
Process Mediation, Execution Monitoring and Recovery for
Semantic Web Services

Katia Sycara
The Robotics Institute

Carnegie Mellon University
katia@cs.cmu.edu

Roman Vaculı́n
Institute of Computer Science

Academy of Sciences of the Czech Republic
vaculin@cs.cas.cz

1 Introduction

One of the main promises of web services standards is to enable and facilitate seamless interoperability of diverse
applications and business processes implemented as components or services. A service can be part of a business
workflow that prescribes control and data flows of complex applications. As business needs change, processes
may need to get reconfigured or additional process components and services may need to be added. As a result of
these changes, the previous components must become interoperable with the new one. This can be accomplished
by making manual changes to the existing workflow componentsand programming the new components in such
a way as to have interoperability built-in. This is a rather laborious and inefficient process since it must be
repeated every time workflow reconfiguration is needed. Also, since many different elements of a business
workflow may be under the control of third parties (e.g. subcontractors), additional costly coordination will be
needed with these third parties to manually find interoperability solutions. Moreover, since the Internet gives
the opportunity to dynamically discover service providers, it is often not a priori known which service provider
may best fit the application workflow changing needs. In otherwords, the new service component that must
interoperate with old ones, is dynamically discovered. Therefore, (a) a more general solution is desired, namely
the ability to achieve process interoperability (e.g. interoperability of existing processes with new ones) without
actually modifying their implementation and interfaces, and (b) the mediation may need to be done dynamically
even at runtime, which implies that only minimal assumptions about knowledge of service requester and service
provider interfaces is allowed. One solution to this requirement is to apply a process mediation component which
resolves all incompatibilities and generates appropriatemappings between different processes while making
minimal assumptions about implementation details of service providers and requesters.

Creating such a process mediation component is a very challenging task. Service providers and requesters
may not share basic standards for Web Service specification;they may not share domain ontologies; further-
more, they typically do not do share the same data models or interaction protocols. Moreover, the changing
business needs may dictate that existing services are modified, thus rendering previous compatible interactions
incompatible. As a result, a mediation module must deal withincompatibilities of multiple types and also be
able to incorporate adaptive reasoning mechanisms to address dynamic environment changes.

Current web services standards provide a good basis for achieving at least some level of interoperability.
WSDL allows to declaratively describe operations and format of messages and data structures that are used to

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



communicate with the web service. BPEL4WS adds the possibility to define the interaction protocol and possi-
ble control flows and combine several web services within a formally defined process model. However, none of
the current standards goes beyond the syntactic descriptions of web services. Newly emerging standards for se-
mantic web services, such as SAWSDL [4], OWL-S [8] and WSMO [6], strive to enrich syntactic specifications
with rich semantic annotations to further facilitate flexible dynamic web services discovery, composition and in-
vocation [7]. However, the current standards do not providereasoning methods for interoperability of providers
and requesters as application requirements change. Various types of middle agents [14] – employing techniques
such as reasoning and planning combined with approaches like dynamic discovery and recovery from failure
– present a possible solution for bridging the gap between service requesters and providers with incompatible
interaction protocols (process models) and possibly incompatible data models.

2 Process Mediation

In our recent body of work [11, 9], we address the problem of automatic mediation of process models consisting
of semantically annotated web services. Processes can act as service providers, service requesters or commu-
nicate in peer-to-peer fashion. We are focusing on the situation where the interoperability of two components,
one acting as the requester and the other as the provider, needs to be achieved. Usually, both the requester and
provider adhere to some relatively fixed process models. Theprocess models can either correspond to a particular
existing implementation or they can be default (generic) process models that for example generalize a business
processes of some specific problem domain (e.g., client or provider of flight booking service). In particular,
our research focuses on mediation of process models of providers and requesters in open dynamic environments
where new services could be dynamically discovered, thus necessitating runtime mediation. Additionally, we
assume that both the requester and the provider interact according to specified process models that are fixed, are
expressed declaratively and might be incompatible.

We use the OWL-S ontology [8] for semantic annotations because it provides support for description of
individual services and also explicit constructs with clear semantics for describing process models. In OWL-
S, the elementary unit of process models is an atomic process, which represents one indivisible operation that
the client can perform by sending a particular message to theservice and receiving a corresponding response.
Processes are specified by means of their inputs, outputs, preconditions, and effects (IOPEs). Types of inputs
and outputs are defined as concepts in an ontology or as simpleXSD data-types. Processes can be combined
into composite processes by using control constructs such as sequence, any-order, if-then-else, split, loops, etc.

Creating a mediator component is very challenging since this component must resolve various types of
mismatches, such as the following that we have identified:

A. Data level mismatches: e.g. data are represented as different lexical elements (numbers, dates format, local
specifics, etc.); or ontological mismatches

B. Service level mismatches: e.g. a requester’s service call is realized by several provider’s services or a se-
quence of requester’s calls is realized by one provider’s call; some information required by the provider
is not provided by the requester; information provided by one party is not needed by the other one

C. Protocol / structural level mismatches: e.g. control flow in the requester’s process model can be realized
in different ways in the provider’s model (e.g., sequence can be realized as an unordered list of steps, etc.)

We have developed an abstract process mediation framework (APFM) showed in Figure 1. The main goal of
the APMF is a clear identification and separation of criticalfunctional areas which need to be addressed by
mediation components in order to effectively solve the process mediation problem. The three key functionali-
ties, namelyprocess mediation, data mediation andservice invocation, are displayed as horizontal layers. The

2



process mediation layer, realized by process mediators, isresponsible for resolving service level and protocol
level mismatches (categories B and C). The data mediation layer, realized by data mediators, is responsible
for resolving data level mismatches (category A). Typically, when trying to achieve interoperability, process
mediators and data mediators are closely related. A naturalway is to use data mediators within the process
mediation component to resolve “lower” level mismatches that were identified during the process mediation.
The service invocation layer is responsible for interactions with actual web services, which include the services
of the requester, provider and possibly other external services.

To address runtime incompatibilities and possible servicefailures, the mediation processes make use of
monitoring and recovery functionalities, which are represented as vertical layersin Figure 1. Finally, in dy-
namic environmentsdiscovery of external services is closely related to the process mediation since external
services (e.g. a translation service between inches and meters) might need to be discovered which are capable
of delivering information for resolving mismatches identified between two processes.

Figure 1: Abstract Process Mediation Framework

We have investigated and developed concrete architecturesfor the mediation components in the APMF
framework for two cases: (a) when the mediation component has complete visibility of the process model of the
service provider and the service requester [11] or (b) when the mediation component hasvisibility only of the
provider’s process model but not the requester’s (we call this asymmetric visibility) [9].

In the complete visibility scenario, our solution is based on an off-line analysis of possible execution se-
quences of the requester. A planning algorithm is employed to identify mismatches between requester’s exe-
cution sequences and the provider’s process model, and to compute the appropriate mappings for bridging the
identified mismatches. Such mappings are used during +runtime mediation to perform the necessary transla-
tions. In the case of asymmetric visibility, the off-line analysis cannot be employed because the requester’s
process model is not available. Therefore, the mediation must rely strictly on computing the mapping during
runtime only. We have developed a process mediation agent that uses similar planning techniques as in the
complete visibility scenario except that the planning is constrained by time due to the requirement of a timely
response. Additionally, the process mediation agent incorporates advanced recovery techniques to deal both
with service failures and with possible wrong choices made during the mediation.

3 Semantic Monitoring

We have developed an ontology [12] for specification of primitive events and a language for specification of
composite event patterns [10] based on the event algebra developed originally in the context of active databases
[3, 2]. Additionally, we have developed monitoring mechanisms combined with introspection mechanisms and
error handling that we implemented as extensions of the OWL-S Virtual Machine [5] which is a component that
controls interactions between the clients and semantic webservices. Specifically, the OWL-S Virtual Machine
(OVM) executes the process model of a given service by going through the process model while respecting the

3



OWL-S operational semantics [1] and invoking individual services represented by atomic processes. During the
execution, the OVM processes inputs provided by the requester and outputs returned by the provider’s services,
realizes the control and data flow of the composite process model, and uses the grounding to invoke WSDL based
web services when needed. The OVM is a generic execution engine which can be used to develop applications
that need to interact with OWL-S web services. During the service execution, the execution engine (OVM) emits
events specific to the state of process model execution. Emitted events (primitive events) are instances of generic
event or fault types defined in the events ontology [12]. The content of emitted event instances describes the
execution context in the time when the event occurred and other information relevant to the given event type. The
content is semantically annotated by the same domain ontology concepts that are used in the service definition
itself, which allows a more flexible events detection techniques than those derived from a simple syntactic key-
words matching. Specifically, we employ semantic reasoningfor detecting primitive events based on matching
their event type and the content.

The implemented monitoring extensions allow to perform different monitoring tasks such as logging, perfor-
mance measuring, execution progress tracking, execution debugging or evaluations of security parameters. For
many applications simple detection of individual events (called primitive events) emitted by various components
of the systems is a sufficient solution. However, often complex events patterns (called composite events) such
as co-occurrence of different events or sequence of events need to be detected.

4 Fault Handling and Error Recovery

Currently, neither WSMO, nor OWL-S provide any support for fault handling and recovery. The ability to
handle failures correctly and to possibly be able to recoverfrom failures is important not only in the context
of process mediation, but for web services in general. We have developed techniques for fault handling and
recovery for semantic web services [13] to allow specification of reliable, possibly adaptive process models and
so to increase the autonomy of web services systems. Again, we focus primarily on dynamic environments
where cooperating services might need to be discovered during runtime. Our approach to fault handling and
recovery shares similarities with fault handling in WS-BPEL. However, WS-BPEL offers only a limited support
for recovery and the monitoring which makes it suitable rather for static scenarios.

The basic idea of our approach is to take advantage of powerful semantic monitoring techniques to define
and detect possible erroneous states. To allow a controlledprocess recovery and gradual execution degradation
standardfault handling must be augmented with mechanisms allowing adesigner to define what situations are
supposed to trigger an erroneous state. To achieve this, we augment the process model definition with constraint
violation handlers (CV-handlers) for associating constraint violation conditions with appropriate explicitrecov-
ery actions that resolve the violations. Such constraints can stem fromapplicable SLAs or from contractual
requirements. Constraint violation conditions are treated as hard constraints that lead to an abnormal execu-
tion state. To express soft constraints that do not necessarily lead to an erroneous state, we useevent handlers.
A condition part of both event handlers and CV-handlers mustbe expressive and intuitive enough to allow en-
coding of SLAs and other constraints. We have employed eventalgebra expressions [2] combined with semantic
filters [10], which are suitable for describing complex event patterns and allow an efficient events monitoring
and detection (described briefly in the previous section). Similarly to WS-BPEL, we usecompensation for
undoing effects of the partial work after a fault has occurred. Finally, we introducedexplicit recovery actions
(such asretry, replaceBy, replaceByEquivalent) as means of fixing problems manifested by the fault occurrence.
Recovery actions present means of restoring the normal execution flow.

4



5 Acknowledgments

This research was supported in part by Darpa contract FA865006C7606 and in part by funding from France
Telecom. Research partially supported by the Czech ScienceFoundation project 201/05/H014 and the Czech
Ministry of Education project ME08095.

References

[1] Anupriya Ankolekar, Frank Huch, and Katia P. Sycara. Concurrent semantics for the web services speci-
fication language DAML-S. In Farhad Arbab and Carolyn L. Talcott, editors,COORDINATION, volume
2315 ofLecture Notes in Computer Science, pages 14–21. Springer, 2002.

[2] Jan Carlson and Björn Lisper. An event detection algebra for reactive systems. In Giorgio C. Buttazzo,
editor,EMSOFT, pages 147–154. ACM, 2004.

[3] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active databases:
Semantics, contexts and detection. InProceedings of the Twentieth International Conference on Very
Large Databases, pages 606–617, Santiago, Chile, 1994.

[4] Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML schema, 2007.
http://www.w3.org/TR/sawsdl/.

[5] Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Katia P. Sycara. The DAML-S virtual
machine. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors,International Semantic Web
Conference, volume 2870 ofLecture Notes in Computer Science, pages 290–305. Springer, 2003.

[6] Dumitru Roman et al. Web Service Modeling Ontology.Applied Ontology, 1(1):77 – 106, 2005.

[7] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Automated discovery,
interaction and composition of semantic web services.Journal of Web Semantics, 1 (1):27–46, 2004.

[8] The OWL Services Coalition.Semantic Markup for Web Services (OWL-S).
http://www.daml.org/services/owl-s/1.1/.

[9] Roman Vacuĺın, Roman Neruda, and Katia Sycara. An agentfor asymmetric process mediation in open
environments. InService Oriented Computing: Agents, Semantics and Engineering, pages 1032–1039.
Springer Verlag, May 12-16 2008.

[10] Roman Vacuĺın and Katia Sycara. Specifying and monitoring composite events for semantic web services.
In The 5th IEEE European Conference on Web Services. IEEE Computer Society, November 26-28 2007.

[11] Roman Vacuĺın and Katia Sycara. Towards automatic mediation of OWL-S process models. In2007 IEEE
International Conference on Web Services, pages 1032–1039. IEEE Computer Society, July 9-13 2007.

[12] Roman Vacuĺın and Katia Sycara. Semantic web servicesmonitoring: An OWL-S based approach. In41st
Hawaii International Conference on System Sciences. IEEE Computer Society Press, January 7-10 2008.

[13] Roman Vacuĺın, Kevin Wiesner, and Katia Sycara. Exception handling and recovery of semantic web
services. InFourth International Conference on Networking and Services. IEEE Computer Society Press,
2008.

[14] H. Chi Wong and Katia P. Sycara. A taxonomy of middle-agents for the internet. InICMAS, pages 465–
466. IEEE Computer Society, 2000.

5


