes implementing operators. ART uses
Axis-on-Tomcat Web Service containers, each one running onan Ad-Hoc cluster node or on the Grid. The
optimizer performs simple rewriting driven by operator profiles, changes the number of containers dynamically
based on current “load”, and decides how to assign concrete operators to containers, as described above. A
simulated annealing optimization engine is used to generate the execution plan, based on the concrete operator
graph. ResultSets have been implemented, attached to the producing operator, and communicating via TCP
sockets or SOAP messages to the consuming operators. Slotted Records model relational database table rows,
whereas XML Records provide additional structure. Finally, in addition to the default execution engine, there is
a second implementation based on BPEL (Business Process Execution Language), as well as a proof-of-concept
“standalone ADP” implementation, which is a single java executable including an ADFL parser, ART, a single
container, a library of operator implementations, and a ResultSet implementation.

7 Related Work

ADP provides both a testbed for validating research ideas ondistributed data processing and a core platform
for supporting several data-intensive distributed infrastructures. It has been influenced by lessons learned from
on-going work on data services in the areas of Digital Libraries, e-Health, Earth Sciences, etc., which all need a
scalable software layer that can perform compute-intensive data tasks easily, reliably, and with low application
complexity. The ADP concepts have been validated in the context of the DILIGENT [12], Health-e-Child
[14], and D4Science [13] projects, and form the heart of the gCube system’s information retrieval facilities
[15]. Although several core ADP concepts can be found elsewhere as well, integrating them in one system and
handling the resulting increased complexity does not appear common. ADP incorporates ideas from databases,
streams, distributed processing, and service compositionto address the relevant challenges and offer a flexible
system that can hide the complexities of its underlying architectural environment.

Typically, some middleware is used to execute user-defined code in distributed environments. In the Grid,
OGSA-DAI [2] formalizes access to and exchange of data. Paired up with OGSA-DQP [1], it also addresses
query optimisation and scheduling. The Condor / DAGMan / Stork set is a representative technology of the High
Performance Computing area. Its capacities for scheduling, monitoring and failure resilience render it a robust
and easily scalable mechanism for exploiting vast scientific infrastructures of (mostly) computational resources.
Furthermore, Pegasus [4] supports a higher lever of abstraction for both data and operations, and therefore offers
true optimization features, as opposed to simple matching of operators to a fixed set of containers.

ADP builds on top of these technologies and introduces ADFL to describe user-defined code in a seman-
tically, technologically and operationally domain agnostic manner. The definition of an Operator, and most
importantly the Operator Profile, is by itself a new challenge, since traditional database operations like query
re-writing, cost-estimation, completion times, selectivity, co-location capacities/requirements, etc., are not a-
priori defined or not known at all. Distributed databases do support custom operations on data via functions or
(extended) stored procedures and handle data exchange (i.e., flows) via efficient proprietary mechanisms, but
optimization is based on established assumptions of (distributed) relational databases.

The notion of processing multiple dataflows in ADFL is also common in the literature. In its more recent
form, Mashups (such as Yahoo! Pipes [16], Google Mashup Editor [10] and Microsoft Popfly [11]) carry out
content processing over well known sources (RSS, ATOM, HTTP). The visual languages in these systems serve
as a starting point for ADFL, which in addition, deals with alternative representations for Operator Profiles. In
(e-)Business integration, workflow languages such as WS-BPEL are used to express complex queries that call

73

for systems that support multiple execution granularities, planning, execution, and monitoring mechanisms, etc.
Compared to these systems, ADP is designed to offer a rich query rewriting alternatives in the query optimizer.
Finally, SawZall[8] and PigLatin [6] use a higher-lever query language that is executed on MapReduce [3]
systems that support massive parallelization and achieve failure resilience. However, the language model of the
MapReduce framework is somewhat restricted and restricts opportunities for optimization.

8 Conclusions and On-Going Work

We have given a high-level description of ADP, a distributeddataflow processing system under development,
which is designed to run on top of Ad-Hoc Clusters, Grids, andClouds, in an adaptive manner. It deals with
dataflow queries that involve user-defined operators, stores the operators’ properties in profiles, and uses those
to optimize queries at several levels. Optimization may be based on diverse optimality criteria and constraints
but currently focuses on the conventional cpu work parameters.

Work on ADP moves in several directions. These include expressive declarative languages on top of ADFL,
mechanisms to deal with operators that preserve state, and fine-grade security. On the optimization side, the
focus is on Cloud-related architectures, on refining dynamic resource acquisition and release, and on dealing
with complex constraints on these resources. Additionally, the role of execution risk in ADP operators is being
ivestigated, in scenarios where different plans are exposed to different execution risk profiles and users have
different attitudes towards risk (e.g., risk aversion).

References

[1] M. N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A.A. Fernandes, A. Gounaris, and J. Smith,
“Service-based Distributed Querying on the Grid,” inICSOC, 2003, pp. 467–482.

[2] M. Atkinson et al., “A new Architecture for OGSA-DAI,” inProceedings of the UK e-Science All Hands
Meeting 2005, September 2005.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on Large Clusters,”Commun. ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[4] E. Deelman et al., “Pegasus: Mapping Large Scale Workflows to Distributed Resources in Workflows in
e-Science,”Springer, 2006.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual Organiza-
tions,” International J. Supercomputer Applications, vol. 15, no. 3, 2001.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin: a Not-so-Foreign Language
for Data Processing,” inProc. 2008 ACM SIGMOD Conference on Management of Data, 2008, pp. 1099–
1110.

[7] F. Pentaris and Y. Ioannidis, “Autonomic Query Allocation Based on Microeconomics Principles,” inProc.
23rd Int’l Conf. on Data Engineering (ICDE), 2007, pp. 266–275.

[8] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the Data: Parallel Analysis with Sawzall,”
Sci. Program., vol. 13, no. 4, pp. 277–298, 2005.

[9] L. Vaguero and et al., “A Break in the Clouds: Towards a Cloud Definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, 1 2009.

[10] “Google Mashup Editor,” code.google.com/gme/.
[11] “Microsoft Popfly,” www.popfly.com.
[12] “Project DILIGENT,” 2004, www.diligentproject.org.
[13] “Project D4Science,” 2007, www.d4science.eu.
[14] “Project Health-e-Child,” www.health-e-child.org.
[15] “The gCube System,” www.gcube-system.org.
[16] “Yahoo! Pipes,” pipes.yahoo.com/pipes/.

74

An Indexing Framework for Efficient Retrieval on the Cloud ∗

Sai Wu
National University of Singapore

wusai@comp.nus.edu.sg

Kun-Lung Wu
IBM T. J. Watson Research Center

klwu@us.ibm.com

Abstract

The emergence of the Cloud system has simplified the deployment of large-scale distributed systems
for software vendors. The Cloud system provides a simple andunified interface between vendor and user,
allowing vendors to focus more on the software itself ratherthan the underlying framework. Existing
Cloud systems seek to improve performance by increasing parallelism. In this paper, we explore an
alternative solution, proposing an indexing framework forthe Cloud system based on the structured
overlay. Our indexing framework reduces the amount of data transferred inside the Cloud and facilitates
the deployment of database back-end applications.

1 Introduction

The emergence of the Cloud system has simplified the deployment of large-scale distributed systems for soft-
ware vendors. The Cloud system provides a simple and unified interface between vendor and user, allowing
vendors to focus more on the software itself rather than the underlying framework. Applications on the Cloud
include Software as a Service system [1] and Multi-tenant databases [2]. The Cloud system dynamically allo-
cates computational resources in response to customers’ resource reservation requests and in accordance with
customers’ predesigned quality of service.

The Cloud system is changing the software industry, with far-reaching impact. According to an estimation
from Merrill Lynch [3], by 2011, the Cloud computing market should reach $160 billion, including $95 billion
in business and $65 billion in online advertising. Due to thecommercial potential of the Cloud system, IT
companies are increasing their investments in Cloud research. Existing Cloud infrastructures include Amazon’s
Elastic Computing Cloud (EC2) [4], IBM’s Blue Cloud [5] and Google’s MapReduce [6].

As a new computing infrastructure, the Cloud system requires further work for its functionalities to be
enhanced. An area that draws most attention is data storage and retrieval. Current Cloud systems rely on
underlying Distributed File Systems (DFS) to manage data. Examples include Google’s GFS [8] and Hadoop’s
HDFS [9]. Given a query, the corresponding data are retrieved from the DFS and sent to a set of processing
nodes for parallel scanning. Through parallel processing,the Cloud system can handle data intensive application
efficiently. The challenges here lie in how to partition dataamong nodes and how to have nodes collaborate for
a specific job. To simplify implementation, current proposals employ a simple query processing strategy, e.g.,

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Partially supported by Singapore Ministry of Education (T2grant) for UTab project

75

User Interface and Libraries

Structured Overlay Supporting Range Queries

Global Index Layer

Node Node

Global Index

Local Index

Data Chunks

Global Index

Local Index

Data Chunks

Figure 1: Indexing Framework of the Cloud

parallel scanning the whole data set. Given enough processing nodes, even the simple strategy can provide good
performance. However, such an approach may only work in a dedicated system built for a specific purpose
of a single organization. For example, Google employs its MapReduce [6] to compute the pagerank of web
pages. In the system, nodes are dedicated to serving one organization. In contrast, in an open service Cloud
system, such as Amazon’s EC2, different clients deploy their own software products in the same Cloud system.
Processing nodes are shared among the clients. Data management becomes more complicated. Therefore,
instead of scanning, a more efficient data access service is required.

Following this direction, Aguilera et al.[7] proposed a fault-tolerant and scalable distributed B-tree for the
Cloud system. In their approach, nodes are classified into clients and servers. The client lazily replicates
all inner B+-tree nodes, and the servers synchronously maintain a B+-tree version table for validation. This
scheme incurs high memory overhead for the client machine byreplicating the inner nodes across the clients.
Moreover, it is not scalable when the updates follow skewed distribution, invoking more splitting and merging
on the inner nodes. In this paper, we examine the requirements for the Cloud systems and propose an indexing
framework based on our earlier work outlined in [10]. Firstly, this indexing framework supports all existing
index structures. Two commonly used indexes, hash index andB+-tree index, are employed as examples to
demonstrate the effectiveness of the framework. Secondly,processing nodes are organized in a structured P2P
(Peer-to-Peer) network. A portion of the local index is selected from each node and published based on the
overlay protocols. Consequently, we maintain a global index layer above the structured overlay. It effectively
reduces the index maintenance cost as well as the network traffic among processing nodes, resulting in dramatic
query performance improvement.

The rest of the paper is organized as follows: We present our indexing framework in the next section and
discuss the details of our indexing approach in Section 3. InSection 4, we focus on the adaptive indexing
approach. And some other implementation and research issues are introduced in section 5. Finally, we present
our preliminary experimental results in Section 6 and conclude the paper in Section 7.

2 System Architecture

Figure 1 illustrates our proposed indexing framework for the Cloud system. There are three layers in our design.
In the middle layer, thousands of processing nodes are maintained in the Cloud system to provide their compu-
tational resources to users. Users’ data are partitioned into some data chunks and these chunks are disseminated
to different nodes based on DFS protocols. Each node builds some local index for its data. Besides the local
index, each node shares parts of its storage for maintainingthe global index. The global index is a set of index
entries, selected from the local index and disseminated in the cluster. The middle layer needs to implement the
following interfaces:

Map(v)/Map(r) Map a value or data range into a remote node

GetLI(v)/GetLI(r) Given a value or data range, return the corresponding local index

GetGI(v)/GetGI(r) Given a value or data range, return the corresponding globalindex

InsertGI(I) Insert an index entry into the global index

76

All the methods exceptGetLI rely on theMap function. Given a value (hash based index) or a range (B+-tree
based index),Mapdefines how to locate a processing node responsible for the value or range. Its implementation
depends on the lower layer’s interface.

To provide an elegant interface for users, we apply the structured overlay to organize nodes and manage the
global index. In the lower layer, processing nodes are loosely connected in a structured overlay. After a new node
joins the Cloud, the node performs the join protocol of the overlay. Specifically, the node will accept a few other
nodes as its routing neighbors and notify others about its joining. This process is similar to the construction of a
P2P network. However, our system differs significantly fromthe P2P network. In the Cloud system, services are
administrated by the service provider, and nodes are added into the system to provide computational resources.
On joining the network, nodes must remain online unless the hardware fails. In contrast, in the P2P network, peer
nodes are fully autonomous and unstable. A peer joins the P2Pnetwork for its own purpose (e.g., to download
files or watch videos) and leaves the network on finishing its task. In our system, the P2P overlay is adopted
only for routing purposes. The interfaces exposed for the upper layers are:

lookup(v)/lookup(r) Given a value or a range, locate the responsible node

join Join the overlay network

leave Leave the overlay network

In principle, any structured overlays are applicable. However, to support B+-tree based index, range search is
required. Therefore, we adopt structured overlays that support range queries, such as CAN[11] and BATON[12].

In the upper layer, we provide a data access interface to the user’s applications based on the global index.
The user can select different data access methods for different queries. Scanning is suitable for the analysis of
large data sets while index-based access is more preferred for online queries.

3 Indexing Framework

In this section, we shall discuss the implementation issuesof the middle layer in the framework. Algorithm 1
shows the general idea of the indexing scheme. First, we apply an adaptive method to select some index values
(the adaptive approach will be discussed in the next section). For a specific index valuev, we retrieve its index
entry through theGetLI method. The index entry is a value record in the hash based index or a tree node in
the B+-tree based index. Then, we apply theMap function to locate a processing node and forward the index
entry to the node, where it will be added to the global index. Algorithm 2 shows the query processing algorithm
via the global index. The query is forwarded to the nodes returned by theMap function, where the query is
processed through the global index in parallel. As the algorithms show, theMap function plays an important
role in the index construction and retrieval. In this section, we discuss how to define a properMap function for
different types of indexes.

Algorithm 1 EstablishGlobalIndex(node n)
1: ValueSet S=getIndexValue()
2: for ∀v ∈ S do
3: I=GetLI(v)
4: publish I to Map(v)

5: end for

3.1 Hash Based Indexing

The hash index is used to support exact key-match queries. Suppose we use the hash functionhl to build the
local hash index. For an index valuev, we can simply define theMap function as:

Map(v)=lookup(hg (v))

77

Algorithm 2 SearchGlobalIndex(range r)
1: NodeSet N=Map(r)
2: for ∀n ∈ N do
3: I=n.GetGI(r)
4: process queries based on I

5: end for

wherehg is a global hash function for the Cloud system andlookup is the basic interface of the structured
overlay. In the structured overlay, for routing purpose, each node is responsible for a key space. For the hash
index, all nodes applyhg to generate a keyk for an index value. Given a key,lookupreturns the node responsible
for the key. Note thathg does not need to be equivalent to the hash functionhl as each node may build their
local hash index based on different hash functions.

3.2 B+-tree Based Indexing

The B+-tree based index is built for supporting range search. In anm-order B+-tree, all the internal nodes,
except the root node, may haved children, wherem ≤ d ≤ 2m. The leaf nodes keep the pointers to the disk
blocks of the stored keys. To define theMap function for the B+-tree index, a range is generated for each tree
node. Basically, B+-tree nodes can inherit a range from their parents. In Figure2, noded is nodea’s third child.
So its range is from the second key to the upper bound ofa, namely (35,45). The range ofa is from the lower
bound of the domain to the first key of its parent. Thus,a’s range is (0,45). Specifically, the range of the root
node is set to be the domain range.

12 35

5 8 12 22 26 30 35 35 40 45

a

(0,45)

b (0,12)

45 60 80r (0, 100)

c (12,35) d (35,45)

49 52 55
e

(45,60)

Figure 2: Node Range in B+-tree
After generating the range for a B+-tree noden, we define theMap function as:

Map(n)=lookup(range(n))

To support the above mapping relation, the underlying overlay must provide thelookup interface for a specific
range. In this case, only the structured overlays that support range search are applicable, such as BATON [12],
CAN [11] and P-Ring [13].

3.3 Multi-dimensional Indexing

A multi-dimensional index, such as the R-tree [14], is useful for spatial and multi-dimensional applications. In
the R-tree, each node is associated with a Minimal Boundary Rectangle (MBR), which is similar to the range
defined for the B+-tree node. Given an R-tree node, we need to define aMap function to locate the processing
node. Depending on the characteristics of the underlying overlays, we have two solutions:

If the underlying overlay, such as CAN [11], supports multi-dimensional routing, we can directly use its
lookupinterface. For an R-tree noden, theMap function is defined as:

Map(n)=lookup(getMBR(n))

However, most structured overlays have not been designed for supporting multi-dimensional data indexing. In
this case, the alternative solution is to map the multi-dimensional rectangle into a set of single dimensional

78

ranges. The space filling curve [15] is commonly used for thistask. Given a rectangleR, we can define a
function f based on the space filling curve, which mapsR to a range setS. Finally, theMap function returns
the corresponding node set:

Map(n)={lookup(r)|∀r ∈ S}

4 Index Tuning

The local index size is proportional to the data size. Therefore, we cannot publish all the local indexes into the
global index. In this section, we discuss the index tuning problem in the framework.

Algorithm 3 IndexTuning(node n)
1: IndexSet I=n.getAllIndexEntry()
2: for ∀e ∈ I do
3: if needSplit(e)then
4: IndexSet I’=getLowerLevelIndexEntry(e)
5: remove e and insert I’ into global index
6: else
7: if needMerge(e)then
8: IndexEntry e’=getUpperLevelIndexEntry(e)
9: remove e and its siblings; insert e’ into global index

10: end if
11: end if

12: end for

Algorithm 3 shows the general strategy of index tuning. If anindex entry needs to be split due to the high
benefit for query processing, we replace the index entry withits lower level index entries. In contrast, if it needs
to be merged with its siblings, we remove all the corresponding index entries and insert their upper layer entry.
In this way, we dynamically expand and collapse the local index in the global index. In the above process, we
manage the local index in a hierarchical manner. Existing index structures can be easily extended to support
such operations. Again, we use hash index and B+-tree index as the examples in our discussion.

4.1 Multi-level Hash Indexing

2
3
5
8
9

10

3
5
9

5
9

3

2
10

8

9

5

3

10

2

8

level 1
h(x)=x mod 2

level 2
h(x)=x mod 4

level 3
h(x)=x mod 8

0

1

0

0

1

1

0

0

0

0

1

1

2
8
10

Figure 3: Hierarchical Hash Functions
Linear hashing and extendible hashing can be considered as multi-level hash functions. As shown in Fig-

ure 3, the hash function at leveli is defined ash(x)=x mod2i. Given two data itemsv1 andv2, if hi(v1) = hi(v2),
v1 andv2 are mapped to the same bucket in leveli. As a matter of fact, the index data are only stored in the
buckets of the last level (e.g., level 3 in Figure 3). The other level buckets store a Bloom Filter [16] to verify
membership and are maintained virtually. We generate an ID for each bucket based on its ancestors’ hash values.
For example, the bucketBi = {3, 9} in level 2 has an ID “00” and the bucketBj = {8} in level 3 has an ID
“110”. Instead of using the hash value as the key to publish the data, we use the bucket ID as the key. Initially,
only level 1 buckets (e.g., bucket “0” and “1”) are inserted into the global index. If bucket 0 has a high query

79

load, it will be split into two buckets in level 2. Then, the query load is shared between the two buckets. The
index lookup is performed in a similar way. We generate a search key based on the hash function. For example,
to perform search for 9 and 6, we generate keys “000” and “100”, respectively. Query for “000” will be sent to
the bucket “00”, whose id is the prefix of the query.

4.2 Dynamic Expansion of the B+-tree based Indexes

a
b c

d e f g h i

a
b c

g h i
local tree global expansion tree

Figure 4: Adaptive Expansion of B+-tree

In the index tuning process, the B+-tree based global index can be considered a result of the dynamic
expansion of the local B+-trees. Figure 4 illustrates the idea. Due to network cost and storage cost, we cannot
publish all the leaf nodes into the global index. Therefore,it is more feasible and efficient to select and publish
some tree nodes based on the cost model. Based on Algorithm 3,the tuning process is similar to tree expansion
or collapse. When a new processing node joins the cluster, itinserts the root node of its local B+-tree into the
global index. Then, it adjusts its index by expanding the tree dynamically. Figure 4 shows a snapshot of an
expanding tree.

4.3 Cost Modeling

In our indexing framework, a cost model is essential to evaluate the cost and benefit of maintaining the global
index. In As different system configurations will lead to different cost models, we describe a general approach to
estimate the cost. Basically, maintenance costs can be classified into two types, query processing cost and index
maintenance cost. Algorithm 2 indicates that query processing cost includes the routing cost incurred byMap
and the index lookup cost incurred byGetGI. Based on the protocol of structured overlays, the cost ofMap is
O(logN) network I/O, whereN is the number of nodes in the Cloud. The cost ofGetGI is the local I/O cost of
processing the query via the global index, and it depends on the structure of current global index. For example,
in anL-level B+-tree index, if oneh-level tree nodeni is inserted into the global index, query processing viani
requires additionalL − h I/O cost. Thus, the cost ofGetGI must be estimated on the fly. Once the local index
is modified, we need to update the corresponding global index. A typical update operation triggersO(logN)
network I/Os and some local I/Os. The total index maintenance cost is a function of the update pattern. We
employ the random walk model and the bayesian network model to predict update activities in the B+-tree index
and the multi-level hash index, respectively. Finally, thecost of a specific index entry is computed as the sum
of its query cost and maintenance cost. And to limit the storage cost, we set a threshold for the size of global
index. Then, the optimal indexing scheme is transformed into a knapsack problem. And a greedy algorithm can
be used to solve the problem.

5 Other Implementation Issues

5.1 Concurrent Access

In an open service Cloud system, registered users are allowed to deploy their own softwares. If some users’
instances access the global index concurrently, we need to guarantee the correctness of their behaviors. Suppose
an index entry receives an update request and read request simultaneous from different instances. We need to

80

generate a correct serialized order for the operations. A possible solution is to group the relative operations in a
transaction and apply the distributed 2-phase locking protocol. However, 2-phase locking protocol reduces the
performance significantly. If consistency is not the major concern, more efficient solutions may be possible [17].

5.2 Routing Performance

As discussed in the cost model,Map incursO(logN) network I/O, whereN is the number of nodes in the Cloud.
Although nodes in the Cloud are connected via a high bandwidth LAN, the network cost is still dominating the
index lookup cost. Some systems [18] apply the routing buffer to reduce the network cost. Generally, after a
success lookup operation, the node keeps the destination’smetadata in its local routing buffer. In the future
processing, if a new lookup request hits the buffer, we can retrieve the corresponding data within 1 network I/O.
However, the application of routing buffer incurs new research problems such as how to keep the routing buffer
up to date and how to customize the routing algorithm.

5.3 Failure Recovery

In the Cloud system, as the processing nodes are low-cost workstations, there may be node failures at any time.
In this case, a master node is used to monitor the status of nodes. And each node will record its running status
into a log file occasionally. If a node fails, it will be rebooted by the master node and automatically resume its
status from the log file. To keep the high availability of the global index, we write the global index into the log
file as well. Moreover, we exploit the replication protocol of the overlay network to create multiple copies of
the global index. Therefore, a single node’s failure will not affect the availability of the global index. One of the
replicas is considered as the master copy, while the other are slave copies. The updates are sent to the master
copy and then broadcasted to the slave copies. Once a master copy fails, one of the slave copies is promoted to
be the master one. And after a node recovers its global index via the log file, it will become a slave copy and ask
the master one for the missing updates.

6 A Performance Evaluation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

25619212896643216

Q
ue

ry
 T

hr
ou

gh
pu

t (
pe

r
se

c)

Number of Nodes

Query Scalability

s=0
s=0.04
s=0.06
s=0.08
s=0.1

(a) Query Throughput

 500

 1000

 1500

 2000

 2500

 3000

25619212896643216

U
pd

at
e

T
hr

ou
gh

pu
t (

x1
00

0
pe

r
se

c)

Elapsed Time (sec)

Update Scalability

update

(b) Update Throughput

Figure 5: Experiment Result

To illustrate the effectiveness of the framework, we have implemented our indexing framework on BATON
[12] for the Cloud system (see [10] for more details). In our Cloud system, each node builds a local B+-tree
index for its data chunks. The global index is composed by a portion of local B+-tree indexes. We deploy
our system on Amazon’s EC2 [4] platform. In our system, each node hosts 500k data in its local database. A
simulator is employed to issue queries. From the start of theexperiment, the node will continuously obtain a
new query from the simulator after it finishes its current one. The major metrics in the experiment are query
throughput and update throughput. To test the scalability of our approach, Cloud systems with different numbers

81

of processing nodes are created. In Figure 5(a), we generatedifferent query sets by varying the selectivity of
the search. Whens = 0, the query is exact search query. Whens = 0.01, one percent of the data space is
searched in the query. Query throughput increases almost linearly as the number of processing nodes increases.
Figure 5(b) shows the update throughput. We generate the insertion request for each local B+-tree uniformly. In
our system, the updates can be processed by different nodes in parallel.

7 Conclusions

In this paper, we study and present a general indexing framework for the Cloud system. In the indexing frame-
work, processing nodes are organized in a structured overlay network, and each processing node builds its local
index to speed up data access. A global index is built by selecting and publishing a portion of the local in-
dex in the overlay network. The global index is distributed over the network, and each node is responsible
for maintaining a subset of the global index. Due to storage cost and other maintenance issues, an adaptive
indexing approach is used to tune the global index based on the cost model. Two experiments on a real Cloud
environment, Amazon’s EC2, illustrate the effectiveness and potential of the framework.

References

[1] Steve Fisher. Service Computing: The AppExchange Platform. SCC, 2006.

[2] M. Hui and D. W. Jiang and G. L. Li and Y. Zhou. Supporting Database Applications as a Service.ICDE, 2009.

[3] Merrill Lynch. The Cloud Wars: $100+ billion at stake. 2008.

[4] Merrill Lynch. Amazon Elastic Compute Cloud (Amazon EC2) http://aws.amazon.com/ec2/.

[5] IBM. IBM Introduces Ready-to-Use Cloud Computing, http://www−03.ibm.com/press/us/en/pressrelease/22613.wss.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplifieddata processing on large clusters.Commun. ACM, 2008.

[7] Marcos Aguilera and Wojciech Golab and Mehul Shah. A Practical Scalable Distributed B-Tree.VLDB, 2008.

[8] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leung. The Google file system.SOSP, 2003.

[9] http://hadoop.apache.org

[10] Sai Wu and Dawei Jiang and Beng Chin Ooi and Kun-Lung Wu. CG-index: A Scalable Indexing Scheme for Cloud
Data Management Systems.Technique Report (http://www.comp.nus.edu.sg/ wusai/report 09 01.pdf), 2009.

[11] Sylvia Ratnasamy and Paul Francis and Mark Handley and Richard Karp and Scott Schenker. A scalable content-
addressable network.SIGCOMM, 2001.

[12] H. V. Jagadish and Beng Chin Ooi and Quang Hieu Vu. BATON:A Balanced Tree Structure for Peer-to-Peer Net-
works. VLDB, 2005.

[13] Adina Crainiceanu and Prakash Linga and Ashwin Machanavajjhala and Johannes Gehrke and Jayavel Shanmuga-
sundaram. P-ring: an efficient and robust P2P range index structure.SIGMOD, 2007.

[14] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.SIGMOD, 1984.

[15] J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using the Hilbert space-filling curve.
SIGMOD Record, 30(1), 2001.

[16] Andrei Broder and Michael Mitzenmacher. Network Applications of Bloom Filters: A Survey.Internet Mathematics,
2002.

[17] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services.SIGACT News, 33(2), 51-59, 2002.

[18] Giuseppe DeCandia and Deniz Hastorun and Madan Jampaniand Gunavardhan Kakulapati and Avinash Lakshman
and Alex Pilchin and Swaminathan Sivasubramanian and PeterVosshall and Werner Vogels. Dynamo: Amazon’s
highly available key-value store.SIGOPS, 2007.

82

25th IEEE International Conference on Data Engineering (ICDE 2009)
29 March – 4 April, 2009 Shanghai, China

Data Engineering refers to the use of engineering techniques and methodologies in the design, development and assess-
ment of information systems for different computing platforms and application environments. The 25th International
Conference on Data Engineering provides a premier forum for sharing and exchanging research and engineering results
to problems encountered in today’s information society. The conference programme will include research papers on all
topics related to data engineering, including but not limited to:

Approximation and uncertainty in databases
Probabilistic databases

Social information management, annotation and data curation
Query processing and query optimization

Data integration
Metadata management and semantic interoperability

Database tuning, and autonomic databases
Scientific, biomedical and other advanced applications

Data mining and knowledge discovery Spatial, temporal and multimedia databases
Data privacy and security Transaction and workflow management

Data streams and sensor networks Ubiquitous, mobile, distributed, and peer-to-peer databases
Data warehousing, OLAP and data grids Web data management

Database user interfaces and information visualization XML data management
Personalized databases Database architectures

Accepted contributions at ICDE 2009 will make efforts (1) to expose practitioners to the most recent research results,
tools, and practices that can contribute to their everyday practical problems and to provide them with an early opportunity
to evaluate them; (2) to raise awareness in the research community of the difficult data & information engineering
problems that arise in practice; (3) to promote the exchange of data & information engineering technologies and
experiences among researchers and practitioners; and (4) to identify new issues and directions for future research and
development in data & information engineering.

AWARDS

An award will be given to the best paper submitted to
the conference. A separate award will be given to the
best student paper. Papers eligible for this award must
have a (graduate or undergraduate) student listed as the
first and contact author, and the majority of the authors
must be students.

INDUSTRIAL PROGRAM

ICDE 2009 will include an industrial track covering
innovative commercial implementations or applications
of database or information management technology,
and experience in applying recent research advances to
practical situations. Papers will describe innovative
implementations, new approaches to fundamental
challenges (such as very large scale or semantic
complexity), novel features in information management
products, or major technical improvements to the state-
of-the-practice.

PANELS

Conference panels will address new, exciting, and
controversial issues, being provocative, informative,
and entertaining.

DEMONSTRATIONS

Presented research prototype demonstrations will focus
on developments in the area of data and knowledge
engineering, showing new technological advances in
applying database systems or innovative data
management/processing techniques.

TUTORIALS

ICDE 2009 will host tutorials, relevant to the
conference topics. Tutorials can be single-session (1.5
hour) or for double-session (3 hour).

WORKSHOPS

The following workshops will be hosted by ICDE 2009:

 DBRank: Third International Workshop on Ranking
in Databases

 First IEEE Workshop on Information & Software as
Services (WISS'09)

 Fourth International Workshop on Self-Managing
Database Systems (SMDB 2009)

 Management and Mining of UNcertain Data
(MOUND)

 Modeling, Managing, and Mining of Evolving Social
Networks (M3SN)

 Second International Workshop on Data and Services
Managementin Mobile Environments (DS2ME 2009)

For more information, visit http://i.cs.hku.hk/icde2009/

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

