
Web Service Protocols: Compatibility and Adaptation

Marlon Dumas
University of Tartu, Estonia
marlon.dumas@ut.ee

Boualem Benatallah, Hamid R. Motahari Nezhad
The University of New South Wales, Australia
{boualem,hamidm}@cse.unsw.edu.au

Abstract

This paper discusses the notion of protocol compatibility between Web services, and reviews a number
of techniques for detecting incompatibilities and for synthesizing adapters for otherwise incompatible
services. The paper also reviews related notions such as realizability, substitutability and controllability.

1 Introduction

The composition of Web services involves wiring together multiple web services and having them interact often
in ways not originally foreseen during their initial development. In doing so, it is unavoidable that incompat-
ibilities may arise and need to be identified and resolved. Weclassify these incompatibilities into two types:
(i) signature incompatibilitiesthat arise when a service requires an operation from anotherservice, but this latter
service does not offer it, or when a service A needs to exchange a message with another service B, but the schema
of the message that A produces is not compatible with the one that B expects; and (ii)protocol incompatibilities
that arise when a service A engages in a series of interactions with another service B, but the order in which
service A undertakes these interactions is not compatible with that of B.

This paper discusses the notion of protocol compatibility between Web services and reviews a number of
techniques for detecting incompatibilities and for synthesizing adapters for otherwise incompatible services.
The paper also reviews related notions such as realizability [6], substitutability [4] and controllability [10].

The next section introduces background concepts for modeling web service interactions in general, and
service protocols in particular. Section 3 introduces the notion of protocol compatibility and related concepts.
Section 4 discusses techniques for synthesizing adapters for protocol-incompatible services. Finally, Section 5
summarizes the discussion and raises directions for futurework.

2 Service Interaction Modeling

It is customary to distinguish between two types of models ofservice interactions: choreographies and orches-
trations [15]. A choreography describes interactions between a collection of services from a global perspective.
In a choreography, no service plays a privileged role. Figure 1(a) depicts a choreography in the Business Process
Modeling Notation (BPMN) [14]. Four services are involved in this choreography: customer, sales, warehouse
and finance. Each activity denotes an interaction between two services. Importantly, a choreography only shows
interactions, as opposed to actions performed internally by a service. In contrast, an orchestration describes the

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



interactions between a designated service (the orchestrator) and a plurality of subordinated services. Figure 1(b)
depicts an orchestration for the sales service. An orchestration may include internal actions or timeouts. For
example, Figure 1(b) includes four actions internal to the sales service (the four “prepare” actions in dashed
lines) and a timeout: After sending a quote, the sales service waits for an order until the quote’s expiry time.

Customer sends Request for Quote to Sales

Customer sends 

Purchase Order to 

Sales

Sales sends Availability Check to Warehouse;

Warehouse sends Availability Check Response to Sales

goods unavailable

Sales sends Quote to 

Customer

Sales sends RfQ 

Rejection to Customer

Sales sends Shipment 

Request to Warehouse

Warehouse sends Shipment 

Notiication to Customer

Finance sends Invoice to 

Customer

Sales sends Billing 

Request to Finance

accept quote

(a) Order management choreography

send

availability query

send

quote

receive

availability

receive rfQ

send

billingRequest

send

shipmentOrder

receive

order

send

rejectRfQ

goods unavailable

prepare

quote

prepare

shipmentOrder

prepare

rejectRfQ

prepare

billingRequest

(b) Orchestration for Sales service

Figure 1: Examples: Choreography and Orchestration

If we consider a multi-party choreography and restrict it tothose interactions that involve a given pair of
services – e.g. the interactions between the sales and the customer services in the above example – we obtain a
(bilateral)service protocol. Service protocols described from the perspective of one participant are also called
behavioral interfaces[7], because they define the behaviour of a service vis-a-visof one of its clients or peers.

The derivation of behavioural interfaces from choreographies may require refinements. Consider, e.g. the
choice in Figure 1(a) that the customer performs between accepting or rejecting a quote. If the customer accepts
the quote, it sends an order. Thus, when receiving an order the sales service knows that the customer accepted the
quote. However, if the customer rejects the quote, it does not send any message. When deriving a behavioural
interface for the sales service, one needs to insert either atimeout (as in Figure 1(b)) or an additional interaction
through which the customer communicates the rejection to the sales service. Otherwise, the sales service will
wait indefinitely for an order. The notion ofrealizability [6] (also called enforceability [18]) captures this issue.
A choreography isrealizableif the behavioural interfaces obtained by projection of thechoreography into each
of its participatingroles, collectively enforce all control-flow constraints in the choreography.

Languages for specifying choreographies, protocols and orchestrations include BPMN (see above) and
BPEL.1 In BPEL, orchestrations are defined down to the point where they can be executed by dedicated plat-
forms. Also, BPEL allows one to specify protocols/behavioral interfaces. For formal analysis, protocols may be
represented using e.g. finite state machines (FSMs) [2], process algebra [11] or Petri nets [10, 3].

1http://www.oasis-open.org/committees/wsbpel/

2



(a) (b) (c)

Figure 2: Incompatibilities & adaptation: (a) unspecified reception, (b) deadlock, (c) adapter for protocols in (a)

3 Compatibility

Two services are protocol-compatible if every joint execution of these services leads to a proper final state,
i.e. a state in which both services are in a final state in theirrespective protocols [2]. Under the assumption
synchronous communication, Yellin & Ström [17] identify two main types of protocol mismatches:unspecified
reception, in which one party sends a message while the other is not expecting it; anddeadlock, the case where
both parties are mutually waiting to receive some message from the other. To illustrate the concepts, consider
the protocols ofPs (of serviceSs) andPc (of serviceSc) in Figure 2(a):Pc sends messageb (shown by a-b),
while Ps does not expect to receive it (unspecified reception). In Figure 2(b) instead,Pc expects to receive
messageack after sendinga (shown by+ack), while Ps is waiting to receiveb (+b). This is a deadlock case.
Two protocols are said to becompatibleif they have no unspecified receptions and they are deadlock-free.

The protocolA′ obtained by reversing the polarity of every message in a protocolA is called the mirror ofA.
In other words, sent messages inA become received messages in its mirrorA′, while received messages become
sent messages. In general, a service protocol is compatiblewith its mirror. However, if a protocol specification
includes internal actions (e.g. timers or evaluation of boolean conditions resulting in certain branches being
taken) it is possible that this protocol is not compatible with its mirror protocol, nor with any other protocol. If
so, the service is said to be uncontrollable [10]. The problem of controllability is intuitively related to that of
realizability – as that they both result when internal choices are not externalized as messages. However, a formal
relation between controllability and realizability is yetto be established.

Replaceability(or substitutability) refers to the ability for a service to replace another one without inducing
incompatibilities [4]. In ServiceMosaic [2], two main classes of replaceability are defined:subsubmptionand
equivalence. ProtocolP1 subsumesP2 if P1 supports at least all the execution traces thatP2 supports. If so, a
serviceS1 (with protocolP1) can replace serviceS2 (with protocolP2). If P1 subsumesP2, andP2 subsumes
P1, thenP1 and P2 are equivalent, and servicesS1 and S2 can be used interchangeably. Finer notions of
replaceability are defined in terms of bisimulation [3].

Finally, one can ask the question of whether an orchestration conforms toa protocol. If we take the or-
chestration and we project it to those interactions that appear in its protocol, the question is whether or not the
projected orchestration is compatible with the service’s protocol. This question is studied in [9].

4 Adaptation

When two services are incompatible, it may be possible to introduce an adapter to resolve their mismatches. In
such cases, the service protocols are said to beadaptable. Depending on the types of mismatches, it may be
possible to automatically synthesize an adapter. The question of synthesizing adapters for incompatible protocols
has been studied in the area of SOA, as well as earlier in the area of component-based software engineering.

Yellin & Ström [17] propose an approach for checking the existence of an adapter for incompatible protocols.
An adapter is modelled as an FSM consisting of a set of states,a set of typed memory cells to store the messages

3



received by the adapter, and a set of state transition rules.Each rule describes a transition from a state to another
in the adapter based on sending or receiving messages, alongwith a set of memory actions that store or retrieve
messages in/from the cells. A rule also constructs messagesthat need to be sent to partners. The adapter’s
protocol is said to be compatible with protocolsP1 and P2 of the adapted components, if their interactions
have no unspecified reception and are deadlock free. Figure 2(c) shows an example of an adapter for protocols
in Figure 2(a). To synthesize the adapter specification for apair of components, their interface mappings is
required as the input (e.g. which messages should be mapped to which other messages). The adapter synthesis
process explores all possible interactions between the protocolsP1 andP2 and adds them to the adapter protocol.
If there are states leading to deadlocks or with unspecified reception, they are removed from the adapter protocol.

Other proposals rely on alternative protocol specificationlanguages that explicitly support concurrency.
Mateescu et al. [11] propose a technique for adapter synthesis based on protocols specified using process algebra.
Similarly, Brogi et al. [5] provide an automated adapter synthesis approach for protocols specified in BPEL.

Another line of research for service adapter development proposes to characterise the classes of possible
mismatches between protocols, provides guidelines for users to identify them and proposes templates to resolve
mistmatches based on design patterns [1] or composable adaptation operations [8]. In these approaches, the
construction of adapters requires manual intervention. Some of these approaches, e.g. [8] deal with mismatch
patterns not supported in automated approaches – e.g. mismatches where a message emitted by a service needs
to be mapped to an unbounded number of messages in the receiving service.

Automated approaches for adapter generation make the following assumptions: (i) there is no mismatch
at the interface-level, or the correct interface mappings have been provided as the input, and (ii) if there are
interactions which lead to deadlocks, they are not adaptable. As discussed in [12], the interface-level mappings
can not be always correctly identified without considering the protocol specifications. Second, some deadlock
cases may be adaptable, e.g. the resolution of a deadlock mayrequire the generation of messages (e.g., an
acknowledgment) that can be constructed in the adapter via user-defined functions.

To address these limitations, Motahari Nezhad et al. [12] approach adapter development as an iterative pro-
cess consisting of both interface-level and protocol-level mismatch identification and resolution. Their approach
starts from an initial set of interface matchings, computedby matching the WSDL interfaces of services, and
then, considering the protocol specifications of two services, identifies all the interactions that results in dead-
locks. The result is presented in the form of amismatch treeto the user, where the user can identify if such
interactions are resolvable. The approach also helps the user by analyzing the mismatch tree. Some deadlock
cases may be handled by going back to the interface matching step and refining the interface matchings.

5 Summary and outlook

Figure 3 summarizes the notions introduced in the paper. This panorama summarizes a significant body of
research work in the area of service-oriented computing. Inthis body of work, research questions are often
approached under the assumption that the choreographies, protocols and/or orchestrations are known and given
as input. Sometimes however, these specifications are unavailable or they are incompletely or unreliably speci-
fied, yet one needs to make assertions regarding the correct behavior of a service-oriented system. Recent work
has addressed the question of analyzing logs representing the observed behavior of a service-oriented system in
order to determine if these logs conform to a choreography orprotocol specification [16]. One of the key issues
in this setting is that of “correlation”, that is, how to group together log entries (such as those in message logs)
to produce trails that represent conversations between twoor more services [13]. Open questions in this area
include investigating the application of techniques from machine learning and information clustering.

An open question in the field of service adaptation is how to maintain adapters in an environment where
services evolve continuously. For example, given two services S1 and S2 that communicate through an adapter,
how can this adapter be updated (with minimal effort) when either S1 or S2 evolve or are replaced?

4



Choreography

Orchestration

Behavioral

Interface / Protocol

Behavioral

Interface / Protocol

Can play role? Can play role?

Is realizable?

Behavioural

Interface / Protocol

Is controllable?

Can replace?

conforms to?

Compatible?

Adaptable?

Figure 3: Relations between service interaction modeling viewpoints

References

[1] B. Benatallah, F. Casati, D. Grigori, H. Motahari Nezhad, and F. Toumani. Developing Adapters for Web Services
Integration. InProc. of CAiSE, pages 415–429, 2005.

[2] B. Benatallah, F. Casati, and F. Toumani. Representing,analysing and managing web service protocols.Data Knowl.
Eng., 58(3):327–357, 2006.

[3] F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci. Compositional Specification of Web Services Via Behavioural
Equivalence of Nets: A Case Study. InProc. of PETRI NETS, pages 52-71, 2008.

[4] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. Whenare Two Web Services Compatible? InProceedings of
the 5th International Workshop on Technologies for E-Services (TES), pages 15–28, 2004.

[5] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. InProc. of ICSOC, 2006.

[6] T. Bultan, X. Fu, and J. Su. Analyzing conversations: Realizability, synchronizability, and verification. In L. Baresi
and E. D. Nitto, editors,Test and Analysis of Web Services, pages 57–85. Springer, 2007.

[7] R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Approach.International Journal of Coop-
erative Information Systems, 13(4):337–368, 2004.

[8] M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation.
In Proc. of BPM, pages 65–80, 2006.

[9] D. König, N. Lohmann, S. Moser, C. Stahl, and K. Wolf. Extending the compatibility notion for abstract WS-BPEL
processes. InProc of WWW, pages 785–794, May 2008.

[10] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting WS-BPEL processes using flexible
model generation.Data Knowl. Eng., 64(1):38–54, 2008.

[11] R. Mateescu, P. Poizat, and G. Salaün. Behavioral adaptation of component compositions based on process algebra
encodings. InProc. of ASE, pages 385–388, 2007.

[12] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-automated adaptation of service
interactions. InProc. of WWW, pages 993–1002, 2007.

[13] H. R. Motahari Nezhad, R. Saint-Paul, B. Benatallah, F.Casati, and P. Andritsos. Process spaceship: Discovering
and exploring process views from event logs in data spaces. In Proc. of VLDB, 2008.

[14] Object Management Group. Business Process Modeling Notation, V1.1.OMG Available Specification, January 2008.

[15] C. Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52, 2003.

[16] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Conformance checking of service
behavior.ACM Trans. Internet Techn., 8(3), 2008.

[17] D. M. Yellin and R. E. Strom. Protocol Specifications andComponent Adaptors.ACM Transactions on Programming
Languages and Systems (TOPLAS), 19(2):292–333, 1997.

[18] J. M. Zaha, M. Dumas, A. H. M. ter Hofstede, A. P. Barros, and G. Decker. Service interaction modeling: Bridging
global and local views. InProc. of EDOC, 2006.

5


