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Abstract

Informally speaking, diversification of search results refers to a trade-off between relevance and diversity
in the set of results. In this article, we present a unifying framework for search result diversification using
the axiomatic approach. The characterization provided by the axiomatic framework can help design
and compare diversification systems, and we illustrate this using several examples. We also show that
several diversification objectives can be reduced to the combinatorial optimization problem of facility
dispersion. This reduction results in algorithms with provable guarantees for a number of well-known
diversification objectives.

1 Introduction

In present day search engines, a user expresses her information need with as few query terms as possible. In
such a scenario, a small number of terms often specify the intent in only an implicit manner. In the absence of
explicit information representing user intent, the search engine needs to “guess” the results that are most likely to
satisfy different intents. In particular for an ambiguous query such as eclipse, the search engine could either take
the probability ranking principle approach of taking the “best guess” intent and showing the results, or it could
choose to present search results that maximize the probability that a user with a random intent finds at least one
relevant document on the results page. This problem of the user not finding any any relevant document in her
scanned set of documents is defined as query abandonment. Result diversification lends itself as an effective
solution to minimizing query abandonment [1, 7, 16].

Intuitively, result diversification implies a trade-off between having more relevant results of the “most prob-
able” intent and having diverse results in the top positions for a given query[4, 6]. The twin objectives of being
diverse and being relevant often compete with each other, and any result diversification system must figure out
how to trade-off these two objectives appropriately. Therefore, result diversification can be viewed as combin-
ing both ranking (presenting more relevant results in the higher positions) and clustering (grouping document
satisfying similar intents) and therefore addresses a loosely defined goal of picking a set of most relevant but
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novel documents. This resulted in the development of a set of very different objective functions and algorithms
ranging from combinatorial optimizations [4, 16, 1] to those based on probabilistic language models [6, 20].
The underlying principles supporting these techniques are often different and therefore admit different trade-off
criteria. Given the importance of the problem there has been relatively little work aimed at understanding result
diversification independent of the objective functions or the algorithms used to solve the problem.

This article discusses an axiomatic framework for result diversification. We begin with a set of simple and
natural properties that any diversification system ought to satisfy and these properties help serve as a basis
for the space of objective functions for result diversification. We then analyze a few objective functions that
satisfy different subsets of these properties. Generally, a diversification function can be thought of as taking
two application specific inputs viz, a relevance function that specifies the relevance of document for a given
query, and a distance function that captures the pairwise similarity between any pair of documents in the set
of relevant results for a given query. In the context of web search, one can use the search engine’s ranking
function1 as the relevance function. The characterization of the distance function is not that clear. In fact,
designing the right distance function becomes a central factor to an effective result diversification. For example,
by restricting the distance function to a metric by imposing the triangle inequality d(u,w) ≤ d(u, v) + d(v, w)
for all u, v, w ∈ U , we can exploit efficient approximation algorithms to solve certain class of diversification
objectives (see Section 3).

Our work is similar in spirit to earlier work on axiomatization of ranking and clustering systems [3, 11].
We study the functions that arise out of the requirement of satisfying a set of simple properties and show an
impossibility result which states that there exists no diversification function f that satisfies all the properties. We
state the properties in Section 2.

Although we do not aim to completely map the space of objective functions in this study, we show that some
diversification objectives reduce to different versions of the well-studied facility dispersion problem. Specif-
ically, we pick three functions that satisfy different subsets of the properties and characterize the solutions
obtained by well-known approximation algorithms for each of these functions. We also characterize some of the
objective functions defined in earlier works [1, 16, 6] using the axioms.

1.1 Related Work

The early work of [4] described the trade-off between relevance and novelty via the choice of a parameterized
objective function. Subsequent work on query abandonment by [6] is based on the idea that documents should be
selected sequentially according to the probability of the document being relevant conditioned on the documents
that come before. [16] solved a similar problem by using bypass rates of a document to measure the overall
likelihood of a user bypassing all documents in a given set. Thus, the objective in their setting was to produce a
set that minimized likelihood of completely getting bypassed.

[1] propose a diversification objective that tries to maximize the likelihood of finding a relevant document
in the top-k positions given the categorical information of the queries and documents. Other works on topical
diversification include [18, 21]. [20, 19] propose a risk minimization framework for information retrieval that
allows a user to define an arbitrary loss function over the set of returned documents. [17] proposed a method
for diversifying query results in online shopping applications wherein the query is presented in a structure form
using online forms.

Our work is based on axiomatizations of ranking and clustering systems [2, 11, 3]. [11] proposed a set of
three natural axioms for clustering functions and showed that no clustering function satisfies all three axioms. [3]
study ranking functions that combine individual votes of agents into a social ranking of the agents and compare
them to social choice welfare functions which were first proposed in the classical work on social choice theory
by [2].

1See [15] and references therein.
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We also show a mapping from diversification functions to those used in facility dispersion [13, 12]. The
interested reader will find a useful literature in the chapter on facility dispersion in [14, 5].

2 Axiomatic Framework

This section introduces the axiomatic framework and fixes the notation to be used in the remainder of the
paper. We are given a set U = {u1, u2, . . . , un} of n ≥ 2 of documents, and a finite set of queries Q. Now,
given a query q ∈ Q and an integer k, we want to output a subset Sk ⊆ U (where |Sk| = k) of documents
that is simultaneously both relevant and diverse.2 The relevance of each document is specified by a function
w : U × Q → R+, where a higher value implies that the document is more relevant to a particular query. The
diversification objective is intuitively thought of as giving preference to dissimilar documents. To formalize
this, we define a distance function d : U × U → R+ between the documents, where smaller the distance, the
more similar the two documents are. We also require the distance function to be discriminative, i.e. for any two
documents u, v ∈ U , we have d(u, v) = 0 if and only if u = v, and symmetric, i.e d(u, v) = d(v, u). Note that
the distance function need not be a metric.

Formally, the set selection function f : 2U × Q × w × d → R can be thought of as assigning scores to all
possible subsets of U , given a query q ∈ Q, a weight function w(·), a distance function d(·, ·). Fixing q, w(·),
d(·, ·) and a given integer k ∈ Z+ (k ≥ 2), the objective is to select a set Sk ⊆ U of documents such that the
value of the function f is maximized, i.e. the objective is to find

S∗
k = argmax

Sk⊆U, |Sk|=k
f(Sk, q, w(·), d(·, ·)) (1)

where all arguments other than the set Sk are fixed inputs to the function.
An important observation is that the diversification framework is under-specified and even if one assumes

that the relevance and distance functions are provided, there are many possible choices of the diversification
objective function f . These functions could trade-off relevance and similarity in different ways, and one needs
to specify criteria for selection among these functions. A natural mathematical approach in such a situation is to
provide axioms that any diversification system should be expected to satisfy and therefore provide some basis of
comparison between different diversification functions.

2.1 Axioms of diversification

We propose that f is such that it satisfy the set of axioms given below, each of which is a property that is intuitive
for the purpose of diversification. In addition, we show that any proper subset of these axioms is maximal, i.e.
no diversification function can satisfy all these axioms. This provides a natural method of selecting between
various objective functions, as one can choose the essential properties for any particular diversification system.
In section 3, we will illustrate the use of the axioms in choosing between different diversification objectives.
Before we state the axioms, we state the following notation. Fix any q, w(·), d(·, ·), k and f , such that f is
maximized by S∗

k , i.e., S∗
k = argmaxSk⊆U f(Sk, q, w(·), d(·, ·)).

1. Scale invariance: Informally, this property states that the set selection function should be insensitive to
the scaling of the input functions. Consider the optimal set S∗

k . Now, we require f to be such that we have
S∗
k = argmaxSk⊆U f(Sk, q, α ·w(·), α · d(·, ·)) for any fixed positive constant α ∈ R, α > 0, i.e. S∗

k still
maximizes f even if all relevance and distance values are scaled by some constant. Note that we require

2In this work, we focus our attention on the set selection problem instead of producing a ranked list as the output, which is the
ultimate goal in some settings such as web search. This choice is motivated by the fact that the set selection problem captures the core
trade-off involved in building a diversification system as we will see shortly. Furthermore, there are several ways to convert the selected
set into a ranked list. For instance, one can always rank the results in order of relevance.
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the constant to be the same for both w(·) and d(·, ·) in order to be consistent with respect to the scale of
the problem.

2. Consistency: Consistency states that making the output documents more relevant and more diverse, and
making other documents less relevant and less diverse should not change the output of the ranking. Now,
given any two functions α : U → R+ and β : U × U → R+, we modify the relevance and weight
functions as follows:

w(u) =

{
w(u) + α(u) , u ∈ S∗

k

w(u)− α(u) , otherwise

d(u, v) =

{
d(u, v) + β(u, v) , u, v ∈ S∗

k

d(u, v)− β(u, v) , otherwise

The ranking function f must be such that it is still maximized by S∗
k . We emphasize that the change in the

relevance and diversity for each document can be different, and consistency only requires the function f
to be invariant with respect to the right direction of the change.

3. Richness: Informally speaking, the richness condition states that we should be able to achieve any possible
set as the output, given the right choice of relevance and distance function. This property is motivated
by the practical fact that one could construct a query (along with corresponding relevance and diversity
functions) that would correspond to any given output set. Formally, there exists some w(·) and d(·, ·) such
that for any k ≥ 2, there is a unique S∗

k which maximizes f .

4. Stability: The stability condition seeks to ensure that the output set does not change arbitrarily with the
output size, i.e., the function f should be defined such that S∗

k ⊂ S∗
k+1. One can also consider relaxations

of the strict stability condition such as |S∗
k ∩ S∗

k+1| > 0. We do not discuss the relaxation further in this
work.

5. Independence of Irrelevant Attributes: This axiom states that the score of a set is not affected by most
attributes of documents outside the set. Specifically, given a set S, we require the function f to be such
that f(S) is independent of values of both w(u) and d(u, v) for all u, v /∈ S.

6. Monotonicity: Monotonicity simply states that the addition of any document does not decrease the score
of the set. Fix any w(·), d(·, ·), f and S ⊆ U . Now, for any x /∈ S, we must have f(S ∪ {x}) ≥ f(S).

Finally, we state two properties that ensure that the diversification system will not trivially ignore one of
either relevance or diversity objectives. This ensures that the system will capture the trade-off between
the two objectives in a non-degenerate manner.

7. Strength of Relevance: This property ensures that no function f ignores the relevance function. Formally,
we fix some w(·), d(·, ·), f and S. Now, the following properties should hold for any x ∈ S:

(a) There exist some real numbers δ0 > 0 and a0 > 0, such that the condition stated below is satisfied
after the following modification: obtain a new relevance function w′(·) from w(·), where w′(·) is
identical to w(·) except that w′(x) = a0 > w(x). The remaining relevance and distance values
could decrease arbitrarily. Now, we must have

f(S,w′(·), d(·, ·), k) = f(S,w(·), d(·, ·), k) + δ0
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(b) If f(S \{x}) < f(S), then there exist some real numbers δ1 > 0 and a1 > 0 such that the following
condition holds: modify the relevance function w(·) to get a new relevance function w′(·) which is
identical to w(·) except that w′(x) = a1 < w(x). Now, we must have

f(S,w′(·), d(·, ·), k) = f(S,w(·), d(·, ·), k)− δ1

8. Strength of Similarity: This property ensures that no function f ignores the similarity function. Formally,
we fix some w(·), d(·, ·), f and S. Now, the following properties should hold for any x ∈ S:

(a) There exist some real numbers δ0 > 0 and b0 > 0, such that the condition stated below is satisfied
after the following modification: obtain a new distance function d′(·, ·) from d(·, ·), where we in-
crease d(x, u) for the required u ∈ S to ensure that minu∈S d(x, u) = b0. The remaining relevance
and distance values could decrease arbitrarily. Now, we must have

f(S,w(·), d′(·, ·), k) = f(S,w(·), d(·, ·), k) + δ0

(b) If f(S \ {x}) < f(S), then there exist some real numbers δ1 > 0 and b1 > 0 such that the
following condition holds: modify the distance function d(·, ·) by decreasing d(x, u) to ensure that
maxu∈S d(x, u) = b1. Call this modified distance function d′(·, ·). Now, we must have

f(S,w(·), d′(·, ·), k) = f(S,w(·), d(·, ·), k)− δ1

Given these axioms, a natural question is to characterize the set of functions f that satisfy these axioms. A
somewhat surprising observation here is that it is impossible to satisfy all of these axioms simultaneously (proof
is in the full paper [8]):

Theorem 1: No function f satisfies all 8 axioms stated above.

This result allows us to naturally characterize the set of diversification functions, and selection of a particular
function reduces to deciding upon the subset of axioms (or properties) that the function is desired to satisfy.
The next section explore this idea further and shows that the axiomatic framework could be a powerful tool in
choosing between diversification function. Another advantage of the framework is that it allows a theoretical
characterization of the function which is independent of the specifics of the diversification system such as the
distance and the relevance function.

3 Objectives and Algorithms

In light of the impossibility result shown in Theorem 1, we can only hope for diversification functions that satisfy
a subset of the axioms. We note that the list of such functions is possibly quite large, and indeed several such
functions have been previously explored in the literature (see [6, 16, 1], for instance). Further, proposing a diver-
sification objective may not be useful in itself unless one can actually find algorithms to optimize the objective.
In this section, we aim to address both of the above issues: we demonstrate the power of the axiomatic frame-
work in choosing objectives, and also propose reductions from a number of natural diversification objectives to
the well-studied combinatorial optimization problem of facility dispersion [14]. In particular, we propose two
diversification objectives in the following sections, and provide algorithms that optimize these objectives. We
also present a brief characterization of the objective functions studied in earlier works [1, 16, 6]. We will use the
same notation as in the previous section and have the objective (namely equation 1), where f would vary from
one function to another. Also, we assume w(·), d(·, ·) and k to be fixed here and hence use the shorthand f(S)
for the function.
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3.1 Max-sum diversification

A natural bi-criteria objective is to maximize the sum of the relevance and dissimilarity of the selected set. This
objective can be encoded in terms of our formulation in terms of the function f(S), which is defined as follows:

f(S) = (k − 1)
∑
u∈S

w(u) + 2λ
∑
u,v∈S

d(u, v) (2)

where |S| = k, and λ > 0 is a parameter specifying the trade-off between relevance and similarity. Observe that
we need to scale up the first sum to balance out the fact that there are k(k−1)

2 numbers in the similarity sum, as
opposed to k numbers in the relevance sum. We first characterize the objective in terms of the axioms.

Remark 1: The objective function given in equation 2 satisfies all the axioms, except stability.

This objective can be recast in terms of a facility dispersion objective, known as the MAXSUMDISPERSION

problem. The MAXSUMDISPERSION problem is a facility dispersion problem having the objective maximizing the
sum of all pairwise distances between points in the set S which we show to be equivalent to equation 2. To this
end, we define a new distance function d′(u, v) as follows:

d′(u, v) = w(u) + w(v) + 2λd(u, v) (3)

It is not hard to see the following claim (proof skipped):

Claim 2: d′(·, ·) is a metric if the distance d(·, ·) constitutes a metric.

Further, note that for some S ⊆ U (|S| = k), we have:∑
u,v∈S

d′(u, v) = (k − 1)
∑
u∈S

w(u) + 2λ
∑
u,v∈S

d(u, v)

using the definition of d′(u, v) and the fact that each w(u) is counted exactly k − 1 times in the sum (as we
consider the complete graph on S). Hence, from equation 2 we have that

f(S) =
∑
u,v∈S

d′(u, v)

But this is also the objective of the MAXSUMDISPERSION problem described above where the distance metric is
given by d′(·, ·).

Given this reduction, we can map known results about MAXSUMDISPERSION to the diversification objective.
First of all, we observe that maximizing the objective in equation 2 is NP-hard, but there are known approxima-
tion algorithms for the problem. In particular, there is a 2-approximation algorithm for the MAXSUMDISPERSION

problem [10, 9] (for the metric case) and is given in algorithm 1. Hence, we can use algorithm 1 for the max-sum
objective stated in 2.

3.2 Mono-objective formulation

The space of diversification objectives is quite rich, and indeed there are several examples of objectives that do
not reduce to facility dispersion. For instance, the second objective we will explore does not relate to facility
dispersion as it combines the relevance and the similarity values into a single value for each document (as
opposed to each edge for the previous two objectives). The objective can be stated in the notation of our
framework in terms of the function f(S), which is defined as follows:

f(S) =
∑
u∈S

w′(u) (4)
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Algorithm 1 Algorithm for MAXSUMDISPERSION

Require: Universe U , k
Ensure: Set S (|S| = k) that maximizes f(S)

1: Initialize the set S = ∅
2: for i← 1 to ⌊k2⌋ do
3: Find (u, v) = argmaxx,y∈U d(x, y)
4: Set S = S ∪ {u, v}
5: Delete all edges from E that are incident to u or v
6: end for
7: if k is odd then
8: add an arbitrary document to S
9: end if

where the new relevance value w′(·) for each document u ∈ U is computed as follows:

w′(u) = w(u) +
λ

|U | − 1

∑
v∈U

d(u, v)

for some parameter λ > 0 specifying the trade-off between relevance and similarity. Intuitively, the value w′(u)
computes the “global” importance (i.e. not with respect to any particular set S) of each document u. The
axiomatic characterization of this objective is as follows:

Remark 2: The objective in equation 4 satisfies all the axioms except consistency.

Also observe that it is possible to exactly optimize objective 4 by computing the value w′(u) for all u ∈ U
and then picking the documents with the top k values of u for the set S of size k.

3.3 Other objective functions

We note that the link to the facility dispersion problem explored in section 3.1 is particularly rich as many
dispersion objectives have been studied in the literature (see [14, 5]). Although we only explored a single
objective here in order to illustrate the use of the dispersion objective, similar reductions can be used to obtain
algorithms with provable guarantees for many other diversification objectives [8].

The axiomatic framework can also be used to characterize diversification objectives that have been pro-
posed previously. For instance, we note that the DIVERSIFYobjective function in [1] as well as the MINQUERY-
ABANDONMENT formulations proposed in [16] violate the stability and the independence of irrelevant attributes
axioms.

4 Conclusions

This work presents an approach to characterizing diversification systems using a set of natural axioms. The
choice of axioms presents an objective basis for characterizing diversification objectives independent of the
algorithms used, and the specific forms of the distance and relevance functions. Specifically, we illustrate the
use of the axiomatic framework by studying two objectives satisfying different subsets of axioms.
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