
Automatic Service Composition and Synthesis: the Roman Model

Diego Calvanese
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

calvanese@inf.unibz.it

Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella,Fabio Patrizi
Dipartimento di Informatica e Sistemistica, SAPIENZA – Università di Roma, Italy

lastname@dis.uniroma1.it

Abstract

The promise of Web Service Computing is to use Web services asfundamental elements for realizing
distributed applications/solutions. When no available service satisfies a desired specification, one might
check whether (parts of) available services can be composedand orchestrated in order to realize the
specification. The problem of automatic composition becomes especially interesting in the presence of
conversational services. Among the various frameworks proposed in the literature, here we concentrate
on the so called “Roman Model”, where: (i) each service is formally specified as a transition system that
captures its possible conversations with a generic client;(ii) the desired specification is a target service,
described itself as a transition system; (iii) the aim is to synthesize an orchestrator realizing the target
service by exploiting execution fragments of available services. The Roman Model well exemplifies what
can be achieved by composing conversational services and, also, uncovers relationships with automated
synthesis of reactive processes in Verification and AI Planning.

1 Introduction

Web services, or simply services, are modular applicationsthat can be described, published, located, invoked,
and composed over a variety of networks (including the Internet): any piece of code and any application com-
ponent deployed on a system can be wrapped and transformed into a network-available service, by using stan-
dard (XML-based) languages and protocols (e.g., WSDL, SOAP, etc.). One of the interesting aspects is that
this wrapping allows each program to export a simplified description of itself, which abstracts from irrelevant
programming details. The promise of Web services is to enable the composition of new distributed appli-
cations/solutions: when no available service can satisfy aclient request, (parts of) available services can be
composed and orchestrated in order to satisfy the request itself.

The work on services has by now largely resolved the basic interoperability problems for service compo-
sition (e.g., standards such as WS-BPEL and WS-CDL exist andare widely supported in order to compose
services), and designing programs, called orchestrators,that execute compositions by coordinating available
services according to their exported description is the bread and butter of the service programmer [1].

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



The availability of abstract descriptions of services, hasbeen instrumental to devising automatic techniques
for synthesizing service compositions and orchestrators.Several research lines have been opened to investigate
this issue. Some works have concentrated on data-oriented services, by binding service composition to the work
on data integration [21]. Other works have looked at process-oriented services, in which operations executed
by the service have explicit effects on the system. Among these approaches, several considerstateless(a.k.a.,
atomic) services, in which the operations that can be invoked by the client do not depend on the history of
interactions, as services do not retain any information about the state of such interactions. Much of this work
relies on the literature on Planning in AI [30, 10, 12]. Others considerstatefulservices which impose some
constraints on the possible sequences of operations (a.k.a., conversations) that a client can engage with the
service. Composing stateful services poses additional challenges, as the composite service should be correct
w.r.t. the possible conversations allowed by the componentones. Moreover, when dealing with composition,
data (that typically are sent back and forward in the operation invocations and are manipulated by the service)
usually play an important role. This work relies on researchcarried out in different areas, including research
on Reasoning about Actions and Planning in AI, and research about Verification and Synthesis in Computer
Science [11, 25, 18, 20].

In this paper, we focus on composition of process-oriented stateful services, in particular we consider the
framework for service composition adopted in [5, 7, 8, 22, 16, 29], sometimes referred to as the “Roman Model”
[19]. In the Roman Model, services are represented as transition systems (i.e., focusing on their dynamic behav-
ior) and the composition aims at obtaining, given a (virtual) target service specifying a desired interaction with
the client, an actual composite service that preserves suchan interaction.

The Roman Model well exemplifies what can be achieved by composing stateful services, and allows to
uncover relationships with automated synthesis of reactive processes in Verification and Planning in AI.

2 The Roman Model

Services in the Roman Model represent software modules capable of performing operations. They arestateful: a
service, at each step, offers to its clients a choice of operations it can perform, based upon its own state; the client
chooses one of the offered operations, and the service executes it, changing its state accordingly. Formally, a
serviceis a transition systemS = 〈O, S, s0, Sf , ̺〉, where: (i) O is the set of possibleoperationsthat the service
recognizes; (ii ) S is the finite set of service’sstates; (iii ) s0 ∈ S is theinitial state; (iv) Sf ⊆ S is the set offinal
states, i.e., those states where the interaction with the service can be legally terminated by the client (though she
does not need to); (v) ̺ ⊆ S × O × S is the service’stransition relation, which accounts for its state changes.
When〈s, o, s′〉 ∈ ̺, we say thattransition s

o
−→ s′ is in S. Given a states ∈ S, if there exists a transition

s
o

−→ s′ in S, then operationo is said to beexecutablein s. A transitions
o

−→ s′ in S denotes thats′ is
a possible successor state ofs, when operationo is executed ins. Notice that we allow fornondeterministic
services, that is, several transitions can take place when executing a given operation in a given state. So, when
choosing the operation to execute next, the client of the service cannot be certain of which choices will be
available later on, this depending on which transition actually takes place. In other words, nondeterministic
services are onlypartially controllable. We say that a serviceS is deterministiciff there are no two distinct
transitionss o

−→ s′ ands
o

−→ s′′ such thats′ 6= s′′. Notice that given a deterministic service’s state and an
executable operation in that state,uniquenext service’s state is always known. That is, deterministic services
are indeedfully controllableby just selecting the operation to perform next.

A community of available servicesC = 〈S1, . . . ,Sn〉 consists ofn nondeterministic available services that
share the same operationsO. A target serviceis a desireddeterministicservice that shares the operations inO.
The requirement of being deterministic is due to the fact that we want such a service to be fully controllable by
its clients. The goal of the composition in the Roman Model isto maintain with the client the same, possibly
infinite, interaction that she would have with the (virtual)target service, by suitably orchestrating the (concrete)

2



available services. Anorchestratoris a system component able to activate, stop, and resume any of the available
services, and to instruct them to execute an operation amongthose executable in their current state. Essentially,
the orchestrator, at each step, will consider the operationchosen by the client (according to the target service)
and delegate it to one of the services for which the operationis executable, on so on, possibly at infinitum.
The aim of the orchestrator is to maintain the interaction with the client, as if it was interacting with the target
service, without ever failing to be able to delegate an operation chosen by the client to one of the available
services. We assume here that the orchestrator hasfull observabilityon the available services, that is, it can keep
track (at runtime) of their current states. Although other choices are possible, full observability is the natural
one in this context, since the available services, modeled through finite transition systems as above, are already
suitable abstractions foractualmodules: if details have to be hidden, this can be done directly within the abstract
behaviors exposed by services, possibly exploiting nondeterminism.

Formally, an orchestrator is afunction from (i) the history of the whole system (which includes the state
trajectories of all available services and the trace of the operations chosen by the client, and executed by the
services), and (ii ) the operationcurrently chosen by the client, to the indexi of the serviceSi to which the
operation has to be delegated. Intuitively, the orchestrator realizesa target service if and only if, at every step,
given the current history of the system, it is able to delegate every operation executable by the target to one of
the available services.

3 Composition techniques

The goal of service composition is to synthesize an orchestrator that realizes the target service by exploiting
available services. Such problem is related to synthesis ofreactive processes [27], where an environment (in our
case, the available service community) is to be controlled by an automatically-generated controller (in our case,
the orchestrator), so that a desired specification (in our case, mimicking the target service) is fulfilled.

The specific composition problem has been tackled with different techniques: at first by exploiting a reduc-
tion to Satisfiability in a well known logic of programs, namely PDL [5, 7, 4, 16]. Notably, Logics of Programs
are tightly related to Description Logics, for which highlyoptimized satisfiability checkers exist (e.g., RacerPro,
Pellet, FACT, etc.). More recently [23], the problem has been tackled by directly appealing to techniques for
Linear Time Logic (LTL) synthesis [26], based on model checking of game structures for the so calledsafety-
games(see also ATL [3, 2]). Another approach recently proposed isbased on directly computing compositions
by exploiting (variants of) the formal notion of simulation[9, 29, 23]. The two latter approaches promise both a
high level of scalability, since in practice they can be based on symbolic model checking technologies. Here we
concentrate on the simulation-based approach.

Let C = 〈S1, . . . ,Sn〉 be a community of available services andSt a target service, whereSi =

〈Si, s
0

i , S
f
i , ̺i〉, for i ∈ {t, 1 . . . , n}. An ND-simulation relationof St by C is a relationR ⊆ St ×S1 × . . .×Sn

such that〈st, s1, . . . , sn〉 ∈ R implies that ifst ∈ S
f
t thensi ∈ S

f
i , for i ∈ {1, . . . , n}, and for eacho ∈ O,

there exists ak ∈ {1, . . . , n} such that for all transitionsst
o

−→ s′t in St we have that: (i) there exists a transition
sk

o
−→ s′k in Sk; (ii ) for all sk

o
−→ s′k in Sk, it holds that〈s′t, s1, . . . , s

′

k, . . . , sn〉 ∈ R. An ND-simulation is
essentially a simulation betweenSt and the asynchronous product of the servicesSi in C. However, differently
from the usual notion of simulation, we need to take into account available services’ nondeterminism. To this
end, we require that (i) for each target service’s operation an available servicek can be selected to perform the
operation and (ii ) all its successor statesare still included in the ND-simulation.

A statest is ND-simulated by〈s1, . . . , sn〉, denotedst � 〈s1, . . . , sn〉, if and only if there exists an ND-
simulationR of St by C such that〈st, s1, . . . , sn〉 ∈ R. Observe that this is acoinductive definition. As a result,
the relation� is itself an ND-simulation, and is in fact thelargest ND-simulation relation, i.e., all ND-simulation
relations are contained in�. It can be shown that there exists a compositions if and only if s0

t � 〈s0
1
, . . . , s0

n〉.
Synthesizing composition using simulation has a very interesting property: the maximal simulation� con-

3



tains enough information to allow for extracting every possible composition, through a suitable choice function.
This allows for devising compositions in a “just-in-time” fashion: we compute the maximal simulation then,
based on it, we start executing the composition, choosing the next step according to criteria that can depend
on information available at run-time (actual availabilityof services, network communication problems or cost,
etc.), so that simulation is preserved. This, also, opens upthe possibility of having failure resistant composi-
tions that reactively or parsimoniously adjust to failuresof available services, avoiding recomputing the whole
composition from scratch [29].

4 Conclusion

Several extensions and variants of the model presented herehave been studied, e.g.: forms of target service’s
loose specifications [6], lookahead [14], trust aware services [13], distributed orchestrators [28], shared envi-
ronments or other infrastructure for communication among services [16, 15], data-aware services [4]. Also, the
approach described in this paper is related to composition based on planning [25], where the crucial difference is
the desired specification to realize: in the composition viaplanning, this is a desired state of affair to be reached
after some interactions while, in our case, it amounts to indefinitely maintain the specified interaction itself.

We conclude by stressing out thatdealing with datais certainly one of the most critical and difficult issues we
currently face in service composition and, more generally,in process verification. Indeed, current verification
and synthesis techniques apply to finite state systems, while the presence of data typically results in infinite
states. Therefore, suitable means forabstractionfrom infinite to finite states are needed, and indeed virtually all
results on combining data with processes are directly or indirectly based on such a notion [4, 17, 24].

Acknowledgements. This work has been partly supported by the IST projects TONES, SemanticGOV, SM4All, the Italian
FIRB project TOCAI.it and the IBM 2008 Faculty Award.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services. Springer, 2004.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. MOCHA: Modularity
in model checking. InProc. of CAV 1998.

[4] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic composition of transition-
based semantic web services with messaging. InProc. of VLDB 2005.

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic composition of
e-Services that export their behavior. InProc. of ICSOC 2003.

[6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Synthesis of underspecified
composite e-Services based on automated reasoning. InProc. of ICSOC 2004.

[7] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic service composition
based on behavioural descriptions.International Journal of Cooperative Information Systems, 14(4), 2005.

[8] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Composition of services with nondeterministic
observable behavior. InProc. of ICSOC 2005.

[9] D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Automatic service composition via simulation.Int.
J. Found. Comput. Sci., 19(2):429–451, 2008.

4



[10] J. Blythe and J. L. Ambite, editors.Proc. of ICAPS 2004 Workshop on Planning and Scheduling for Web
and Grid Services, 2004.

[11] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design and analysis of
e-service composition. InProc. of WWW 2003.

[12] J. Cardoso and A. Sheth. Introduction to semantic web services and web process composition. InProc. of
the 1st Int. Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004).

[13] F. Cheikh, G. De Giacomo, and M. Mecella. Automatic web services composition in trustaware commu-
nities. InProc. of SWS 2006.

[14] Z. Dang, O. H. Ibarra, and J. Su. On composition and lookahead delegation of e-services modeled by
automata.Theor. Comput. Sci., 341(1–3):344–363, 2005.

[15] G. De Giacomo, M. de Leoni, M. Mecella, and F. Patrizi. Automatic workflows composition of mobile
services. InProc. of ICWS 2007.

[16] G. De Giacomo and S. Sardina. Automatic synthesis of newbehaviors from a library of available behaviors.
In Proc. of IJCAI 2007.

[17] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web applications.J. Comput.
Syst. Sci., 73(3):442–474, 2007.

[18] C. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated composition of e-services: Lookaheads. InProc.
of ICSOC 2004.

[19] R. Hull. Web services composition: A story of models, automata, and logics. InProc. of ICWS 2005.

[20] S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services. InProc. of
KR 2002.

[21] M. Michalowski, J. L. Ambite, C. A. Knoblock, S. Minton,S. Thakkar, and R. Tuchinda. Retrieving and
semantically integrating heterogeneous data from the web.IEEE Intelligent Systems, 19(3):72–79, 2004.

[22] A. Muscholl and I. Walukiewicz. A lower bound on web services composition. InProc. of FoSSaCS 2007,
2007.

[23] F. Patrizi. Simulation-based Techniques for Automated Service Composition. PhD thesis, SAPIENZA –
Università di Roma, Dipartimento di Informatica e Sistemistica, 2008. To appear.

[24] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated composition of web services by planning
at the knowledge level. InProc. of IJCAI 2005.

[25] M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services by planning in asyn-
chronous domains. InProc. of ICAPS 2005.

[26] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive designs. InProc. of VMCAI 2006.

[27] A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. of POPL’89.

[28] S. Sardina, F. Patrizi, and G. De Giacomo. Automaticsynthesis of a global behavior from multiple dis-
tributed behaviors. InProc. of AAAI 2007.

[29] S. Sardina, F. Patrizi, and G. De Giacomo. Behavior composition in the presence of failure. InProc. of
KR 2008.

[30] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services composition using
SHOP2. InProc. of ISWC 2003.

5


