
Diversity in Skylines

Yufei Tao
Department of Computer Science and Engineering

Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong

taoyf@cse.cuhk.edu.hk

Abstract

Given an integer k, a diverse skyline contains the k skyline points that best describe the tradeoffs (among
different dimensions) offered by the full skyline. This paper gives an overview of the latest results on
this topic. Specifically, we first describe the state-of-the-art formulation of diverse skylines. Then, we
explain several algorithms for finding a diverse skyline, where the objective is to save cost by avoiding
the computation of the entire skyline. In particular, we will discuss a polynomial-time algorithm in 2D
space that returns the exact result, the NP-hardness of the problem in dimensionality at least 3, and an
approximate solution with good quality guarantees.

1 Introduction

Given a set D of multidimensional points, the skyline [2] consists of the points that are not dominated by any
other point. Specifically, a point p dominates another p′ if the coordinate of p is smaller than or equal to that of
p′ on all dimensions, and strictly smaller on at least one dimension. Figure 1 shows a classical example with a
set D of 13 points, each capturing two properties of a hotel: its distance to the beach (the horizontal coordinate),
and price (the vertical coordinate). The skyline has 8 points p1, p2, ..., p8.

Skyline retrieval has received considerable attention from the database community, resulting in a large num-
ber of interesting results as surveyed in Section 5. These research efforts reflect the crucial importance of
skylines in practice. In particular, it is well-known [18] that there exists an inherent connection between skylines
and top-1 queries. Specifically, given a preference function f(p) which calculates a score for each point p, a
top-1 query returns the data point with the lowest score. As long as function f(·) is monotone1, the top-1 result
is definitely in the skyline. Conversely, every skyline point is guaranteed to be the top-1 result for at least one
preference function f(·).

The skyline operator is particularly useful in scenarios of multi-criteria optimization where it is difficult, or
even impossible, to formulate a good preference function. For example, consider a tourist that wants to choose
from the hotels in Figure 1 a good one offering a nice tradeoff between price and distance. S/he may not be
sure about the relatively weighting of the two dimensions, or in general, whether the quality of a hotel should be
assessed through a linear, quadratic, or other types of preference functions. In this case, it would be reasonable
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1Namely, f(p) grows as long as the coordinate of p along any dimension increases.
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Figure 1: A skyline example

to return the skyline, so that the tourist can directly compare the tradeoffs offered by different skyline points.
For example, as far as tradeoffs are concerned, the skyline points in Figure 1 can be divided into three subsets
S1, S2, S3:

• S1 = {p1}, which includes a hotel that is very close to the beach, but rather expensive;

• S2 = {p2, p3, p4, p5}, where the hotels are farther away from the beach, but cheaper;

• S3 = {p6, p7, p8}, where the hotels are the cheapest, but far from the beach.

In this article, we discuss the problem of retrieving diverse skylines, which includes a small number k of
skyline points that best describe the representative tradeoffs in the full skyline. For example, given k = 3, the
representatives would be p1, p4, and p7, each of which comes from a distinct subset illustrated above, providing
a unique tradeoff. Diverse skylines are especially helpful in web-based recommendation systems such as the one
in our previous hotel example. Skyline computation can be rather costly, particularly in high dimensional spaces.
This necessitates a long waiting period before the entire skyline is delivered to the user, which may potentially
incur negative user experience. A better approach is to return a few early skyline points representing the contour
of the final skyline, and then, progressively refine the contour by reporting more skyline points. In this way, a
user can understand the possible tradeoffs s/he may eventually get, well before the query finishes. Moreover,
given such valuable information, the user may also notify the web server to stop fetching more skyline points
offering uninteresting tradeoffs, thus significantly reducing the processing time. The importance of diverse
skylines is further discussed in [16, 24].

Skyline diversity can be formulated in several ways [16, 24]. The state-of-the-art definition [24] is designed
based on the intuition that, for every non-representative skyline point, there should be a nearby representative.
In this paper, we will focus on that definition, and the corresponding computation algorithms. In 2D space, the
problem can be settled in polynomial time by a dynamic programming algorithm. For dimensionality at least 3,
the problem is NP-hard, but fortunately we show that there is a 2-approximate polynomial algorithm. Utilizing
a multidimensional access method, our algorithm can quickly identify the k representatives without extracting
the entire skyline. Furthermore, the algorithm is progressive, and does not require the user to specify the value
of k. Instead, it continuously returns representatives that are guaranteed to be a 2-approximate solution at any
moment, until either manually terminated or eventually producing the full skyline.

The rest of the paper is organized as follows. Section 2 clarifies the formulation of diverse skylines. Section 3
presents an algorithm for finding the optimal diverse skyline in 2D space. Section 4 tackles the problem of
retrieving diverse skylines in dimensionality at least 3. Section 5 surveys the previous literature on skyline.
Finally, Section 6 concludes the paper with a summary.
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2 Formulation of Diverse Skylines

Let D be a set of d-dimensional points. We use S to denote the full skyline of D. The quality of a diverse
skyline can be evaluated with the concept of representation error of K, denoted as Er(K,S). Intuitively, a
Diverse skyline K is good if, for every non-representative skyline point p ∈ S − K, there is a representative
in K close to p. Hence, Er(K,S) quantifies the representation quality as the maximum distance between a
non-representative skyline point in S − K and its nearest representative in K, under Euclidean distance, or
formally:

Er(K,S) = max
p∈S−K

{min
p′∈K

∥p, p′∥}. (1)

In the sequel, when the second parameter of function Er(·, ·) is the full skyline S of D, we often abbreviate
Er(K,S) as Er(K). For example, in Figure 1, when K = {p3, p4, p5}, Er(K) = ∥p5, p8∥, i.e., p8 is the point
that is worst represented by K. The following definition is the state-of-the-art formulation of diverse skylines
[24]:

Definition 1: Let D be a multidimensional dataset and S its skyline. Given an integer k, the diverse skyline of
D is a set K of k skyline points in S that minimizes Er(K,S) as calculated by Equation 1. Each point in S is a
called a representative.

In other words, the diverse skyline consists of k skyline points that achieve the lowest representation error. For
example, in Figure 1, with k = 3 the diverse skyline is K = {p1, p4, p7}, whose Er(K) equals ∥p4, p2∥.

The diverse skyline is essentially the optimal solution of the k-center problem [10] on the full skyline S. As
a result, the diverse skyline also shares the properties of k-center results. One, particularly, is that the result is not
sensitive to the densities of clusters. This is very important for capturing the contour of the skyline. Specifically,
we do not want to allocate many representatives to a cluster simply because it has a large density. Instead, we
would like to distribute the representatives evenly along the skyline, regardless of the densities of the underlying
clusters. This is why Equation 1 is better than its sum-counterpart

∑
p∈S−K{minp′∈K ∥p, p′∥}. The latter tends

to give more representatives to a dense cluster, because doing so may reduce the distances of a huge number
of points to their nearest representatives, which may outweight the benefit of trying to reduce such distances of
points in a faraway sparse cluster.

From now on, we will use the term sub-skyline to refer to any subset K of the full skyline S. If K has k
points, we say that it is size-k. The problem we study in this paper can be defined as:

Problem 1: Given an integer k, find an optimal size-k sub-skyline K that has the smallest representation error
Er(K,S) given in Equation 1.

Note that the optimal sub-skyline is the diverse skyline in Definition 1. Sometimes it is computationally
intractable to find the optimal solution. In this case, we instead aim at computing a sub-skyline whose represen-
tation error is as low as possible.

3 The Two-dimensional Case

In this section, we give an algorithm for solving Problem 1 optimally in 2D space. We consider that the skyline
S of dataset D has already been computed using an existing algorithm. Let m be the size of S . Denote the
skyline points in S as p1, p2, ..., pm, sorted in ascending order of their x-coordinates.

We adopt the notation Si to represent {p1, p2, ..., pi} where i ≤ m. Specially, define S0 = ∅. Introduce a
function opt(i, t) to be the optimal size-t diverse skyline of Si, where t ≤ i. Hence, the optimal size-k diverse
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Algorithm 2D-opt (S, k)
Input: the skyline S of dataset D and an integer k
Output: the diverse skyline of D
1. for each pair of (i, j) such that 1 ≤ i ≤ j ≤ m, derive radius(i, j) and center(i, j).
2. set opt(i, 1) = {center(1, i)} and optEr(i, 1) = radius(1, i) for each 1 ≤ i ≤ m
3. for t = 2 to k − 1
4. for i = t to m
5. compute optEr(i, t) by Equation 2
6. compute opt(i, t) by Equation 3
7. compute optEr(k,m) and opt(k,m) by Equations 2 and 3
8. return opt(k,m)

Figure 3: An optimal algorithm for computing 2D diverse skylines

skyline of S is essentially opt(m, k). Let function optEr(i, t) be the representation error of opt(i, t) with respect
to Si, or formally, optEr(i, t) = Er(opt(i, t),Si), where Er(·, ·) is given in Equation 1.

For any 1 ≤ i ≤ j ≤ m, we use radius(i, j) to denote the radius of the smallest circle that (i) covers points
pi, pi+1, ..., pj , and (ii) centers at one of these j − i + 1 points. Call the circle the (i, j)-covering circle, and
denote its center as center(i, j). Figure 2 shows the (2, 8)- and (6, 8)-covering circles, whose centers are p5
and p7, respectively. Hence, center(2, 8) = p5 and center(6, 8) = p7. There exists a recursive equation about
optEr(i, t) when t ≥ 2:

optEr(i, t) =
i−1
min
j=t

{max{optEr(j − 1, t− 1), radius(j, i)}} (2)

The above equation is based on the following rationale. Assume, without loss of generality, that the optimal
size-t diverse skyline of Si is {pj1 , pj2 , ..., pjt} with 1 ≤ j1 < j2 < ... < jt ≤ i, i.e., pj1 ,..., pjt are in ascending
order of their x-coordinates. Let pj be the first point (in ascending order of x-coordinates) in Si that has pjt as
its nearest representative. Then, {pj1 , ..., pjt−1} must be the optimal size-(t − 1) diverse skyline of Sj−1, and
pjt must be center(j, i).

Let v be the value of j where Equation 2 reaches its minimum; we have:

opt(i, t) = opt(v − 1, t− 1) ∪ {center(v, i)} (3)

Equations 2 and 3 point to a dynamic programming algorithm 2D-opt in Figure 3 for computing opt(k,m), i.e.,
the size-k diverse skyline of D.

Time complexity. As explained shortly, Line 1 of 2D-opt can be implemented in O(m2) time, where m is
the size of the full skyline S of D. Line 2 obviously requires O(m) time. Lines 3-6 perform k − 2 iterations.
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Each iteration evaluates Equations 2 and 3 m times respectively. Regardless of i and t, every evaluation of
Equation 2 can be completed in O(m) time, and that of Equation 3 in O(k) time. Hence, Lines 3-6 altogether
incur O(m2(k − 2)) cost. Finally, Line 7 requires O(m) time. Therefore, the overall complexity of 2D-opt is
O(m2(k− 2) +m). Note that this is much lower than the complexity of O(|D| · logm+m2 · k) (mentioned in
Section 3) of computing the optimal 2D max-dominance skyline.

Computing covering circles. Next, we give an O(m2)-time algorithm to find all the covering circles, i.e.,
radius(i, j) and center(i, j) for all 1 ≤ i ≤ j ≤ m. Note that one cannot hope to do any better because there
are Ω(m2) circles to decide. First, it is easy to see that

radius(i, j) =
j

min
u=i

{max{∥pi, pu∥, ∥pu, pj∥}}. (4)

Let pu.radius(i, j) = max{∥pi, pu∥, ∥pu, pj∥}. Equation 4 can be re-written as:

radius(i, j) =
j

min
u=i

pu.radius(i, j), (5)

Thus, center(i, j) equals the pu where the above equation reaches its minimum.
As u moves from i to j, the value of pu.radius(i, j) initially decreases and then increases, exhibiting a

V-shape. The V-shape property offers an easy way, called simple scan, of finding radius(i, j) and center(i, j)
as follows. We only need to inspect pi, pi+1, ..., pj in this order, and stop once pu.radius(i, j) starts to increase,
where u is the point being inspected. At this moment, we have just passed the minimum of Equation 5. Hence,
we know center(i, j) = pu−1 and radius(i, j) = pu−1.radius(i, j). A simple scan needs O(j − i) time to
decide a radius(i, j). This, however, results in totally O(m3) time in determining all the covering circles, which
makes the time complexity of our algorithm 2D-opt O(m3) as well.

The time can be brought down to O(m2) with a method called collective pass. The main idea which obtains
the (i, i)-, (i, i+1)-, ..., (i,m)-covering circles collectively in one scan from pi to pm in O(m− i) time. Since a
collective pass is needed for every 1 ≤ i ≤ m, overall we spend O(m2) time. The details can be found in [24].

4 The Higher-dimensional Case

We proceed to study Problem 1 in dimensionality d ≥ 3. As proved in [24], the problem is NP-hard for d ≥ 3.
Section 4.1 describes an algorithm for finding 2-approximate solution. Then, Section 4.2 discusses how to
improve the efficiency of the approximate algorithm.

4.1 2-approximation

A 2-approximate solution K is a sub-skyline with k points whose representation error is at most twice that of
K∗. Namely, if the optimal diverse skyline is K∗, then Er(K,S) ≤ 2 · Er(K∗,S), where Er(·, ·) is given in
Equation 1.

Such a K can be found by a standard greedy algorithm [9] for the k-center problem. Specifically, first we
retrieve the skyline S of D using any existing skyline algorithm, and initiate a K containing an arbitrary point
in S. Given a point p, define its representative distance rep-dist(p,K) as the distance between p and its closest
representative, or formally:

rep-dist(p,K) = min
p′∈K

∥p, p′∥. (6)

Then, we repeat the following k − 1 times to create the final K: add to K the point in S − K with the largest
representative distance. Note that as the content of K expands, the representative distance of a point may vary
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as well, because its nearest representative may change to the one most recently added. We refer to this solution
as naive-greedy. It guarantees a 2-approximate solution, as is established directly by the analysis of [9].

As an example, consider the dataset in Figure 1, where S = {p1, p2, ..., p8}. Assume k = 3 and that p4 is
the first point inserted to K. Among the other skyline points, p8 is farthest from p4, and thus, is the second point
added to K. Now, p1 has the greatest representative distance in S−K, and hence, enters K. Thus, the final result
is K = {p4, p8, p1}.

Naive-greedy has several drawbacks. First, it incurs large I/O overhead because it requires retrieving the
entire skyline S. Since we aim at returning only k ≪ |S| points, ideally we should be able to do so by accessing
only a fraction of S , thus saving considerable cost. Second, it lacks progressiveness, because no result can be
output until the full skyline has been computed. In the next section, we outline an alternative algorithm called
I-greedy which overcomes both drawbacks of naive-greedy.

4.2 I-greedy

I-greedy assumes a multidimensional index (such as an R-tree [1]) on the dataset D. It can be regarded as an
efficient implementation of the naive-greedy algorithm explained in the previous subsection. Specifically, it
returns the same set K of representatives as naive-greedy. Therefore, I-greedy also has the same approximation
ratio as naive-greedy.

Recall that, after the first representative, naive-greedy repetitively adds to K the point in S − K with the
maximum representative distance given by Equation 6. Finding this point is analogous to farthest neighbor
search, using Equation 6 as the distance function. However, remember that not every point in dataset D can be
considered as a candidate result. Instead, we consider only S − K, i.e., the set of skyline points still outside K.

The best-first algorithm [11] is a well-known efficient algorithm for farthest neighbor search2. To apply best-
first, we must define the notion of max-rep-dist. Specifically, given an MBR R in the R-tree, its max-rep-dist,
max-rep-dist(R,K), is a value which upper bounds the representative distance rep-dist(p,K) of any potential
skyline point p in the subtree of R. max-rep-dist(R,K) can be easily computed, as shown in [24]. Let us refer to
both max-rep-dist(R,K) and rep-dist(p,K) as the key of R and p, respectively. Best-first visits the intermediate
and leaf entries of the whole R-tree in descending order of their keys. Hence, the first leaf entry visited is
guaranteed to be the point in D with the largest representative distance.

Let p be the first data point returned by best-first. We cannot report p as a representative, unless we are sure
that it is a skyline point. Whether p is a skyline point can be resolved using an empty test. Such a test checks if
there is any data point inside the anti-dominant region of p, which is the rectangle having p and the origin of the
data space as two opposite corners. If the test returns “empty”, p is a skyline point; otherwise, it is not. In any
case, we continue the execution of best-first to retrieve the point with the next largest max-rep-dist, and repeat
the above process, until enough representatives have been reported.

Best-first may still entail expensive I/O cost, as it performs numerous empty tests, each of which may need to
visit many nodes whose MBRs intersect the anti-dominant region of a point. A better algorithm should therefore
avoid empty tests as much as possible. I-greedy achieves this goal with two main ideas. First, it maintains a
conservative skyline based on the intermediate and leaf entries already encountered. Second, it adopts an access
order different from best-first, which totally eliminates empty tests. The details can be found in [24].

5 Related Work

The first work on skylines in the database area is due to Borzsonyi et al. [2]. Since then, many algorithms have
been developed for computing skylines efficiently, for example, Bitmap [23], NN [14], BBS [18], Lattice [17],

2Precisely speaking, best-first is originally designed for nearest neighbor search [11]. However, its adaptation to farthest neighbor
search is trivial.
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to name just a few. These algorithms focus on the original data space, while considerable efforts have also been
made to retrieve skylines in subspaces, such as subsky [25], skycube [20], and so on. Besides traditional cen-
tralized DBMS, skyline search has also been studied in distributed systems [7, 26], streams [21], p2p networks
[27], partially-ordered domains [3], etc. The concept of skyline has numerous useful variations. One example is
the diverse skyline studied in this paper, and this notion is originally introduced in [16]. Other examples include
k-dominant skyline [4], spatial skyline [22], probabilistic skyline [19], reverse skyline [8, 15], privacy skyline
[6], approximately dominating representatives [13], retrieving the points with the highest subspace skyline fre-
quencies [5], and so on.

The best-first algorithm mentioned in Section 4.2 is proposed by Hjaltason and Samet [11] for solving
nearest/farthest neighbor search. It is I/O optimal in the sense that, given the same R-tree, no other algorithm
is able to answer the same query by accessing fewer nodes. The k-center problem, which underlines diverse
skylines, is a classical problem that can be defined on any distance metric. Without knowing the metric, it is
NP-hard to find a solution with approximation ratio 2−ε for any positive ε [12]. The greedy algorithm described
in Section 4.1 provides a 2-approximate solution for any distance metric satisfying the triangle inequality [9].

6 Conclusions

The skyline of a dataset may have a large number of points. Returning all of them may make it difficult for
a user to understand the possible tradeoffs offered by the skyline. A better approach is to present only a few
representative points that reflect the contour of the entire skyline, so that the user may request only the skyline
points in a specific part of the contour that looks interesting. In this article, we described the formulation of such
a diverse skyline, and discussed its computation algorithms. In 2D space, the problem can be solved optimally
in low-degree polynomial time. In higher dimensional spaces where computing the optimal solution is NP-hard,
it is possible to return a 2-approximate solution efficiently.
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