
Automated Composition of Web Services: the ASTRO Approach

Annapaola Marconi, Marco Pistore, and Paolo Traverso
FBK-irst - via Sommarive 18, 38100, Trento, Italy

[marconi,pistore,traverso]@fbk.eu

With automated composition we mean generating an executable process that satisfies a given composition
requirements by communicating with a set of existing Web services. Several approaches have been proposed to
tackle this problem. However, most of them either omit or oversimplify important aspects of the Web service
composition problem. The driving idea of the approach we’representing in this paper is to overcome these
limitations, in order to deal with real world composition problems. The ASTRO approach is able to cope with
complex control and data flows, i.e., with Web services exposing complex protocols and exchanging structured
data, and with composition requirements expressing constraints not only on the service interactions but also on
the exchanged data. The ASTRO approach has been implementedand evaluated on real world composition
domains.

1 Introduction

The ability to compose services, reducing development timeand effort by re-using existing functionalities, is one
of the most promising ideas underlying Web services. However, the complexity of service-based applications,
the heterogeneity of the components, the dynamic nature of the environment, and the intrinsic distributed struc-
ture of the systems, make the manual development of the new composite application a difficult, error-prone and
time-consuming task. Given this, techniques and methods allowing to automatically compose and adapt Web
services are essential to substantially decrease time and costs in the development, integration, and maintenance
of complex service oriented applications.

With automated composition we mean generating an executable process that satisfies a given composition
requirements by communicating with a set of existing Web services, and that can be published itself as a Web
service providing new higher level functionalities. Several approaches have been proposed to tackle this problem
(e.g. [4, 2, 3, 12, 5]). However, most of them either omit or oversimplify several important aspects of the
Web service composition problem. The main aim of the ASTRO approach is to overcome these limitations
by providing an automated composition framework that is able to tackle real world Web service composition
problems.

Among the most important characteristics provided by this approach are (i) the ability to consider component
services that are complex stateful processes exhibiting anasynchronous and non deterministic behavior, (ii) the
possibility to specify composition requirements specifying both data and control constraints on the execution
of the new composite service, and (iii) the possibility to gradually refine the composition requirements and to
iteratively re-generate a solution in a continuous semi-automated composition process.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

The ASTRO approach is implemented and incorporated into a prototype tool that supports all the phases of
Web service automated composition: from the specification of control-flow and data-flow requirements by means
of graphical tools for drawing data net diagrams and specifying control-flow requirements, to the automatic
synthesis of the desired service, to the deployment, simulation, and execution of the new composite service.
Using the prototype implementation, we evaluated our framework on a set of real-world case studies emerged
from industrial applications and found in the literature. Asignificant example is the combination of Amazon
on-line shopping services with on-line payment services provided by banks.

2 An Overview of the Approach

The ASTRO approach conceives the automated synthesis of thecomposite process as a step of a more complex
iterative process that covers the different phases of the composition problem. In particular, the ASTRO compo-
sition process [8] consists of two phases (see Figure 1). Theaim of thefirst phase is to obtain a preliminary
version of the composite process starting from initial composition requirements. During this phase the developer
analyzes the component service protocols (abstractWS-BPEL andWSDL) and specifies control flow and data flow
requirements. Given the description of the component services and the requirements specification we automati-
cally generate the internal executable composite process (executableWS-BPEL) and its user interface (WSDL and
abstractWS-BPEL). This preliminary version of the composite service can be iteratively enhanced in thesecond
phaseof the process. During this phase the developer, on the basisof the automated composition outcomes, can
refine both the composition requirements and the customer interface and automatically re-compose.

Control Flow
Requirements
Specification

Composite
Service

Generation

Data Flow
Requirements
Specification

Composition
Requirements
Refinement

PHASE1
PHASE2

Figure 1: ASTRO Web Service Composition Process

2.1 Specification of Composition Requirements

In order to cope with a wide range of composition problems we need a way to express requirements that define
complex conditions, both for what concerns the behavior of the composition (termination conditions, failure
recovery, transactional constraints) and for the data exchanged among the component services. Moreover, to
make the automated composition an effective and practical task, the requirements specification should be as
user-friendly and easy refining as possible.

We propose to separate the specification of data flow requirements from that of control flow requirements,
and provide formal notations for their specification. In particular, in the control flow requirement specification
step the developer defines termination conditions and transactional issues by exploiting minimal semantic anno-
tations in the component service abstractWS-BPEL. Our approach, described in details in [9, 10], provides the
developer with the ability to specify with a simple tabular notation these requirements that are then automati-
cally translated into a formal internal notation that allows for the automation of the composition task. For what
concerns requirements on data, we propose a formal language, the data net language [6], that allows to specify
complex data flow composition requirements through an intuitive graphical notation. The data flow require-
ment specification step concerns the specification of how incoming messages must be used by the composite

2

service (from simple forwarding to complex data manipulation) to obtain outgoing messages. During this step
the developer also specifies messages received from and sentto the composite service user.

2.2 Automated Composition

Given the description of the component services and the composition requirements, the final step of the first
phase is the development of the new composite service. The outcome of this completely automated phase is the
executableWS-BPEL implementing the internal behavior of the new process and the description of the interaction
protocol that the new service expects its customers to follow (WSDL and abstractWS-BPEL). For this automated
synthesis task, the approach exploits sophisticated AI techniques for planning in asynchronous domains, extend-
ing them with new methods and algorithms in order to handle the peculiarities of the Web service automated
composition problem. In particular, component services define the planning domain, composition requirements
are formalized as planning goal, and planning algorithms are used to generate the composite service.

The formal framework, presented in [9], differs from other planning frameworks since it can deal with par-
tial observable, non deterministic domains and asynchronous, message-based interactions between the domain
(encoding the component services) and the plan (encoding the composite service). Moreover, the framework
can handle complex transactional and termination requirements since it supports a goal language that allows
to specify conditions of different strengths and preferences among different (e.g., primary and secondary) re-
quirements. We extended this framework with new techniquesand methods to overcome its limitation for what
concerns the specification of data flow requirements and the encoding of data knowledge within the composition
domain. Clearly, the data flow is as critical for the composition problem as the control flow, since the execution
of a service is driven by the received and manipulated data. However, considering data in Web service compo-
sition has to deal with several problems: data domains are often infinite, and the semantics of data structures
is complex (e.g. service messages areXML documents and service functions areXPath expressions). One of
the key contributions is the possibility to handle the complex data flow composition requirements defined tho-
rugh the data net language [6]. Moreover, we extended the framework with the K-level approach [11]: a novel
abstraction-based approach for handling data, which ranges over an infinite domain, in a finite, symbolic way.

2.3 WS-Compose

The approach presented in this paper has been implemented asa prototype toolkit, namelyWS-Compose,
and integrated in theASTRO Toolset [1], a toolkit providing an integrated environment for the composition
of Web services. TheASTRO Toolset covers several aspects of the Web service composition process by
providing tools and techniques supporting the analyst in the different phases (e.g. design time verification, run
time monitoring, automated composition), and allows for the usage of industrial standards such asWSDL and
WS-BPEL in the definition of Web services. For what concerns the automated synthesis of new services,WS-
Compose supports all the phases of Web service automated composition: from the specification of control-flow
and data-flow requirements by means of graphical tools for drawing data net diagrams and specifying control-
flow requirements (WS-Req), to the automatic synthesis of the desired service (WS-Synth), to the deployment,
simulation (WS-animator), and execution of the new composite service.

The ASTRO approach has been evaluated on a wide range of experimental domains, including real Web
service composition domains. A significant example is the scenario that requires the composition of the Amazon
E-Commerce Services and the e-payment service offered by Banks of Monte dei Paschi di Siena Group (MPS)
[7]. The goal of the composition is to generate ane-Bookstore application that allows to order books and buy
them via a secure credit card payment transaction. This composition scenario is particularly challenging since all
component services export complex interaction protocols and handle structured data in messages. The following
table shows the results of the eBookstore automated composition problem1.

1The composition times have been obtained on a Pentium Centrino 1.6 GHz with 512 Mb RAM of memory running Linux

3

Time (sec.) WS-BPEL
model construction composition & emission complex activities

E-BOOKSTORE 2.7 605.2 177

We distinguish between model construction time (translatethe WS-BPEL component services into STS and
encode the composition goal) and composition time (synthesize the composition and emit the corresponding
executableWS-BPEL). The task of manually encoding and testing the same composition required several hours
of work (more or less 20 hours).

The ASTRO approach has thus shown to be applicable also to this real domain providing a first positive
answer to the question of the practical applicability of automated composition techniques.

3 Conclusions

Developing composite processes interacting with complex real world web services requires a time consuming
analysis of the component services, both for what concerns their interaction protocol and the data structure
of their messages. Moreover, it requires a detailed implementation of the new composite service that takes
into account all the possible interaction evolutions (faults, exceptions). We propose an automated composition
approach that can deal with real world composition problemsand that dramatically reduces the effort for the
composition by automatically generating both the internalexecutable composite process (executableWS-BPEL)
and its user interface (WSDL and abstractWS-BPEL). Interesting features to be investigated in the future would
be to extend the approach in order to handlepeer-to-peer andrun-time automated composition problems.

References

[1] ASTRO Project:Supporting the Composition of Distributed Business Processes- http://astroproject.org

[2] R. Akkiraju, B. Srivastava, A. Ivan, R. Goodwin, and T. Syeda-Mahmood.SEMAPLAN: Combining Planning with
Semantic Matching to Achieve Web Service Composition.Proc. of IEEE International Conference on Web Services
(ICWS’06), 2006

[3] D. Ardagna and B. Pernici.Dynamic web service composition with QoS constraints.International Journal of Business
Process Integration and Management, V.1, N.4, 233-243, 2006

[4] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella.Composition of Services with Nondeterministic Observ-
able Behaviour.Proc. of International Conference on Service Oriented Computing (ICSOC’05), 2005

[5] R. Hull, M. Benedikt, V. Christophides, and J. Su.E-Services: A Look Behind the Curtain.Proc. PODS’03, 2003

[6] A. Marconi, M. Pistore, and P. Traverso.Specifying Data-Flow Requirements for the Automated Composition of Web
Services.Proc. of Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM06),
2006

[7] A. Marconi, M. Pistore, and P. Traverso.Automated Web Service Composition at Work: the Amazon/MPS Case
Study.Proc. of IEEE International Conference on Web Services (ICWS07), 2007

[8] A. Marconi, M. Pistore, and P. Traverso.An Iterative Approach for the Process level Composition of Web Services.
Workshop Proc. of 3rd South-East European Workshop on Formal Methods (SEEFM07), 2007

[9] M. Pistore, P. Traverso, and P. Bertoli.Automated Composition of Web Services by Planning in Asynchronous
Domains.Proc. of the International Conference on Automated Planning & Scheduling (ICAPS05), 2005

[10] M. Pistore, P. Traverso, and P. Bertoli and A. Marconi.Automated Synthesis of Composite BPEL4WS Web Services.
Proc. of IEEE International Conference on Web Services (ICWS05), 2005

[11] M. Pistore, A. Marconi, and P. Traverso and P. Bertoli.Automated Composition of Web Services by Planning at the
Knowledge Level.Proc. of International Joint Conferences on Artificial Intelligence (IJCAI05), 2005

[12] S. McIlraith and S. Son.Adapting Golog for Composition of Semantic Web Services.Proc. of the Eighth International
Conference on Knowledge Representation and Reasoning (KR’02), 2002

4

