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Letter from the Editor-in-Chief

International Conference on Data Engineering

ICDE (the International Conference on Data Engineeringhésflagship database conference of the IEEE. The
2009 ICDE will be held in Shanghai, China at the end of Marclwould encourage readers to check the "Call
for Participation” on the back inside cover of this issuetw Bulletin for more details. ICDE has become not
only one of the best database conferences, but one of thestaag well. | attend this conference every year and
always find my time well spent. Not only is the research progfiast-rate, but there is an industrial program,
demos, and workshops as well.

The organization exercising oversight for ICDE within tHeEE Computer Society is the ICDE Steer-
ing Committee. This organization has on-going respornsibibr selecting the conference committees for
each of the individual conferences, and for establishireggblicies and procedures under which these an-
nual conference committees operate. The outstanding ssicdd CDE during this decade has been enabled
by the planning and management of this committee. Erich Nleulvas Steering Committee Chair until 2007.
Since then, Calton Pu has been the Chair. More informatiautathe Steering Committee can be found at
http://tab. conputer.org/tcde/icde_stc. htm . Much is owed to Thomas Risse, who estab-
lished the web site, and has done so much over the years,drdtiefSteering Committee and for the Technical
Committee on Data Engineering, which sponsors both ICDElisdBulletin.

The Current Issue

Not so long ago, transaction processing was considereda@bie part of the database field. Roughly speaking,
transaction processing involves not only the databasealbatapplications written that exploit databases and
transactions to provide functions that are specific to soargqoular problem area, e.g. business data process-
ing. More recently, the database field, as measured by @derparticipation, has been moving away from
transaction processing, perhaps considering it to be @d@koblem. However, with the emergence of the web,
and specifically web services, there are new solutions ancgneblems to be solved. The subject of the current
issue of the Bulletin is "Semantic Web Services: Compasidad Analysis”. | hope that it will stimulate some
further involvement by the database community in the aregppfications exploiting databases, now in the new
context of the web, cloud computing, and widely deployediagpons.

The editor of the current issue is Jianwen Su. Jianwen hagbcparticipated in the area of web services
research and has focused this issue on this area. Themgdafue contains papers on a wide selection of topics
dealing with web services: design, composition, reliapinalysis, reasoning about them, and more. What |
like about the issue, and part of what the Bulletin is all dbmthat the issue brings these papers together in one
place, creating a very useful reference for further work alt &s providing a great way to become familiar with
this area. | want to thank Jianwen for his very successfolreifi bringing this very interesting issue together.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

One of the fundamental changes the Web will bring to us is ti@yato organize, manage, discover, compose,
and invokeweb servicesSpeaking loosely, web services are bite-sized piecesfwfa® system components
that can be executed over a network (e.g., the Internet). mimddiate and laudable goal is to be able to
dynamically share web services in a similar manner to tharghaf data on the Web. To this end, the principles
of Service Oriented Architecture (SOA) offer useful guides for constructing web services, compositions, and
applications based on web services.

Research on web services started more than a half dozenagand, in recent years, has attracted in-
creasingly more attention from several research commasniticluding the database community. It frequently
reminds me of the data management research prior to thalaofithe relational data model. Back then, there
was not only a lack of a simple, yet commonly accepted dataeinbdt also the prevailing models (network,
hierarchical) were very much motivated by physical storstgectures for data. Indeed, the search for a suitable
common model for web services is still ongoing in spite oiaas standards (e.g., the ones with names match-
ing “xWSx”). An important reason for this is insufficient understarglabout web services, their description,
use, composition, management, their interaction withestatata, etc. (SQL standardization happened years
after significant research efforts were spent on the relatidata model, query languages, query optimization,
database design, etc.) Of course, history doesn't quiteatafself. Models for web services emerge from the
physical world (software development), as well as from médifferent research communities with different
twists, adding abstractions, semantics, data, orchesttahoreography, etc., or their combinations.

Many research challenges are in front of us. Here are thramebes. Automation, as a key aspect of SOA,
requires incorporation afemanticsn various phases of web service development and applitatiBroviding
semantics in suitable form is the first challenge. The stah8AWSDL enables the capture of semantics about
how the input and output arguments of a web service are lingathderlying domain ontologies. However,
research on the semantics of the actual impact of serviafi@n they are combined (e.g., OWL-S, WSMO,
FLOWS) continues to be an area of active investigation. Almmezreadable semantics that can be reasoned
about can ensureorrectnessand at the same time help to achiesfficientservices. Service composition is
another area full of interesting research problems. Thexareany possible models for composition. In one
extreme, we might write down a detailedchestrationof a collection of web services. In the other extreme, we
could start from a globathoreographythat defines the expected behavior of the entire composietween the
two extremes, one could figure out behavior interfaces ofdwmore services (e.g., as “embedded” or partial
choreography), and gradually expand to an entire compasiiThe exact relationship among the composition
models remains to be explored. As the third example of chgilfey areas, techniques for analyzing, verifying,
and mining web services are in high demand. These will beaspecially important as the services used are
increasingly created through semi- and fully-automatedaliery and composition mechanisms.

Presented in this special issue is a sampler of ongoing nase#forts in web services. By no means do
they represent a complete survey of current projects inrigge, &dut | hope they can be the starting point of your
exploration in web services. As you will find, there are mamgctical motivations for this work, but no lack
of technical depth and elegance. | recall that Tim Berners-in his WWW 03 invited talk identified data and
(web) services as two fundamental elements flowing on the, \lékracting and bearing “fruits”, freely and
effectively. In my view, most of the work to date treats thevase/process aspect and the data aspect in largely
separated ways; the fundamental interplay of data andcesivand the development of new models that bring
that interplay to the forefront, remain largely unexploeett! untapped. Maybe some of you will find deep and
engaging challenges for your skills and talents by contirilguto this exciting (and highly profitable!) grand
challenge in software development and service management.

Jianwen Su
University of California, Santa Barbara



A Short Overview of FLOWS:
A First-Order Logic Ontology for Web Services*

Michael Gruninger Richard Hull Sheila A. Mcllraith
University of Toronto IBM T.J. Watson Research Center University of Toronto
Toronto, ON, Canada Yorktown Heights, NY, USA Toronto, ON, Canada

Abstract

FLOWS is a first-order logic ontology for Web services and aC\WBibmission. In this article, we
describe some of the motivation behind the development ©¥W&, together with its key features.

1 Introduction

TheFirst-order Logic Ontology for Web ServicéSLOWS) [9], also known as the Semantic Web Services On-
tology (SWSO), was initially developed during 2002 to 20@4alteam of academic and industrial researchers,
as part of the larger Semantic Web Services Framework (SW#t}, which culminated in a W3C Member
Submission [10] in 2005. FLOWS was created on the premiseathainambiguous, computer-interpretable
description of the process model of Web services and howdhegomposed, and client constraints on the ser-
vices to be provided, are critical to automating a diversitjasks, including Web service discovery, invocation,
composition, monitoring, verification and simulation. Tastend, FLOWS is based on first-order logic, and
provides a rigorous axiomatization that captures the sgtiocess-level semantics of Web services.

FLOWS is an extension of the Process Specification Language)([4], a first-order logic ontology for
modeling processes that was originally developed for mentufing processes, and realized as an ISO standard
in 2004. FLOWS enables partial and/or complete specifioatal the properties of Web services, including pre-
and post-conditions, internal structures, compositiditepas, messaging behaviors, and impact on the external
world, all in the context of a rigorously axiomatized firstder logic framework. This article provides a very
brief overview of FLOWS, including comparisons with reltwork, key principles underlying the creation of
FLOWS, and illustrations of key components of the framework

Background. A Web serviceprocess modealescribes the program that implements a Web service, whightm
itself be formed as a composition of other Web services. @hweryears, a number of languages have been
proposed for describing the process models of Web serviSesne of the most important examples include
Microsoft's XLANG, a Web service process modeling languagsed on pi-calculus; IBM’s WSFL based on
Petri Nets; BPEL4AWS, a Microsoft, IBM, BEA, SAP and Siebdbdf which merges XLANG and WSFL;
HP’s Web Service Conversation Language (WSCL); BEA, lotéAP and Sun’s Web Service Choreography

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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Interface (WSCI); BPML, backed by the Business Process genant initiative; the XML Process Description
Language (XPDL) backed by the Workflow Management Coalitiba Business Process Specification Schema
(BPSS) of ebXML; and the W3C Choreography effort, WS-CDL jekhdraws on pi-calculus. The most pop-
ular language for Web Service orchestration in use today $sB®EL 2.0 (or BPEL for short), which offers
significant enhancements over its predecessor, BPEL4WS.

In evaluating and comparing these efforts, a key obsenvadithat they were designed to address a diversity
of targeted process management tasks. Some, like BPEL,designed to address Web service orchestration
issues and to standardize workflow and execution with theatibg of increasing transaction reliability and
synchronization. Others, like WS-CDL, have focused ondssof Web service choreography, which involves
message exchange to coordinate the activities of indepenadents. As a consequence of the diversity of uses
for which these languages have been designed, comparimghthaged on concept coverage is important, but not
necessarily pertinent, as many of these languages coulktdreded to incorporate further concept descriptions.

It is our view that the most important shortcoming of thesgylaages, and the one that is least easily ad-
dressed, is their lack of well-defined semantics. For exangsveral attempts have been made to formalize
predecessors to WS-BPEL 2.0 using Petri nets, processrafjednd abstract state machines. While the WS-
BPEL 2.0 specification is more precise with respect to theaseics, it is still informally defined [6].

In 2001, a coalition of semantic Web researchers, underubgiees of the DARPA DAML program, under-
took to develop an ontology for Web services, using the Sém&veb ontology language DAML+OIL. This
culminated in the creation of OWL-S (formerly DAML-S) [2] aalv service ontology developed in OWL (the
successor of DAML+OIL) [5], and a W3C Member Submission i@200WL is a family of knowledge repre-
sentation languages for authoring ontologies and is eeddrg the World Wide Web Consortium (W3C). The
semantics of most of the OWL languages, specifically OWL Dd @WL Lite, is based on artificial intelli-
gence description logic, a subset of first-order logic. OWIll 5oon to be replaced by OWL 1.1) is based on a
novel semantics that provides compatibility with RDF Schemdost importantly OWL, and thus OWL-S, has
a well-defined (formal) semantics, in constrast to effasi®tl above.

Unfortunately, OWL has not proven sufficiently expressigecharacterize Web service process models.
While OWL-S does indeed have a description of the processhuica Web service, OWL is not sufficiently
expressive to denote all and only timended interpretationsf that process model. As such, like other process
modeling languages, the OWL process model must be humapiieteed to resolve ambiguities, or translated
to another, richer language, in which this new model can laanimguously interpretted by a program. Indeed
there have been four efforts towards defining the intendextpretation of the OWL-S (or DAML-S) process
model: a Petri Net-based operational semantics [7], an@aéng function-based operational semantics based
on subtype polymorphism [1], a semantics via translatidhedirst-order language of the situation calculus [7],
and a semantics provided by translation to PSL [3].

OWL-S has many strong features. In particular, the conospgrage of OWL-S provides a firm foundation
for process modeling efforts, including the ability to deeloth partial and complete specifications of relevant
aspects of a group of Web services. Further, OWL's expressss limitations, which OWL-S inherits, exist to
address the important trade-off between expressiveneseane hand and decidability and tractability on the
other, and are thus easily defensible in this context. Nlegkrss, it was experience with OWL-S that, in part,
motivated the development of FLOWS.

The Web Service Modeling Ontology (WSMO) [11] also providesexpressive, layered ontology for web
services and their compositions, using a semantics basadombination of description logic and horn logic.

Principles underlying FLOWS. FLOWS was developed based on the following three principles

Provide a fully expressive language and framewoilkhe goal of FLOWS is to enable reasoning about the
semantics underlying Web services, and how they interatt @dch other and with the “real world”. FLOWS

does not strive for a complete representation of Web sesyvimat rather for an abstract model that is faithful
to the semantic aspects of service behavior. In that cqrE®WS enables a variety of reasoning tasks, by



supporting descriptions of Web services that enable autmndiscovery, compaosition, and verification. This
also includes the creation of declarative descriptions @fed service, that can be mapped (automatically or
through a systematic, partially manual process) to exbitspecifications. In particular, then, unlike the
industrial process modeling languages listed above, FL@Ai®ended to support, within one language and
underlying framework, reasoning about Web services frorarg broad range of perspectives.

FLOWS is a modular and extensible ontology. It is thus pdsgib provide alternative extensions to repre-
sent different approaches to message handling, chordograpd orchestration. As such, FLOWS can serve as
an interlingua ontology that can facilitate interoperipibf Web services that use different ontologies.

Use first-order logic as the basi.irst-order logic enables the characterization of reamptasks for semantic
Web services in terms of classical notions of deduction amsistency. FLOWS can be used to specify tasks
in support of Web service discovery and composition; chregkiervice properties such as reachability, liveness,
and compliance with behavioral patterns and constraindgaerying about a wide range of semantic and tem-
poral properties of services. This enables exploitationfbthe-shelf systems such as existing FOL reasoning
engines and database query engines, thereby facilitatipigmentation and improving our understanding of the
reasoning tasks. At the same time, the use of first-ordec ldges not preclude the use of alternative reasoning
methods on selected subsets of FLOWS.

First-order logic has been criticized because it is semieddble (as opposed to OWL DL, which is decid-
able). Nevertheless, the motivating scenarios for semakigb services show that in general we will need to
solve intractable reasoning problems. Intractable raaggoroblems are inherently intractable — using a dif-
ferent language does not make them tractable. The restritia language that is tractable simply means that
there will exist reasoning problems that cannot be spedifidgide language.

Capture full semantics using an extensible family of axioAlghough other approaches to semantic Web ser-
vices specify concepts contained in FLOWS, they do not pliea rigorous and complete axiomatization to
support automated reasoning about the concepts. Incamgt@matizations require the use of additional ex-
tralogical mechanisms rather than reasoning from the axialone. Since automated Web services can share
axioms, but not the specification of special-purpose axjont®mplete axiomatizations restrict the reusability
and sharability of an ontology.

In FLOWS, the process model for Web services and their coitipos is formally specified using PSL
This provides predicates and axioms that enable reprégentd, and reasoning about, core process modeling
concepts, including fluents (that is, first-order predisatpresenting some portion of the “real world” that
can change over time), activities (such as Web servicesyjtgaccurrences (such as individual executions of
Web services), and the values of fluents before and aftesitgieticcurrences. The PSL standard is comprised
of a layered collection of families of axioms that can be usedeason about a broad class of processes. As
discussed in more detail below, FLOWS provides additioaaiifies of axioms, layered on top of a subset of
the PSL axiom families, to enable representation of, ansor@ag about, Web services and their compositons.

2 Key aspects of FLOWS

After providing some motivating use cases, this sectioeflyrihighlights some key aspects of the FLOWS
language and framework, and illustrates how it can suppertise cases.

Motivating use cases.The space of use cases that motivates and illustrates thdare@omputer-interpretable
Web service process models is vast, ranging from discovatycamposition to analysis, monitoring and error-
recovery, and including activities such as queries abalivitual services and over families of services, contract
enforcement, service histories, and provenance. Werdltesshow with just a few examples, centered around
services that focus on selling and shipping books.



1. Inquiries about one serviceDoes the Acme bookseller service always return a list oflalvks second-
hand copies of my requested book, if the book is out of printtddy what conditions does the Acme
bookseller service permit me to pay for books using Paypal?

2. Discovering servicesEind all bookselling services that will, at least in someesaseturn a list of avail-
able second-hand copies of my requested book if that boakt isferint. Or, find all bookselling services
that will always return a list of available second-hand esmf my requested book, if it is out of print.

3. Discovering composite serviceBind all book seller-shipper partnerships that are ablglib shipments
(e.g., as a consequence of delayed availability of somed)anikhout an additional charge.

4. Requesting (composite) serviceSreate a service that can book a flight to Toronto, find andvesz
hotel room there for next Monday to Wednesday, identify thstlway to get from the airport to the hotel,
and ship a guide-book about Toronto to me at that hotel intoney arrival. Furthermore, the hotel must
be within 15 minutes travel (by foot and/or public transptian) of the Computer Science department.

5. Responding to exceptionsf: the preceding scenario is underway and the flight into mayas delayed,
then dynamically provide new recommendations on the begttavget from airport to hotel.

Ontology. As noted above, in the FLOWS ontology Web services (both @tamd composite) are represented
as PSLactivities and Web service executions are represented asdedlity-occurrences Predicates that
change in the real world due to activity-occurrences areeateadusingfluents An activity-occurrence is a
limited, temporally extended piece of the world, with a cleanporal start-point and end-point.

As in PSL, the set of possible executions of a composite Wealicesls modeled essentially as a tree, whose
nodes correspond to individual activity-occurrences,, service executions, and where the children of one
activity-occurrence correspond to the set of all possibl#ity-occurrences that could immediately follow it.
For a fluent such dsook availablgt, w) for title t and warehouse, and service-occurrence the value of the
fluent immediately before occurs is given by the predicapge(book availabldt, w),0), and the value of the
fluent just afte occurs is given by the predicateldgbook availablgt, w),0). Itis from these basic constructs
that the full family of possible executions of a compositeb/gervice can be represented and reasoned about.
These constructs can also be used to specify pre-condaimhgffects of services.

FLOWS also provides constructs for modeling the internatpssing of composite Web services, including
sequences, nondeterminism (i.e. alternative activjtiesated activities, conditional activities, and comency.

As with Golog [8], these constructs are formally modeledasstraints, which enables both partial and complete
specifications of processing characteristics. Actividas be decomposed into primitive activities or composed
into more complex activities, and different classes ofvétitis are defined with respect to ordering and temporal
constraints on the subactivities. In this way, FLOWS sugspogasoning with both complete and incomplete
process specifications. In addition, FLOWS refines aspdcBSa with Web service-specific concepts and

extensions, such as providing the infrastructure for Igm8ng messages between services.

Axiomatization. The FLOWS axiomatization is layered on top of the axiomaittraof PSL Outer Core. The
axioms provide a rigorous and complete specification of th®WS constructs, including such concepts as
service, service-occurrence, messages and channelsplaoomistructs for service composition, various kinds
of constraints, and exceptions.

Enabling the use cases through queries and reasoningfhe approach to support reasoning tasks with the
FLOWS ontology and axioms is now illustrated with the useesa3 he focus here is to illustrate the expressive
power of FLOWS. It is clear that many of the problems that carspecified in FLOWS have high complexity
or are undecidable; as noted above it is possible to cresiigcted versions of these reasoning tasks in order to
obtain decidability and lower complexity.



Inquiries about an individual service, such as Acme bodleisalan be achieved by reasoning over the tree
of possible executions of the service. Note that both usalesind existential quantification will be called for.
For service discovery, the properties characterizing #mreld services can be specified using formulas over
the FLOWS ontology. This essentially reduces discoveryurygjng a database of service specifications. Even
the composition of services is achieved through the spatiic of a formula with one free variable which
describes the desired properties of the composition; ealatian for this variable will be a (composite) service
that provides a composition with the desired capabilitiesmally, FLOWS is able to represent the state of the
world when a composite service has partially completedxésetion. As such, it enables exception handling.

3 Closing Remarks

In this article we described some of the motivation behirddbvelopment of FLOWS, together with key aspects
of the FLOWS ontology. In doing so, we argued that existimglaages for modeling Web services were either
lacking in expressivity, or did not have a well-defined seftitcan As such, their ability to model and enable
automated reasoning about Web services was limited. IrasintFLOWS’ use of first-order logic provides
sufficient expressivity, a well-defined semantics, and ardity of automated reasoning tools. FLOWS presents
a natural evolution in the modeling of semantic Web serviceffecting a trend in semantic Web techonologies
towards the use of more expressive ontology languages.nRextensions to OWL, both realized and proposed,
bear witness to this trend. Readers interested in furtharlslen FLOWS are encouraged to consult the FLOWS
(a.k.a. SWSO) specification at [9], which includes the fullalogy and selected use cases.
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METEOR-S, SAWSDL and SA-REST
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Abstract

Services Research Lab at the Knoesis center and the LSDES labiversity of Georgia have played a
significant role in advancing the state of research in theaaref workflow management, semantic Web
services and service oriented computing. Starting withMiEerEOR workflow management system in
the 90’s, researchers have addressed key issues in the tseanantic Web services and more recently,
in the domain of RESTful services and Web 2.0. In this artieke present a brief discussion on the
various contributions of METEOR-S including SAWSDL, malion and discovery of semantic Web
services, data mediation, dynamic configuration and adagiaof Web processes. We finally discuss
our current and future research in the area of RESTful sewic

1 Overview

Our body of research can be divided into three major phasé® fifst phase related to the METEOR (for
“Managing End To End OpeRations”) system [6] focused on Wowk management and addressed issues of
formal modeling, centralized as well as distributed schieduand execution (including exception handling,
security, survivability, scalability and adaptation).€elwork yielded two notable frameworks:1)WebWork [7], a
Web based implementation and 2) ORBWork, a CORBA based mmai¢ation. The METEOR project initally
started at BellCore in 1990 and was continued at the LSDISuhib 1998. A commercial spinoff, Infocosm,
inc. and the product METEOR EAppS (for Enterprise ApplicatBuite) are other notable accomplishments.

Adopting to the SOA and semantic Web evolution, METEOR exdlinto METEOR-S where S stands for
services (or Service oriented Architecture) and semaniiiasas largely carried out at LSDIS Lab during later
1990s and 2006. One of the significant contributions of MERE® research is the submission of WSDL-
S specification as a W3C member submission, along with IBM2A66, the W3C created a charter for the
Semantic Annotation of Web Services (SAWSDL; www.w3.0rg02/ws/sawsdl), which used WSDL-S as its
primary input. SAWSDL became a W3C candidate recommendatidanuary 2007.

Our third phase recognizes emergence of Web2.0 and thed?éfbl along with use of microformats for as-
sociating metadata to Web resources, and so called liglgthiveieb services (RESTful services and WebAPIs).
This phase started in 2006 and significantly expanded atéhaces Research Lab in Kno.e.sis Center (where
our group of 11 researchers moved from the LSDIS lab) in 2@Diie of the key initial outcome is a micro-
format for annotating service descriptions in HTML calle@EST and a faceted extension called SA-REST.
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Both hREST and SA-REST are in their early stages of rese&utther information about these is available at
http://knoesis.wight.edu/research/srl/projects/ hRESTs/.
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Figure 1: Overview of the various components of the METEORa8ework.

While other prominent semantic Web service efforts in OWanl WSMO have focused on creating service
ontologies and process composition to a large extent, tfeetle of METEOR-S is to define and support the
complete life-cycle of Semantic Web processes. METEOReP@an evolutionary approach towards semantic
Web services, by extending current SOA (WS-*) standardssaedifications to support semantics. We identify
three main stages in the life-cycle as illustrated in Figurél'he first stage comprises of techniques to define
annotation mechanisms to extend current SOA standardag tle annotations to support enhanced discovery
and publication of services along with the support for camigion and data-mediation is addressed in the
second stage. The third stage addresses identifying eaadtadapting to various events during execution. We
are currently working on exciting area of RESTful serviced Web 2.0. More specifically, our research focusses
on specifying RESTful services, finding them and integathrem to create smart mashups or smashups. In this
article, we present a detailed description of the contigmst of the METEOR-S project and briefly describe our
current research direction in the area of service orienteapating.

2 Specification and Annotation

The building blocks of SOA-based solutions are self-deswgi Web services that can be reused across various
applications. The Web Service Description Language (WSW&3 created specifically for this purpose and
describes the data elements, operations and messagegsingiowever, WSDL descriptions are not sufficient
for the client to unambiguously decipher each operatiotenihed purpose as well as the intended content of its
parameters. SAWSDL (which evolved from WSDL-S, first pragabs [13]) overcomes the above limitation by
adding semantic meta-data to WSDL elements [15]. Semantiotations are added to WSDL elements using
the modelreferencextensibility attribute. Thenodelreferencealue of a WSDL element contains a reference
to a concept in the ontology that defines the semantics ofelbatent. This allows service providers to better
describe their interfaces and allows clients to better tstded the interface descriptions. The original ideas
for WSDL-S and SAWSDL were founded on the four types of seimarfbr services - 1) data semantics:
descriptions of the data elements of a service, 2) fundtggraantics: descriptions of the various operations and
functional capabilities of a service, 3) non-functionahsmtics: descriptions of the non-functional requirements
and guarantees, and 4) execution semantics: descripti@wiots and faults and how to handle them [10]. We
discuss the impact of semantic annotations in realizingudyo configuration in the next section.



3 Dynamic Configuration

Our research has demonstrated the value of semantic aonetat realizing dynamic SOA environments. The
METEOR-S middleware discussed in [5] demonstrates a SOAlleudare that supports run time discovery and
binding of partner services. Service requirements are fotbtional and non-functional. Service discovery
selects partner services that fulfill the functional regoients. From this set, partners that fulfill the non-
functional requirements are selected using constrainysisa

3.1 Discovery and Publication

Selection of partner services that fulfill the functionajugements of a client is the first step to realize dynamic
SOA environments. The METEOR-S Web Service Discovery stftecture (MSWDI) is a peer to peer frame-
work for efficiently discovering partner services [12]. M\WBuses an ontology-based approach to organize
registries, enabling semantic classification of all Welvises based on domains. Each of these registries sup-
ports semantic annotation of the Web services, which is dseidg discovery process. MWSDI defines four
kinds of peers

1. Anoperator peer controls a Web Service Registry. Theafalee Operator peer is to control a registry and
to provide Operator services for its registry. The Operpg®r also acts as a provider for the Registries
Ontology to all other peers who need it.

2. A gateway peer acts as an entry point for registries to [@WSDI. It is responsible for updating the
Registries Ontology when new registries join the networkis lalso responsible for propagating any
updates in the Registries Ontology to all the other peertev&sy peer is not associated with any registry.

3. Auxiliary peers act as providers of the Registries Orgglo

4. The Client peers are transient members of the peer-torgdwork, as they are instantiated only to allow
users to use the capabilities of the MWSDI.

3.2 Multi-Paradigm Constraint Analysis

Partners that fulfill the functional requirements may ndfilfuhe non-functional requirements. Selecting part-
ners who also fulfill the non-functional requirements is seeond step. Non-functional requirements are typ-
ically modeled as Service Level Agreements (SLAS). The Slakk semantic metadata and are often very
generic, thus making it hard to match SLAs from two servicas.[9], the authors present a framework to
enhance WS-Agreement with structure and semantic metadagframework includes a well defined XML
based syntax for expressing and semantically annotatidg SThe additional semantic information allows one
to incorporate rules and enables the system to make bettehesadynamically.

Non-functional requirements themselves can either betgatve (supply time<5 dayg or non-quantitative
(Security must be R$ATo deal with both, we proposed a multi-paradigm constrairalysis in [1]. The con-
straint analyzer uses integer linear programming basduhitgees for optimizing the quantitative constraints
and SWRL and SPARQL based techniques for non-quantitatistaints.

3.3 Data Mediation

One of the key benefits of SAWSDL is the systematic approaaditata mediation using XSLT. Rather than
using XSLT's to mediate between message instances and ash&AWSDL advocates mediation at the level
of ontologies. To translate a service schema to an ontol®8WSDL specifies two key techniques - 1) lifting
schema mapping and 2) lowering schema mapping. Liftingraehmapping is an XSLT transformation to
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convert a service schema to an ontology schema. Loweringnsghmapping converts an ontology schema
into a service schema. To achieve mediation between twacseschemas, the source schema is lifted to its
corresponding ontology schema. Using schema transfamétchniques, the lifted schema is translated into
the target ontology schema. This is lowered into the targetiee schema. The systematic approach offers a
huge upgrade in defining and reusing transformation funstj8].

4 Adaptation

The adaptation phase addresses the problem of adaptimgebsgrocesses to runtime events and faults. These
include system events such as service unavailability, disasdousiness level events such as shipment delays.
Creating a middleware system with the ability to monitor addpt to both types of events can be viewed as
a two-step problem. The first step is to identify and subsctibthe events to which the system might need
to adapt. The second step is to adapt to those events as amdtindyeoccur. We present an approach to
automatically identify events that may impact the exeecutiba process in [3] building upon our research in the
area of semantic associations for discovering events frimaional and a non-functional ontology.

Once the events are identified, we address adaption as astiactiecision making problem using Markov
Decision Processes(MDP) [14]. MDP policies are generajedsing the events identified, event probabilities
described by partner services and the cost impact of thesasrdescribed in the SLAs. Further, a cost penalty
for adaptation is calculated by considering the constdinat occur across services (inter-service dependen-
cies). This allows us to ensure that the adaptation doesialsiter the process optimality requirements. We
discuss three approaches- 1) a centralized approach irmwahientral controller maintains all the MDP state
information, 2) a decentralized approach in which each MP#8 andependently of the other in deciding the
optimal action and 3) a hybrid approach in which the decéné@ MDPs communicate with each other via the
central controller.

5 Beyond SOAP: RESTful Services and Web 2.0

Lately, the RESTful services paradigm has gained a lot ofitba. Web applications (such as maps and payment
processing) and data (such as news feeds) are being exposedvaes that can be invoked using scripting
languages such as Ruby, PHP and Javascript. Web applidatlmids or mashups have emerged as a very
popular way for integrating RESTful services. Despite itipaipularity, the programming complexity and the
fundamental problem of data mediation make it hard for nqued developers to create meaningful mashups.
Our research in the area of RESTful services addressesdrttfitiation. We break down our approach into three
steps: 1) specification, 2) finding the right set of serviaas$ 2) Service integration.

In the area of specification, we are advocating a hew micnodidrcalled hRESTS for service descriptions
in HTML. hRESTSs provides constructs to markup operatiorss data elements in an APl description. hRESTs
evolved from our current work on SA-REST, first proposed ih] [And inherited the operation and data element
constructs of SA-REST. Furthermore, in addition to operatiand data elements, RESTful API descriptions
have other facets such as data formats (JSON, GData), amd litirary bindings (Java, PHP). These are cap-
tured using the constructs of SA-REST, which is being matlake an extension to hRESTs. A more detailed
description of hRESTSs can be found at: http://knoesis utrgglu/research/srl/projects/hRESTS/.

RESTful services are often described as Web APIs using HTMie. lack of a model like WSDL makes
it difficult to use conventional service discovery appraschCurrently general purpose search engines such as
Google are often used for finding these APls. API search fwaories such as programmableWeb rely on user
classification and often yield poor results. In our reseanause traditional text classification techniques for
faceted classification and indexing of APIs. We also havesldged a ranking algorithm similar to PageRank
called Service Utilization (ServiUt rank) for ranking AHB]. Finally, in the area of integration, we currently
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focus on the problem of data mediation. Though there have bemerous attempts to realize automatic me-
diation, there is still considerable amount of human effeduired in the process. We define a metric called
Mediatability that estimates the amount of human effortdeglein mediation. The mediatability computation
algorithm is a two pass algorithm that uses the concept aEseaommon parent, first proposed by Tarjan. The
first pass is a top down pass that computes the matching vahaethe similarity of the two schema trees. The
second pass is a bottom up pass that computes the medtgtadilies using the matching and similarity values
[4].

6 Conclusions

In addition to proposing newer techniques and standaregsMBETEOR-S research has also contributed open
source software for handling SAWSDL object models (SAWSDLWoden4SAWSDL), semantic annotation
(Radiant) and for discovery and publication (Lumina). Muwifhthe past work in the area of semantic Web
services has focused on the WS-* implementation of SOA. I\ atiee RESTful approach to SOA has gained
popularity, largely due to its lightweight approach. We ewerently working on the specification, search and
integration of RESTful services and Web APIs. It is our Helat our current research would ease the task of
creating mashups and would allows users to create custblaiaad dynamically configurable smart mashups.
AcknowledgementsiWe acknowledge the contributions of Professor John Milbsr, Kunal Verma and

other members of the METEOR-S project at LSDIS lab.
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1 Introduction

One of the main promises of web services standards is toenablfacilitate seamless interoperability of diverse
applications and business processes implemented as centpan services. A service can be part of a business
workflow that prescribes control and data flows of complexiagpons. As business needs change, processes
may need to get reconfigured or additional process compsraentservices may need to be added. As a result of
these changes, the previous components must become eviatgwith the new one. This can be accomplished
by making manual changes to the existing workflow componamtisprogramming the new components in such
a way as to have interoperability built-in. This is a ratheddrious and inefficient process since it must be
repeated every time workflow reconfiguration is needed. Assace many different elements of a business
workflow may be under the control of third parties (e.g. sulbtcctors), additional costly coordination will be
needed with these third parties to manually find interopétglsolutions. Moreover, since the Internet gives
the opportunity to dynamically discover service providérs often not a priori known which service provider
may best fit the application workflow changing needs. In otherds, the new service component that must
interoperate with old ones, is dynamically discovered.réfue, (a) a more general solution is desired, namely
the ability to achieve process interoperability (e.g. ioperability of existing processes with new ones) without
actually modifying their implementation and interfacasq #b) the mediation may need to be done dynamically
even at runtime, which implies that only minimal assumpgiabout knowledge of service requester and service
provider interfaces is allowed. One solution to this reguient is to apply a process mediation component which
resolves all incompatibilities and generates appropmiad@pings between different processes while making
minimal assumptions about implementation details of serproviders and requesters.

Creating such a process mediation component is a very olgallg task. Service providers and requesters
may not share basic standards for Web Service specificatiely; may not share domain ontologies; further-
more, they typically do not do share the same data modelstenaittion protocols. Moreover, the changing
business needs may dictate that existing services are emdifius rendering previous compatible interactions
incompatible. As a result, a mediation module must deal Wwittompatibilities of multiple types and also be
able to incorporate adaptive reasoning mechanisms to sgldg@mamic environment changes.

Current web services standards provide a good basis foewanbiat least some level of interoperability.
WSDL allows to declaratively describe operations and fdraianessages and data structures that are used to
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communicate with the web service. BPEL4AWS adds the poggitnl define the interaction protocol and possi-
ble control flows and combine several web services withirraé&tly defined process model. However, none of
the current standards goes beyond the syntactic desasptioweb services. Newly emerging standards for se-
mantic web services, such as SAWSDL [4], OWL-S [8] and WSMP4gtive to enrich syntactic specifications
with rich semantic annotations to further facilitate fldgidynamic web services discovery, composition and in-
vocation [7]. However, the current standards do not prové@esoning methods for interoperability of providers
and requesters as application requirements change. ¥asipas of middle agents [14] — employing techniques
such as reasoning and planning combined with approacheslyikamic discovery and recovery from failure
— present a possible solution for bridging the gap betweerncserequesters and providers with incompatible
interaction protocols (process models) and possibly inpatible data models.

2 Process Mediation

In our recent body of work [11, 9], we address the problem tdmatic mediation of process models consisting
of semantically annotated web services. Processes cas aetdce providers, service requesters or commu-
nicate in peer-to-peer fashion. We are focusing on thetsiwavhere the interoperability of two components,
one acting as the requester and the other as the providels ebe achieved. Usually, both the requester and
provider adhere to some relatively fixed process models pidwess models can either correspond to a particular
existing implementation or they can be default (generiocpss models that for example generalize a business
processes of some specific problem domain (e.g., clientaviger of flight booking service). In particular,
our research focuses on mediation of process models ofda®/and requesters in open dynamic environments
where new services could be dynamically discovered, thuegssitating runtime mediation. Additionally, we
assume that both the requester and the provider interamtciicg to specified process models that are fixed, are
expressed declaratively and might be incompatible.

We use the OWL-S ontology [8] for semantic annotations bseatiprovides support for description of
individual services and also explicit constructs with clsamantics for describing process models. In OWL-
S, the elementary unit of process models is an atomic prpedssh represents one indivisible operation that
the client can perform by sending a particular message tsehdce and receiving a corresponding response.
Processes are specified by means of their inputs, outpetsonuititions, and effects (IOPEs). Types of inputs
and outputs are defined as concepts in an ontology or as sk8iedata-types. Processes can be combined
into composite processes by using control constructs ssisk@uence, any-order, if-then-else, split, loops, etc.

Creating a mediator component is very challenging since ¢cbmponent must resolve various types of
mismatches, such as the following that we have identified:

A. Data level mismatchese.g. data are represented as different lexical elemeuisl{ars, dates format, local
specifics, etc.); or ontological mismatches

B. Service level mismatchese.g. a requester’s service call is realized by severaligeos services or a se-
quence of requester’s calls is realized by one providetlls ame information required by the provider
is not provided by the requester; information provided bg party is not needed by the other one

C. Protocol / structural level mismatches e.g. control flow in the requester’s process model can deeea
in different ways in the provider’'s model (e.g., sequenaehlmrealized as an unordered list of steps, etc.)

We have developed an abstract process mediation framew®kN]) showed in Figure 1. The main goal of
the APMF is a clear identification and separation of critizadctional areas which need to be addressed by
mediation components in order to effectively solve the psscmediation problem. The three key functionali-
ties, namelyprocess mediatigrdata mediatiorandservice invocationare displayed as horizontal layers. The
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process mediation layer, realized by process mediatoresmonsible for resolving service level and protocol
level mismatches (categories B and C). The data mediatiger,laealized by data mediators, is responsible
for resolving data level mismatches (category A). Typicalvhen trying to achieve interoperability, process
mediators and data mediators are closely related. A nataglis to use data mediators within the process
mediation component to resolve “lower” level mismatchest tlere identified during the process mediation.
The service invocation layer is responsible for interaxtiovith actual web services, which include the services
of the requester, provider and possibly other externaicesy

To address runtime incompatibilities and possible serfaderes, the mediation processes make use of
monitoring and recoveryfunctionalities, which are represented as vertical layerSigure 1. Finally, in dy-
namic environmentsliscovery of external servicas closely related to the process mediation since external
services (e.g. a translation service between inches anershebight need to be discovered which are capable
of delivering information for resolving mismatches idéietl between two processes.

Process Mediation

Data Mediation

Bulioyuow
Alanooay
Alanoasiq

Service Invocation

Figure 1: Abstract Process Mediation Framework

We have investigated and developed concrete architecfareke mediation components in the APMF
framework for two cases: (a) when the mediation componestbiaplete visibilityof the process model of the
service provider and the service requester [11] or (b) whemtediation component hassibility only of the
provider’s process modélut not the requester’s (we call this asymmetric visibjl{§)].

In the complete visibility scenario, our solution is basedam off-line analysis of possible execution se-
guences of the requester. A planning algorithm is emplogaddntify mismatches between requester’'s exe-
cution sequences and the provider’'s process model, andhipute the appropriate mappings for bridging the
identified mismatches. Such mappings are used during +fmentnediation to perform the necessary transla-
tions. In the case of asymmetric visibility, the off-lineadysis cannot be employed because the requester’s
process model is not available. Therefore, the mediatiostmaly strictly on computing the mapping during
runtime only. We have developed a process mediation agahtuies similar planning techniques as in the
complete visibility scenario except that the planning iastcained by time due to the requirement of a timely
response. Additionally, the process mediation agent pwates advanced recovery techniques to deal both
with service failures and with possible wrong choices maatind the mediation.

3 Semantic Monitoring

We have developed an ontology [12] for specification of piiiaievents and a language for specification of
composite event patterns [10] based on the event algebedoged originally in the context of active databases
[3, 2]. Additionally, we have developed monitoring mectsans combined with introspection mechanisms and
error handling that we implemented as extensions of the GBNirtual Machine [5] which is a component that
controls interactions between the clients and semanticsgelices. Specifically, the OWL-S Virtual Machine
(OVM) executes the process model of a given service by gdirmugh the process model while respecting the
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OWL-S operational semantics [1] and invoking individualvsees represented by atomic processes. During the
execution, the OVM processes inputs provided by the requesid outputs returned by the provider’s services,
realizes the control and data flow of the composite procestemand uses the grounding to invoke WSDL based
web services when needed. The OVM is a generic executiomengiich can be used to develop applications
that need to interact with OWL-S web services. During theiserexecution, the execution engine (OVM) emits
events specific to the state of process model execution té&th@vents (primitive events) are instances of generic
event or fault types defined in the events ontology [12]. Ttwetent of emitted event instances describes the
execution context in the time when the event occurred aret atformation relevant to the given event type. The
content is semantically annotated by the same domain gy@oncepts that are used in the service definition
itself, which allows a more flexible events detection tegheis than those derived from a simple syntactic key-
words matching. Specifically, we employ semantic reasofongletecting primitive events based on matching
their event type and the content.

The implemented monitoring extensions allow to perforrfedifint monitoring tasks such as logging, perfor-
mance measuring, execution progress tracking, execuébuagtjing or evaluations of security parameters. For
many applications simple detection of individual eventdléx primitive events) emitted by various components
of the systems is a sufficient solution. However, often cax@vents patterns (called composite events) such
as co-occurrence of different events or sequence of evest$ to be detected.

4 Fault Handling and Error Recovery

Currently, neither WSMO, nor OWL-S provide any support faulf handling and recovery. The ability to
handle failures correctly and to possibly be able to recénmm failures is important not only in the context
of process mediation, but for web services in general. We li@veloped techniques for fault handling and
recovery for semantic web services [13] to allow specifarabtf reliable, possibly adaptive process models and
S0 to increase the autonomy of web services systems. Agairfpeus primarily on dynamic environments
where cooperating services might need to be discoveredglmintime. Our approach to fault handling and
recovery shares similarities with fault handling in WS-BPHowever, WS-BPEL offers only a limited support
for recovery and the monitoring which makes it suitable eéafior static scenarios.

The basic idea of our approach is to take advantage of polssafoantic monitoring techniques to define
and detect possible erroneous states. To allow a contrpitezkess recovery and gradual execution degradation
standardault handlingmust be augmented with mechanisms allowirgdgaignerto define what situations are
supposed to trigger an erroneous state. To achieve thisgrment the process model definition with constraint
violation handlersCV-handler} for associating constraint violation conditions with emgriate explicitrecov-
ery actionsthat resolve the violations. Such constraints can stem fpplicable SLAs or from contractual
requirements. Constraint violation conditions are treéae hard constraints that lead to an abnormal execu-
tion state. To express soft constraints that do not neaglskead to an erroneous state, we esent handlers
A condition part of both event handlers and CV-handlers rbastxpressive and intuitive enough to allow en-
coding of SLAs and other constraints. We have employed algabra expressions [2] combined with semantic
filters [10], which are suitable for describing complex dvpatterns and allow an efficient events monitoring
and detection (described briefly in the previous sectionnil&rly to WS-BPEL, we useompensatiorfor
undoing effects of the partial work after a fault has ocadirrEinally, we introduceakxplicit recovery actions
(such asetry, replaceByreplaceByEquivalentas means of fixing problems manifested by the fault occagen
Recovery actions present means of restoring the normaligzad|ow.
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Abstract

The promise of Web Service Computing is to use Web servidesi@amental elements for realizing
distributed applications/solutions. When no available/ge satisfies a desired specification, one might
check whether (parts of) available services can be compasddorchestrated in order to realize the
specification. The problem of automatic composition besoaspecially interesting in the presence of
conversational services. Among the various frameworkpgsed in the literature, here we concentrate
on the so called “Roman Model”, where: (i) each service igfiatly specified as a transition system that
captures its possible conversations with a generic cliéntthe desired specification is a target service,
described itself as a transition system; (iii) the aim is yothesize an orchestrator realizing the target
service by exploiting execution fragments of availableises. The Roman Model well exemplifies what
can be achieved by composing conversational services dsul,uncovers relationships with automated
synthesis of reactive processes in Verification and Al Rtann

1 Introduction

Web services, or simply services, are modular applicatibascan be described, published, located, invoked,
and composed over a variety of networks (including the h@gr any piece of code and any application com-
ponent deployed on a system can be wrapped and transforitoea metwork-available service, by using stan-
dard (XML-based) languages and protocols (e.g., WSDL, S@#&d). One of the interesting aspects is that
this wrapping allows each program to export a simplified dpson of itself, which abstracts from irrelevant
programming details. The promise of Web services is to en#i® composition of new distributed appli-
cations/solutions: when no available service can satistliemt request, (parts of) available services can be
composed and orchestrated in order to satisfy the requeett it

The work on services has by now largely resolved the basérdperability problems for service compo-
sition (e.g., standards such as WS-BPEL and WS-CDL existaaadvidely supported in order to compose
services), and designing programs, called orchestratioas,execute compositions by coordinating available
services according to their exported description is thadband butter of the service programmer [1].

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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The availability of abstract descriptions of services, Ibasn instrumental to devising automatic techniques
for synthesizing service compositions and orchestra®eseral research lines have been opened to investigate
this issue. Some works have concentrated on data-orieetetes, by binding service composition to the work
on data integration [21]. Other works have looked at procesnted services, in which operations executed
by the service have explicit effects on the system. Amongedlamproaches, several considiatelesqa.k.a.,
atomic) services, in which the operations that can be inydke the client do not depend on the history of
interactions, as services do not retain any informatiorudbte state of such interactions. Much of this work
relies on the literature on Planning in Al [30, 10, 12]. Otheonsiderstatefulservices which impose some
constraints on the possible sequences of operations .(ackraversations) that a client can engage with the
service. Composing stateful services poses additiondlecigges, as the composite service should be correct
w.r.t. the possible conversations allowed by the componast. Moreover, when dealing with composition,
data (that typically are sent back and forward in the openativocations and are manipulated by the service)
usually play an important role. This work relies on researafried out in different areas, including research
on Reasoning about Actions and Planning in Al, and researoltaverification and Synthesis in Computer
Science [11, 25, 18, 20].

In this paper, we focus on composition of process-orientatefil services, in particular we consider the
framework for service composition adopted in [5, 7, 8, 22,23, sometimes referred to as the “Roman Model”
[19]. In the Roman Model, services are represented as ti@msiystems (i.e., focusing on their dynamic behav-
ior) and the composition aims at obtaining, given a (viftdafget service specifying a desired interaction with
the client, an actual composite service that preservesauafteraction.

The Roman Model well exemplifies what can be achieved by ceimpgostateful services, and allows to
uncover relationships with automated synthesis of reagiiecesses in Verification and Planning in Al.

2 The Roman Model

Services in the Roman Model represent software moduledt@apbperforming operations. They astateful a
service, at each step, offers to its clients a choice of djpasit can perform, based upon its own state; the client
chooses one of the offered operations, and the service teseitlichanging its state accordingly. Formally, a
serviceis a transition syster§ = (0, S, 5%, S7, o), where: () O is the set of possibleperationsthat the service
recognizes;i{) S is the finite set of service'states (jii) s € S is theinitial state; (iv) Sf C S is the set ofinal
statesi.e., those states where the interaction with the senacebe legally terminated by the client (though she
does not need to)yf o C S x O x S is the service'dransition relation which accounts for its state changes.
When (s, 0,5') € o, we say thatransitions >~ s’ is in S. Given a states € S, if there exists a transition

s — s'in S, then operatior is said to beexecutablen s. A transitions —— s’ in S denotes that’ is

a possible successor statespfwhen operatior is executed ins. Notice that we allow fomondeterministic
services, that is, several transitions can take place wkecugng a given operation in a given state. So, when
choosing the operation to execute next, the client of theismrcannot be certain of which choices will be
available later on, this depending on which transition altyutakes place. In other words, nondeterministic
services are onlyartially controllable We say that a servic§ is deterministiciff there are no two distinct
transitionss — s’ ands —— s” such thats’ # s”. Notice that given a deterministic service’s state and an
executable operation in that stateiquenext service’s state is always known. That is, determmisérvices
are indeedully controllableby just selecting the operation to perform next.

A community of available servicgs= (Si,...,S,,) consists ofx nondeterministic available services that
share the same operatiof®s A target servicds a desiredleterministicservice that shares the operationgin
The requirement of being deterministic is due to the fadt Wewant such a service to be fully controllable by
its clients. The goal of the composition in the Roman Modébisnaintain with the client the same, possibly
infinite, interaction that she would have with the (virtujget service, by suitably orchestrating the (concrete)
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available services. Aarchestratoris a system component able to activate, stop, and resume #mg/ available
services, and to instruct them to execute an operation athmsg executable in their current state. Essentially,
the orchestrator, at each step, will consider the operatmsen by the client (according to the target service)
and delegate it to one of the services for which the operdtiaxecutable, on so on, possibly at infinitum.
The aim of the orchestrator is to maintain the interactioththe client, as if it was interacting with the target
service, without ever failing to be able to delegate an dfmrachosen by the client to one of the available
services. We assume here that the orchestratdiuliadservabilityon the available services, that is, it can keep
track (at runtime) of their current states. Although othieoices are possible, full observability is the natural
one in this context, since the available services, moddemigh finite transition systems as above, are already
suitable abstractions factualmodules: if details have to be hidden, this can be done tiireqthin the abstract
behaviors exposed by services, possibly exploiting nandehism.

Formally, an orchestrator isfanctionfrom (i) the history of the whole system (which includes the state
trajectories of all available services and the trace of {herations chosen by the client, and executed by the
services), andii() the operationcurrently chosen by the client, to the indéxf the serviceS; to which the
operation has to be delegated. Intuitively, the orchemtraalizesa target service if and only if, at every step,
given the current history of the system, it is able to delegafery operation executable by the target to one of
the available services.

3 Composition techniques

The goal of service composition is to synthesize an orcatstthat realizes the target service by exploiting
available services. Such problem is related to synthesisagtive processes [27], where an environment (in our
case, the available service community) is to be controliedrbautomatically-generated controller (in our case,
the orchestrator), so that a desired specification (in osg,aaimicking the target service) is fulfilled.

The specific composition problem has been tackled with mdiffetechniques: at first by exploiting a reduc-
tion to Satisfiability in a well known logic of programs, nam@DL [5, 7, 4, 16]. Notably, Logics of Programs
are tightly related to Description Logics, for which higldptimized satisfiability checkers exist (e.g., RacerPro,
Pellet, FACT, etc.). More recently [23], the problem hasrb&eckled by directly appealing to techniques for
Linear Time Logic (LTL) synthesis [26], based on model chiegkof game structures for the so callsdfety-
gamegsee also ATL [3, 2]). Another approach recently proposdshsed on directly computing compositions
by exploiting (variants of) the formal notion of simulatif®, 29, 23]. The two latter approaches promise both a
high level of scalability, since in practice they can be ldaze symbolic model checking technologies. Here we
concentrate on the simulation-based approach.

Let C = (Si1,...,S,) be a community of available services asyd a target service, wher§; =
(S;, 89, Slf, 0:), fori € {t,1...,n}. An ND-simulation relatiorof S; by C is arelationR C S; x S; X ... x Sy,
such that(s;, s1,...,s,) € R implies that ifs; € Stf thens; € Sif, fori € {1,...,n}, and for each € O,
there exists & € {1,...,n} such that for all transitions; — s} in S; we have that:iJ there exists a transition
s —— s} in Sg; (i) for all s, — s}, in Sk, it holds that(s, s1,...,s},...,s,) € R. An ND-simulation is
essentially a simulation betweei and the asynchronous product of the serviSem C. However, differently
from the usual notion of simulation, we need to take into aot@vailable services’ nondeterminism. To this
end, we require that)(for each target service’s operation an available serkican be selected to perform the
operation andii) all its successor stateae still included in the ND-simulation.

A states; is ND-simulated by(sy, ..., s,), denoteds; < (s1,...,s,), if and only if there exists an ND-
simulationR of S; by C such that(s;, s1, ..., s,) € R. Observe that this is eoinductive definitionAs a result,
the relation< is itself an ND-simulation, and is in fact th&rgest ND-simulation relation.e., all ND-simulation
relations are contained if. It can be shown that there exists a compositions if and dnijy & (s9,...,s0).

Synthesizing composition using simulation has a very @sting property: the maximal simulatiet con-
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tains enough information to allow for extracting every plolescomposition, through a suitable choice function.
This allows for devising compositions in a “just-in-timedshion: we compute the maximal simulation then,
based on it, we start executing the composition, choosiagnéxt step according to criteria that can depend
on information available at run-time (actual availabildf/services, network communication problems or cost,
etc.), so that simulation is preserved. This, also, openth@ossibility of having failure resistant composi-

tions that reactively or parsimoniously adjust to failuedsvailable services, avoiding recomputing the whole
composition from scratch [29].

4 Conclusion

Several extensions and variants of the model presentedchgesbeen studied, e.g.: forms of target service’s
loose specifications [6], lookahead [14], trust aware sewvi13], distributed orchestrators [28], shared envi-
ronments or other infrastructure for communication amagises [16, 15], data-aware services [4]. Also, the
approach described in this paper is related to composiigedon planning [25], where the crucial difference is
the desired specification to realize: in the compositionpléaning, this is a desired state of affair to be reached
after some interactions while, in our case, it amounts tefindely maintain the specified interaction itself.

We conclude by stressing out tltsaling with datds certainly one of the most critical and difficult issues we
currently face in service composition and, more generailygrocess verification. Indeed, current verification
and synthesis techniques apply to finite state systemselind presence of data typically results in infinite
states. Therefore, suitable meansdbstractionfrom infinite to finite states are needed, and indeed virguall
results on combining data with processes are directly araoty based on such a notion [4, 17, 24].
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With automated composition we mean generating an exeeufabtess that satisfies a given composition
requirements by communicating with a set of existing Weliises. Several approaches have been proposed to
tackle this problem. However, most of them either omit orreieplify important aspects of the Web service
composition problem. The driving idea of the approach weiresenting in this paper is to overcome these
limitations, in order to deal with real world compositioroptems. The ASTRO approach is able to cope with
complex control and data flows, i.e., with Web services exygosomplex protocols and exchanging structured
data, and with composition requirements expressing anssrnot only on the service interactions but also on
the exchanged data. The ASTRO approach has been implemamieelvaluated on real world composition
domains.

1 Introduction

The ability to compose services, reducing development éinteeffort by re-using existing functionalities, is one
of the most promising ideas underlying Web services. Howeékie complexity of service-based applications,
the heterogeneity of the components, the dynamic natutgeagnivironment, and the intrinsic distributed struc-
ture of the systems, make the manual development of the newpasite application a difficult, error-prone and
time-consuming task. Given this, techniques and methddwialy to automatically compose and adapt Web
services are essential to substantially decrease timeaatsl in the development, integration, and maintenance
of complex service oriented applications.

With automated composition we mean generating an exeeutabtess that satisfies a given composition
requirements by communicating with a set of existing Webises, and that can be published itself as a Web
service providing new higher level functionalities. Sel@pproaches have been proposed to tackle this problem
(e.g. [4, 2, 3, 12, 5]). However, most of them either omit oemimplify several important aspects of the
Web service composition problem. The main aim of the ASTR@r@gch is to overcome these limitations
by providing an automated composition framework that i dbltackle real world Web service composition
problems.

Among the most important characteristics provided by thjgaach are (i) the ability to consider component
services that are complex stateful processes exhibitiraggnchronous and non deterministic behavior, (ii) the
possibility to specify composition requirements specifyboth data and control constraints on the execution
of the new composite service, and (iii) the possibility tadpally refine the composition requirements and to
iteratively re-generate a solution in a continuous senm@ated composition process.

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
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The ASTRO approach is implemented and incorporated int@@iype tool that supports all the phases of
Web service automated composition: from the specificatf@omtrol-flow and data-flow requirements by means
of graphical tools for drawing data net diagrams and spegfgontrol-flow requirements, to the automatic
synthesis of the desired service, to the deployment, siinnlaand execution of the new composite service.
Using the prototype implementation, we evaluated our fraonk on a set of real-world case studies emerged
from industrial applications and found in the literature.sigynificant example is the combination of Amazon
on-line shopping services with on-line payment servicesiged by banks.

2 An Overview of the Approach

The ASTRO approach conceives the automated synthesis obthposite process as a step of a more complex
iterative process that covers the different phases of thgosition problem. In particular, the ASTRO compo-
sition process [8] consists of two phases (see Figure 1).altheof thefirst phaseis to obtain a preliminary
version of the composite process starting from initial cosifion requirements. During this phase the developer
analyzes the component service protocols (abstvaesPEL andwsbpDL) and specifies control flow and data flow
requirements. Given the description of the component sesvand the requirements specification we automati-
cally generate the internal executable composite proeses((tablevs-BPEL) and its user interfacersDL and
abstractws-BPEL). This preliminary version of the composite service cantbratively enhanced in treecond
phaseof the process. During this phase the developer, on the bbtie automated composition outcomes, can
refine both the composition requirements and the custontenface and automatically re-compose.

PHASE2

L

o o

Composite
Service
Generation

Data Flow
Requirements
Specification

Control Flow
Requirements
Specification

Composition
Requirements
Refinement

Figure 1: ASTRO Web Service Composition Process

2.1 Specification of Composition Requirements

In order to cope with a wide range of composition problems eedna way to express requirements that define
complex conditions, both for what concerns the behaviothefdomposition (termination conditions, failure
recovery, transactional constraints) and for the dataa@bd among the component services. Moreover, to
make the automated composition an effective and practisdd, tthe requirements specification should be as
user-friendly and easy refining as possible.

We propose to separate the specification of data flow reqaeinesrfrom that of control flow requirements,
and provide formal notations for their specification. Intjgatar, in the control flow requirement specification
step the developer defines termination conditions andddiasal issues by exploiting minimal semantic anno-
tations in the component service abstract-BPEL. Our approach, described in details in [9, 10], provides the
developer with the ability to specify with a simple tabulatation these requirements that are then automati-
cally translated into a formal internal notation that aléofer the automation of the composition task. For what
concerns requirements on data, we propose a formal langtregdata net language [6], that allows to specify
complex data flow composition requirements through an tiwtuigraphical notation. The data flow require-
ment specification step concerns the specification of hoeniiitg messages must be used by the composite
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service (from simple forwarding to complex data manipolatito obtain outgoing messages. During this step
the developer also specifies messages received from antbtkatcomposite service user.

2.2 Automated Composition

Given the description of the component services and the ositign requirements, the final step of the first
phase is the development of the new composite service. Tioeroe of this completely automated phase is the
executablevs-BPEL implementing the internal behavior of the new process aadd#scription of the interaction
protocol that the new service expects its customers tovidllevsbL and abstractvs-BPEL). For this automated
synthesis task, the approach exploits sophisticated Ahigaes for planning in asynchronous domains, extend-
ing them with new methods and algorithms in order to handbeptbculiarities of the Web service automated
composition problem. In particular, component servicdsdehe planning domain, composition requirements
are formalized as planning goal, and planning algorithrasuged to generate the composite service.

The formal framework, presented in [9], differs from othé&rming frameworks since it can deal with par-
tial observable, non deterministic domains and asynchusnmessage-based interactions between the domain
(encoding the component services) and the plan (encodmgdmposite service). Moreover, the framework
can handle complex transactional and termination req@rgsnsince it supports a goal language that allows
to specify conditions of different strengths and prefeesnamong different (e.g., primary and secondary) re-
guirements. We extended this framework with new techniguesmethods to overcome its limitation for what
concerns the specification of data flow requirements andrbeding of data knowledge within the composition
domain. Clearly, the data flow is as critical for the composiproblem as the control flow, since the execution
of a service is driven by the received and manipulated dataveider, considering data in Web service compo-
sition has to deal with several problems: data domains des affinite, and the semantics of data structures
is complex (e.g. service messages ML documents and service functions atBath expressions). One of
the key contributions is the possibility to handle the camlata flow composition requirements defined tho-
rugh the data net language [6]. Moreover, we extended tineefrark with the K-level approach [11]: a novel
abstraction-based approach for handling data, which saoger an infinite domain, in a finite, symbolic way.

2.3 WS-Compose

The approach presented in this paper has been implementgragotype toolkit, namelyWS-Compose,
and integrated in th&ASTRO Toolset [1], a toolkit providing an integrated environment for thengposition

of Web services. ThASTRO Toolset covers several aspects of the Web service composition gsdog
providing tools and techniques supporting the analystendifferent phases (e.g. design time verification, run
time monitoring, automated composition), and allows fa tisage of industrial standards suchagsbL and
WS-BPEL in the definition of Web services. For what concerns the aatethsynthesis of new servica§/S-
Compose supports all the phases of Web service automated compusitam the specification of control-flow
and data-flow requirements by means of graphical tools fawohg data net diagrams and specifying control-
flow requirements\WS-Req), to the automatic synthesis of the desired serWg&{Synth), to the deployment,
simulation VS-animator), and execution of the new composite service.

The ASTRO approach has been evaluated on a wide range ofiregpésl domains, including real Web
service composition domains. A significant example is tlmado that requires the composition of the Amazon
E-Commerce Services and the e-payment service offered blysBa Monte dei Paschi di Siena Group (MPS)
[7]. The goal of the composition is to generateeaBookstoreapplication that allows to order books and buy
them via a secure credit card payment transaction. This asitign scenario is particularly challenging since all
component services export complex interaction protoawtsheandle structured data in messages. The following
table shows the results of the eBookstore automated cotigyoproblent.

1The composition times have been obtained on a Pentium @eritr6 GHz with 512 Mb RAM of memory running Linux
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Time (sec.) WS-BPEL
model construction] composition & emission|| complex activities
E-BOOKSTORE 2.7 605.2 177

We distinguish between model construction time (translagews-BPEL component services into STS and
encode the composition goal) and composition time (syitbahe composition and emit the corresponding
executablevs-BPEL). The task of manually encoding and testing the same cortnosequired several hours
of work (more or less 20 hours).

The ASTRO approach has thus shown to be applicable alsogadhl domain providing a first positive
answer to the question of the practical applicability ofbmated composition techniques.

3 Conclusions

Developing composite processes interacting with compek world web services requires a time consuming
analysis of the component services, both for what concéras interaction protocol and the data structure
of their messages. Moreover, it requires a detailed imphdation of the new composite service that takes
into account all the possible interaction evolutions (&uéxceptions). We propose an automated composition
approach that can deal with real world composition problemd that dramatically reduces the effort for the
composition by automatically generating both the intemalcutable composite process (executaideBPEL)

and its user interfacerSDL and abstracivs-BPEL). Interesting features to be investigated in the futureld/ou
be to extend the approach in order to hamer-to-peeandrun-timeautomated composition problems.
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1 Introduction

UML collaboration diagrams (called communication diagsaim [8]) provide a convenient visual model for
specifying Web Service choreographies. A choreographgifspe the desired set of interactions among a set of
Web services. We formalize the interactions among Web sesvasconversationgsi.e., the sequence of mes-
sages exchanged among the services, recorded in the cegl@réhsent. This paper reviews our recent results on
therealizability problemfor choreographies specified as collaboration diagrants][4;he realizability problem
investigates the following question: Is it possible to ¢oms a set of peers that generate exactly the same set
of conversations specified by a given choreography? To gdhidyproblem, we model a set of Web services
(i.e., peers) as a set of communicating finite state mack#jesd we identify a set of sufficient conditions for
realizability of a class of collaboration diagrams.

2 Collaboration Diagrams and Conversations

In a collaboration diagram a set of peers communicate vissages. Each message send event has a unique
sequence label. A sequence label consists of a (possiblyygsiping of letters (which we call the prefix)
followed by a numeric part (which we call the sequence nuin@dre numeric ordering of the sequence numbers
defines an implicit total ordering among the message senmitsewdth the same prefix. For example, event A2
can occur only after the event Al, but B1 and A2 do not have amlicit ordering. It is also possible to
explicitly state dependency relationship among events.ekample if an event is marked with “B2,C3/A2”
then A2 is the sequence label @fand the events with sequence labels B2, C3 and A1 must @ecdd a
collaboration diagram we use the notionroéssage thread® refer to a set of messages that have the same
prefix (and, therefore, are totally ordered) and that camtezleaved arbitrarily with other messages.

As an example, consider the collaboration diagram in Figuie the Purchase Order Handling service de-
scribed in the BPEL language specification [2]. All the mgssdn this example are transmitted asynchronously.
There are four threads (the main thread, which correspantteetempty prefix, and the threads with labels A,
B and C). The interactions between the Vendor and the Shjp@ioheduling and Invoicing peers are executed
concurrently. However, there are some dependencies arhesg toncurrent interactionshipTypemessage
should be sent after théhipRegmessage is sent, trehipSchedulenessage should be sent after giépinfo
message is sent, and tbmlerReplymessage should be sent after all the other messages are sent.

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
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1/Al:shipReq
——

:Customer P E— :Shipping
A2:shipinfo

1:order l IAZ,BS,CZ/Z:orderRepIy 1/Bl:pr0duc;tlnf0

Al1/B2:shipType
—— .

j‘ :Invoicing
:Vendor B3:invoice

1/C1l:productSchedule

r :Scheduling

A2/C2:shipSchedule

Figure 1: An example collaboration diagram for a compositb wervice.

Based on the assumptions discussed above we formalizerttaanges of collaboration diagrams as follows.

Definition 1: A collaboration diagramD = (P, L, M, E, D) consists of a set of pee#3, a set of linksL ¢

P x P, aset of messagéd, a set of message send evehtsand a dependency relatidh C E x E among the
message send events. Each event has one of the followirgyrgcarrence typesk: (regular),? (conditional),
andx (iterative). A dependencie;, e2) € D means that; has to occur before,. We assume that there are no
circular dependencies. An evenis aninitial eventof D if it has no incoming edges ib.

Given a collaboration diagra® we denote theet of conversationdefined byD asC(D) whereC(D) C
M*. C(D) specifies the desired behaviors in a global perspectiveniersatiors = myms ... m, isinC(D),
i.e.,o € C(D), ifand only if o € M* and there exists a corresponding matching sequence of geessad
eventsy = ejes ... e, such that (1) each message in the conversatignequal to the message of the matching
send event in the event sequencend, (2) the ordering of the events in the event sequert®es not violate
the dependencies i; and, (3) if an event does not appear in the event sequertben it must be either a
conditional event or an iterative event; and, (4) only itigeaevents can be repeated in the event sequence

Next, we model the composition of peers [6, 7]. We assumestheth finite state machine has a single FIFO
input queue for asynchronous messages. A send event foyachasnous message appends the message to the
end of the input queue of the receiver, and a receive evemainfasynchronous message removes the message at
the head of the input queue of the receiver.

Definition 2: Each peetd; = (M;,T;, s;, I, §;) is a nondeterministic FSA where; = MZA U MZ-S is the set
of messages that are either received or sent; by; is the finite set of states, € T is the initial statef; C T

is the set of final states, angd C T; x ({!, 7} x M; U {e}) x T; is the transition relation. A transition € J, can
be one of the following three types: (1) a send-transitiothefform(¢;, !m, t2), and (2) a receive-transition of
the form(¢y, ?m, t3), and (3) are-transition of the form(¢;, ¢, ¢2).

A run of peers is a sequence of actions (as defined above) taker Ipeéns. Acomplete ruris one such
that at the end of run each peer is in a final state and each FIEQedgs empty. The corresponding sequence
of messages induced from the send events of a run is caltedwersation Given a set of peer state machines
A, ..., A, we denote the set of conversations generated by thefi{.4s, ..., .4,). We call a set of peers
well-behavedf each partial run is a prefix of a complete run (i.e., welkleed peers never get stuck).

Definition 3: Let D be a collaboration diagram. We say that the peer state mexHin ..., A, realizeD if
C(Ai,..., A,) =C(D). Acollaboration diagran® is realizableif there exists a set of well-behaved peer state
machines that realizB.
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Figure 2: Unrealizable collaboration diagrams.

Not all collaboration diagrams are realizable. For examplgure 2(a) shows a simple collaboration dia-
gram that is not realizable. The conversation set specifjethis collaboration diagram iorder shig, i.e.
this collaboration diagram specifies a single conversatiowhich, first, the Customer has to send threer
message to the store, and then the Shipping department Baadadheship message to the Depot. However,
this conversation set cannot be generated by any impletimnts these peers. Any set of peer state machines
that generates the conversatiarder shig will also generate the conversatiostip ordef. The Shipping de-
partment has no way of knowing when thieler message was sent to the Store, so it may senshipenessage
before theorder message which will generate the conversatishi ordef. Since the conversationship or-
der’is not included in the conversation set of the collaboratilagram shown in Figure 2(a), this collaborations
diagram is not realizable. Figure 2(b) and (c) show two otledlaboration diagrams that are not realizable.

3 Sufficient Conditions for Realizability
In this section we present sufficient conditions for redlility of collaboration diagrams.

Definition 4: We call a collaboration diagraseparatedf each message appears in the event set of only one
thread, i.e., given a separated collaboration diagfam (P, L, M, E, D) with k threads, the event sétcan be
partitioned ast) = Ule E; whereF; is the event set for threaid M; = {e.m | e € E;} is the set of messages
that appear in the event sBf and: # j = M; N M; = 0.

Note that dependencies among the events of different thrasa still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figueg 80d (b), are separated whereas the collaboration
diagram in Figure 2(c) is not separated (because messegavolved in two threads! and B). Based on our
experience, requiring a collaboration diagram to be sépedia not a significant restriction in practice.

Definition 5: We call the event well-informedif one of the following conditions hold: (19 is an initial event.

(2) The immediate predecessorcis either a synchronous message send event, or if it is nobditcmnal or
iterative send event, then ferto be well-informed, the sender of the message:fbas to be either the receiver
or the sender of the message for its immediate predeces¥olf gh immediate predecessor of an everig
either a conditional or an iterative asynchronous message svent, then, to be well-informeelcannot be a
conditional or iterative send event and it must have the ssander and the receiver but a different message than
its immediate predecessor.

Theorem 6: A separated collaboration diagrafnis realizable if all the events € E are well-informed.

The proof of the above property is given in [5]. Note that, #vents with label 2 in Figures 2(a) and (b)
are not well-informed. Well-informedness of the eventsialdoes not guarantee realizability of a collaboration
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diagram. Consider the unrealizable and un-separatedootiion diagram shown in Figure 2(c). This collabo-
ration diagram has two threads (A and B) and it is not sepausatee both threads have send events for messages
x andy. Note that, although all the events in this collaboratioagdam are well-informed, this collaboration
diagram is not realizable. The conversation set specifietthisycollaboration diagram consists of all interleav-
ings of the sequencesy andyxz which is the sefxyyzz, zyryz, zyzzy, yrzay, yrezy, yrryz, yryxz}.
However any set of peer state machines that generate thisrsation set will either generate the conversation
xyzxy or will not be well-behaved. Consider any set of peer statehinas that generate this conversation set.
Consider the partial run in which first peer P sendsd then the peer Q sengsFrom the peer Q’s perspective
there is no way to tell iy was sent first or ift was sent first. If we require peé€rto receive the messagebefore
sendingy (hence, ensuring thatis sent beforgy) then we cannot generate the conversations that start lgth t
prefix yz. Hence, peer Q can continue execution assuming that thesation being generatedyszxy and
send the messagebefore peer P sends another message. Such a partial eresiltigenerate the sequence
xyz which is not the prefix of any conversation in the conversasiet of the collaboration diagram. Therefore
such a partial execution will either lead to a complete ruth generate a conversation that is not allowed or it
will not lead to any complete run, either of which violate tiealizability condition.

4 Conclusion

To the best of our knowledge, realizability of collaboratidiagrams has not been studied before our work
in [4, 5]. There were similar efforts on Message Sequenceat€slSCs) [1]. However, as MSCs concentrate
on specification of local behaviors, earlier results onizaallity of MSCs are not applicable to the realizability
of collaboration diagrams. In our earlier work, we have Eddhe realizability of conversations specified using
automata, calledonversation protocolgs, 7].

Analysis of interactions specified by collaborations déags is becoming increasingly important in the web
services domain where autonomous peers interact with éaehthrough messages to achieve a common goal.
Since such interactions can cross organizational bousglatiis necessary to focus on specification of interac-
tions rather then the internal structure of individual peeWe argue that collaboration diagrams are a useful
visual formalism for specification of interactions amongbveervices. However, specification of interactions
from a global perspective inevitably leads to the realitdgibproblem. Our work formalizes the realizability
problem for collaboration diagrams and gives sufficientditions for realizability.
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Abstract

Web Services are the state-of-the-art realization of aiserariented architecture. While there is an

agreed standard to describe the interface of services (W8Bkell as an agreed standard to describe
the behavior of a single process (WS-BPEL), there is no agstéendard to describe choreographies.

In this paper, we give an overview about existing approatcbeaodel choreographies and present one
approach based on WS-BPEL in detail.

1 Introduction

The service-oriented architecture (SOA) is an architetityle based on the services paradigm. The most popu-
lar realization of the SOA paradigm are Web Services [1]hesgvice is offered as Web Service. Web Services
can be combined to form a business process using the Welc&gmiisiness Process Execution Language
(WS-BPEL, BPEL for short). A BPEL process is in turn offeredveleb Service, which enables recursive com-
position. Forming business processes out of servicesledcarchestration”. When multiple processes interact
with each other, orchestrations describe the point of vieasingle process only. In contrast to orchestrations,
choreographies describe the interplay between processmsaf global perspective. While orchestrations are
well understood, choreographies are an open research Iiielldis paper, we give an overview about the state-
of-the-art in choreography modeling and provide detaiiginson a choreography language proposal based on
BPEL.

Choreographies are used to capture collaborations betmediple business partners from a global per-
spective. While most of the published scenarios originewenfa top-down approach, another use-case for
choreographies is a bottom-up approach: for example, ifrapemy acquires another company, the business
processes of both have to be adapted to be able to work togaibdehus to make use of the synergy effects.
Important reasons to design choreographies are acqusiéind merges between companies and the formation
of virtual enterprises.

In the following, we use a RosettaNet Partner Interface €9¢PIP) to illustrate choreography design.
RosettaNet is an industry consortium defining “high-valuecpss scenarios that deliver manufacturing quality
data, end-to-end supply chain visibility, and legislatbampliance” [12]. The process scenarios are described
using interconnection models. In an interconnection matiel behavior of each participant and the messages
exchanged are shown. A typical PIP is the PIP 3Al “Request&uizfined in RosettaNet Cluster 3 “Order
Management”. There, a buyer decides whether he needs ® g@tacrder. If yes, he specifies his quote request

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
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Figure 1: PIP 3Al: Request Quote [13]. Modeled using BPMNhwhoreography extensions

and sends the quote request to a seller. The seller in tuidedewhether he meets the requirements of the
guote request. If so, he replies with a quote. If the sellersdwot meet the requirements, he decides whether
he can suggest another supplier. If yes, he sends the siaggeatk. If not, he does nothing. Figure 1 presents
the BPMN representation of the PIP. We use BPMN V1.1 and tleeedyraphy extensions presented in [4].
The shaded pool denotes that there are multiple seller¢vatyan the choreography. The referenced passed
on the message flow is explicitly modeled and associatedthiéthast message flow between the seller and the
buyer. In the graphical representation, we assume thatg@ahs realized by one process. To ensure proper
termination of the buyer, we had to include a timeout to hatiaé case that the supplier does not send any quote
and does not send any referral.

In general, in the field of choreography design, there aextigsues to tackle: (i) modeling of a choreogra-
phy, (ii) verification of the choreography and finally (iii)apping of the choreography to the runtime. In case of
choreography modeling, the language to express the chaeygoghas to have well-defined semantics and needs
to be suitable to capture choreographies. When a chordogigapnodeled, the model itself has to be checked
for modeling errors: the model has to be consistent witlsilfit(e.g., not contain any deadlock and always reach
an end state) and has to fulfill certain constraints (e.gergby logical formulas). When it comes to execution,
the semantics of the choreography has to be captured bygooe¢sses, which have to be capable to enact the
constraints defined by the choreography.

Currently, there are three main approaches to model ch@pbgs: interaction models, interconnection
models and declarative models. Interaction models usentbeaiction a basic building block. In contrast to in-
teraction models, the main idea of interconnection modadis be close to the execution and to re-use the idea of
abstract processes: activities of the local abstract peaseare interconnected. An abstract process itself leaves
out process internal details, which are not needed to desthmie interaction with the partners. While interac-
tion and interconnection models describe all possiblgactéon schemes, declarative models define constraints
on the execution. Thus, declarative models specify thedds” of possible execution, but do not enumerate
explicitly all possible executions [10].

Current languages to specify interaction models are fongkathe Web Service Choreography Description
Language (WS-CDL, [5]) and extensions to BPMN for inte@ctmodeling (iIBPMN, [2]). While these lan-
guages are suited to capture the interactions betweertesmn a higher level, the runtime-support of them is
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an open field. The current solution is to map parts of the dwrephy specification to abstract BPEL process
models, which are then refined and executed. However, nobaditraints can be directly mapped to BPEL. For
example, there is currently no solution to map the blockimagf wf WS-CDL to BPEL. In the case of declarative
process models, the mapping to BPEL is a complete open obsield.

Orchestrations of Web services are mainly defined in BPEIEIBIRas native support for concurrency, back-
ward and forward recovery. To enable modularity and comipitisa a choreography language should use the
same control-flow semantics as an orchestration languagede the gap between choreography specification
and runtime. While there is a mapping from BPMN to BPEL aydéd9], BPMN does not have the expres-
siveness to specify all the behavior which can be expresgd&PIiEL constructs. For example, event handlers
and termination handlers cannot be modeled using BPMNhErtore, a BPEL process can be used to spec-
ify the behavior of one participant only. Therefore, we meed extensions to BPEL to lift BPEL from an
orchestration language to a full choreography languag&(BEhor [3]). In addition, we added constructs to
BPMN to enable modeling choreographies using BPMN inclg@ilBPMN representations of BPEL constructs
(htt p: // ww. bpel 4chor. or g/ edi t or, [11]).

2 BPEL4Chor

BPELA4Chor itself consists of three artifacts: (i) partanp behavior descriptions, (ii) a topology description and
(iii) a participant grounding.

The participant behavior descriptionare abstract BPEL processes describing the behavior ofgeatih-
ipant. “Abstract BPEL” denotes that the BPEL processes Ihavee refined to be fully deployable and to be
executed on a BPEL engine. The steps going from an abstrdet PR cesses to an executable BPEL process
are called “executable completion” and are mainly manuakwti is important to note, that WSDL port types
and WSDL operations are not used in the participant behalgscriptions. This allows to specify the behav-
ior of a participant without the fixed connection to concregdalizations. The concrete WSDL information is
brought in during the participant grounding.

The BPEL4Chottopologyprovides a global view on the choreography: it defines thégieants and the
message links. A message link connects communicatingteesiand corresponds to a message flow in BPMN.
The concept of a message link allows to wire existing orchéens to provide a global view on the interaction.

We see BPEL as orchestration standard and WSDL as standdgddnbe interfaces. Therefore, tireund-
ing brings in the necessary WSDL information to enact the cluyagahy. This information can then be used
to generate abstract BPEL containing partner links, paésyand operations. These BPEL processes can then
serve as basis for the executable completion. However,ribisnecessary to implement a participant using
BPEL. A participant can also be realized by one or more Weli@es implemented in any language as long as
the behavior of these Web services corresponds to the gartigipant behavior description.

A BPEL4Chor choreography can be verified using an approdgsaged on Petri nets presented in [8]. There,
the choreography’s participants are translated into Pets. These nets are then connected according to the
BPEL4Chor choreography. If there are multiple particigantolved, the respective net is copied accordingly to
reflect the multiple instances. The resulting Petri net @oh®ecked for deadlocks or any other desired property
using model checking tools. Experiments showed that clypagies with up to thousand instances can be
verified [8]. In case a deadlock is found in the choreografite/faulty participant can be fixed automatically [7].
All results of the verification (e.g., deadlock traces) camimpped back to the original BPEL processes. This
allows for a seamless integration of choreography veritinanto the process of choreography modeling.

If an executable BPEL process was modeled based on a parti¢diphavior description, it has to be checked,
whether the executable process conforms to the particlpetmavior description. A general approach to check
conformance of BPEL processes is presented in [6].
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3 Summary

We presented an overview of choreography design and BPEw4@¥e showed how existing technologies can
be re-used to describe a choreography: BPEL is used to de@ratticipant behavior descriptions and WSDL
is brought in at the grounding to enable the message exchaage Enterprise Service Bus. The BPEL4Chor
topology is the first proposal enabling interconnection BER activities.

BPEL4Chor is part of the Tools4BPEL project and is funded lrrzan Federal Ministry of Education
and Research (project number 01ISE08). The other partnert/ed are the Humboldt-Universitat zu Berlin
and the MEGA International GmbH. In the project, our taskoisnivestigate the modeling of sub-processes,
choreographies, cross-partner fault handling, crostygatransactions and sub-processes using BPEL. The part
of the Humboldt-Universitat zu Berlin is to provide verdigon mechanisms and tools for BPEL as well as for
our extensions of BPEL. Finally, MEGA delivers challengexamples guiding and driving our research.

References

[1] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and SraVeaanaWeb Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Relwssaging and More Prentice Hall
PTR, 2005.

[2] G. Decker and A. P. Barros. Interaction Modeling UsingNB¥. In 1st International Workshop on Col-
laborative Business Processes (CB8pringer, 2007.

[3] G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4ChateRding BPEL for Modeling Choreogra-
phies. INICWS IEEE Computer Society, 2007.

[4] G. Decker and F. Puhimann. Extending BPMN for Modelingnbex Choreographies. 1€ooplS
Springer, 2007.

[5] N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Wedxvices Choreography Description Language
Version 1.0. W3C Candidate Recommendation, W3C, Novemb@s.2

[6] D.Konig, N. Lohmann, S. Moser, C. Stahl, and K. Wolf. Erting the Compatibility Notion for Abstract
WS-BPEL Processes. International Conference on World Wide W&TCM, 2008.

[7] N. Lohmann. Correcting Deadlocking Service Choreoprap Using a Simulation-Based Graph Edit
Distance. InrBPM. Springer, 2008.

[8] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig. AnalyzBIBEL4Chor: Verification and Participant
Synthesis. IWS-FM Springer, 2007.

[9] C. Ouyang, M. Dumas, S. Breutel, and A. H. M. ter Hofstedeanslating Standard Process Models to
BPEL. InCAISE Springer, 2006.

[10] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P.danAalst. Constraint-based workflow models:
Change made easy. CooplS 2007.

[11] K. Pfitzner, G. Decker, O. Kopp, and F. Leymann. Web Ser@horeography Configurations for BPMN.
In WESOA Springer, 2007.

[12] RosettaNet. Home paght t p: / / ww. r osett anet . or g/ .

[13] RosettaNetOverview: Clusters, Segments, and RIFersion 02.04.00.

34



WAVE: Automatic Verification of Data-Driven Web Services*

Alin Deutsch Victor Vianu
Department of Computer Science & Engineering
University of California, San Diego

Abstract

Data-driven Web services, viewed broadly as interactivsesys available on the Web for users and
programs, provide the backbone for increasingly compleX Afeplications. While this yields ever-
increasing functionality, the added complexity rendershsapplications more vulnerable to bugs and
failures, potentially compromising their robustness andectness. Therefore, there is a need to develop
verification techniques for such Web services. WawE project at UC San Diego aims to develop
new approaches for automatic verification of data-driverb\WWervices. The work relies on a novel,
highly effective marriage of model checking and databaskrigues. We summarize briefly the main
contributions of the project, which range from theoreti@indations to the successful implementation
of a prototype verifier.

1 \Verification of stand-alone data-driven Web services

We first outline our results on verification of data-driveniéervices for single peers in isolation, then dicsuss
extensions of the results to compositions of Web servicesfddlus on services interacting with external users
or programs through a Web browser interface, and accessinmaerlying database. Such services include
e-commerce sites, scientific and other domain-specifialspre-government, etc. These Web sites are often
governed by complex, data-dependent workflows, contrdiiedueries. The spread of such services has been
accompanied by the emergence of tools for their high-lepetiication. A representative, commercially suc-
cessful example is WebML [1], which allows to specify a Welplagation using an interactive variant of the
E-R model augmented with a workflow formalism. The code fer\t¥eb application is automatically generated
from the WebML specification. This not only allows fast piigfmng and improves programmer productivity but
also provides new opportunities for automatic verificatiomeed, ouwAvE prototype automatically verifies a
significant class of such services. Verification leads togased confidence in the correctness of database-driven
Web applications generated from high-level specificatitnysaddressing the most likely source of errors (the
application’s specification, as opposed to the less likelgre in the automatic generator’s implementation).

We focus on interactive Web sites generating Web pages dgafynby queries on an underlying database.
The Web site accepts input from external users or prograwssilgly subject to specified pre-conditions. It
responds by taking some action, updating its internal skatgbase, and moving to a new Web page determined
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by yet another query. We model the queries used in the spaaiicof the Web service as first-order queries
(FO), also known as relational calculus, which can be vieagén abstraction of the data manipulation core
of SQL. Arun is a sequence of inputs together with the Web pages, statésciions generated by the Web
service. The properties we wish to verify range from basimsioess of the specification (e.g. the next Web page
to be displayed is always uniquely defined) to semantic ptigse(e.g. no order is shipped before a payment
in the right amount is received). Such properties are egpregsing an extension lifiear-time temporal logic
(LTL). Recall that LTL is propositional logic augmented vitemporal operators such akvays, eventually,
next anduntil. The extension uses FO formulas in place of the atomic pitipos of classical LTL, yielding a
language called LTL-FO.

For example, the following is an LTL-FO formula stating tifat productz is paid at some point in the right
amounty, thenz is eventually delivered:

VaVy always|(pay(z,y) A price(x,y)) — eventually (deliver(x))]

Herepayis an input,price is a database relation, addliveris an action relation.

The task of a verifier is to check that all runs of the Web sergiatisfy a given LTL-FO property (as usual
in verification, runs are considered to be infinite). Verdgisearch for counter-examples to the desired property,
i.e. runs leading to a violation. A verifier mompletelf it is guaranteed to find a counter-example whenever
one exists. In the broader context of verification, a datloliven Web service is amfinite-statesystem,
because the underlying database queried by the appligatimt fixed in advance. This poses an immediate and
seemingly insurmountable challenge. Classical verificateals with finite-state systems, modeled in terms
of propositions. For more expressive specifications, taditional approach suggests the following strategy:
first abstract the specification to a fully propositional @mal next apply an existing model checker such as
SPIN [6] to verify LTL properties of the abstracted model.isTapproach is unsatisfactory when the data values
are first-class citizens, as in data-driven Web applicatidror example, abstraction would allow checking that
someproduct was delivered aftsomepayment was completed. However, we could not inspect thepatand
product data values to verify that the payment was for thigeleld item, and in the correct amount. Conventional
wisdom holds that, short of using abstraction, it is hoelesattempt complete verification of infinite-state
systems. In this respeatiavE represents a significant departure because it is completedi@actically relevant
class of infinite-state specifications. As far as we knovg, ihithe first implementation of such a verifier.

In general, complete verification is easlily seen to be umidde. Thus, completeness is only guaranteed
under certain restrictions described shortly. To show thase restrictions cover a large class of applications,
we have modeled a computer shopping Web site similar to tiesiies an airline reservation application similar
to Expedia, an online bookstore in the spirit of Barnes & Molkind a sports Web site on the Motorcycle Grand
Prix. We used these applications in our experimental etialuaf WAVE. If the specification and the property
do not satisfy the restrictions needed for completenesse can still be used as an incomplete verifier, as
typically done in software verification. The heuristics veveloped remain just as effective in this case.

We now describe informally the restrictions on the Web ser@pecifications and properties that guarantee
completeness, calledput boundednedd, 5]. Recall that the queries we use in the specification eb\8&rvice
as well as properties are FO queries. In a nutshell, inputdedness restricts the range of quantifications in FO
formulas to values occurring in the input. This is naturai¢s interactive Web applications are input-driven. For
example, to state that every payment received is in the agidunt, one might use the input-bounded formula
VaVylpay(x,y) — price(z,y)], wherepay(x,y) is an input angrice is a database relation providing the price
for each item.

Our main theoretical result shows the decidability of martedcking for input-bounded specifications and
properties. The complexity of checking that a Web servieecdigation)V satisfies an LTL-FO property is
shown to beesPACE We briefly describe the technique underlying this ressltyall as the implementation of
WAVE. In our scenario, a first difficulty facing a verifier is thathexistive exploration of all possible runs of a
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Web service/V on all databases is impossible since there are infinitelyyrpassible databases and the length
of runs is infinite. The solution lies in avoiding explicit@rration of the state space. Instead of materializing a
full initial database and exploring the possible runs owé,generate a compact representation of equivalence
classes of actual runs, callpdeudo-runshy lazily making at each point in the run just the assumstioeeded

to obtain the next configuration and check satisfactiop.opecifically, for input-boundetly and, this can

be done as follows:

(i) explicitly specify the tuples in the database that usky ensmall set of relevant constants computed
from W and; this is called thecore of the database and remains unchanged throughout the sgizdt
is polynomial inyV andp.

(i) ateach step in the run, make additional assumptionatahe content of the database, needed to determine
the next possible configurations. The assumptions invaie @small set of additional values.

The key point is that the local assumptions made in (ii) ahestep need not be checked for global consistency.
Indeed, a non-obvious consequence of the input-boundédcties is that these assumptions are guaranteed
to be globally consistent witsomevery large database which is however never explicitly aoiesed. Since
pseudo-run configurations are of polynomial size, thisdged PSPACE verification algorithm and establishes
our main theoretical result [5].

Theorem 1: Given an input-bounded Web service specificatidhand LTL-FO formulay, it is PSPACE
complete whetheyV satisfiesy.

ThepPsPACEuUpper bound holds assuming a fixed bound on the arity of degadad state relations. Other-
wise, the complexity iEXPSPACE(with the arity in the exponent). It is worth noting that, iretbroader context
of static analysis, thesPACEcomplexity is the best one can hope for. Indeed, recall the satisfaction of a
propositional LTL property by a finite-state Mealy machiaalreadyrSPACEcomplete.

The input-boundedness restriction imposed for decidgtilirns out to be quite tight. Indeed, we showed
that even minor relaxations to these restrictions lead tieacidability. Some extensions to the model also lead
to undecidability, such as allowing key constraints on thtadase. On the other harrsPACE decidability
continues to hold with built-in predicates such as a denderayn the domain.

The WAVE verifier To explore the practical feasibility of our ideas, we emledrkipon the implementation of
the wavE verifier. First, we developed a tool for high-level, effidiepecification of data-driven Web services,
in the spirit of WebML. Next, we implementedave taking as input a specification of a Web service using our
tool, and an LTL-FO property to be verified. The implememtatis made possible by a novel coupling of clas-
sical model-checking with database optimization techesqunterestingly, the starting point is the pseudo-run
technique used to show tlrsPACEuUpper bound. However, verification becomes practical amlgonjunction
with an array of additional heuristics and optimizationhigiques, yielding critical improvements. Chief among
these is dataflow analysis, allowing to dramatically cut ddaihve number of database cores and pseudo-runs
generated in a search.

We evaluated the verifier on a set of practically significariVepplication specifications, mimicking the
core features of sites such as Dell, Expedia, and Barnes ahl@NThe experimental results are quite exciting:
we obtained surprisingly good verification times (on thesoaf seconds), suggesting that automatic verification
is practically feasible for large classes of properties ®eab services. We describe the implementation and
our experimental results in [2]. A demo of the WAVE prototyisepresented in [4] and is also available at
http://db.ucsd.edu/wave.
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2 Extension to Web service compositions

The above results apply to the verification of single peelisatation. We extended these results to the more
challenging but practically interesting case ampositionsof Web services. Asynchronous communication
between peers adds another dimension that has to be takeacicwunt. We briefly describe the model and
results.

In a composition of Web services, peers communicate with etteer by sending and receiving messages
via one-way channels implemented fmessage queuesach queue is associated with a unique sender who
places messages into the queue, and a unique receiver wiionces messages from it in FIFO order (thus, we
assume messages arrive in the same order they were sentineBsages can bilat or nested Flat messages
consist of single tuples, e.g. the age and social securityben of a given customer. Nested messages consist of
a set of tuples, e.g. the set of books written by an author.

As in the stand-alone case, each peer can receive extepudiand produce actions (sets of tuples). In a
composition, each peer additionally consumes messagasitsonput queues, and generates output messages.
A configurationof the composition consists of the configurations of all ipgrating peers (the database, their
local state relations, inputs, current action relatioms] the message queues). A run of the composition is a
sequence of consecutive configurations. We only consid@liged runs, in which at every step precisely one
peer performs a transition. Properties of runs to be verdredspecified in an extension of LTL-FO, where the
FO statements may additionally refer to the messages ¢tlyrread and sent.

In order to obtain decidability of verification, we need taemnd the input-boundedness restriction introduced
for single peers. Naturally, we need to also require inmutrAdedness of the queries defining output messages.
Additional restrictions must be placed on the message @isinithey may be lossy, but are required to be
bounded. With these restrictions, verification is againshio berPsPACEcomplete (for fixed-arity relations,
andExXPSPACEotherwise).

The above model of compositions assumes that all speadificatf participating peers are available to
the verifier. However, compositions may also involve autooos parties unwilling to disclose the internal
implementation details. In this case, the only informatamailable is typically a specification of their input-
output behavior. This led us to investiga®dularverification. This consists in verifying that a subset ofyful
specified peers behaves correctly, subject to input-oyipaperties of the other peers. We obtained similar
decidability results for verification, subject to an appiae extension of the input-boundedness restriction.

The results on verification of Web service compositions asedbed in [3].

ConclusionThe results of thevAavE project obtained so far are very encouraging. They sugbasiriteractive
applications controlled by database queries may be urysuell suited to automatic verification, and that our
approach based on a mix of model checking and database patiom techniques may come to have significant
practical impact.
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Abstract

This paper discusses the notion of protocol compatibilggween Web services, and reviews a number
of techniques for detecting incompatibilities and for &@sizing adapters for otherwise incompatible
services. The paper also reviews related notions such digabdity, substitutability and controllability.

1 Introduction

The composition of Web services involves wiring togethettiple web services and having them interact often
in ways not originally foreseen during their initial devploent. In doing so, it is unavoidable that incompat-
ibilities may arise and need to be identified and resolved. clAssify these incompatibilities into two types:
(i) signature incompatibilitieshat arise when a service requires an operation from ansémeice, but this latter
service does not offer it, or when a service A needs to exahamgessage with another service B, but the schema
of the message that A produces is not compatible with thelwateBt expects; and (iprotocol incompatibilities
that arise when a service A engages in a series of interactidih another service B, but the order in which
service A undertakes these interactions is not compatilitethat of B.

This paper discusses the notion of protocol compatibilgyween Web services and reviews a number of
techniques for detecting incompatibilities and for systhieg adapters for otherwise incompatible services.
The paper also reviews related notions such as realiza[filit substitutability [4] and controllability [10].

The next section introduces background concepts for muglelieb service interactions in general, and
service protocols in particular. Section 3 introduces tbion of protocol compatibility and related concepts.
Section 4 discusses techniques for synthesizing adagtemdtocol-incompatible services. Finally, Section 5
summarizes the discussion and raises directions for futork.

2 Service Interaction Modeling

It is customary to distinguish between two types of modelsen¥ice interactions: choreographies and orches-
trations [15]. A choreography describes interactions ketwa collection of services from a global perspective.
In a choreography, no service plays a privileged role. Fdi{a) depicts a choreography in the Business Process
Modeling Notation (BPMN) [14]. Four services are involvetthis choreography: customer, sales, warehouse
and finance. Each activity denotes an interaction betweersémices. Importantly, a choreography only shows
interactions, as opposed to actions performed interngllg $ervice. In contrast, an orchestration describes the
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interactions between a designated service (the orchedteaid a plurality of subordinated services. Figure 1(b)
depicts an orchestration for the sales service. An orcit@str may include internal actions or timeouts. For
example, Figure 1(b) includes four actions internal to thles service (the four “prepare” actions in dashed
lines) and a timeout: After sending a quote, the sales sewvaits for an order until the quote’s expiry time.

[ Customer sends Request for Quote to Sales )

receive rfQ
send
availabiljty quer:
receive
availabilit

oods unavailable

Sales sends Availability Check to Warehouse;
Warehouse sends Availability Check Response to Sales

goods unavailable

Sales sends RfQ
Rejection to Customer

Sales sends Quote to
Customer

prepare (" prepare
quote \__ rejectRfQ  /

rejectRfQ

Customer sends
Purchase Order to
Sales

Sales sends Shipment
Request to Warehouse

Sales sends Billing
Request to Finance

prepare

‘ ) prepare
\_shipmentOrder /

billingRequest /)

'SP

‘Warehouse sends Shipment Finance sends Invoice to
Notiication to Customer Customer

(a) Order management choreography (b) Orchestration for Sales service
Figure 1: Examples: Choreography and Orchestration

If we consider a multi-party choreography and restrict itHose interactions that involve a given pair of
services — e.g. the interactions between the sales and stenwer services in the above example — we obtain a
(bilateral) service protocal Service protocols described from the perspective of omécgeant are also called
behavioral interface$7], because they define the behaviour of a service vis-afvae of its clients or peers.

The derivation of behavioural interfaces from choreogiepimay require refinements. Consider, e.g. the
choice in Figure 1(a) that the customer performs betweeepdicy or rejecting a quote. If the customer accepts
the quote, it sends an order. Thus, when receiving an ordesalles service knows that the customer accepted the
quote. However, if the customer rejects the quote, it doése&ad any message. When deriving a behavioural
interface for the sales service, one needs to insert eittigreaut (as in Figure 1(b)) or an additional interaction
through which the customer communicates the rejectiondcttes service. Otherwise, the sales service will
wait indefinitely for an order. The notion ofalizability [6] (also called enforceability [18]) captures this issue.
A choreography isealizableif the behavioural interfaces obtained by projection of¢hereography into each
of its participatingroles, collectively enforce all control-flow constraints in theoceography.

Languages for specifying choreographies, protocols awctiestrations include BPMN (see above) and
BPELZ In BPEL, orchestrations are defined down to the point whesg tian be executed by dedicated plat-
forms. Also, BPEL allows one to specify protocols/behazidnterfaces. For formal analysis, protocols may be
represented using e.g. finite state machines (FSMs) [2¢ggmoalgebra [11] or Petri nets [10, 3].

*htt p: / / www. oasi s- open. or g/ conmi t t ees/ wshpel /

41



+a

-a

1
o
@—®—0-<
+
)<
.
@ 1
& 2 S
+ +
(] o
[
[e]
=1

& @®

a

@ (b)

Figure 2: Incompatibilities & adaptation: (a) unspecifiedeption, (b) deadlock, (c) adapter for protocols in (a)

3 Compatibility

Two services are protocol-compatible if every joint exemutof these services leads to a proper final state,
i.e. a state in which both services are in a final state in ttespective protocols [2]. Under the assumption
synchronous communication, Yellin & Strom [17] identifyd main types of protocol mismatchasspecified
reception in which one party sends a message while the other is nottmpget; anddeadlock the case where
both parties are mutually waiting to receive some message the other. To illustrate the concepts, consider
the protocols ofP; (of serviceS;) and P, (of serviceS,) in Figure 2(a): P. sends messade(shown by ab),
while P; does not expect to receive it (unspecified reception). lufei(b) insteadP. expects to receive
messageack after sending (shown by+ack), while P, is waiting to receiveb (+b). This is a deadlock case.
Two protocols are said to immpatibleif they have no unspecified receptions and they are deadieek-

The protocolA’ obtained by reversing the polarity of every message in apobt is called the mirror ofd.

In other words, sent messagesdmecome received messages in its mirddrwhile received messages become
sent messages. In general, a service protocol is compatithiéts mirror. However, if a protocol specification
includes internal actions (e.g. timers or evaluation oflean conditions resulting in certain branches being
taken) it is possible that this protocol is not compatibléwitis mirror protocol, nor with any other protocol. If
so, the service is said to be uncontrollable [10]. The pmobté controllability is intuitively related to that of
realizability — as that they both result when internal ckeiare not externalized as messages. However, a formal
relation between controllability and realizability is ytetbe established.

Replaceability(or substitutability refers to the ability for a service to replace another on@euit inducing
incompatibilities [4]. In ServiceMosaic [2], two main ckes of replaceability are definedubsubmptiorand
equivalence Protocol P, subsumeg>, if P; supports at least all the execution traces thasupports. If so, a
serviceS; (with protocol P;) can replace servic8s (with protocol 7). If P; subsumed, and P, subsumes
Py, then P, and P, are equivalent, and serviceés and .S, can be used interchangeably. Finer notions of
replaceability are defined in terms of bisimulation [3].

Finally, one can ask the question of whether an orchestratimforms toa protocol. If we take the or-
chestration and we project it to those interactions thaeappm its protocol, the question is whether or not the
projected orchestration is compatible with the servicei&tqrol. This question is studied in [9].

4 Adaptation

When two services are incompatible, it may be possible toduice an adapter to resolve their mismatches. In
such cases, the service protocols are said tadaptable Depending on the types of mismatches, it may be
possible to automatically synthesize an adapter. Theiguestsynthesizing adapters for incompatible protocols
has been studied in the area of SOA, as well as earlier in #eearcomponent-based software engineering.
Yellin & Strom [17] propose an approach for checking thesetice of an adapter for incompatible protocols.
An adapter is modelled as an FSM consisting of a set of statet, of typed memory cells to store the messages
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received by the adapter, and a set of state transition riibash rule describes a transition from a state to another
in the adapter based on sending or receiving messages,\wlthng set of memory actions that store or retrieve
messages in/from the cells. A rule also constructs mesdhgesieed to be sent to partners. The adapter’s
protocol is said to be compatible with protocals and P, of the adapted components, if their interactions
have no unspecified reception and are deadlock free. FigoyeslRows an example of an adapter for protocols
in Figure 2(a). To synthesize the adapter specification fpaia of components, their interface mappings is
required as the input (e.g. which messages should be mappdudh other messages). The adapter synthesis
process explores all possible interactions between theqgwls P, and P, and adds them to the adapter protocol.
If there are states leading to deadlocks or with unspeciéeépgtion, they are removed from the adapter protocol.

Other proposals rely on alternative protocol specificatammguages that explicitly support concurrency.
Mateescu et al. [11] propose a technique for adapter syisthased on protocols specified using process algebra.
Similarly, Brogi et al. [5] provide an automated adaptertlgsis approach for protocols specified in BPEL.

Another line of research for service adapter developmenpgses to characterise the classes of possible
mismatches between protocols, provides guidelines fasusadentify them and proposes templates to resolve
mistmatches based on design patterns [1] or composabldasidapoperations [8]. In these approaches, the
construction of adapters requires manual interventiormesof these approaches, e.g. [8] deal with mismatch
patterns not supported in automated approaches — e.g. tafssavhere a message emitted by a service needs
to be mapped to an unbounded number of messages in the ngcs@rvice.

Automated approaches for adapter generation make thevfotjoassumptions: (i) there is no mismatch
at the interface-level, or the correct interface mappinggehbeen provided as the input, and (ii) if there are
interactions which lead to deadlocks, they are not adaptas discussed in [12], the interface-level mappings
can not be always correctly identified without considering protocol specifications. Second, some deadlock
cases may be adaptable, e.g. the resolution of a deadlockreqaye the generation of messages (e.g., an
acknowledgment) that can be constructed in the adapterseiadefined functions.

To address these limitations, Motahari Nezhad et al. [1Lpi@gch adapter development as an iterative pro-
cess consisting of both interface-level and protocolileviematch identification and resolution. Their approach
starts from an initial set of interface matchings, compuigdnatching the WSDL interfaces of services, and
then, considering the protocol specifications of two sewjddentifies all the interactions that results in dead-
locks. The result is presented in the form ofm@&match trego the user, where the user can identify if such
interactions are resolvable. The approach also helps #rebysanalyzing the mismatch tree. Some deadlock
cases may be handled by going back to the interface matctapgad refining the interface matchings.

5 Summary and outlook

Figure 3 summarizes the notions introduced in the papers panorama summarizes a significant body of
research work in the area of service-oriented computingthisrbody of work, research questions are often
approached under the assumption that the choreographigsc@ls and/or orchestrations are known and given
as input. Sometimes however, these specifications are ilat@eaor they are incompletely or unreliably speci-
fied, yet one needs to make assertions regarding the coglavior of a service-oriented system. Recent work
has addressed the question of analyzing logs represehgngpserved behavior of a service-oriented system in
order to determine if these logs conform to a choreograplpratocol specification [16]. One of the key issues
in this setting is that of “correlation”, that is, how to gmtogether log entries (such as those in message logs)
to produce trails that represent conversations betweerotwaore services [13]. Open questions in this area
include investigating the application of techniques fromcimine learning and information clustering.

An open question in the field of service adaptation is how tintaan adapters in an environment where
services evolve continuously. For example, given two ses/iS1 and S2 that communicate through an adapter,
how can this adapter be updated (with minimal effort) wheimeziS1 or S2 evolve or are replaced?
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Abstract

Process mining has emerged as a way to discover or check ttieratance of processes based on event
logs. This enables organizations to learn from processekeysreally take place. Since web services are
distributed over autonomous parties, it is vital to monitoe correct execution of processes. Fortunately,
the “web services stack” assists in collecting structureemt logs. This information can be used to
extract new information about service processes (e.gtldmeicks, unused paths, etc.) and to check the
conformance (e.g., deviations from some predefined prpcésshis paper, we illustrate the potential
of process mining in the context of web services. In padicue show what a process mining tool like
ProM can contribute in IBM’s WebSphere environment.

1 Introduction

In a Service Oriented ArchitectusOA) services are interacting by exchanging messageshyodmbining
services more complex services are creat@oreographyis concerned with the composition of such services
seen from a global viewpoint focusing on the common and cemghtary observable behavior. Choreography
is particularly relevant in a setting where there is not aylsircoordinator. Orchestrationis concerned with
the composition of such services seen from the viewpointimajle service. Independent of the viewpoint
(choreography or orchestration) there is a need to makelsairéhe services work together to ensure the correct
execution of business processes.

This paper explores the use mbcess miningl] in the context of IBM’s WebSphere product. WebSphere
provides a state-of-the-art infrastructure for realizen§OA and supports elaborate logging facilities [2]. The
Common Event Infrastructure (CEI) offers a systematic whgeoording events. Using this information, we
can apply the many process mining techniques provided bgrtiigess mining todProM [4].

CEl provides facilities for the generation, propagatioarsstence, and consumption of events. Events are
represented using the Common Base Event (CBE) model, aasthXd/IL-based format defining the structure
of events. For many applications, the information store@€il may be too large. Hence, CEl is often only
used as a transport layer and events are removed, filteredigoegated by IBM tools such as the WebSphere
Business Monitor. (But also others such as the Web Serviesghltor [3].)

The WebSphere Business Monitor [2] measures the perforenaha process based on key performance
indicators (KPIs) and the business metrics. Performarie¢eckresults are displayed in dashboards and used

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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as reference for redesign. The monitoring and analysis @@ not able to discover causal relations between
tasks or employees involved in the process, and, thus, gmeyot extract a process model from the event log.
Moreover, an audit of the process to see if it conforms to tijamzational procedures and regulations is hardly
objective or efficient without having a good understandifthe real process.

This paper demonstrates that process mining is possibleaundble in a SOA context, using WebSphere
as an example. However, our findings are quite general andecapplied to other platforms (e.g., using Oracle
BPEL). The remainder is organized as follows. First, weussdhe requirements for process mining. Then, we
provide insight into the analysis results that can be pexvioy process mining. Finally, we discuss in what way
process mining tools extend capabilities of existing mamig tools.

2 Getting Data: Correlation is Key!

More and more processes leave their “trail” in the form ofrédegs. Process mining techniques can use these
logs in various ways, e.g., to discover the way that peopteises really work, to find out if and where this way
deviates from the planned process, to support people inneirig their duties, and to improve the performance
of processes. In order to do this, process mining technigupsct the logs to contain certain information.
Therefore, we first elaborate on this information.

For everyprocess instancéoften referred to asasg, a sequence of events is recorded. Examples of process
instances are customer orders in a order handling procatiens in a treatment process, and applicants in
a selection process. It is crucial to note that events nedxt tinked to process instances in order to enable
process mining. The sequence of events describing a singtess instance is calledteace An event log
is a set of process instances. An event may have variousniespsuch as the associated time, the associated
activity, the associated data, the person, organizatiospftware component responsible for emitting the event,
and the associated transaction type (e.g., start, completeabort). Process mining assumes that each event is
associated to an activity. All other event properties at@aopl, but can be exploited when present.

One of the major challenges in processing the collected idata link events to process instances. This
corresponds to the notion @brrelation For example, when tapping of a message exchanged between tw
services it is crucial to link this message to a particulacpss instance. In some cases this may be trivial, e.g.,
when using a workflow engine with a clear process instanceegror when there is a natural global identifier
such as the patient id in hospital processes. In other cgespay be very difficult. For example, in the context
of an ERP system like SAP R/3 it is surprisingly difficult torcglate events. For example, events related to a
customer order may refer to order line items rather than tiséocner order or the supplier and customer may
use different keys.

To make things more concrete, we now focus on event loggitigeicontext of WebSphere. IBM uses the so-
calledCommon Event Infrastructu@€El) to record, distribute, and manage events. IBM enamsalients to
use the following four subsystems: @WebSphere Business Moddiedesign business processes and to identify
the things to be measured and analyzed at run-timeMg)Sphere Integration Developertranslate business
process models into actual executable code\W8hSphere Process Senterenact the configured processes,
and (4)WebSphere Business Monitorobserve the processes, to measure Key Performancetmdi¢KPIs),
generate reports, show management dashboards, etc. glithbese subsystems are connected, they can also
be used independently. For example, the WebSphere Buditastor can also be used in conjunction to other
products such as FileNet P8 BPM, etc.

Correlation is important in both the Process Server and tigrg@ss Monitor. To execute processes, incom-
ing events (e.g., messages) need to be routed to the canchspBPEL process instances. For monitoring, it
is also important to correlate events. Take, for examplePatKat measures the average throughput time of a
case. Clearly, to be able to measure such a KPI, it is negetssaorrelate the events. The WebSphere Business
Monitor uses the concept of “monitoring context” to defineamtainer where all events related to the same
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instance are brought together. It is also interesting te tizdt both CEI and the WebSphere Business Monitor
use concepts such as times associated to events, etc.

We can summarize the above as follows. For process minirantewneed to be correlated to process in-
stances. Correlation problems may inhibit the applicatibprocess mining. However, as illustrated using the
WebSphere suite, correlation is a foundational concepierdevelopment of web services.

3 Analysis using Process Mining

The goal of process mining is to discover, monitor, and impreeal processes by extracting knowledge from
event logs. Clearly, process mining is particularly refeva a setting where the actors involved are autonomous
and can deviate or have emerging behavior. The more ways ichvgervices, people, and organizations can
deviate, the more interesting it is to observe and analyaegsses as they are executed.

Three basic types of process mining can be identified:

e Discovery. There is no a-priori model, i.e., based on an event log soodehis constructed. For example,
using the well-knownx-algorithm a process model can be discovered based on i@ideents.

e Conformance There is an a-priori model. This model is used to check ifitsgeaonforms to the model.
For example, there may be a process model indicating thahpse orders of more than one million Euro
require two checks. Conformance checking may be used totdddgiations, to locate and explain these
deviations, and to measure the severity of these deviations

e Extension There is an a-priori model. This model is extended with a aepect or perspective, i.e., the
goal is not to check conformance but to enrich the model. Aamexe is the extension of a process model
with performance data, i.e., some a-priori process modeuhycally annotated with performance data
(e.g., bottlenecks are shown by coloring parts of the pooesdel).

In the context of web services, all three types of processnmgican be applied. Using the CEl infrastructure
and data used by components such as the WebSphere BusinedgsrMbis possible to do a wide variety of
analyses including the ones shown in Figure 1.

The top-right corner in Figure 1 shows a discovered procexteis using the EPC notation (i.e., the process
modeling language used by systems such as ARIS and SAP)oWwke half shows performance related results.
The bottom-left corner is a nice illustration of “extensione., the model discovered through process discovery
is enriched with information about bottlenecks.

In the context of Websphere it is especially interestingheok conformance. First, using Websphere Busi-
ness Modeler, a business analyst designs a service, whiktld@s a process model and KPIs. Second, using
Websphere Integration Developer, this design is impleateily an IT specialist. Third, using the Process
Server, this implementation is executed. Using conforraasteecking, the business analyst could first check
whether the implemented service actually fits (conformshte)designed service. If not, then the KPI validation
(does a KPI actually measure what the analyst thinks it issomazg?) is at stake.

4 Conclusion

The potential of applying process mining in the context obwervices is huge. Data is omnipresent and issues
like correlation can be addressed by using existing saistioMoreover, the autonomous nature of services
makes it interesting to observe processes as they actak#yplace.

Processes mining goes beyond classical monitoring conmpefike WebSphere Business Monitor, because
there is no need to model the processes beforehand. This stfgeral advantages. As an example, the de-
ployment time can be reduced dramatically. Existing mainitpsolutions typically require extensive modeling
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Figure 1: Screenshot of ProM showing some example results.

and configuration and cannot be changed easily. Since mrocgsng techniques can “learn” processes, the
modeling phase can be shortened and filtering techniquebecared to change the view on the process at any
point in time. Process mining techniques are also able tectiétonformance) process changes and to adapt
(discovery) the monitor model.

Process mining tools such as ProM have shown to be able towitithhuge amounts of data and, therefore,
process mining can be applied to real-life web services.
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Data Engineering refers to the use of engineering techniques and methodologies in the design, development and assess-
ment of information systems for different computing platforms and application environments. The 25th International
Conference on Data Engineering provides a premier forum for sharing and exchanging research and engineering results
to problems encountered in today’s information society. The conference programme will include research papers on all

topics related to data engineering, including but not limited to:

Approximation and uncertainty in databases
Probabilistic databases

Data integration

Metadata management and semantic interoperability
Data mining and knowledge discovery

Data privacy and security

Data streams and sensor networks

Data warehousing, OLAP and data grids

Database user interfaces and information visualization
Personalized databases

Accepted contributions at ICDE 2009 will make efforts (1)

Social information management, annotation and data curation
Query processing and query optimization

Database tuning, and autonomic databases

Scientific, biomedical and other advanced applications
Spatial, temporal and multimedia databases

Transaction and workflow management

Ubiquitous, mobile, distributed, and peer-to-peer databases
‘Web data management

XML data management

Database architectures

to expose practitioners to the most recent research results,

tools, and practices that can contribute to their everyday practical problems and to provide them with an early opportunity
to evaluate them; (2) to raise awareness in the research community of the difficult data & information engineering
problems that arise in practice; (3) to promote the exchange of data & information engineering technologies and
experiences among researchers and practitioners; and (4) to identify new issues and directions for future research and

development in data & information engineering.

AWARDS

An award will be given to the best paper submitted to
the conference. A separate award will be given to the
best student paper. Papers eligible for this award must
have a (graduate or undergraduate) student listed as the
first and contact author, and the majority of the authors
must be students.

INDUSTRIAL PROGRAM

ICDE 2009 will include an industrial track covering
innovative commercial implementations or applications
of database or information management technology,
and experience in applying recent research advances to
practical situations. Papers will describe innovative
implementations, new approaches to fundamental
challenges (such as very large scale or semantic
complexity), novel features in information management
products, or major technical improvements to the state-
of-the-practice.

PANELS

Conference panels will address new, exciting, and
controversial issues, being provocative, informative,
and entertaining.

DEMONSTRATIONS

Presented research prototype demonstrations will focus
on developments in the area of data and knowledge
engineering, showing new technological advances in
applying database systems or innovative data
management/processing techniques.

TUTORIALS

ICDE 2009 will host tutorials, relevant to the
conference topics. Tutorials can be single-session (1.5
hour) or for double-session (3 hour).

WORKSHOPS
The following workshops will be hosted by ICDE 2009:

e  DBRank: Third International Workshop on Ranking
in Databases

First IEEE Workshop on Information & Software as
Services (WISS'09)

Fourth International Workshop on Self-Managing
Database Systems (SMDB 2009)

Management and Mining of UNcertain Data
(MOUND)

Modeling, Managing, and Mining of Evolving Social
Networks (M3SN)

Second International Workshop on Data and Services
Managementin Mobile Environments (DS2ME 2009)

For more information, visit http://i.cs.hku.hk/icde2009/
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