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Abstract

Past research in recommender systems has mainly focused on improving accuracy, i.e., making each
single recommendation get as close to the user’s information need as possible. However, while this ap-
proach works well when focusing on single recommendations as atomic entities, its usefulness to the
consumer appears limited when considering entire recommendation lists along with their overall util-
ity, which often appear to provide rather an unbalanced diet to the user: Recommendation lists seldom
reflect the consumer’s entire spectrum of interest but rather hook on to small portions that appear partic-
ularly favorable with regard to accuracy optimization. We analyze the diversification issue in detail and
present a framework that is geared towards making lists as interesting and colorful as possible, trading
a minimum of accuracy in exchange for the gain in diversity. Empirical evaluations aiming for actual
user satisfaction underpin the cogency of our approach.

1 Introduction

Recommender systems [10] intend to provide people with recommendations of products they will appreciate,
based on their past preferences. Many of the most successful systems make use of collaborative filtering [6],
and numerous commercial systems, e.g., Amazon.com’s recommender [9], exploit these techniques to offer
personalized recommendation lists to their customers. Though the accuracy of state-of-the-art collaborative
filtering systems, i.e., the probability that the active user1 will appreciate the products recommended, is ex-
cellent, some implications affecting user satisfaction have been observed in practice. Thus, on Amazon.com
(http://www.amazon.com), many recommendations seem to be “similar” with respect to content. For instance,
customers that have purchased many of Hermann Hesse’s prose may happen to obtain recommendation lists
where all top-5 entries contain books by that respective author only. When considering pure accuracy, all these
recommendations appear excellent since the active user clearly appreciates books written by Hermann Hesse.
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On the other hand, assuming that the active user has several interests other than Hermann Hesse, e.g., historical
novels, the recommended set of items appears poor, owing to its lack of diversity.

Traditionally, recommender system projects have focused on optimizing accuracy. Now research has reached
the point where going beyond pure accuracy and toward real user experience becomes indispensable for further
advances. This work looks specifically at impacts of recommendation lists, regarding them as entities in their
own right rather than mere aggregations of single and independent suggestions.

2 On Collaborative Filtering

Collaborative filtering (CF) still represents the most commonly adopted technique in recommender systems. Its
basic idea is to make recommendations based upon ratings that users have assigned to products. Ratings can
either be explicit, i.e., by having the user state his opinion about a given product, or implicit, when the mere act
of purchasing an item counts as an expression of appreciation. While implicit ratings are more facile to collect,
their usage implies adding noise to the collected information.

User-based Collaborative Filtering has been explored in-depth during the last 10-15 years and is the most
popular recommendation algorithm [6], owing to its compelling simplicity and excellent quality of recommen-
dations. CF operates on a set of users A = {a1, a2, . . . , an}, a set of products B = {b1, b2, . . . , bm}, and partial
rating functions ri : B → [−1,+1]⊥ for each user ai. Negative values ri(bk) denote utter dislike, while positive
values express ai’s liking of product bk. If ratings are implicit only, we represent them by set Ri ⊆ B, equivalent
to {bk ∈ B | ri(bk) ̸= ⊥}. The user-based CF’s working process can be broken down as follows:

• Neighborhood formation. Assuming ai as the active user, similarity values c(ai, aj) ∈ [−1,+1] for
all aj ∈ A \ {ai} are computed, based upon the similarity of their respective rating functions ri, rj . In
general, Pearson correlation [12, 4] or cosine distance [6] are used for computing c(ai, aj). The top-M
most similar users aj become members of ai’s neighborhood, clique(ai) ⊆ A.

• Rating prediction. Taking all the products bk that ai’s neighbors aj ∈ clique(ai) have rated and which
are new to ai, i.e., ri(bk) = ⊥, a prediction of liking wi(bk) is produced. Value wi(bk) hereby depends on
both the similarity c(ai, aj) of aj with rj(bk) ̸= ⊥, as well as the ratings rj(bk) these aj assigned to bk.

Eventually, a list Pwi : {1, 2, . . . , N} → B of top-N recommendations is computed, based on predictions
wi. Pwi is injective and reflects recommendation ranking in descending order, giving highest predictions first.

Item-based CF has favorable computational complexity characteristics and allows to decouple the model com-
putation process from actual prediction making. Specifically for cases where |A| ≫ |B|, item-based CF’s
computational performance has been shown superior to user-based CF [11]. Its success also extends to many
commercial recommender systems, such as Amazon.com’s [9].

As with user-based CF, recommendation making is based upon ratings ri(bk) that users ai ∈ A provided
for products bk ∈ B. However, unlike user-based CF, similarity values c are computed for items rather than
users, hence c : B × B → [−1,+1]. Roughly speaking, two items bk, be are similar, i.e., have large c(bk, be),
if users who rate one of them tend to rate the other, and if users tend to assign them identical or similar ratings.
Moreover, for each bk, its neighborhood clique(bk) ⊆ B of top-M most similar items is defined.

3 Evaluation Metrics

Evaluation metrics are essential in order to judge the performance of recommender systems, even though they
are still in their infancies. Most evaluations concentrate on accuracy measurements only and neglect other fac-
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tors, e.g., novelty and serendipity of recommendations, and the diversity of the recommended list’s items. The
following sections give a short overview of popular metrics. An extensive survey of accuracy metrics is in [7].

3.1 Accuracy Metrics

Accuracy metrics have been proposed for two major tasks: First, to judge the accuracy of single predictions,
i.e., how much predictions wi(bk) for products bk deviate from ai’s actual ratings ri(bk). These metrics are
particularly suited for tasks where predictions are displayed along with the product, e.g., annotation in context
[7]. Examples include the mean absolute error (MAE), and mean squared error (MSE).

Second, decision-support metrics evaluate the effectiveness of helping users to select high-quality items
from the set of all products, generally supposing binary preferences. Typical decision-support metrics include
the well-known precision and recall metrics, known from information retrieval, as well as ROC, the “receiver
operating characteristic” (see, e.g., [5]).

3.2 Beyond Accuracy

Though accuracy metrics are an important facet of usefulness, there are traits of user satisfaction they are unable
to capture. However, non-accuracy metrics have largely been denied major research interest so far. Among all
non-accuracy evaluation metrics, coverage has been the most frequently used [6, 5]. Coverage measures the
percentage of elements part of the problem domain for which predictions can be made.

Some recommenders produce highly accurate results that are still useless in practice, e.g., suggesting bananas
to customers in grocery stores. Though being highly accurate, note that almost everybody likes and buys bananas.
Hence, their recommending appears far too obvious and of little help to the shopper. Novelty and serendipity
metrics thus measure the “non-obviousness” of recommendations made, avoiding “cherry-picking” [7]. For some
simple measure of serendipity, take the average popularity of recommended items.

3.3 Intra-List Similarity

We present a new metric that intends to capture the diversity of a list. Hereby, diversity may refer to all kinds of
features, e.g., genre, author. Based upon an arbitrary function c◦ : B × B → [−1,+1] measuring the similarity
c◦(bk, be) between products bk, be according to some custom-defined criterion, we define intra-list similarity for
ai’s list Pwi as follows:

ILS(Pwi) =

∑
bk ∈ℑPwi

∑
be ∈ℑPwi , bk ̸=be

c◦(bk, be)

2
(1)

Symbol ℑPwi denotes the image of map Pwi , i.e., all items part of the recommendation list. Higher scores
of ILS(Pwi) denote lower diversity. An interesting mathematical feature of ILS(Pwi) we are referring to in
later sections is permutation-insensitivity, i.e., let SN be the symmetric group of all permutations on N = |Pwi |
symbols, then ∀σi, σj ∈ SN : ILS(Pwi ◦ σi) = ILS(Pwi ◦ σj) holds. Hence, simply rearranging positions of
recommendations in a top-N list Pwi does not affect Pwi’s intra-list similarity.

4 Topic Diversification

One major issue with accuracy metrics is their inability to capture the broader aspects of satisfaction, hiding
blatant flaws in existing systems. For instance, suggesting a list of very similar items, e.g., with respect to the
author, genre, or topic, may be of little use for the user, even though this list’s average accuracy might be high.
The issue has been perceived by other researchers before, coined “portfolio effect” by Ali and van Stam [1]. We
believe that item-based CF systems in particular are susceptible to that effect.
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procedure diversify (Pwi , ΘF ) {
Bi ← ℑPwi ; Pwi∗(1)← Pwi(1);

for z ← 2 to N do
set B′

i ← Bi \ {Pwi∗(k) | k ∈ [1, z[ };
∀b ∈ B′: compute c∗({b}, {Pwi∗(k) | k ∈ [1, z[ });
compute Pc∗ : {1, 2, . . . , |B′

i|} → B′
i using c∗;

for all b ∈ B′
i do

P rev−1

c∗ (b)← |B′
i| − P−1

c∗ (b);
w∗
i (b)← P−1

wi
(b) · (1−ΘF ) + P rev−1

c∗ (b) ·ΘF ;

end do
Pwi∗(z)← min{w∗

i (b) | b ∈ B′
i};

end do
return Pwi∗;
}

Algorithm 1: Sequential topic diversification

We propose an approach we call topic diversification to deal with the problem at hand and make recom-
mended lists more diverse and thus more useful. Our method represents an extension to existing recommender
algorithms and is applied on top of recommendation lists.

4.1 Taxonomy-based Similarity Metric

Function c∗ : 2B × 2B → [−1,+1], quantifying the similarity between two product sets, forms an essential
part of topic diversification. We instantiate c∗ with our metric for taxonomy-driven filtering [13], though other
content-based similarity measures may appear likewise suitable. Our metric computes the similarity between
product sets based upon their classification. Each product belongs to one or more classes that are hierarchically
arranged in classification taxonomies, describing the products in machine-readable ways.

Classification taxonomies exist for various domains. Amazon.com crafts very large taxonomies for books,
DVDs, CDs, electronic goods, and apparel. Moreover, all products on Amazon.com bear content descriptions
relating to these domain taxonomies. Featured topics could include author, genre, and audience.

4.2 Topic Diversification Algorithm

Algorithm 1 shows the complete topic diversification algorithm, a brief textual sketch is given in the next para-
graphs.

Function Pwi∗ denotes the new recommendation list, resulting from applying topic diversification. For every
list entry z ∈ [2, N ], we collect those b from the candidate products set Bi that do not occur in positions o < z
in Pwi∗ and compute their similarity with {Pwi∗(k) | k ∈ [1, z[ } containing all new recommendations preceding
rank z.

Sorting all products b according to c∗(b) in reverse order, we obtain the dissimilarity rank P rev
c∗ . This rank

is then merged with the original recommendation rank Pwi according to diversification factor ΘF , yielding
final rank Pwi∗. Factor ΘF defines the impact that dissimilarity rank P rev

c∗ exerts on the eventual overall output.
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Large ΘF ∈ [0.5, 1] favors diversification over ai’s original relevance order, while low ΘF ∈ [0, 0.5[ produces
recommendation lists closer to the original rank Pwi . For experimental analysis, we used factors ΘF ∈ [0, 0.9].

Note that ordered input lists Pwi must be considerably larger than the final top-N list. For our later experi-
ments, we used top-50 input lists for eventual top-10 recommendations.

The effect of dissimilarity bears traits similar to that of osmotic pressure and selective permeability known
from molecular biology; this concept allows cells (i.e, recommendation lists) to maintain their internal compo-
sition of substances (i.e., topics) at required levels (i.e., gauging accuracy versus dissimilarity) [14].

5 Empirical Analysis

We conducted offline evaluations to understand the ramifications of topic diversification on accuracy metrics, and
online analysis to investigate how our method affects actual user satisfaction. We applied topic diversification
with ΘF ∈ {0, 0.1, 0.2, . . . 0.9} to lists generated by both user-based CF and item-based CF, observing effects
that occur when steadily increasing ΘF and analyzing how both approaches respond to diversification.

We based online and offline analyses on data gathered from BookCrossing (http://www.bookcrossing.com).
The latter community caters for book lovers exchanging books all around the world and sharing their expe-
riences with others. We collected data on 278, 858 members of BookCrossing and 1, 157, 112 ratings, both
implicit and explicit, referring to 271, 379 distinct ISBNs. Invalid ISBNs were excluded from the outset. The
complete BookCrossing dataset, featuring fully anonymized information, is available via the first author’s home-
page (http://www.informatik.uni-freiburg.de/∼cziegler).

Next, we mined Amazon.com’s book taxonomy, comprising 13,525 distinct topics. In order to be able to
apply topic diversification, we mined content information, focusing on taxonomic descriptions that relate books
to taxonomy nodes from Amazon.com. Since many books on BookCrossing refer to rare, non-English books, or
outdated titles not in print anymore, we were able to garner background knowledge for only 175, 721 books. In
total, 466, 573 topic descriptors were found, giving an average of 2.66 topics per book.

Owing to the BookCrossing dataset’s extreme sparsity, we decided to further condense the set in order to
obtain more meaningful results from CF algorithms when computing recommendations. Hence, we discarded
all books missing taxonomic descriptions, along with all ratings referring to them. Next, we also removed book
titles with fewer than 20 overall mentions. Only community members with at least 5 ratings each were kept.

The resulting dataset’s dimensions were considerably more moderate, featuring 10, 339 users, 6, 708 books,
and 361, 349 book ratings.

5.1 Offline Experiments

We performed offline experiments comparing precision, recall, and intra-list similarity scores for 20 different list
setups. Half these recommendation lists were based upon user-based CF with different degrees of diversification,
the others on item-based CF. Note that we did not compute MAE metric values since we are dealing with implicit
rather than explicit ratings.

For cross-validation of precision and recall metrics of all 10, 339 users, we adopted K-folding with parame-
ter K = 4. Hence, rating profiles Ri were effectively split into training sets Rx

i and test sets T x
i , x ∈ {1, . . . , 4},

at a ratio of 3 : 1. For each of the 41, 356 different training sets, we computed 20 top-10 recommendation lists.
To generate the diversified lists, we computed top-50 lists based upon pure, i.e., non-diversified, item-based CF
and pure user-based CF. Next, we applied the diversification algorithm to both base cases, applying ΘF factors
ranging from 10% up to 90%. For evaluation, all lists were truncated to contain 10 books only.
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Figure 1: Precision (a) and recall (b) for increasing ΘF

5.1.1 Result Analysis

We were interested in seeing how accuracy, captured by precision and recall, behaves when increasing ΘF from
0.1 up to 0.9. Since topic diversification may make books with high predicted accuracy trickle down the list, we
hypothesized that accuracy will deteriorate for ΘF → 0.9. Moreover, in order to find out if our novel algorithm
has any significant, positive effects on the diversity of items featured, we also applied our intra-list similarity
metric. An overlap analysis for diversified lists, ΘF ≥ 0.1, versus their respective non-diversified pendants
indicates how many items stayed the same for increasing diversification factors.

Precision and Recall. First, we analyzed precision and recall scores for both non-diversified base cases, i.e.,
when ΘF = 0. For item-based CF we had a precision of 3.64, and recall of 7.32. For user-based CF, the
results were 3.69 and 5.76, respectively. Thus, user-based and item-based CF exhibit almost identical accuracy,
indicated by precision values. Their recall values differ considerably, hinting at deviating behavior with respect
to the types of users they are scoring for.

Next, we analyzed the behavior of user-based and item-based CF when steadily increasing ΘF by increments
of 10%, depicted in Figure 1. The two charts reveal that diversification has detrimental effects on both metrics
and on both CF algorithms. Interestingly, corresponding precision and recall curves have almost identical shape.

The loss in accuracy is more pronounced for item-based than for user-based CF. Furthermore, for either met-
ric and either CF algorithm, the drop is most distinctive for ΘF ∈ [0.2, 0.4]. For lower ΘF , negative impacts on
accuracy are marginal. We believe this last observation due to the fact that precision and recall are permutation-
insensitive, i.e., the mere order of recommendations within a top-N list does not influence the metric value, as
opposed to Breese score [2, 7]. However, for low ΘF , the pressure that the dissimilarity rank exerts on the top-N
list’s makeup is still too weak to make many new items diffuse into the top-N list. Hence, we conjecture that
rather the positions of current top-N items change, which does not affect either precision or recall.

Intra-List Similarity. Knowing that our diversification method exerts a significant, negative impact on accuracy
metrics, we wanted to know how our approach affected the intra-list similarity measure. Similar to the precision
and recall experiments, we computed values for user-based and item-based CF with ΘF ∈ [0, 0.9] each. Results
obtained from intra-list similarity analysis are given in Figure 2(a).

The topic diversification method lowers the pairwise similarity between list items, thus making top-N rec-
ommendation lists more diverse. Diversification appears to affect item-based CF stronger than its user-based
counterpart, in line with our findings about precision and recall. For lower ΘF , curves are less steep than
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Figure 2: Intra-list similarity behavior (a) and overlap with original list (b) for increasing ΘF

for ΘF ∈ [0.2, 0.4], which also well aligns with precision and recall analysis. Again, the latter phenomenon
can be explained by one of the metric’s inherent features, i.e., like precision and recall, intra-list similarity is
permutation-insensitive.

Figure 2(b) shows the number of recommended items staying the same when increasing ΘF with respect
to the original list’s content. Both curves exhibit roughly linear shapes, being less steep for low ΘF , though.
Interestingly, for factors ΘF ≤ 0.4, at most 3 recommendations change on average.

5.2 Conclusion

We found that diversification appears detrimental to both user-based and item-based CF along precision and
recall metrics. In fact, this outcome aligns with our expectations, considering the nature of those two accuracy
metrics and the way that the topic diversification method works. Moreover, we found that item-based CF seems
more susceptible to topic diversification than user-based CF, backed by results from precision, recall and intra-
list similarity metric analysis.

5.3 Online Experiments

Offline experiments helped us in understanding the implications of topic diversification on both CF algorithms.
We could also observe that the effects of our approach are different on different algorithms. However, we wanted
to assess actual user satisfaction for various degrees of diversification, thus necessitating an online survey. For the
online study, we computed each recommendation list type anew for users in the denser BookCrossing dataset,
though without K-folding. We mailed all eligible users via the community mailing system, asking them to
participate in our online study. Each mail contained a personal link to our online survey pages. In order to make
sure that only the users themselves would complete their survey, links contained unique, encrypted access codes.
During the 3-week survey phase, 2, 125 users participated and completed the study.

The survey consisted of several screens that would tell the prospective participant about this study’s nature
and his task, show all his ratings used for making recommendations, and finally present a top-10 recommenda-
tion list, asking several questions thereafter. For each book, users could state their interest on a 5-point rating
scale. Scales ranged from “not much” to “very much”, mapped to values 1 to 4, and offered the user to indi-
cate that he had already read the book, mapped to value 5. In order to successfully complete the study, users
were not required to rate all their top-10 recommendations. Neutral values were assumed for non-votes instead.
However, we required users to answer all further questions, concerning the list as a whole rather than its single
recommendations, before submitting their results.
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Figure 3: Results for single-vote averages (a), covered range of interests (b), and overall satisfaction (c)

The one top-10 list for each user was chosen among 12 candidate lists, either user-based CF or item-based
with ΘF ∈ {0, 0.3, 0.4, 0.5, 0.7, 0.9} each. The assignment of a specific list to the current user was done dynam-
ically, at the time of the participant entering the survey, and in a round-robin fashion. Thus, we could guarantee
that the number of users per list type was roughly identical.

5.3.1 Result Analysis

For the analysis of our inter-subject survey, we were mostly interested in the following three aspects: First, the
average rating users gave to their 10 single recommendations. We expected results to roughly align with scores
obtained from precision and recall. Second, we wanted to know if users perceived their list as well-diversified,
asking them to tell whether the lists reflected rather a broad or narrow range of their interests. Referring to the
intra-list similarity metric, we expected users’ perceived range of topics to increase with increasing ΘF . Third,
we were curious about the overall satisfaction of users with their lists, the measure to compare performance.

Both latter-mentioned questions were answered by each user on a 5-point likert scale (higher scores denoting
better performance) and we averaged the eventual results by the number of users. Statistical significance of all
mean values was measured by parametric one-factor ANOVA, where p < 0.05 if not indicated otherwise.

Single-Vote Averages. Users perceived recommendations made by user-based CF systems on average as more
accurate than those made by item-based CF systems, see Fig. 3(a). At each featured diversification level ΘF ,
differences between the two CF types are significant, p ≪ 0.01. Moreover, for each algorithm, higher diversi-
fication factors obviously entail lower single-vote average scores, which confirms our hypothesis stated before.
The item-based CF’s cusp at ΘF ∈ [0.3, 0.5] appears as a notable outlier, but differences between the 3 means
at ΘF ∈ [0.3, 0.5] are not statistically significant, p > 0.15. Contrarily, differences between all factors ΘF are
significant for item-based CF, p≪ 0.01, and for user-based CF, p < 0.1.

Hence, topic diversification negatively correlates with pure accuracy. Besides, users perceived the perfor-
mance of user-based CF as significantly better than item-based CF for all corresponding levels ΘF .

Covered Range. Next, we analyzed if users actually perceived the variety-augmenting effects caused by topic
diversification, illustrated before through the measurement of intra-list similarity. Users’ reactions to steadily
incrementing ΘF are illustrated in Figure 3(b). First, between both algorithms on corresponding ΘF levels, only
the difference of means at ΘF = 0.3 shows statistical significance. Studying the trend of user-based CF for
increasing ΘF , we notice that the perceived range of reading interests covered by users’ recommendation lists
also increases. Hereby, the curve’s first derivative maintains an approximately constant level, exhibiting slight
peaks between ΘF ∈ [0.4, 0.5]. Statistical significance holds for user-based CF between means at ΘF = 0 and
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ΘF > 0.5, and between ΘF = 0.3 and ΘF = 0.9. On the contrary, the item-based curve exhibits a drastically
different behavior. While soaring at ΘF = 0.3 to 3.186, reaching a score almost identical to the user-based CF’s
peak at ΘF = 0.9, the curve barely rises for ΘF ∈ [0.4, 0.9], remaining rather stable and showing a slight,
though insignificant, upward trend. Statistical significance was shown for ΘF = 0 with respect to all other sam-
ples taken from ΘF ∈ [0.3, 0.9]. Hence, our online results do not perfectly align with findings obtained from
offline analysis. While the intra-list similarity chart in Figure 2 indicates that diversity increases when increasing
ΘF , the item-based CF chart defies this trend, first soaring then flattening.

Overall List Value. The third feature variable, the overall value users assigned to their personal list, effectively
represents the target value of our studies, measuring actual satisfaction. Owing to our conjecture that user sat-
isfaction is a mere composite of accuracy and other factors, such as the list’s diversity, we hypothesized that
the application of topic diversification would increase satisfaction. At the same time, considering the downward
trend of precision and recall for increasing ΘF , in accordance with declining single-vote averages, we expected
user satisfaction to drop off for large ΘF . Hence, we supposed an arc-shaped curve for both algorithms.

Results for overall list value are given in Figure 3(c). For user-based CF we observe that the curve does not
follow our hypothesis. Slightly improving at ΘF = 0.3 over the non-diversified case, scores drop for ΘF ∈
[0.4, 0.7], culminating in a slight upturn at ΘF = 0.9. While lacking reasonable explanations, the curve’s data-
points de facto bear no statistical significance for p < 0.1. Hence, we conclude that topic diversification has a
marginal, largely negligible impact on overall user satisfaction, initial positive effects eventually being offset by
declining accuracy. On the contrary, for item-based CF, results look different. In compliance with our previous
hypothesis, the curve’s shape follows an arc, peaking at ΘF = 0.4. Taking the three data-points defining the
arc, we obtain significance for p < 0.1. Since the endpoint’s score at ΘF = 0.9 is inferior to the non-diversified
case’s, we find that too much diversification appears detrimental.

Eventually, for overall list value analysis, we come to conclude that topic diversification has no measurable
effects on user-based CF, but significantly improves item-based CF performance for diversification factors ΘF

around 40%. In order to verify whether diversification appears as important ingredient of satisfaction, we also
conducted multiple linear regresiion trials. Owing to space limitations, these trials are not reported here but can
be accessed by resorting to [14].

6 Related Work

Few efforts have addressed the problem of diversifying top-N lists. Only considering literature on collaborative
filtering and recommender systems in general, none have been presented before, to our best knowledge.

However, some work related to our topic diversification approach can be found in information retrieval,
specifically meta-search engines. A critical aspect of meta-search engine design is the merging of several top-
N lists into one single top-N list. Intuitively, this merged top-N list should reflect the highest quality ranking
possible, also known as the “rank aggregation problem” [3].

More related to our idea of creating lists that represent the whole plethora of the user’s topic interests,
Kummamuru et al. [8] present their clustering scheme that groups search results into clusters of related topics.
The user can then conveniently browse topic folders relevant to his search interest. The commercially available
search engine NORTHERN LIGHT (http://www.northernlight.com) incorporates similar functionalities.

7 Conclusion

We presented topic diversification, an algorithmic framework to increase the diversity of a top-N list of recom-
mended products. We also introduced our new intra-list similarity metric.
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Contrasting precision and recall metrics for user-based and item-based CF with results obtained from a large-
scale user survey, we showed that the user’s overall liking of recommendation lists goes beyond accuracy and
involves other factors, e.g., the users’ perceived list diversity. We thus could demonstrate that lists are more than
mere aggregations of single recommendations, but bear an intrinsic, added value.

Though effects of diversification were largely marginal on user-based CF, item-based CF performance im-
proved significantly, an indication that there are some behavioral differences between both CF classes. Moreover,
while pure item-based CF appeared slightly inferior to pure user-based CF in overall satisfaction, diversifying
item-based CF with factors ΘF ∈ [0.3, 0.4] made item-based CF outperform user-based CF. Interestingly for
ΘF ≤ 0.4, no more than three items tend to change with respect to the original list, shown in Figure 2. Small
changes thus have high impact.

We believe our findings especially valuable for practical application scenarios, since many commercial rec-
ommender systems, e.g., Amazon.com [9] and TiVo [1], are item-based.
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