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Letter from the Editor-in-Chief

International Conference on Data Engineering

ICDE (the International Conference on Data Engineering) isthe flagship database conference of the IEEE. The
2009 ICDE will be held in Shanghai, China at the end of March. Iwould encourage readers to check the ”Call
for Participation” on the back inside cover of this issue of the Bulletin for more details. ICDE has become not
only one of the best database conferences, but one of the largest as well. I attend this conference every year and
always find my time well spent. Not only is the research program first-rate, but there is an industrial program,
demos, and workshops as well.

The organization exercising oversight for ICDE within the IEEE Computer Society is the ICDE Steer-
ing Committee. This organization has on-going responsibility for selecting the conference committees for
each of the individual conferences, and for establishing the policies and procedures under which these an-
nual conference committees operate. The outstanding success of ICDE during this decade has been enabled
by the planning and management of this committee. Erich Neuhold was Steering Committee Chair until 2007.
Since then, Calton Pu has been the Chair. More information about the Steering Committee can be found at
http://tab.computer.org/tcde/icde_stc.html. Much is owed to Thomas Risse, who estab-
lished the web site, and has done so much over the years, both for the Steering Committee and for the Technical
Committee on Data Engineering, which sponsors both ICDE andthis Bulletin.

The Current Issue

Not so long ago, transaction processing was considered to bea core part of the database field. Roughly speaking,
transaction processing involves not only the database, butalso applications written that exploit databases and
transactions to provide functions that are specific to some particular problem area, e.g. business data process-
ing. More recently, the database field, as measured by conference participation, has been moving away from
transaction processing, perhaps considering it to be a solved problem. However, with the emergence of the web,
and specifically web services, there are new solutions and new problems to be solved. The subject of the current
issue of the Bulletin is ”Semantic Web Services: Composition and Analysis”. I hope that it will stimulate some
further involvement by the database community in the area ofapplications exploiting databases, now in the new
context of the web, cloud computing, and widely deployed applications.

The editor of the current issue is Jianwen Su. Jianwen has actively participated in the area of web services
research and has focused this issue on this area. The resulting issue contains papers on a wide selection of topics
dealing with web services: design, composition, reliability, analysis, reasoning about them, and more. What I
like about the issue, and part of what the Bulletin is all about, is that the issue brings these papers together in one
place, creating a very useful reference for further work as well as providing a great way to become familiar with
this area. I want to thank Jianwen for his very successful effort in bringing this very interesting issue together.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

One of the fundamental changes the Web will bring to us is the ability to organize, manage, discover, compose,
and invokeweb services. Speaking loosely, web services are bite-sized pieces of software system components
that can be executed over a network (e.g., the Internet). An immediate and laudable goal is to be able to
dynamically share web services in a similar manner to the sharing of data on the Web. To this end, the principles
of Service Oriented Architecture (SOA) offer useful guidelines for constructing web services, compositions, and
applications based on web services.

Research on web services started more than a half dozen yearsago and, in recent years, has attracted in-
creasingly more attention from several research communities including the database community. It frequently
reminds me of the data management research prior to the arrival of the relational data model. Back then, there
was not only a lack of a simple, yet commonly accepted data model, but also the prevailing models (network,
hierarchical) were very much motivated by physical storagestructures for data. Indeed, the search for a suitable
common model for web services is still ongoing in spite of various standards (e.g., the ones with names match-
ing “∗WS∗”). An important reason for this is insufficient understanding about web services, their description,
use, composition, management, their interaction with stored data, etc. (SQL standardization happened years
after significant research efforts were spent on the relational data model, query languages, query optimization,
database design, etc.) Of course, history doesn’t quite repeat itself. Models for web services emerge from the
physical world (software development), as well as from manydifferent research communities with different
twists, adding abstractions, semantics, data, orchestration/choreography, etc., or their combinations.

Many research challenges are in front of us. Here are three examples. Automation, as a key aspect of SOA,
requires incorporation ofsemanticsin various phases of web service development and applications. Providing
semantics in suitable form is the first challenge. The standard SAWSDL enables the capture of semantics about
how the input and output arguments of a web service are linkedto underlying domain ontologies. However,
research on the semantics of the actual impact of services and how they are combined (e.g., OWL-S, WSMO,
FLOWS) continues to be an area of active investigation. A machine-readable semantics that can be reasoned
about can ensurecorrectnessand at the same time help to achieveefficientservices. Service composition is
another area full of interesting research problems. There are many possible models for composition. In one
extreme, we might write down a detailedorchestrationof a collection of web services. In the other extreme, we
could start from a globalchoreographythat defines the expected behavior of the entire composition. Between the
two extremes, one could figure out behavior interfaces of twoor more services (e.g., as “embedded” or partial
choreography), and gradually expand to an entire composition. The exact relationship among the composition
models remains to be explored. As the third example of challenging areas, techniques for analyzing, verifying,
and mining web services are in high demand. These will becomeespecially important as the services used are
increasingly created through semi- and fully-automated discovery and composition mechanisms.

Presented in this special issue is a sampler of ongoing research efforts in web services. By no means do
they represent a complete survey of current projects in the area, but I hope they can be the starting point of your
exploration in web services. As you will find, there are many practical motivations for this work, but no lack
of technical depth and elegance. I recall that Tim Berners-Lee in his WWW ’03 invited talk identified data and
(web) services as two fundamental elements flowing on the Web, interacting and bearing “fruits”, freely and
effectively. In my view, most of the work to date treats the service/process aspect and the data aspect in largely
separated ways; the fundamental interplay of data and services, and the development of new models that bring
that interplay to the forefront, remain largely unexploredand untapped. Maybe some of you will find deep and
engaging challenges for your skills and talents by contributing to this exciting (and highly profitable!) grand
challenge in software development and service management.

Jianwen Su
University of California, Santa Barbara
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A Short Overview of FLOWS:
A First-Order Logic Ontology for Web Services∗

Michael Grüninger
University of Toronto
Toronto, ON, Canada

Richard Hull
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA

Sheila A. McIlraith
University of Toronto
Toronto, ON, Canada

Abstract

FLOWS is a first-order logic ontology for Web services and a W3C Submission. In this article, we
describe some of the motivation behind the development of FLOWS, together with its key features.

1 Introduction

TheFirst-order Logic Ontology for Web Services(FLOWS) [9], also known as the Semantic Web Services On-
tology (SWSO), was initially developed during 2002 to 2004 by a team of academic and industrial researchers,
as part of the larger Semantic Web Services Framework (SWSF)effort, which culminated in a W3C Member
Submission [10] in 2005. FLOWS was created on the premise that an unambiguous, computer-interpretable
description of the process model of Web services and how theyare composed, and client constraints on the ser-
vices to be provided, are critical to automating a diversityof tasks, including Web service discovery, invocation,
composition, monitoring, verification and simulation. To this end, FLOWS is based on first-order logic, and
provides a rigorous axiomatization that captures the salient process-level semantics of Web services.

FLOWS is an extension of the Process Specification Language (PSL) [4], a first-order logic ontology for
modeling processes that was originally developed for manufacturing processes, and realized as an ISO standard
in 2004. FLOWS enables partial and/or complete specifications of the properties of Web services, including pre-
and post-conditions, internal structures, composition patterns, messaging behaviors, and impact on the external
world, all in the context of a rigorously axiomatized first-order logic framework. This article provides a very
brief overview of FLOWS, including comparisons with related work, key principles underlying the creation of
FLOWS, and illustrations of key components of the framework.

Background. A Web serviceprocess modeldescribes the program that implements a Web service, which might
itself be formed as a composition of other Web services. Overthe years, a number of languages have been
proposed for describing the process models of Web services.Some of the most important examples include
Microsoft’s XLANG, a Web service process modeling languagebased on pi-calculus; IBM’s WSFL based on
Petri Nets; BPEL4WS, a Microsoft, IBM, BEA, SAP and Siebel effort, which merges XLANG and WSFL;
HP’s Web Service Conversation Language (WSCL); BEA, Intalio, SAP and Sun’s Web Service Choreography

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by NSF grants IIS-0415195 andCNS-0613998, and by grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Research and Innovation.
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Interface (WSCI); BPML, backed by the Business Process management initiative; the XML Process Description
Language (XPDL) backed by the Workflow Management Coalition; the Business Process Specification Schema
(BPSS) of ebXML; and the W3C Choreography effort, WS-CDL, which draws on pi-calculus. The most pop-
ular language for Web Service orchestration in use today is WS-BPEL 2.0 (or BPEL for short), which offers
significant enhancements over its predecessor, BPEL4WS.

In evaluating and comparing these efforts, a key observation is that they were designed to address a diversity
of targeted process management tasks. Some, like BPEL, weredesigned to address Web service orchestration
issues and to standardize workflow and execution with the objective of increasing transaction reliability and
synchronization. Others, like WS-CDL, have focused on issues of Web service choreography, which involves
message exchange to coordinate the activities of independent agents. As a consequence of the diversity of uses
for which these languages have been designed, comparing them based on concept coverage is important, but not
necessarily pertinent, as many of these languages could be extended to incorporate further concept descriptions.

It is our view that the most important shortcoming of these languages, and the one that is least easily ad-
dressed, is their lack of well-defined semantics. For example, several attempts have been made to formalize
predecessors to WS-BPEL 2.0 using Petri nets, process algebras, and abstract state machines. While the WS-
BPEL 2.0 specification is more precise with respect to the semantics, it is still informally defined [6].

In 2001, a coalition of semantic Web researchers, under the auspices of the DARPA DAML program, under-
took to develop an ontology for Web services, using the Semantic Web ontology language DAML+OIL. This
culminated in the creation of OWL-S (formerly DAML-S) [2] a Web service ontology developed in OWL (the
successor of DAML+OIL) [5], and a W3C Member Submission in 2004. OWL is a family of knowledge repre-
sentation languages for authoring ontologies and is endorsed by the World Wide Web Consortium (W3C). The
semantics of most of the OWL languages, specifically OWL DL and OWL Lite, is based on artificial intelli-
gence description logic, a subset of first-order logic. OWL Full (soon to be replaced by OWL 1.1) is based on a
novel semantics that provides compatibility with RDF Schema. Most importantly OWL, and thus OWL-S, has
a well-defined (formal) semantics, in constrast to efforts listed above.

Unfortunately, OWL has not proven sufficiently expressive to characterize Web service process models.
While OWL-S does indeed have a description of the process model of a Web service, OWL is not sufficiently
expressive to denote all and only theintended interpretationsof that process model. As such, like other process
modeling languages, the OWL process model must be human interpretted to resolve ambiguities, or translated
to another, richer language, in which this new model can be unambiguously interpretted by a program. Indeed
there have been four efforts towards defining the intended interpretation of the OWL-S (or DAML-S) process
model: a Petri Net-based operational semantics [7], an interleaving function-based operational semantics based
on subtype polymorphism [1], a semantics via translation tothe first-order language of the situation calculus [7],
and a semantics provided by translation to PSL [3].

OWL-S has many strong features. In particular, the concept coverage of OWL-S provides a firm foundation
for process modeling efforts, including the ability to create both partial and complete specifications of relevant
aspects of a group of Web services. Further, OWL’s expressiveness limitations, which OWL-S inherits, exist to
address the important trade-off between expressiveness onthe one hand and decidability and tractability on the
other, and are thus easily defensible in this context. Nevertheless, it was experience with OWL-S that, in part,
motivated the development of FLOWS.

The Web Service Modeling Ontology (WSMO) [11] also providesan expressive, layered ontology for web
services and their compositions, using a semantics based ona combination of description logic and horn logic.

Principles underlying FLOWS. FLOWS was developed based on the following three principles.

Provide a fully expressive language and framework.The goal of FLOWS is to enable reasoning about the
semantics underlying Web services, and how they interact with each other and with the “real world”. FLOWS
does not strive for a complete representation of Web services, but rather for an abstract model that is faithful
to the semantic aspects of service behavior. In that context, FLOWS enables a variety of reasoning tasks, by
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supporting descriptions of Web services that enable automated discovery, composition, and verification. This
also includes the creation of declarative descriptions of aWeb service, that can be mapped (automatically or
through a systematic, partially manual process) to executable specifications. In particular, then, unlike the
industrial process modeling languages listed above, FLOWSis intended to support, within one language and
underlying framework, reasoning about Web services from a very broad range of perspectives.

FLOWS is a modular and extensible ontology. It is thus possible to provide alternative extensions to repre-
sent different approaches to message handling, choreography, and orchestration. As such, FLOWS can serve as
an interlingua ontology that can facilitate interoperability of Web services that use different ontologies.

Use first-order logic as the basis.First-order logic enables the characterization of reasoning tasks for semantic
Web services in terms of classical notions of deduction and consistency. FLOWS can be used to specify tasks
in support of Web service discovery and composition; checking service properties such as reachability, liveness,
and compliance with behavioral patterns and constraints; and querying about a wide range of semantic and tem-
poral properties of services. This enables exploitation ofoff-the-shelf systems such as existing FOL reasoning
engines and database query engines, thereby facilitating implementation and improving our understanding of the
reasoning tasks. At the same time, the use of first-order logic does not preclude the use of alternative reasoning
methods on selected subsets of FLOWS.

First-order logic has been criticized because it is semi-decidable (as opposed to OWL DL, which is decid-
able). Nevertheless, the motivating scenarios for semantic Web services show that in general we will need to
solve intractable reasoning problems. Intractable reasoning problems are inherently intractable – using a dif-
ferent language does not make them tractable. The restriction to a language that is tractable simply means that
there will exist reasoning problems that cannot be specifiedin the language.

Capture full semantics using an extensible family of axioms. Although other approaches to semantic Web ser-
vices specify concepts contained in FLOWS, they do not provide a rigorous and complete axiomatization to
support automated reasoning about the concepts. Incomplete axiomatizations require the use of additional ex-
tralogical mechanisms rather than reasoning from the axioms alone. Since automated Web services can share
axioms, but not the specification of special-purpose axioms, incomplete axiomatizations restrict the reusability
and sharability of an ontology.

In FLOWS, the process model for Web services and their compositions is formally specified using PSL
This provides predicates and axioms that enable representation of, and reasoning about, core process modeling
concepts, including fluents (that is, first-order predicates representing some portion of the “real world” that
can change over time), activities (such as Web services), activity-occurrences (such as individual executions of
Web services), and the values of fluents before and after activity-occurrences. The PSL standard is comprised
of a layered collection of families of axioms that can be usedto reason about a broad class of processes. As
discussed in more detail below, FLOWS provides additional families of axioms, layered on top of a subset of
the PSL axiom families, to enable representation of, and reasoning about, Web services and their compositons.

2 Key aspects of FLOWS

After providing some motivating use cases, this section briefly highlights some key aspects of the FLOWS
language and framework, and illustrates how it can support the use cases.

Motivating use cases.The space of use cases that motivates and illustrates the need for computer-interpretable
Web service process models is vast, ranging from discovery and composition to analysis, monitoring and error-
recovery, and including activities such as queries about individual services and over families of services, contract
enforcement, service histories, and provenance. We illustrate now with just a few examples, centered around
services that focus on selling and shipping books.

5



1. Inquiries about one service:Does the Acme bookseller service always return a list of available second-
hand copies of my requested book, if the book is out of print? Under what conditions does the Acme
bookseller service permit me to pay for books using Paypal?

2. Discovering services:Find all bookselling services that will, at least in some cases, return a list of avail-
able second-hand copies of my requested book if that book is out of print. Or, find all bookselling services
that will always return a list of available second-hand copies of my requested book, if it is out of print.

3. Discovering composite services:Find all book seller-shipper partnerships that are able to split shipments
(e.g., as a consequence of delayed availability of some books) without an additional charge.

4. Requesting (composite) services:Create a service that can book a flight to Toronto, find and reserve a
hotel room there for next Monday to Wednesday, identify the best way to get from the airport to the hotel,
and ship a guide-book about Toronto to me at that hotel in timefor my arrival. Furthermore, the hotel must
be within 15 minutes travel (by foot and/or public transportation) of the Computer Science department.

5. Responding to exceptions:If the preceding scenario is underway and the flight into Toronto is delayed,
then dynamically provide new recommendations on the best way to get from airport to hotel.

Ontology. As noted above, in the FLOWS ontology Web services (both atomic and composite) are represented
as PSLactivities, and Web service executions are represented as PSLactivity-occurrences. Predicates that
change in the real world due to activity-occurrences are modeled usingfluents. An activity-occurrence is a
limited, temporally extended piece of the world, with a clear temporal start-point and end-point.

As in PSL, the set of possible executions of a composite Web service is modeled essentially as a tree, whose
nodes correspond to individual activity-occurrences, i.e., service executions, and where the children of one
activity-occurrence correspond to the set of all possible activity-occurrences that could immediately follow it.
For a fluent such asbook available(t, w) for title t and warehousew, and service-occurrenceo, the value of the
fluent immediately beforeo occurs is given by the predicatepre(book available(t, w),o), and the value of the
fluent just aftero occurs is given by the predicateholds(book available(t, w),o). It is from these basic constructs
that the full family of possible executions of a composite Web service can be represented and reasoned about.
These constructs can also be used to specify pre-conditionsand effects of services.

FLOWS also provides constructs for modeling the internal processing of composite Web services, including
sequences, nondeterminism (i.e. alternative activities), iterated activities, conditional activities, and concurrency.
As with Golog [8], these constructs are formally modeled as constraints, which enables both partial and complete
specifications of processing characteristics. Activitiescan be decomposed into primitive activities or composed
into more complex activities, and different classes of activities are defined with respect to ordering and temporal
constraints on the subactivities. In this way, FLOWS supports reasoning with both complete and incomplete
process specifications. In addition, FLOWS refines aspects of PSL with Web service-specific concepts and
extensions, such as providing the infrastructure for representing messages between services.

Axiomatization. The FLOWS axiomatization is layered on top of the axiomatization of PSL Outer Core. The
axioms provide a rigorous and complete specification of the FLOWS constructs, including such concepts as
service, service-occurrence, messages and channels, control constructs for service composition, various kinds
of constraints, and exceptions.

Enabling the use cases through queries and reasoning.The approach to support reasoning tasks with the
FLOWS ontology and axioms is now illustrated with the use cases. The focus here is to illustrate the expressive
power of FLOWS. It is clear that many of the problems that can be specified in FLOWS have high complexity
or are undecidable; as noted above it is possible to create restricted versions of these reasoning tasks in order to
obtain decidability and lower complexity.
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Inquiries about an individual service, such as Acme book seller, can be achieved by reasoning over the tree
of possible executions of the service. Note that both universal and existential quantification will be called for.
For service discovery, the properties characterizing the desired services can be specified using formulas over
the FLOWS ontology. This essentially reduces discovery to querying a database of service specifications. Even
the composition of services is achieved through the specification of a formula with one free variable which
describes the desired properties of the composition; each solution for this variable will be a (composite) service
that provides a composition with the desired capabilities.Finally, FLOWS is able to represent the state of the
world when a composite service has partially completed its execution. As such, it enables exception handling.

3 Closing Remarks

In this article we described some of the motivation behind the development of FLOWS, together with key aspects
of the FLOWS ontology. In doing so, we argued that existing languages for modeling Web services were either
lacking in expressivity, or did not have a well-defined semantics. As such, their ability to model and enable
automated reasoning about Web services was limited. In contrast, FLOWS’ use of first-order logic provides
sufficient expressivity, a well-defined semantics, and a diversity of automated reasoning tools. FLOWS presents
a natural evolution in the modeling of semantic Web services, reflecting a trend in semantic Web techonologies
towards the use of more expressive ontology languages. Recent extensions to OWL, both realized and proposed,
bear witness to this trend. Readers interested in further details on FLOWS are encouraged to consult the FLOWS
(a.k.a. SWSO) specification at [9], which includes the full ontology and selected use cases.
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Abstract

Services Research Lab at the Knoesis center and the LSDIS labat University of Georgia have played a
significant role in advancing the state of research in the areas of workflow management, semantic Web
services and service oriented computing. Starting with theMETEOR workflow management system in
the 90’s, researchers have addressed key issues in the area of semantic Web services and more recently,
in the domain of RESTful services and Web 2.0. In this article, we present a brief discussion on the
various contributions of METEOR-S including SAWSDL, publication and discovery of semantic Web
services, data mediation, dynamic configuration and adaptation of Web processes. We finally discuss
our current and future research in the area of RESTful services.

1 Overview

Our body of research can be divided into three major phases. The first phase related to the METEOR (for
“Managing End To End OpeRations”) system [6] focused on workflow management and addressed issues of
formal modeling, centralized as well as distributed scheduling and execution (including exception handling,
security, survivability, scalability and adaptation). The work yielded two notable frameworks:1)WebWork [7], a
Web based implementation and 2) ORBWork, a CORBA based implementation. The METEOR project initally
started at BellCore in 1990 and was continued at the LSDIS labuntil 1998. A commercial spinoff, Infocosm,
inc. and the product METEOR EAppS (for Enterprise Application Suite) are other notable accomplishments.

Adopting to the SOA and semantic Web evolution, METEOR evolved into METEOR-S where S stands for
services (or Service oriented Architecture) and semantics. It was largely carried out at LSDIS Lab during later
1990s and 2006. One of the significant contributions of METEOR-S research is the submission of WSDL-
S specification as a W3C member submission, along with IBM. In2006, the W3C created a charter for the
Semantic Annotation of Web Services (SAWSDL; www.w3.org/ 2002/ws/sawsdl), which used WSDL-S as its
primary input. SAWSDL became a W3C candidate recommendation in January 2007.

Our third phase recognizes emergence of Web2.0 and the People Web along with use of microformats for as-
sociating metadata to Web resources, and so called light weight web services (RESTful services and WebAPIs).
This phase started in 2006 and significantly expanded at the Services Research Lab in Kno.e.sis Center (where
our group of 11 researchers moved from the LSDIS lab) in 2007.One of the key initial outcome is a micro-
format for annotating service descriptions in HTML called hREST and a faceted extension called SA-REST.
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Both hREST and SA-REST are in their early stages of research.Further information about these is available at
http://knoesis.wright.edu/research/srl/projects/hRESTs/.

Figure 1: Overview of the various components of the METEOR-Sframework.

While other prominent semantic Web service efforts in OWL-Sand WSMO have focused on creating service
ontologies and process composition to a large extent, the objective of METEOR-S is to define and support the
complete life-cycle of Semantic Web processes. METEOR-S adopts an evolutionary approach towards semantic
Web services, by extending current SOA (WS-*) standards andspecifications to support semantics. We identify
three main stages in the life-cycle as illustrated in Figure1. The first stage comprises of techniques to define
annotation mechanisms to extend current SOA standards. Using the annotations to support enhanced discovery
and publication of services along with the support for configuration and data-mediation is addressed in the
second stage. The third stage addresses identifying eventsand adapting to various events during execution. We
are currently working on exciting area of RESTful services and Web 2.0. More specifically, our research focusses
on specifying RESTful services, finding them and integrating them to create smart mashups or smashups. In this
article, we present a detailed description of the contributions of the METEOR-S project and briefly describe our
current research direction in the area of service oriented computing.

2 Specification and Annotation

The building blocks of SOA-based solutions are self-describing Web services that can be reused across various
applications. The Web Service Description Language (WSDL)was created specifically for this purpose and
describes the data elements, operations and message bindings. However, WSDL descriptions are not sufficient
for the client to unambiguously decipher each operations intended purpose as well as the intended content of its
parameters. SAWSDL (which evolved from WSDL-S, first proposed in [13]) overcomes the above limitation by
adding semantic meta-data to WSDL elements [15]. Semantic annotations are added to WSDL elements using
themodelreferenceextensibility attribute. Themodelreferencevalue of a WSDL element contains a reference
to a concept in the ontology that defines the semantics of thatelement. This allows service providers to better
describe their interfaces and allows clients to better understand the interface descriptions. The original ideas
for WSDL-S and SAWSDL were founded on the four types of semantics for services - 1) data semantics:
descriptions of the data elements of a service, 2) functional semantics: descriptions of the various operations and
functional capabilities of a service, 3) non-functional semantics: descriptions of the non-functional requirements
and guarantees, and 4) execution semantics: descriptions of events and faults and how to handle them [10]. We
discuss the impact of semantic annotations in realizing dynamic configuration in the next section.
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3 Dynamic Configuration

Our research has demonstrated the value of semantic annotations in realizing dynamic SOA environments. The
METEOR-S middleware discussed in [5] demonstrates a SOA middleware that supports run time discovery and
binding of partner services. Service requirements are bothfunctional and non-functional. Service discovery
selects partner services that fulfill the functional requirements. From this set, partners that fulfill the non-
functional requirements are selected using constraint analysis.

3.1 Discovery and Publication

Selection of partner services that fulfill the functional requirements of a client is the first step to realize dynamic
SOA environments. The METEOR-S Web Service Discovery Infrastructure (MSWDI) is a peer to peer frame-
work for efficiently discovering partner services [12]. MWSDI uses an ontology-based approach to organize
registries, enabling semantic classification of all Web services based on domains. Each of these registries sup-
ports semantic annotation of the Web services, which is usedduring discovery process. MWSDI defines four
kinds of peers

1. An operator peer controls a Web Service Registry. The roleof the Operator peer is to control a registry and
to provide Operator services for its registry. The Operatorpeer also acts as a provider for the Registries
Ontology to all other peers who need it.

2. A gateway peer acts as an entry point for registries to joinMWSDI. It is responsible for updating the
Registries Ontology when new registries join the network. It is also responsible for propagating any
updates in the Registries Ontology to all the other peers. Gateway peer is not associated with any registry.

3. Auxiliary peers act as providers of the Registries Ontology.

4. The Client peers are transient members of the peer-to-peer network, as they are instantiated only to allow
users to use the capabilities of the MWSDI.

3.2 Multi-Paradigm Constraint Analysis

Partners that fulfill the functional requirements may not fulfill the non-functional requirements. Selecting part-
ners who also fulfill the non-functional requirements is thesecond step. Non-functional requirements are typ-
ically modeled as Service Level Agreements (SLAs). The SLAslack semantic metadata and are often very
generic, thus making it hard to match SLAs from two services.In [9], the authors present a framework to
enhance WS-Agreement with structure and semantic metadata. The framework includes a well defined XML
based syntax for expressing and semantically annotating SLAs. The additional semantic information allows one
to incorporate rules and enables the system to make better matches dynamically.

Non-functional requirements themselves can either be quantitative (supply time≤5 days) or non-quantitative
(Security must be RSA). To deal with both, we proposed a multi-paradigm constraint analysis in [1]. The con-
straint analyzer uses integer linear programming based techniques for optimizing the quantitative constraints
and SWRL and SPARQL based techniques for non-quantitative constraints.

3.3 Data Mediation

One of the key benefits of SAWSDL is the systematic approach todata mediation using XSLT. Rather than
using XSLT’s to mediate between message instances and schemas, SAWSDL advocates mediation at the level
of ontologies. To translate a service schema to an ontology,SAWSDL specifies two key techniques - 1) lifting
schema mapping and 2) lowering schema mapping. Lifting schema mapping is an XSLT transformation to

10



convert a service schema to an ontology schema. Lowering schema mapping converts an ontology schema
into a service schema. To achieve mediation between two service schemas, the source schema is lifted to its
corresponding ontology schema. Using schema transformation techniques, the lifted schema is translated into
the target ontology schema. This is lowered into the target service schema. The systematic approach offers a
huge upgrade in defining and reusing transformation functions [8].

4 Adaptation

The adaptation phase addresses the problem of adapting business processes to runtime events and faults. These
include system events such as service unavailability, as well as business level events such as shipment delays.
Creating a middleware system with the ability to monitor andadapt to both types of events can be viewed as
a two-step problem. The first step is to identify and subscribe to the events to which the system might need
to adapt. The second step is to adapt to those events as and when they occur. We present an approach to
automatically identify events that may impact the execution of a process in [3] building upon our research in the
area of semantic associations for discovering events from afunctional and a non-functional ontology.

Once the events are identified, we address adaption as a stochastic decision making problem using Markov
Decision Processes(MDP) [14]. MDP policies are generated by using the events identified, event probabilities
described by partner services and the cost impact of the events as described in the SLAs. Further, a cost penalty
for adaptation is calculated by considering the constraints that occur across services (inter-service dependen-
cies). This allows us to ensure that the adaptation does not violate the process optimality requirements. We
discuss three approaches- 1) a centralized approach in which a central controller maintains all the MDP state
information, 2) a decentralized approach in which each MDP acts independently of the other in deciding the
optimal action and 3) a hybrid approach in which the decentralized MDPs communicate with each other via the
central controller.

5 Beyond SOAP: RESTful Services and Web 2.0

Lately, the RESTful services paradigm has gained a lot of traction. Web applications (such as maps and payment
processing) and data (such as news feeds) are being exposed as services that can be invoked using scripting
languages such as Ruby, PHP and Javascript. Web applicationhybrids or mashups have emerged as a very
popular way for integrating RESTful services. Despite their popularity, the programming complexity and the
fundamental problem of data mediation make it hard for non-expert developers to create meaningful mashups.
Our research in the area of RESTful services addresses this limitation. We break down our approach into three
steps: 1) specification, 2) finding the right set of services and 3) Service integration.

In the area of specification, we are advocating a new microformat called hRESTs for service descriptions
in HTML. hRESTs provides constructs to markup operations and data elements in an API description. hRESTs
evolved from our current work on SA-REST, first proposed in [11] and inherited the operation and data element
constructs of SA-REST. Furthermore, in addition to operations and data elements, RESTful API descriptions
have other facets such as data formats (JSON, GData), and client library bindings (Java, PHP). These are cap-
tured using the constructs of SA-REST, which is being modeled as an extension to hRESTs. A more detailed
description of hRESTs can be found at: http://knoesis.wright.edu/research/srl/projects/hRESTs/.

RESTful services are often described as Web APIs using HTML.The lack of a model like WSDL makes
it difficult to use conventional service discovery approaches. Currently general purpose search engines such as
Google are often used for finding these APIs. API search frameworks such as programmableWeb rely on user
classification and often yield poor results. In our research, we use traditional text classification techniques for
faceted classification and indexing of APIs. We also have developed a ranking algorithm similar to PageRank
called Service Utilization (ServiUt rank) for ranking APIs[2]. Finally, in the area of integration, we currently
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focus on the problem of data mediation. Though there have been numerous attempts to realize automatic me-
diation, there is still considerable amount of human effortrequired in the process. We define a metric called
Mediatability that estimates the amount of human effort needed in mediation. The mediatability computation
algorithm is a two pass algorithm that uses the concept of nearest common parent, first proposed by Tarjan. The
first pass is a top down pass that computes the matching valuesand the similarity of the two schema trees. The
second pass is a bottom up pass that computes the mediatability values using the matching and similarity values
[4].

6 Conclusions

In addition to proposing newer techniques and standards, the METEOR-S research has also contributed open
source software for handling SAWSDL object models (SAWSDL4J, Woden4SAWSDL), semantic annotation
(Radiant) and for discovery and publication (Lumina). Muchof the past work in the area of semantic Web
services has focused on the WS-* implementation of SOA. Lately, the RESTful approach to SOA has gained
popularity, largely due to its lightweight approach. We arecurrently working on the specification, search and
integration of RESTful services and Web APIs. It is our belief that our current research would ease the task of
creating mashups and would allows users to create customizable and dynamically configurable smart mashups.

Acknowledgements:We acknowledge the contributions of Professor John Miller,Dr. Kunal Verma and
other members of the METEOR-S project at LSDIS lab.
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1 Introduction

One of the main promises of web services standards is to enable and facilitate seamless interoperability of diverse
applications and business processes implemented as components or services. A service can be part of a business
workflow that prescribes control and data flows of complex applications. As business needs change, processes
may need to get reconfigured or additional process components and services may need to be added. As a result of
these changes, the previous components must become interoperable with the new one. This can be accomplished
by making manual changes to the existing workflow componentsand programming the new components in such
a way as to have interoperability built-in. This is a rather laborious and inefficient process since it must be
repeated every time workflow reconfiguration is needed. Also, since many different elements of a business
workflow may be under the control of third parties (e.g. subcontractors), additional costly coordination will be
needed with these third parties to manually find interoperability solutions. Moreover, since the Internet gives
the opportunity to dynamically discover service providers, it is often not a priori known which service provider
may best fit the application workflow changing needs. In otherwords, the new service component that must
interoperate with old ones, is dynamically discovered. Therefore, (a) a more general solution is desired, namely
the ability to achieve process interoperability (e.g. interoperability of existing processes with new ones) without
actually modifying their implementation and interfaces, and (b) the mediation may need to be done dynamically
even at runtime, which implies that only minimal assumptions about knowledge of service requester and service
provider interfaces is allowed. One solution to this requirement is to apply a process mediation component which
resolves all incompatibilities and generates appropriatemappings between different processes while making
minimal assumptions about implementation details of service providers and requesters.

Creating such a process mediation component is a very challenging task. Service providers and requesters
may not share basic standards for Web Service specification;they may not share domain ontologies; further-
more, they typically do not do share the same data models or interaction protocols. Moreover, the changing
business needs may dictate that existing services are modified, thus rendering previous compatible interactions
incompatible. As a result, a mediation module must deal withincompatibilities of multiple types and also be
able to incorporate adaptive reasoning mechanisms to address dynamic environment changes.

Current web services standards provide a good basis for achieving at least some level of interoperability.
WSDL allows to declaratively describe operations and format of messages and data structures that are used to
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communicate with the web service. BPEL4WS adds the possibility to define the interaction protocol and possi-
ble control flows and combine several web services within a formally defined process model. However, none of
the current standards goes beyond the syntactic descriptions of web services. Newly emerging standards for se-
mantic web services, such as SAWSDL [4], OWL-S [8] and WSMO [6], strive to enrich syntactic specifications
with rich semantic annotations to further facilitate flexible dynamic web services discovery, composition and in-
vocation [7]. However, the current standards do not providereasoning methods for interoperability of providers
and requesters as application requirements change. Various types of middle agents [14] – employing techniques
such as reasoning and planning combined with approaches like dynamic discovery and recovery from failure
– present a possible solution for bridging the gap between service requesters and providers with incompatible
interaction protocols (process models) and possibly incompatible data models.

2 Process Mediation

In our recent body of work [11, 9], we address the problem of automatic mediation of process models consisting
of semantically annotated web services. Processes can act as service providers, service requesters or commu-
nicate in peer-to-peer fashion. We are focusing on the situation where the interoperability of two components,
one acting as the requester and the other as the provider, needs to be achieved. Usually, both the requester and
provider adhere to some relatively fixed process models. Theprocess models can either correspond to a particular
existing implementation or they can be default (generic) process models that for example generalize a business
processes of some specific problem domain (e.g., client or provider of flight booking service). In particular,
our research focuses on mediation of process models of providers and requesters in open dynamic environments
where new services could be dynamically discovered, thus necessitating runtime mediation. Additionally, we
assume that both the requester and the provider interact according to specified process models that are fixed, are
expressed declaratively and might be incompatible.

We use the OWL-S ontology [8] for semantic annotations because it provides support for description of
individual services and also explicit constructs with clear semantics for describing process models. In OWL-
S, the elementary unit of process models is an atomic process, which represents one indivisible operation that
the client can perform by sending a particular message to theservice and receiving a corresponding response.
Processes are specified by means of their inputs, outputs, preconditions, and effects (IOPEs). Types of inputs
and outputs are defined as concepts in an ontology or as simpleXSD data-types. Processes can be combined
into composite processes by using control constructs such as sequence, any-order, if-then-else, split, loops, etc.

Creating a mediator component is very challenging since this component must resolve various types of
mismatches, such as the following that we have identified:

A. Data level mismatches: e.g. data are represented as different lexical elements (numbers, dates format, local
specifics, etc.); or ontological mismatches

B. Service level mismatches: e.g. a requester’s service call is realized by several provider’s services or a se-
quence of requester’s calls is realized by one provider’s call; some information required by the provider
is not provided by the requester; information provided by one party is not needed by the other one

C. Protocol / structural level mismatches: e.g. control flow in the requester’s process model can be realized
in different ways in the provider’s model (e.g., sequence can be realized as an unordered list of steps, etc.)

We have developed an abstract process mediation framework (APFM) showed in Figure 1. The main goal of
the APMF is a clear identification and separation of criticalfunctional areas which need to be addressed by
mediation components in order to effectively solve the process mediation problem. The three key functionali-
ties, namelyprocess mediation, data mediationandservice invocation, are displayed as horizontal layers. The
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process mediation layer, realized by process mediators, isresponsible for resolving service level and protocol
level mismatches (categories B and C). The data mediation layer, realized by data mediators, is responsible
for resolving data level mismatches (category A). Typically, when trying to achieve interoperability, process
mediators and data mediators are closely related. A naturalway is to use data mediators within the process
mediation component to resolve “lower” level mismatches that were identified during the process mediation.
The service invocation layer is responsible for interactions with actual web services, which include the services
of the requester, provider and possibly other external services.

To address runtime incompatibilities and possible servicefailures, the mediation processes make use of
monitoring and recoveryfunctionalities, which are represented as vertical layersin Figure 1. Finally, in dy-
namic environmentsdiscovery of external servicesis closely related to the process mediation since external
services (e.g. a translation service between inches and meters) might need to be discovered which are capable
of delivering information for resolving mismatches identified between two processes.

Figure 1: Abstract Process Mediation Framework

We have investigated and developed concrete architecturesfor the mediation components in the APMF
framework for two cases: (a) when the mediation component has complete visibilityof the process model of the
service provider and the service requester [11] or (b) when the mediation component hasvisibility only of the
provider’s process modelbut not the requester’s (we call this asymmetric visibility) [9].

In the complete visibility scenario, our solution is based on an off-line analysis of possible execution se-
quences of the requester. A planning algorithm is employed to identify mismatches between requester’s exe-
cution sequences and the provider’s process model, and to compute the appropriate mappings for bridging the
identified mismatches. Such mappings are used during +runtime mediation to perform the necessary transla-
tions. In the case of asymmetric visibility, the off-line analysis cannot be employed because the requester’s
process model is not available. Therefore, the mediation must rely strictly on computing the mapping during
runtime only. We have developed a process mediation agent that uses similar planning techniques as in the
complete visibility scenario except that the planning is constrained by time due to the requirement of a timely
response. Additionally, the process mediation agent incorporates advanced recovery techniques to deal both
with service failures and with possible wrong choices made during the mediation.

3 Semantic Monitoring

We have developed an ontology [12] for specification of primitive events and a language for specification of
composite event patterns [10] based on the event algebra developed originally in the context of active databases
[3, 2]. Additionally, we have developed monitoring mechanisms combined with introspection mechanisms and
error handling that we implemented as extensions of the OWL-S Virtual Machine [5] which is a component that
controls interactions between the clients and semantic webservices. Specifically, the OWL-S Virtual Machine
(OVM) executes the process model of a given service by going through the process model while respecting the
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OWL-S operational semantics [1] and invoking individual services represented by atomic processes. During the
execution, the OVM processes inputs provided by the requester and outputs returned by the provider’s services,
realizes the control and data flow of the composite process model, and uses the grounding to invoke WSDL based
web services when needed. The OVM is a generic execution engine which can be used to develop applications
that need to interact with OWL-S web services. During the service execution, the execution engine (OVM) emits
events specific to the state of process model execution. Emitted events (primitive events) are instances of generic
event or fault types defined in the events ontology [12]. The content of emitted event instances describes the
execution context in the time when the event occurred and other information relevant to the given event type. The
content is semantically annotated by the same domain ontology concepts that are used in the service definition
itself, which allows a more flexible events detection techniques than those derived from a simple syntactic key-
words matching. Specifically, we employ semantic reasoningfor detecting primitive events based on matching
their event type and the content.

The implemented monitoring extensions allow to perform different monitoring tasks such as logging, perfor-
mance measuring, execution progress tracking, execution debugging or evaluations of security parameters. For
many applications simple detection of individual events (called primitive events) emitted by various components
of the systems is a sufficient solution. However, often complex events patterns (called composite events) such
as co-occurrence of different events or sequence of events need to be detected.

4 Fault Handling and Error Recovery

Currently, neither WSMO, nor OWL-S provide any support for fault handling and recovery. The ability to
handle failures correctly and to possibly be able to recoverfrom failures is important not only in the context
of process mediation, but for web services in general. We have developed techniques for fault handling and
recovery for semantic web services [13] to allow specification of reliable, possibly adaptive process models and
so to increase the autonomy of web services systems. Again, we focus primarily on dynamic environments
where cooperating services might need to be discovered during runtime. Our approach to fault handling and
recovery shares similarities with fault handling in WS-BPEL. However, WS-BPEL offers only a limited support
for recovery and the monitoring which makes it suitable rather for static scenarios.

The basic idea of our approach is to take advantage of powerful semantic monitoring techniques to define
and detect possible erroneous states. To allow a controlledprocess recovery and gradual execution degradation
standardfault handlingmust be augmented with mechanisms allowing adesignerto define what situations are
supposed to trigger an erroneous state. To achieve this, we augment the process model definition with constraint
violation handlers (CV-handlers) for associating constraint violation conditions with appropriate explicitrecov-
ery actionsthat resolve the violations. Such constraints can stem fromapplicable SLAs or from contractual
requirements. Constraint violation conditions are treated as hard constraints that lead to an abnormal execu-
tion state. To express soft constraints that do not necessarily lead to an erroneous state, we useevent handlers.
A condition part of both event handlers and CV-handlers mustbe expressive and intuitive enough to allow en-
coding of SLAs and other constraints. We have employed eventalgebra expressions [2] combined with semantic
filters [10], which are suitable for describing complex event patterns and allow an efficient events monitoring
and detection (described briefly in the previous section). Similarly to WS-BPEL, we usecompensationfor
undoing effects of the partial work after a fault has occurred. Finally, we introducedexplicit recovery actions
(such asretry, replaceBy, replaceByEquivalent) as means of fixing problems manifested by the fault occurrence.
Recovery actions present means of restoring the normal execution flow.
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Abstract

The promise of Web Service Computing is to use Web services asfundamental elements for realizing
distributed applications/solutions. When no available service satisfies a desired specification, one might
check whether (parts of) available services can be composedand orchestrated in order to realize the
specification. The problem of automatic composition becomes especially interesting in the presence of
conversational services. Among the various frameworks proposed in the literature, here we concentrate
on the so called “Roman Model”, where: (i) each service is formally specified as a transition system that
captures its possible conversations with a generic client;(ii) the desired specification is a target service,
described itself as a transition system; (iii) the aim is to synthesize an orchestrator realizing the target
service by exploiting execution fragments of available services. The Roman Model well exemplifies what
can be achieved by composing conversational services and, also, uncovers relationships with automated
synthesis of reactive processes in Verification and AI Planning.

1 Introduction

Web services, or simply services, are modular applicationsthat can be described, published, located, invoked,
and composed over a variety of networks (including the Internet): any piece of code and any application com-
ponent deployed on a system can be wrapped and transformed into a network-available service, by using stan-
dard (XML-based) languages and protocols (e.g., WSDL, SOAP, etc.). One of the interesting aspects is that
this wrapping allows each program to export a simplified description of itself, which abstracts from irrelevant
programming details. The promise of Web services is to enable the composition of new distributed appli-
cations/solutions: when no available service can satisfy aclient request, (parts of) available services can be
composed and orchestrated in order to satisfy the request itself.

The work on services has by now largely resolved the basic interoperability problems for service compo-
sition (e.g., standards such as WS-BPEL and WS-CDL exist andare widely supported in order to compose
services), and designing programs, called orchestrators,that execute compositions by coordinating available
services according to their exported description is the bread and butter of the service programmer [1].

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The availability of abstract descriptions of services, hasbeen instrumental to devising automatic techniques
for synthesizing service compositions and orchestrators.Several research lines have been opened to investigate
this issue. Some works have concentrated on data-oriented services, by binding service composition to the work
on data integration [21]. Other works have looked at process-oriented services, in which operations executed
by the service have explicit effects on the system. Among these approaches, several considerstateless(a.k.a.,
atomic) services, in which the operations that can be invoked by the client do not depend on the history of
interactions, as services do not retain any information about the state of such interactions. Much of this work
relies on the literature on Planning in AI [30, 10, 12]. Others considerstatefulservices which impose some
constraints on the possible sequences of operations (a.k.a., conversations) that a client can engage with the
service. Composing stateful services poses additional challenges, as the composite service should be correct
w.r.t. the possible conversations allowed by the componentones. Moreover, when dealing with composition,
data (that typically are sent back and forward in the operation invocations and are manipulated by the service)
usually play an important role. This work relies on researchcarried out in different areas, including research
on Reasoning about Actions and Planning in AI, and research about Verification and Synthesis in Computer
Science [11, 25, 18, 20].

In this paper, we focus on composition of process-oriented stateful services, in particular we consider the
framework for service composition adopted in [5, 7, 8, 22, 16, 29], sometimes referred to as the “Roman Model”
[19]. In the Roman Model, services are represented as transition systems (i.e., focusing on their dynamic behav-
ior) and the composition aims at obtaining, given a (virtual) target service specifying a desired interaction with
the client, an actual composite service that preserves suchan interaction.

The Roman Model well exemplifies what can be achieved by composing stateful services, and allows to
uncover relationships with automated synthesis of reactive processes in Verification and Planning in AI.

2 The Roman Model

Services in the Roman Model represent software modules capable of performing operations. They arestateful: a
service, at each step, offers to its clients a choice of operations it can perform, based upon its own state; the client
chooses one of the offered operations, and the service executes it, changing its state accordingly. Formally, a
serviceis a transition systemS = 〈O, S, s0, Sf , ̺〉, where: (i) O is the set of possibleoperationsthat the service
recognizes; (ii ) S is the finite set of service’sstates; (iii ) s0 ∈ S is theinitial state; (iv) Sf ⊆ S is the set offinal
states, i.e., those states where the interaction with the service can be legally terminated by the client (though she
does not need to); (v) ̺ ⊆ S × O × S is the service’stransition relation, which accounts for its state changes.
When〈s, o, s′〉 ∈ ̺, we say thattransition s

o
−→ s′ is in S. Given a states ∈ S, if there exists a transition

s
o

−→ s′ in S, then operationo is said to beexecutablein s. A transitions
o

−→ s′ in S denotes thats′ is
a possible successor state ofs, when operationo is executed ins. Notice that we allow fornondeterministic
services, that is, several transitions can take place when executing a given operation in a given state. So, when
choosing the operation to execute next, the client of the service cannot be certain of which choices will be
available later on, this depending on which transition actually takes place. In other words, nondeterministic
services are onlypartially controllable. We say that a serviceS is deterministiciff there are no two distinct
transitionss

o
−→ s′ ands

o
−→ s′′ such thats′ 6= s′′. Notice that given a deterministic service’s state and an

executable operation in that state,uniquenext service’s state is always known. That is, deterministic services
are indeedfully controllableby just selecting the operation to perform next.

A community of available servicesC = 〈S1, . . . ,Sn〉 consists ofn nondeterministic available services that
share the same operationsO. A target serviceis a desireddeterministicservice that shares the operations inO.
The requirement of being deterministic is due to the fact that we want such a service to be fully controllable by
its clients. The goal of the composition in the Roman Model isto maintain with the client the same, possibly
infinite, interaction that she would have with the (virtual)target service, by suitably orchestrating the (concrete)
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available services. Anorchestratoris a system component able to activate, stop, and resume any of the available
services, and to instruct them to execute an operation amongthose executable in their current state. Essentially,
the orchestrator, at each step, will consider the operationchosen by the client (according to the target service)
and delegate it to one of the services for which the operationis executable, on so on, possibly at infinitum.
The aim of the orchestrator is to maintain the interaction with the client, as if it was interacting with the target
service, without ever failing to be able to delegate an operation chosen by the client to one of the available
services. We assume here that the orchestrator hasfull observabilityon the available services, that is, it can keep
track (at runtime) of their current states. Although other choices are possible, full observability is the natural
one in this context, since the available services, modeled through finite transition systems as above, are already
suitable abstractions foractualmodules: if details have to be hidden, this can be done directly within the abstract
behaviors exposed by services, possibly exploiting nondeterminism.

Formally, an orchestrator is afunction from (i) the history of the whole system (which includes the state
trajectories of all available services and the trace of the operations chosen by the client, and executed by the
services), and (ii ) the operationcurrently chosen by the client, to the indexi of the serviceSi to which the
operation has to be delegated. Intuitively, the orchestrator realizesa target service if and only if, at every step,
given the current history of the system, it is able to delegate every operation executable by the target to one of
the available services.

3 Composition techniques

The goal of service composition is to synthesize an orchestrator that realizes the target service by exploiting
available services. Such problem is related to synthesis ofreactive processes [27], where an environment (in our
case, the available service community) is to be controlled by an automatically-generated controller (in our case,
the orchestrator), so that a desired specification (in our case, mimicking the target service) is fulfilled.

The specific composition problem has been tackled with different techniques: at first by exploiting a reduc-
tion to Satisfiability in a well known logic of programs, namely PDL [5, 7, 4, 16]. Notably, Logics of Programs
are tightly related to Description Logics, for which highlyoptimized satisfiability checkers exist (e.g., RacerPro,
Pellet, FACT, etc.). More recently [23], the problem has been tackled by directly appealing to techniques for
Linear Time Logic (LTL) synthesis [26], based on model checking of game structures for the so calledsafety-
games(see also ATL [3, 2]). Another approach recently proposed isbased on directly computing compositions
by exploiting (variants of) the formal notion of simulation[9, 29, 23]. The two latter approaches promise both a
high level of scalability, since in practice they can be based on symbolic model checking technologies. Here we
concentrate on the simulation-based approach.

Let C = 〈S1, . . . ,Sn〉 be a community of available services andSt a target service, whereSi =

〈Si, s
0

i , S
f
i , ̺i〉, for i ∈ {t, 1 . . . , n}. An ND-simulation relationof St by C is a relationR ⊆ St ×S1 × . . .×Sn

such that〈st, s1, . . . , sn〉 ∈ R implies that ifst ∈ S
f
t thensi ∈ S

f
i , for i ∈ {1, . . . , n}, and for eacho ∈ O,

there exists ak ∈ {1, . . . , n} such that for all transitionsst
o

−→ s′t in St we have that: (i) there exists a transition
sk

o
−→ s′k in Sk; (ii ) for all sk

o
−→ s′k in Sk, it holds that〈s′t, s1, . . . , s

′

k, . . . , sn〉 ∈ R. An ND-simulation is
essentially a simulation betweenSt and the asynchronous product of the servicesSi in C. However, differently
from the usual notion of simulation, we need to take into account available services’ nondeterminism. To this
end, we require that (i) for each target service’s operation an available servicek can be selected to perform the
operation and (ii ) all its successor statesare still included in the ND-simulation.

A statest is ND-simulated by〈s1, . . . , sn〉, denotedst � 〈s1, . . . , sn〉, if and only if there exists an ND-
simulationR of St by C such that〈st, s1, . . . , sn〉 ∈ R. Observe that this is acoinductive definition. As a result,
the relation� is itself an ND-simulation, and is in fact thelargest ND-simulation relation, i.e., all ND-simulation
relations are contained in�. It can be shown that there exists a compositions if and only if s0

t � 〈s0

1
, . . . , s0

n〉.
Synthesizing composition using simulation has a very interesting property: the maximal simulation� con-
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tains enough information to allow for extracting every possible composition, through a suitable choice function.
This allows for devising compositions in a “just-in-time” fashion: we compute the maximal simulation then,
based on it, we start executing the composition, choosing the next step according to criteria that can depend
on information available at run-time (actual availabilityof services, network communication problems or cost,
etc.), so that simulation is preserved. This, also, opens upthe possibility of having failure resistant composi-
tions that reactively or parsimoniously adjust to failuresof available services, avoiding recomputing the whole
composition from scratch [29].

4 Conclusion

Several extensions and variants of the model presented herehave been studied, e.g.: forms of target service’s
loose specifications [6], lookahead [14], trust aware services [13], distributed orchestrators [28], shared envi-
ronments or other infrastructure for communication among services [16, 15], data-aware services [4]. Also, the
approach described in this paper is related to composition based on planning [25], where the crucial difference is
the desired specification to realize: in the composition viaplanning, this is a desired state of affair to be reached
after some interactions while, in our case, it amounts to indefinitely maintain the specified interaction itself.

We conclude by stressing out thatdealing with datais certainly one of the most critical and difficult issues we
currently face in service composition and, more generally,in process verification. Indeed, current verification
and synthesis techniques apply to finite state systems, while the presence of data typically results in infinite
states. Therefore, suitable means forabstractionfrom infinite to finite states are needed, and indeed virtually all
results on combining data with processes are directly or indirectly based on such a notion [4, 17, 24].
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With automated composition we mean generating an executable process that satisfies a given composition
requirements by communicating with a set of existing Web services. Several approaches have been proposed to
tackle this problem. However, most of them either omit or oversimplify important aspects of the Web service
composition problem. The driving idea of the approach we’representing in this paper is to overcome these
limitations, in order to deal with real world composition problems. The ASTRO approach is able to cope with
complex control and data flows, i.e., with Web services exposing complex protocols and exchanging structured
data, and with composition requirements expressing constraints not only on the service interactions but also on
the exchanged data. The ASTRO approach has been implementedand evaluated on real world composition
domains.

1 Introduction

The ability to compose services, reducing development timeand effort by re-using existing functionalities, is one
of the most promising ideas underlying Web services. However, the complexity of service-based applications,
the heterogeneity of the components, the dynamic nature of the environment, and the intrinsic distributed struc-
ture of the systems, make the manual development of the new composite application a difficult, error-prone and
time-consuming task. Given this, techniques and methods allowing to automatically compose and adapt Web
services are essential to substantially decrease time and costs in the development, integration, and maintenance
of complex service oriented applications.

With automated composition we mean generating an executable process that satisfies a given composition
requirements by communicating with a set of existing Web services, and that can be published itself as a Web
service providing new higher level functionalities. Several approaches have been proposed to tackle this problem
(e.g. [4, 2, 3, 12, 5]). However, most of them either omit or oversimplify several important aspects of the
Web service composition problem. The main aim of the ASTRO approach is to overcome these limitations
by providing an automated composition framework that is able to tackle real world Web service composition
problems.

Among the most important characteristics provided by this approach are (i) the ability to consider component
services that are complex stateful processes exhibiting anasynchronous and non deterministic behavior, (ii) the
possibility to specify composition requirements specifying both data and control constraints on the execution
of the new composite service, and (iii) the possibility to gradually refine the composition requirements and to
iteratively re-generate a solution in a continuous semi-automated composition process.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The ASTRO approach is implemented and incorporated into a prototype tool that supports all the phases of
Web service automated composition: from the specification of control-flow and data-flow requirements by means
of graphical tools for drawing data net diagrams and specifying control-flow requirements, to the automatic
synthesis of the desired service, to the deployment, simulation, and execution of the new composite service.
Using the prototype implementation, we evaluated our framework on a set of real-world case studies emerged
from industrial applications and found in the literature. Asignificant example is the combination of Amazon
on-line shopping services with on-line payment services provided by banks.

2 An Overview of the Approach

The ASTRO approach conceives the automated synthesis of thecomposite process as a step of a more complex
iterative process that covers the different phases of the composition problem. In particular, the ASTRO compo-
sition process [8] consists of two phases (see Figure 1). Theaim of thefirst phase is to obtain a preliminary
version of the composite process starting from initial composition requirements. During this phase the developer
analyzes the component service protocols (abstractWS-BPEL andWSDL) and specifies control flow and data flow
requirements. Given the description of the component services and the requirements specification we automati-
cally generate the internal executable composite process (executableWS-BPEL) and its user interface (WSDL and
abstractWS-BPEL). This preliminary version of the composite service can be iteratively enhanced in thesecond
phaseof the process. During this phase the developer, on the basisof the automated composition outcomes, can
refine both the composition requirements and the customer interface and automatically re-compose.

Control Flow
Requirements
Specification

Composite
Service

Generation

Data Flow
Requirements
Specification

Composition
Requirements
Refinement

PHASE1
PHASE2

Figure 1: ASTRO Web Service Composition Process

2.1 Specification of Composition Requirements

In order to cope with a wide range of composition problems we need a way to express requirements that define
complex conditions, both for what concerns the behavior of the composition (termination conditions, failure
recovery, transactional constraints) and for the data exchanged among the component services. Moreover, to
make the automated composition an effective and practical task, the requirements specification should be as
user-friendly and easy refining as possible.

We propose to separate the specification of data flow requirements from that of control flow requirements,
and provide formal notations for their specification. In particular, in the control flow requirement specification
step the developer defines termination conditions and transactional issues by exploiting minimal semantic anno-
tations in the component service abstractWS-BPEL. Our approach, described in details in [9, 10], provides the
developer with the ability to specify with a simple tabular notation these requirements that are then automati-
cally translated into a formal internal notation that allows for the automation of the composition task. For what
concerns requirements on data, we propose a formal language, the data net language [6], that allows to specify
complex data flow composition requirements through an intuitive graphical notation. The data flow require-
ment specification step concerns the specification of how incoming messages must be used by the composite
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service (from simple forwarding to complex data manipulation) to obtain outgoing messages. During this step
the developer also specifies messages received from and sentto the composite service user.

2.2 Automated Composition

Given the description of the component services and the composition requirements, the final step of the first
phase is the development of the new composite service. The outcome of this completely automated phase is the
executableWS-BPEL implementing the internal behavior of the new process and the description of the interaction
protocol that the new service expects its customers to follow ( WSDL and abstractWS-BPEL). For this automated
synthesis task, the approach exploits sophisticated AI techniques for planning in asynchronous domains, extend-
ing them with new methods and algorithms in order to handle the peculiarities of the Web service automated
composition problem. In particular, component services define the planning domain, composition requirements
are formalized as planning goal, and planning algorithms are used to generate the composite service.

The formal framework, presented in [9], differs from other planning frameworks since it can deal with par-
tial observable, non deterministic domains and asynchronous, message-based interactions between the domain
(encoding the component services) and the plan (encoding the composite service). Moreover, the framework
can handle complex transactional and termination requirements since it supports a goal language that allows
to specify conditions of different strengths and preferences among different (e.g., primary and secondary) re-
quirements. We extended this framework with new techniquesand methods to overcome its limitation for what
concerns the specification of data flow requirements and the encoding of data knowledge within the composition
domain. Clearly, the data flow is as critical for the composition problem as the control flow, since the execution
of a service is driven by the received and manipulated data. However, considering data in Web service compo-
sition has to deal with several problems: data domains are often infinite, and the semantics of data structures
is complex (e.g. service messages areXML documents and service functions areXPath expressions). One of
the key contributions is the possibility to handle the complex data flow composition requirements defined tho-
rugh the data net language [6]. Moreover, we extended the framework with the K-level approach [11]: a novel
abstraction-based approach for handling data, which ranges over an infinite domain, in a finite, symbolic way.

2.3 WS-Compose

The approach presented in this paper has been implemented asa prototype toolkit, namelyWS-Compose,
and integrated in theASTRO Toolset [1], a toolkit providing an integrated environment for the composition
of Web services. TheASTRO Toolset covers several aspects of the Web service composition process by
providing tools and techniques supporting the analyst in the different phases (e.g. design time verification, run
time monitoring, automated composition), and allows for the usage of industrial standards such asWSDL and
WS-BPEL in the definition of Web services. For what concerns the automated synthesis of new services,WS-
Compose supports all the phases of Web service automated composition: from the specification of control-flow
and data-flow requirements by means of graphical tools for drawing data net diagrams and specifying control-
flow requirements (WS-Req), to the automatic synthesis of the desired service (WS-Synth), to the deployment,
simulation (WS-animator), and execution of the new composite service.

The ASTRO approach has been evaluated on a wide range of experimental domains, including real Web
service composition domains. A significant example is the scenario that requires the composition of the Amazon
E-Commerce Services and the e-payment service offered by Banks of Monte dei Paschi di Siena Group (MPS)
[7]. The goal of the composition is to generate ane-Bookstoreapplication that allows to order books and buy
them via a secure credit card payment transaction. This composition scenario is particularly challenging since all
component services export complex interaction protocols and handle structured data in messages. The following
table shows the results of the eBookstore automated composition problem1.

1The composition times have been obtained on a Pentium Centrino 1.6 GHz with 512 Mb RAM of memory running Linux
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Time (sec.) WS-BPEL
model construction composition & emission complex activities

E-BOOKSTORE 2.7 605.2 177

We distinguish between model construction time (translatethe WS-BPEL component services into STS and
encode the composition goal) and composition time (synthesize the composition and emit the corresponding
executableWS-BPEL). The task of manually encoding and testing the same composition required several hours
of work (more or less 20 hours).

The ASTRO approach has thus shown to be applicable also to this real domain providing a first positive
answer to the question of the practical applicability of automated composition techniques.

3 Conclusions

Developing composite processes interacting with complex real world web services requires a time consuming
analysis of the component services, both for what concerns their interaction protocol and the data structure
of their messages. Moreover, it requires a detailed implementation of the new composite service that takes
into account all the possible interaction evolutions (faults, exceptions). We propose an automated composition
approach that can deal with real world composition problemsand that dramatically reduces the effort for the
composition by automatically generating both the internalexecutable composite process (executableWS-BPEL)
and its user interface (WSDL and abstractWS-BPEL). Interesting features to be investigated in the future would
be to extend the approach in order to handlepeer-to-peerandrun-timeautomated composition problems.
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1 Introduction

UML collaboration diagrams (called communication diagrams in [8]) provide a convenient visual model for
specifying Web Service choreographies. A choreography specifies the desired set of interactions among a set of
Web services. We formalize the interactions among Web services asconversations, i.e., the sequence of mes-
sages exchanged among the services, recorded in the order they are sent. This paper reviews our recent results on
therealizability problemfor choreographies specified as collaboration diagrams [4,5]. The realizability problem
investigates the following question: Is it possible to construct a set of peers that generate exactly the same set
of conversations specified by a given choreography? To studythis problem, we model a set of Web services
(i.e., peers) as a set of communicating finite state machines[3] and we identify a set of sufficient conditions for
realizability of a class of collaboration diagrams.

2 Collaboration Diagrams and Conversations

In a collaboration diagram a set of peers communicate via messages. Each message send event has a unique
sequence label. A sequence label consists of a (possibly empty) string of letters (which we call the prefix)
followed by a numeric part (which we call the sequence number). The numeric ordering of the sequence numbers
defines an implicit total ordering among the message send events with the same prefix. For example, event A2
can occur only after the event A1, but B1 and A2 do not have any implicit ordering. It is also possible to
explicitly state dependency relationship among events. For example if an evente is marked with “B2,C3/A2”
then A2 is the sequence label ofe, and the events with sequence labels B2, C3 and A1 must precede e. In a
collaboration diagram we use the notion ofmessage threadsto refer to a set of messages that have the same
prefix (and, therefore, are totally ordered) and that can be interleaved arbitrarily with other messages.

As an example, consider the collaboration diagram in Figure1 for the Purchase Order Handling service de-
scribed in the BPEL language specification [2]. All the messages in this example are transmitted asynchronously.
There are four threads (the main thread, which corresponds to the empty prefix, and the threads with labels A,
B and C). The interactions between the Vendor and the Shipping, Scheduling and Invoicing peers are executed
concurrently. However, there are some dependencies among these concurrent interactions:shipTypemessage
should be sent after theshipReqmessage is sent, theshipSchedulemessage should be sent after theshipInfo
message is sent, and theorderReplymessage should be sent after all the other messages are sent.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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1:order
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:Invoicing
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A2,B3,C2/2:orderReply

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

Figure 1: An example collaboration diagram for a composite web service.

Based on the assumptions discussed above we formalize the semantics of collaboration diagrams as follows.

Definition 1: A collaboration diagramD = (P,L,M,E,D) consists of a set of peersP , a set of linksL ∈
P ×P , a set of messagesM , a set of message send eventsE, and a dependency relationD ⊆ E ×E among the
message send events. Each event has one of the following three recurrence types:1 (regular),? (conditional),
and∗ (iterative). A dependency(e1, e2) ∈ D means thate1 has to occur beforee2. We assume that there are no
circular dependencies. An evente is aninitial eventof D if it has no incoming edges inD.

Given a collaboration diagramD we denote theset of conversationsdefined byD asC(D) whereC(D) ⊆
M∗. C(D) specifies the desired behaviors in a global perspective. Aconversationσ = m1m2 . . . mn is in C(D),
i.e., σ ∈ C(D), if and only if σ ∈ M∗ and there exists a corresponding matching sequence of message send
eventsγ = e1e2 . . . en such that (1) each message in the conversationσ is equal to the message of the matching
send event in the event sequenceγ; and, (2) the ordering of the events in the event sequenceγ does not violate
the dependencies inD; and, (3) if an event does not appear in the event sequenceγ then it must be either a
conditional event or an iterative event; and, (4) only iterative events can be repeated in the event sequenceγ.

Next, we model the composition of peers [6, 7]. We assume thateach finite state machine has a single FIFO
input queue for asynchronous messages. A send event for an asynchronous message appends the message to the
end of the input queue of the receiver, and a receive event foran asynchronous message removes the message at
the head of the input queue of the receiver.

Definition 2: Each peerAi = (Mi, Ti, si, Fi, δi) is a nondeterministic FSA whereMi = MA
i ∪ MS

i is the set
of messages that are either received or sent bypi, Ti is the finite set of states,si ∈ T is the initial state,Fi ⊆ T

is the set of final states, andδi ⊆ Ti × ({!, ?} × Mi ∪ {ǫ})×Ti is the transition relation. A transitionτ ∈ δi can
be one of the following three types: (1) a send-transition ofthe form(t1, !m, t2), and (2) a receive-transition of
the form(t1, ?m, t2), and (3) anǫ-transition of the form(t1, ǫ, t2).

A run of peers is a sequence of actions (as defined above) taken by the peers. Acomplete runis one such
that at the end of run each peer is in a final state and each FIFO queue is empty. The corresponding sequence
of messages induced from the send events of a run is called aconversation. Given a set of peer state machines
A1, . . . ,An we denote the set of conversations generated by them asC(A1, . . . ,An). We call a set of peers
well-behavedif each partial run is a prefix of a complete run (i.e., well-behaved peers never get stuck).

Definition 3: Let D be a collaboration diagram. We say that the peer state machinesA1, . . . ,An realizeD if
C(A1, . . . ,An) = C(D). A collaboration diagramD is realizableif there exists a set of well-behaved peer state
machines that realizeD.
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Figure 2: Unrealizable collaboration diagrams.

Not all collaboration diagrams are realizable. For example, Figure 2(a) shows a simple collaboration dia-
gram that is not realizable. The conversation set specified by this collaboration diagram is{order ship}, i.e.
this collaboration diagram specifies a single conversationin which, first, the Customer has to send theorder
message to the store, and then the Shipping department has tosend theship message to the Depot. However,
this conversation set cannot be generated by any implementation of these peers. Any set of peer state machines
that generates the conversation “order ship” will also generate the conversation “ship order”. The Shipping de-
partment has no way of knowing when theordermessage was sent to the Store, so it may send theshipmessage
before theorder message which will generate the conversation “ship order”. Since the conversation “ship or-
der” is not included in the conversation set of the collaboration diagram shown in Figure 2(a), this collaborations
diagram is not realizable. Figure 2(b) and (c) show two othercollaboration diagrams that are not realizable.

3 Sufficient Conditions for Realizability

In this section we present sufficient conditions for realizability of collaboration diagrams.

Definition 4: We call a collaboration diagramseparatedif each message appears in the event set of only one
thread, i.e., given a separated collaboration diagramD = (P,L,M,E,D) with k threads, the event setE can be
partitioned asE =

⋃k
i=1

Ei whereEi is the event set for threadi, Mi = {e.m | e ∈ Ei} is the set of messages
that appear in the event setEi andi 6= j ⇒ Mi ∩ Mj = ∅.

Note that dependencies among the events of different threads are still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figure 2(a) and (b), are separated whereas the collaboration
diagram in Figure 2(c) is not separated (because messagex is involved in two threadsA andB). Based on our
experience, requiring a collaboration diagram to be separated is not a significant restriction in practice.

Definition 5: We call the evente well-informedif one of the following conditions hold: (1)e is an initial event.
(2) The immediate predecessor ofe is either a synchronous message send event, or if it is not a conditional or
iterative send event, then fore to be well-informed, the sender of the message fore has to be either the receiver
or the sender of the message for its immediate predecessor. (3) If an immediate predecessor of an evente is
either a conditional or an iterative asynchronous message send event, then, to be well-informed,e cannot be a
conditional or iterative send event and it must have the samesender and the receiver but a different message than
its immediate predecessor.

Theorem 6: A separated collaboration diagramD is realizable if all the eventse ∈ E are well-informed.

The proof of the above property is given in [5]. Note that, theevents with label 2 in Figures 2(a) and (b)
are not well-informed. Well-informedness of the events alone does not guarantee realizability of a collaboration
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diagram. Consider the unrealizable and un-separated collaboration diagram shown in Figure 2(c). This collabo-
ration diagram has two threads (A and B) and it is not separated since both threads have send events for messages
x andy. Note that, although all the events in this collaboration diagram are well-informed, this collaboration
diagram is not realizable. The conversation set specified bythis collaboration diagram consists of all interleav-
ings of the sequencesxy andyxz which is the set{xyyxz, xyxyz, xyxzy, yxzxy, yxxzy, yxxyz, yxyxz}.
However any set of peer state machines that generate this conversation set will either generate the conversation
xyzxy or will not be well-behaved. Consider any set of peer state machines that generate this conversation set.
Consider the partial run in which first peer P sendsx and then the peer Q sendsy. From the peer Q’s perspective
there is no way to tell ify was sent first or ifx was sent first. If we require peerQ to receive the messagex before
sendingy (hence, ensuring thatx is sent beforey) then we cannot generate the conversations that start with the
prefix yx. Hence, peer Q can continue execution assuming that the conversation being generated isyxzxy and
send the messagez before peer P sends another message. Such a partial execution will generate the sequence
xyz which is not the prefix of any conversation in the conversation set of the collaboration diagram. Therefore
such a partial execution will either lead to a complete run and generate a conversation that is not allowed or it
will not lead to any complete run, either of which violate therealizability condition.

4 Conclusion

To the best of our knowledge, realizability of collaboration diagrams has not been studied before our work
in [4, 5]. There were similar efforts on Message Sequence Charts (MSCs) [1]. However, as MSCs concentrate
on specification of local behaviors, earlier results on realizability of MSCs are not applicable to the realizability
of collaboration diagrams. In our earlier work, we have studied the realizability of conversations specified using
automata, calledconversation protocols[6, 7].

Analysis of interactions specified by collaborations diagrams is becoming increasingly important in the web
services domain where autonomous peers interact with each other through messages to achieve a common goal.
Since such interactions can cross organizational boundaries, it is necessary to focus on specification of interac-
tions rather then the internal structure of individual peers. We argue that collaboration diagrams are a useful
visual formalism for specification of interactions among web services. However, specification of interactions
from a global perspective inevitably leads to the realizability problem. Our work formalizes the realizability
problem for collaboration diagrams and gives sufficient conditions for realizability.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. InProc. 28th Int. Colloq. on
Automata, Languages, and Programming, pages 797–808, 2001.

[2] Business process execution language for web services (BPEL), version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel.

[3] D. Brand and P. Zafiropulo. On communicating finite-statemachines.J. ACM, 30(2):323–342, 1983.
[4] T. Bultan and X. Fu. Specification of realizable service conversations using collaboration diagrams. InProc. of the

IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2007), pages 122–132, 2007.
[5] T. Bultan and X. Fu. Specification of realizable service conversations using collaboration diagrams.Service Oriented

Computing and Applications, 2(1):27–39, 2008.
[6] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and analysis of reactive electronic

services.Theoretical Computer Science, 328(1-2):19–37, November 2004.
[7] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web services.IEEE Transactions on Software

Engineering, 31(12):1042–1055, December 2005.
[8] OMG unified modeling language superstructure, version 2.1.2.http://ww.uml.org/, October 2007.

30



Choreography Design Using WS-BPEL

Oliver Kopp Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart

{kopp,leymann}@iaas.uni-stuttgart.de

Abstract

Web Services are the state-of-the-art realization of a service-oriented architecture. While there is an
agreed standard to describe the interface of services (WSDL) as well as an agreed standard to describe
the behavior of a single process (WS-BPEL), there is no agreed standard to describe choreographies.
In this paper, we give an overview about existing approachesto model choreographies and present one
approach based on WS-BPEL in detail.

1 Introduction

The service-oriented architecture (SOA) is an architectural style based on the services paradigm. The most popu-
lar realization of the SOA paradigm are Web Services [1]: each service is offered as Web Service. Web Services
can be combined to form a business process using the Web Services Business Process Execution Language
(WS-BPEL, BPEL for short). A BPEL process is in turn offered as Web Service, which enables recursive com-
position. Forming business processes out of services is called “orchestration”. When multiple processes interact
with each other, orchestrations describe the point of view of a single process only. In contrast to orchestrations,
choreographies describe the interplay between processes from a global perspective. While orchestrations are
well understood, choreographies are an open research field.In this paper, we give an overview about the state-
of-the-art in choreography modeling and provide detail insight on a choreography language proposal based on
BPEL.

Choreographies are used to capture collaborations betweenmultiple business partners from a global per-
spective. While most of the published scenarios originate from a top-down approach, another use-case for
choreographies is a bottom-up approach: for example, if a company acquires another company, the business
processes of both have to be adapted to be able to work together and thus to make use of the synergy effects.
Important reasons to design choreographies are acquisitions and merges between companies and the formation
of virtual enterprises.

In the following, we use a RosettaNet Partner Interface Process (PIP) to illustrate choreography design.
RosettaNet is an industry consortium defining “high-value process scenarios that deliver manufacturing quality
data, end-to-end supply chain visibility, and legislativecompliance” [12]. The process scenarios are described
using interconnection models. In an interconnection model, the behavior of each participant and the messages
exchanged are shown. A typical PIP is the PIP 3A1 “Request Quote” defined in RosettaNet Cluster 3 “Order
Management”. There, a buyer decides whether he needs to place an order. If yes, he specifies his quote request

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: PIP 3A1: Request Quote [13]. Modeled using BPMN with choreography extensions

and sends the quote request to a seller. The seller in turn decides whether he meets the requirements of the
quote request. If so, he replies with a quote. If the seller does not meet the requirements, he decides whether
he can suggest another supplier. If yes, he sends the suggestion back. If not, he does nothing. Figure 1 presents
the BPMN representation of the PIP. We use BPMN V1.1 and the choreography extensions presented in [4].
The shaded pool denotes that there are multiple sellers involved in the choreography. The referenced passed
on the message flow is explicitly modeled and associated withthe last message flow between the seller and the
buyer. In the graphical representation, we assume that eachpool is realized by one process. To ensure proper
termination of the buyer, we had to include a timeout to handle the case that the supplier does not send any quote
and does not send any referral.

In general, in the field of choreography design, there are three issues to tackle: (i) modeling of a choreogra-
phy, (ii) verification of the choreography and finally (iii) mapping of the choreography to the runtime. In case of
choreography modeling, the language to express the choreography has to have well-defined semantics and needs
to be suitable to capture choreographies. When a choreography is modeled, the model itself has to be checked
for modeling errors: the model has to be consistent within itself (e.g., not contain any deadlock and always reach
an end state) and has to fulfill certain constraints (e.g., given by logical formulas). When it comes to execution,
the semantics of the choreography has to be captured by localprocesses, which have to be capable to enact the
constraints defined by the choreography.

Currently, there are three main approaches to model choreographies: interaction models, interconnection
models and declarative models. Interaction models use the interaction a basic building block. In contrast to in-
teraction models, the main idea of interconnection models is to be close to the execution and to re-use the idea of
abstract processes: activities of the local abstract processes are interconnected. An abstract process itself leaves
out process internal details, which are not needed to describe the interaction with the partners. While interac-
tion and interconnection models describe all possible interaction schemes, declarative models define constraints
on the execution. Thus, declarative models specify the “borders” of possible execution, but do not enumerate
explicitly all possible executions [10].

Current languages to specify interaction models are for example the Web Service Choreography Description
Language (WS-CDL, [5]) and extensions to BPMN for interaction modeling (iBPMN, [2]). While these lan-
guages are suited to capture the interactions between services on a higher level, the runtime-support of them is
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an open field. The current solution is to map parts of the choreography specification to abstract BPEL process
models, which are then refined and executed. However, not allconstraints can be directly mapped to BPEL. For
example, there is currently no solution to map the blocking wait of WS-CDL to BPEL. In the case of declarative
process models, the mapping to BPEL is a complete open research field.

Orchestrations of Web services are mainly defined in BPEL. BPEL has native support for concurrency, back-
ward and forward recovery. To enable modularity and composability, a choreography language should use the
same control-flow semantics as an orchestration language toclose the gap between choreography specification
and runtime. While there is a mapping from BPMN to BPEL available [9], BPMN does not have the expres-
siveness to specify all the behavior which can be expressed by BPEL constructs. For example, event handlers
and termination handlers cannot be modeled using BPMN. Furthermore, a BPEL process can be used to spec-
ify the behavior of one participant only. Therefore, we proposed extensions to BPEL to lift BPEL from an
orchestration language to a full choreography language (BPEL4Chor [3]). In addition, we added constructs to
BPMN to enable modeling choreographies using BPMN including a BPMN representations of BPEL constructs
(http://www.bpel4chor.org/editor, [11]).

2 BPEL4Chor

BPEL4Chor itself consists of three artifacts: (i) participant behavior descriptions, (ii) a topology description and
(iii) a participant grounding.

Theparticipant behavior descriptionsare abstract BPEL processes describing the behavior of eachpartic-
ipant. “Abstract BPEL” denotes that the BPEL processes haveto be refined to be fully deployable and to be
executed on a BPEL engine. The steps going from an abstract BPEL processes to an executable BPEL process
are called “executable completion” and are mainly manual work. It is important to note, that WSDL port types
and WSDL operations are not used in the participant behaviordescriptions. This allows to specify the behav-
ior of a participant without the fixed connection to concreterealizations. The concrete WSDL information is
brought in during the participant grounding.

The BPEL4Chortopologyprovides a global view on the choreography: it defines the participants and the
message links. A message link connects communicating activities and corresponds to a message flow in BPMN.
The concept of a message link allows to wire existing orchestrations to provide a global view on the interaction.

We see BPEL as orchestration standard and WSDL as standard todescribe interfaces. Therefore, theground-
ing brings in the necessary WSDL information to enact the choreography. This information can then be used
to generate abstract BPEL containing partner links, port types and operations. These BPEL processes can then
serve as basis for the executable completion. However, it isnot necessary to implement a participant using
BPEL. A participant can also be realized by one or more Web services implemented in any language as long as
the behavior of these Web services corresponds to the given participant behavior description.

A BPEL4Chor choreography can be verified using an approachedbased on Petri nets presented in [8]. There,
the choreography’s participants are translated into Petrinets. These nets are then connected according to the
BPEL4Chor choreography. If there are multiple participants involved, the respective net is copied accordingly to
reflect the multiple instances. The resulting Petri net can be checked for deadlocks or any other desired property
using model checking tools. Experiments showed that choreographies with up to thousand instances can be
verified [8]. In case a deadlock is found in the choreography,the faulty participant can be fixed automatically [7].
All results of the verification (e.g., deadlock traces) can be mapped back to the original BPEL processes. This
allows for a seamless integration of choreography verification into the process of choreography modeling.

If an executable BPEL process was modeled based on a participant behavior description, it has to be checked,
whether the executable process conforms to the participantbehavior description. A general approach to check
conformance of BPEL processes is presented in [6].
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3 Summary

We presented an overview of choreography design and BPEL4Chor. We showed how existing technologies can
be re-used to describe a choreography: BPEL is used to define the participant behavior descriptions and WSDL
is brought in at the grounding to enable the message exchangevia an Enterprise Service Bus. The BPEL4Chor
topology is the first proposal enabling interconnection of BPEL activities.

BPEL4Chor is part of the Tools4BPEL project and is funded by German Federal Ministry of Education
and Research (project number 01ISE08). The other partners involved are the Humboldt-Universität zu Berlin
and the MEGA International GmbH. In the project, our task is to investigate the modeling of sub-processes,
choreographies, cross-partner fault handling, cross-partner transactions and sub-processes using BPEL. The part
of the Humboldt-Universität zu Berlin is to provide verification mechanisms and tools for BPEL as well as for
our extensions of BPEL. Finally, MEGA delivers challengingexamples guiding and driving our research.
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Abstract

Data-driven Web services, viewed broadly as interactive systems available on the Web for users and
programs, provide the backbone for increasingly complex Web applications. While this yields ever-
increasing functionality, the added complexity renders such applications more vulnerable to bugs and
failures, potentially compromising their robustness and correctness. Therefore, there is a need to develop
verification techniques for such Web services. TheWAVE project at UC San Diego aims to develop
new approaches for automatic verification of data-driven Web services. The work relies on a novel,
highly effective marriage of model checking and database techniques. We summarize briefly the main
contributions of the project, which range from theoreticalfoundations to the successful implementation
of a prototype verifier.

1 Verification of stand-alone data-driven Web services

We first outline our results on verification of data-driven Web services for single peers in isolation, then dicsuss
extensions of the results to compositions of Web services. We focus on services interacting with external users
or programs through a Web browser interface, and accessing an underlying database. Such services include
e-commerce sites, scientific and other domain-specific portals, e-government, etc. These Web sites are often
governed by complex, data-dependent workflows, controlledby queries. The spread of such services has been
accompanied by the emergence of tools for their high-level specification. A representative, commercially suc-
cessful example is WebML [1], which allows to specify a Web application using an interactive variant of the
E-R model augmented with a workflow formalism. The code for the Web application is automatically generated
from the WebML specification. This not only allows fast prototyping and improves programmer productivity but
also provides new opportunities for automatic verification. Indeed, ourWAVE prototype automatically verifies a
significant class of such services. Verification leads to increased confidence in the correctness of database-driven
Web applications generated from high-level specifications, by addressing the most likely source of errors (the
application’s specification, as opposed to the less likely errors in the automatic generator’s implementation).

We focus on interactive Web sites generating Web pages dynamically by queries on an underlying database.
The Web site accepts input from external users or programs, possibly subject to specified pre-conditions. It
responds by taking some action, updating its internal statedatabase, and moving to a new Web page determined
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by yet another query. We model the queries used in the specification of the Web service as first-order queries
(FO), also known as relational calculus, which can be viewedas an abstraction of the data manipulation core
of SQL. A run is a sequence of inputs together with the Web pages, states, and actions generated by the Web
service. The properties we wish to verify range from basic soundness of the specification (e.g. the next Web page
to be displayed is always uniquely defined) to semantic properties (e.g. no order is shipped before a payment
in the right amount is received). Such properties are expressed using an extension oflinear-time temporal logic
(LTL). Recall that LTL is propositional logic augmented with temporal operators such asalways, eventually,
next anduntil . The extension uses FO formulas in place of the atomic propositions of classical LTL, yielding a
language called LTL-FO.

For example, the following is an LTL-FO formula stating thatif a productx is paid at some point in the right
amounty, thenx is eventually delivered:

∀x∀y always[(pay(x, y) ∧ price(x, y)) → eventually (deliver(x))]

Herepay is an input,price is a database relation, anddeliver is an action relation.
The task of a verifier is to check that all runs of the Web service satisfy a given LTL-FO property (as usual

in verification, runs are considered to be infinite). Verifiers search for counter-examples to the desired property,
i.e. runs leading to a violation. A verifier iscompleteif it is guaranteed to find a counter-example whenever
one exists. In the broader context of verification, a database-driven Web service is aninfinite-statesystem,
because the underlying database queried by the applicationis not fixed in advance. This poses an immediate and
seemingly insurmountable challenge. Classical verification deals with finite-state systems, modeled in terms
of propositions. For more expressive specifications, the traditional approach suggests the following strategy:
first abstract the specification to a fully propositional oneand next apply an existing model checker such as
SPIN [6] to verify LTL properties of the abstracted model. This approach is unsatisfactory when the data values
are first-class citizens, as in data-driven Web applications. For example, abstraction would allow checking that
someproduct was delivered aftersomepayment was completed. However, we could not inspect the payment and
product data values to verify that the payment was for the delivered item, and in the correct amount. Conventional
wisdom holds that, short of using abstraction, it is hopeless to attempt complete verification of infinite-state
systems. In this respect,WAVE represents a significant departure because it is complete for a practically relevant
class of infinite-state specifications. As far as we know, this is the first implementation of such a verifier.

In general, complete verification is easlily seen to be undecidable. Thus, completeness is only guaranteed
under certain restrictions described shortly. To show thatthese restrictions cover a large class of applications,
we have modeled a computer shopping Web site similar to the Dell site, an airline reservation application similar
to Expedia, an online bookstore in the spirit of Barnes & Noble, and a sports Web site on the Motorcycle Grand
Prix. We used these applications in our experimental evaluation of WAVE. If the specification and the property
do not satisfy the restrictions needed for completeness,WAVE can still be used as an incomplete verifier, as
typically done in software verification. The heuristics we developed remain just as effective in this case.

We now describe informally the restrictions on the Web service specifications and properties that guarantee
completeness, calledinput boundedness[7, 5]. Recall that the queries we use in the specification of Web service
as well as properties are FO queries. In a nutshell, input boundedness restricts the range of quantifications in FO
formulas to values occurring in the input. This is natural, since interactive Web applications are input-driven. For
example, to state that every payment received is in the rightamount, one might use the input-bounded formula
∀x∀y[pay(x, y) → price(x, y)], wherepay(x, y) is an input andprice is a database relation providing the price
for each item.

Our main theoretical result shows the decidability of modelchecking for input-bounded specifications and
properties. The complexity of checking that a Web service specificationW satisfies an LTL-FO propertyϕ is
shown to bePSPACE. We briefly describe the technique underlying this result, as well as the implementation of
WAVE. In our scenario, a first difficulty facing a verifier is that exhaustive exploration of all possible runs of a
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Web serviceW on all databases is impossible since there are infinitely many possible databases and the length
of runs is infinite. The solution lies in avoiding explicit exploration of the state space. Instead of materializing a
full initial database and exploring the possible runs on it,we generate a compact representation of equivalence
classes of actual runs, calledpseudo-runs, by lazily making at each point in the run just the assumptions needed
to obtain the next configuration and check satisfaction ofϕ. Specifically, for input-boundedW andϕ, this can
be done as follows:

(i) explicitly specify the tuples in the database that use only a small set of relevant constantsC computed
from W andϕ; this is called thecoreof the database and remains unchanged throughout the run. Its size
is polynomial inW andϕ.

(ii) at each step in the run, make additional assumptions about the content of the database, needed to determine
the next possible configurations. The assumptions involve only a small set of additional values.

The key point is that the local assumptions made in (ii) at each step need not be checked for global consistency.
Indeed, a non-obvious consequence of the input-bounded restriction is that these assumptions are guaranteed
to be globally consistent withsomevery large database which is however never explicitly constructed. Since
pseudo-run configurations are of polynomial size, this yields aPSPACEverification algorithm and establishes
our main theoretical result [5].

Theorem 1: Given an input-bounded Web service specificationW and LTL-FO formulaϕ, it is PSPACE-
complete whetherW satisfiesϕ.

ThePSPACEupper bound holds assuming a fixed bound on the arity of database and state relations. Other-
wise, the complexity isEXPSPACE(with the arity in the exponent). It is worth noting that, in the broader context
of static analysis, thePSPACEcomplexity is the best one can hope for. Indeed, recall that even satisfaction of a
propositional LTL property by a finite-state Mealy machine is alreadyPSPACE-complete.

The input-boundedness restriction imposed for decidability turns out to be quite tight. Indeed, we showed
that even minor relaxations to these restrictions lead to undecidability. Some extensions to the model also lead
to undecidability, such as allowing key constraints on the database. On the other hand,PSPACEdecidability
continues to hold with built-in predicates such as a dense order on the domain.

The WAVE verifier To explore the practical feasibility of our ideas, we embarked upon the implementation of
the WAVE verifier. First, we developed a tool for high-level, efficient specification of data-driven Web services,
in the spirit of WebML. Next, we implementedWAVE taking as input a specification of a Web service using our
tool, and an LTL-FO property to be verified. The implementation is made possible by a novel coupling of clas-
sical model-checking with database optimization techniques. Interestingly, the starting point is the pseudo-run
technique used to show thePSPACEupper bound. However, verification becomes practical only in conjunction
with an array of additional heuristics and optimization techniques, yielding critical improvements. Chief among
these is dataflow analysis, allowing to dramatically cut down the number of database cores and pseudo-runs
generated in a search.

We evaluated the verifier on a set of practically significant Web application specifications, mimicking the
core features of sites such as Dell, Expedia, and Barnes and Noble. The experimental results are quite exciting:
we obtained surprisingly good verification times (on the order of seconds), suggesting that automatic verification
is practically feasible for large classes of properties andWeb services. We describe the implementation and
our experimental results in [2]. A demo of the WAVE prototypeis presented in [4] and is also available at
http://db.ucsd.edu/wave.
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2 Extension to Web service compositions

The above results apply to the verification of single peers inisolation. We extended these results to the more
challenging but practically interesting case ofcompositionsof Web services. Asynchronous communication
between peers adds another dimension that has to be taken into account. We briefly describe the model and
results.

In a composition of Web services, peers communicate with each other by sending and receiving messages
via one-way channels implemented bymessage queues. Each queue is associated with a unique sender who
places messages into the queue, and a unique receiver who consumes messages from it in FIFO order (thus, we
assume messages arrive in the same order they were sent). Themessages can beflat or nested. Flat messages
consist of single tuples, e.g. the age and social security number of a given customer. Nested messages consist of
a set of tuples, e.g. the set of books written by an author.

As in the stand-alone case, each peer can receive external inputs and produce actions (sets of tuples). In a
composition, each peer additionally consumes messages from its input queues, and generates output messages.
A configurationof the composition consists of the configurations of all participating peers (the database, their
local state relations, inputs, current action relations, and the message queues). A run of the composition is a
sequence of consecutive configurations. We only consider serialized runs, in which at every step precisely one
peer performs a transition. Properties of runs to be verifiedare specified in an extension of LTL-FO, where the
FO statements may additionally refer to the messages currently read and sent.

In order to obtain decidability of verification, we need to extend the input-boundedness restriction introduced
for single peers. Naturally, we need to also require input-boundedness of the queries defining output messages.
Additional restrictions must be placed on the message channels: they may be lossy, but are required to be
bounded. With these restrictions, verification is again shown to bePSPACE-complete (for fixed-arity relations,
andEXPSPACEotherwise).

The above model of compositions assumes that all specifications of participating peers are available to
the verifier. However, compositions may also involve autonomous parties unwilling to disclose the internal
implementation details. In this case, the only informationavailable is typically a specification of their input-
output behavior. This led us to investigatemodularverification. This consists in verifying that a subset of fully
specified peers behaves correctly, subject to input-outputproperties of the other peers. We obtained similar
decidability results for verification, subject to an appropriate extension of the input-boundedness restriction.

The results on verification of Web service compositions are described in [3].

ConclusionThe results of theWAVE project obtained so far are very encouraging. They suggest that interactive
applications controlled by database queries may be unusually well suited to automatic verification, and that our
approach based on a mix of model checking and database optimization techniques may come to have significant
practical impact.
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Abstract

This paper discusses the notion of protocol compatibility between Web services, and reviews a number
of techniques for detecting incompatibilities and for synthesizing adapters for otherwise incompatible
services. The paper also reviews related notions such as realizability, substitutability and controllability.

1 Introduction

The composition of Web services involves wiring together multiple web services and having them interact often
in ways not originally foreseen during their initial development. In doing so, it is unavoidable that incompat-
ibilities may arise and need to be identified and resolved. Weclassify these incompatibilities into two types:
(i) signature incompatibilitiesthat arise when a service requires an operation from anotherservice, but this latter
service does not offer it, or when a service A needs to exchange a message with another service B, but the schema
of the message that A produces is not compatible with the one that B expects; and (ii)protocol incompatibilities
that arise when a service A engages in a series of interactions with another service B, but the order in which
service A undertakes these interactions is not compatible with that of B.

This paper discusses the notion of protocol compatibility between Web services and reviews a number of
techniques for detecting incompatibilities and for synthesizing adapters for otherwise incompatible services.
The paper also reviews related notions such as realizability [6], substitutability [4] and controllability [10].

The next section introduces background concepts for modeling web service interactions in general, and
service protocols in particular. Section 3 introduces the notion of protocol compatibility and related concepts.
Section 4 discusses techniques for synthesizing adapters for protocol-incompatible services. Finally, Section 5
summarizes the discussion and raises directions for futurework.

2 Service Interaction Modeling

It is customary to distinguish between two types of models ofservice interactions: choreographies and orches-
trations [15]. A choreography describes interactions between a collection of services from a global perspective.
In a choreography, no service plays a privileged role. Figure 1(a) depicts a choreography in the Business Process
Modeling Notation (BPMN) [14]. Four services are involved in this choreography: customer, sales, warehouse
and finance. Each activity denotes an interaction between two services. Importantly, a choreography only shows
interactions, as opposed to actions performed internally by a service. In contrast, an orchestration describes the
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interactions between a designated service (the orchestrator) and a plurality of subordinated services. Figure 1(b)
depicts an orchestration for the sales service. An orchestration may include internal actions or timeouts. For
example, Figure 1(b) includes four actions internal to the sales service (the four “prepare” actions in dashed
lines) and a timeout: After sending a quote, the sales service waits for an order until the quote’s expiry time.

Customer sends Request for Quote to Sales

Customer sends 

Purchase Order to 

Sales

Sales sends Availability Check to Warehouse;

Warehouse sends Availability Check Response to Sales

goods unavailable

Sales sends Quote to 

Customer

Sales sends RfQ 

Rejection to Customer

Sales sends Shipment 

Request to Warehouse

Warehouse sends Shipment 

Notiication to Customer

Finance sends Invoice to 

Customer

Sales sends Billing 

Request to Finance

accept quote

(a) Order management choreography

send

availability query

send

quote

receive

availability

receive rfQ

send

billingRequest

send

shipmentOrder

receive

order

send

rejectRfQ

goods unavailable

prepare

quote

prepare

shipmentOrder

prepare

rejectRfQ

prepare

billingRequest

(b) Orchestration for Sales service

Figure 1: Examples: Choreography and Orchestration

If we consider a multi-party choreography and restrict it tothose interactions that involve a given pair of
services – e.g. the interactions between the sales and the customer services in the above example – we obtain a
(bilateral)service protocol. Service protocols described from the perspective of one participant are also called
behavioral interfaces[7], because they define the behaviour of a service vis-a-visof one of its clients or peers.

The derivation of behavioural interfaces from choreographies may require refinements. Consider, e.g. the
choice in Figure 1(a) that the customer performs between accepting or rejecting a quote. If the customer accepts
the quote, it sends an order. Thus, when receiving an order the sales service knows that the customer accepted the
quote. However, if the customer rejects the quote, it does not send any message. When deriving a behavioural
interface for the sales service, one needs to insert either atimeout (as in Figure 1(b)) or an additional interaction
through which the customer communicates the rejection to the sales service. Otherwise, the sales service will
wait indefinitely for an order. The notion ofrealizability [6] (also called enforceability [18]) captures this issue.
A choreography isrealizableif the behavioural interfaces obtained by projection of thechoreography into each
of its participatingroles, collectively enforce all control-flow constraints in the choreography.

Languages for specifying choreographies, protocols and orchestrations include BPMN (see above) and
BPEL.1 In BPEL, orchestrations are defined down to the point where they can be executed by dedicated plat-
forms. Also, BPEL allows one to specify protocols/behavioral interfaces. For formal analysis, protocols may be
represented using e.g. finite state machines (FSMs) [2], process algebra [11] or Petri nets [10, 3].

1http://www.oasis-open.org/committees/wsbpel/
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(a) (b) (c)

Figure 2: Incompatibilities & adaptation: (a) unspecified reception, (b) deadlock, (c) adapter for protocols in (a)

3 Compatibility

Two services are protocol-compatible if every joint execution of these services leads to a proper final state,
i.e. a state in which both services are in a final state in theirrespective protocols [2]. Under the assumption
synchronous communication, Yellin & Ström [17] identify two main types of protocol mismatches:unspecified
reception, in which one party sends a message while the other is not expecting it; anddeadlock, the case where
both parties are mutually waiting to receive some message from the other. To illustrate the concepts, consider
the protocols ofPs (of serviceSs) andPc (of serviceSc) in Figure 2(a):Pc sends messageb (shown by a-b),
while Ps does not expect to receive it (unspecified reception). In Figure 2(b) instead,Pc expects to receive
messageack after sendinga (shown by+ack), while Ps is waiting to receiveb (+b). This is a deadlock case.
Two protocols are said to becompatibleif they have no unspecified receptions and they are deadlock-free.

The protocolA′ obtained by reversing the polarity of every message in a protocolA is called the mirror ofA.
In other words, sent messages inA become received messages in its mirrorA′, while received messages become
sent messages. In general, a service protocol is compatiblewith its mirror. However, if a protocol specification
includes internal actions (e.g. timers or evaluation of boolean conditions resulting in certain branches being
taken) it is possible that this protocol is not compatible with its mirror protocol, nor with any other protocol. If
so, the service is said to be uncontrollable [10]. The problem of controllability is intuitively related to that of
realizability – as that they both result when internal choices are not externalized as messages. However, a formal
relation between controllability and realizability is yetto be established.

Replaceability(or substitutability) refers to the ability for a service to replace another one without inducing
incompatibilities [4]. In ServiceMosaic [2], two main classes of replaceability are defined:subsubmptionand
equivalence. ProtocolP1 subsumesP2 if P1 supports at least all the execution traces thatP2 supports. If so, a
serviceS1 (with protocolP1) can replace serviceS2 (with protocolP2). If P1 subsumesP2, andP2 subsumes
P1, thenP1 and P2 are equivalent, and servicesS1 and S2 can be used interchangeably. Finer notions of
replaceability are defined in terms of bisimulation [3].

Finally, one can ask the question of whether an orchestration conforms toa protocol. If we take the or-
chestration and we project it to those interactions that appear in its protocol, the question is whether or not the
projected orchestration is compatible with the service’s protocol. This question is studied in [9].

4 Adaptation

When two services are incompatible, it may be possible to introduce an adapter to resolve their mismatches. In
such cases, the service protocols are said to beadaptable. Depending on the types of mismatches, it may be
possible to automatically synthesize an adapter. The question of synthesizing adapters for incompatible protocols
has been studied in the area of SOA, as well as earlier in the area of component-based software engineering.

Yellin & Ström [17] propose an approach for checking the existence of an adapter for incompatible protocols.
An adapter is modelled as an FSM consisting of a set of states,a set of typed memory cells to store the messages

42



received by the adapter, and a set of state transition rules.Each rule describes a transition from a state to another
in the adapter based on sending or receiving messages, alongwith a set of memory actions that store or retrieve
messages in/from the cells. A rule also constructs messagesthat need to be sent to partners. The adapter’s
protocol is said to be compatible with protocolsP1 and P2 of the adapted components, if their interactions
have no unspecified reception and are deadlock free. Figure 2(c) shows an example of an adapter for protocols
in Figure 2(a). To synthesize the adapter specification for apair of components, their interface mappings is
required as the input (e.g. which messages should be mapped to which other messages). The adapter synthesis
process explores all possible interactions between the protocolsP1 andP2 and adds them to the adapter protocol.
If there are states leading to deadlocks or with unspecified reception, they are removed from the adapter protocol.

Other proposals rely on alternative protocol specificationlanguages that explicitly support concurrency.
Mateescu et al. [11] propose a technique for adapter synthesis based on protocols specified using process algebra.
Similarly, Brogi et al. [5] provide an automated adapter synthesis approach for protocols specified in BPEL.

Another line of research for service adapter development proposes to characterise the classes of possible
mismatches between protocols, provides guidelines for users to identify them and proposes templates to resolve
mistmatches based on design patterns [1] or composable adaptation operations [8]. In these approaches, the
construction of adapters requires manual intervention. Some of these approaches, e.g. [8] deal with mismatch
patterns not supported in automated approaches – e.g. mismatches where a message emitted by a service needs
to be mapped to an unbounded number of messages in the receiving service.

Automated approaches for adapter generation make the following assumptions: (i) there is no mismatch
at the interface-level, or the correct interface mappings have been provided as the input, and (ii) if there are
interactions which lead to deadlocks, they are not adaptable. As discussed in [12], the interface-level mappings
can not be always correctly identified without considering the protocol specifications. Second, some deadlock
cases may be adaptable, e.g. the resolution of a deadlock mayrequire the generation of messages (e.g., an
acknowledgment) that can be constructed in the adapter via user-defined functions.

To address these limitations, Motahari Nezhad et al. [12] approach adapter development as an iterative pro-
cess consisting of both interface-level and protocol-level mismatch identification and resolution. Their approach
starts from an initial set of interface matchings, computedby matching the WSDL interfaces of services, and
then, considering the protocol specifications of two services, identifies all the interactions that results in dead-
locks. The result is presented in the form of amismatch treeto the user, where the user can identify if such
interactions are resolvable. The approach also helps the user by analyzing the mismatch tree. Some deadlock
cases may be handled by going back to the interface matching step and refining the interface matchings.

5 Summary and outlook

Figure 3 summarizes the notions introduced in the paper. This panorama summarizes a significant body of
research work in the area of service-oriented computing. Inthis body of work, research questions are often
approached under the assumption that the choreographies, protocols and/or orchestrations are known and given
as input. Sometimes however, these specifications are unavailable or they are incompletely or unreliably speci-
fied, yet one needs to make assertions regarding the correct behavior of a service-oriented system. Recent work
has addressed the question of analyzing logs representing the observed behavior of a service-oriented system in
order to determine if these logs conform to a choreography orprotocol specification [16]. One of the key issues
in this setting is that of “correlation”, that is, how to group together log entries (such as those in message logs)
to produce trails that represent conversations between twoor more services [13]. Open questions in this area
include investigating the application of techniques from machine learning and information clustering.

An open question in the field of service adaptation is how to maintain adapters in an environment where
services evolve continuously. For example, given two services S1 and S2 that communicate through an adapter,
how can this adapter be updated (with minimal effort) when either S1 or S2 evolve or are replaced?
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Abstract

Process mining has emerged as a way to discover or check the conformance of processes based on event
logs. This enables organizations to learn from processes asthey really take place. Since web services are
distributed over autonomous parties, it is vital to monitorthe correct execution of processes. Fortunately,
the “web services stack” assists in collecting structured event logs. This information can be used to
extract new information about service processes (e.g., bottlenecks, unused paths, etc.) and to check the
conformance (e.g., deviations from some predefined process). In this paper, we illustrate the potential
of process mining in the context of web services. In particular, we show what a process mining tool like
ProM can contribute in IBM’s WebSphere environment.

1 Introduction

In a Service Oriented Architecture(SOA) services are interacting by exchanging messages, andby combining
services more complex services are created.Choreographyis concerned with the composition of such services
seen from a global viewpoint focusing on the common and complementary observable behavior. Choreography
is particularly relevant in a setting where there is not a single coordinator. Orchestrationis concerned with
the composition of such services seen from the viewpoint of single service. Independent of the viewpoint
(choreography or orchestration) there is a need to make surethat the services work together to ensure the correct
execution of business processes.

This paper explores the use ofprocess mining[1] in the context of IBM’s WebSphere product. WebSphere
provides a state-of-the-art infrastructure for realizinga SOA and supports elaborate logging facilities [2]. The
Common Event Infrastructure (CEI) offers a systematic way of recording events. Using this information, we
can apply the many process mining techniques provided by theprocess mining toolProM [4].

CEI provides facilities for the generation, propagation, persistence, and consumption of events. Events are
represented using the Common Base Event (CBE) model, a standard XML-based format defining the structure
of events. For many applications, the information stored inCEI may be too large. Hence, CEI is often only
used as a transport layer and events are removed, filtered, oraggregated by IBM tools such as the WebSphere
Business Monitor. (But also others such as the Web Services Navigator [3].)

The WebSphere Business Monitor [2] measures the performance of a process based on key performance
indicators (KPIs) and the business metrics. Performance related results are displayed in dashboards and used
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as reference for redesign. The monitoring and analysis tools are not able to discover causal relations between
tasks or employees involved in the process, and, thus, they can not extract a process model from the event log.
Moreover, an audit of the process to see if it conforms to the organizational procedures and regulations is hardly
objective or efficient without having a good understanding of the real process.

This paper demonstrates that process mining is possible andvaluable in a SOA context, using WebSphere
as an example. However, our findings are quite general and canbe applied to other platforms (e.g., using Oracle
BPEL). The remainder is organized as follows. First, we discuss the requirements for process mining. Then, we
provide insight into the analysis results that can be provided by process mining. Finally, we discuss in what way
process mining tools extend capabilities of existing monitoring tools.

2 Getting Data: Correlation is Key!

More and more processes leave their “trail” in the form of event logs. Process mining techniques can use these
logs in various ways, e.g., to discover the way that people/services really work, to find out if and where this way
deviates from the planned process, to support people in performing their duties, and to improve the performance
of processes. In order to do this, process mining techniquesexpect the logs to contain certain information.
Therefore, we first elaborate on this information.

For everyprocess instance(often referred to ascase), a sequence of events is recorded. Examples of process
instances are customer orders in a order handling process, patients in a treatment process, and applicants in
a selection process. It is crucial to note that events need tobe linked to process instances in order to enable
process mining. The sequence of events describing a single process instance is called atrace. An event log
is a set of process instances. An event may have various properties such as the associated time, the associated
activity, the associated data, the person, organization, or software component responsible for emitting the event,
and the associated transaction type (e.g., start, complete, and abort). Process mining assumes that each event is
associated to an activity. All other event properties are optional, but can be exploited when present.

One of the major challenges in processing the collected datais to link events to process instances. This
corresponds to the notion ofcorrelation. For example, when tapping of a message exchanged between two
services it is crucial to link this message to a particular process instance. In some cases this may be trivial, e.g.,
when using a workflow engine with a clear process instance concept or when there is a natural global identifier
such as the patient id in hospital processes. In other cases,this may be very difficult. For example, in the context
of an ERP system like SAP R/3 it is surprisingly difficult to correlate events. For example, events related to a
customer order may refer to order line items rather than the customer order or the supplier and customer may
use different keys.

To make things more concrete, we now focus on event logging inthe context of WebSphere. IBM uses the so-
calledCommon Event Infrastructure(CEI) to record, distribute, and manage events. IBM encourages clients to
use the following four subsystems: (1)WebSphere Business Modelerto design business processes and to identify
the things to be measured and analyzed at run-time, (2)WebSphere Integration Developerto translate business
process models into actual executable code, (3)WebSphere Process Serverto enact the configured processes,
and (4)WebSphere Business Monitorto observe the processes, to measure Key Performance Indicators (KPIs),
generate reports, show management dashboards, etc. Although these subsystems are connected, they can also
be used independently. For example, the WebSphere BusinessMonitor can also be used in conjunction to other
products such as FileNet P8 BPM, etc.

Correlation is important in both the Process Server and the Business Monitor. To execute processes, incom-
ing events (e.g., messages) need to be routed to the corresponding BPEL process instances. For monitoring, it
is also important to correlate events. Take, for example, a KPI that measures the average throughput time of a
case. Clearly, to be able to measure such a KPI, it is necessary to correlate the events. The WebSphere Business
Monitor uses the concept of “monitoring context” to define a container where all events related to the same
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instance are brought together. It is also interesting to note that both CEI and the WebSphere Business Monitor
use concepts such as times associated to events, etc.

We can summarize the above as follows. For process mining, events need to be correlated to process in-
stances. Correlation problems may inhibit the applicationof process mining. However, as illustrated using the
WebSphere suite, correlation is a foundational concept in the development of web services.

3 Analysis using Process Mining

The goal of process mining is to discover, monitor, and improve real processes by extracting knowledge from
event logs. Clearly, process mining is particularly relevant in a setting where the actors involved are autonomous
and can deviate or have emerging behavior. The more ways in which services, people, and organizations can
deviate, the more interesting it is to observe and analyze processes as they are executed.

Three basic types of process mining can be identified:

• Discovery: There is no a-priori model, i.e., based on an event log some model is constructed. For example,
using the well-knownα-algorithm a process model can be discovered based on low-level events.

• Conformance: There is an a-priori model. This model is used to check if reality conforms to the model.
For example, there may be a process model indicating that purchase orders of more than one million Euro
require two checks. Conformance checking may be used to detect deviations, to locate and explain these
deviations, and to measure the severity of these deviations.

• Extension: There is an a-priori model. This model is extended with a newaspect or perspective, i.e., the
goal is not to check conformance but to enrich the model. An example is the extension of a process model
with performance data, i.e., some a-priori process model dynamically annotated with performance data
(e.g., bottlenecks are shown by coloring parts of the process model).

In the context of web services, all three types of process mining can be applied. Using the CEI infrastructure
and data used by components such as the WebSphere Business Monitor, it is possible to do a wide variety of
analyses including the ones shown in Figure 1.

The top-right corner in Figure 1 shows a discovered process models using the EPC notation (i.e., the process
modeling language used by systems such as ARIS and SAP). The lower half shows performance related results.
The bottom-left corner is a nice illustration of “extension”, i.e., the model discovered through process discovery
is enriched with information about bottlenecks.

In the context of Websphere it is especially interesting to check conformance. First, using Websphere Busi-
ness Modeler, a business analyst designs a service, which includes a process model and KPIs. Second, using
Websphere Integration Developer, this design is implemented by an IT specialist. Third, using the Process
Server, this implementation is executed. Using conformance checking, the business analyst could first check
whether the implemented service actually fits (conforms to)the designed service. If not, then the KPI validation
(does a KPI actually measure what the analyst thinks it is measuring?) is at stake.

4 Conclusion

The potential of applying process mining in the context of web services is huge. Data is omnipresent and issues
like correlation can be addressed by using existing solutions. Moreover, the autonomous nature of services
makes it interesting to observe processes as they actually take place.

Processes mining goes beyond classical monitoring components like WebSphere Business Monitor, because
there is no need to model the processes beforehand. This offers several advantages. As an example, the de-
ployment time can be reduced dramatically. Existing monitoring solutions typically require extensive modeling
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Figure 1: Screenshot of ProM showing some example results.

and configuration and cannot be changed easily. Since process mining techniques can “learn” processes, the
modeling phase can be shortened and filtering techniques canbe used to change the view on the process at any
point in time. Process mining techniques are also able to detect (conformance) process changes and to adapt
(discovery) the monitor model.

Process mining tools such as ProM have shown to be able to workwith huge amounts of data and, therefore,
process mining can be applied to real-life web services.
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