Oracle’s SQL Performance Analyzer

Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Didsai@anu Joshi, and Hailing Yu
Oracle USA
{khaled.yagoub, pete.belknap, benoit.dageville, kas,d8hantanu.joshi, hailing.y@oracle.com

Abstract

We present the SQL Performance Analyzer, a novel approdOhaicle Database 119 to testing database
changes, such as upgrades, parameter changes, schemasshand gathering optimizer statistics. The
SQL Performance Analyzer offers a comprehensive solutiendble users to forecast and analyze how
a system change will impact SQL query plans and run time paefnce, so they can tune their system
before they make the change in production. The SQL Perfaren@nalyzer identifies potential problems
that may occur and makes suggestions for avoiding any SQorpaaince degradation. It provides
gquantitative estimates of the system’s performance in @ve environment with high confidence and
performs a comparative analysis of the response time of @le 8orkload thus allowing for an easy
assessment of the change. In this paper we describe theentthie of the SQL Performance Analyzer,
its usage model, and its integration points with other Ogasthtabase components to form an end-to-end
change management solution.

1 Introduction

The past decade has witnessed significant advances in apHgimg database technology. The major emphasis
of these works [5, 1, 7] has been monitoring a currently mgrdatabase system for performance regressions,
diagnosing any existing performance problems, and suiggestlutions to improve such regressions. While this
provides a very effective and complete solution to autoradyi manage database systems, there is an important
aspect of query performance regressions that has beetylakgelooked in the database literatutesting the
performance impact of a planned chande. other words, how well do database systems help admitostra
prepare for and cope with changes?

System changes could range from simple ones like a new valug flatabase parameter or the addition
of a new index structure to more complex changes like miggato a newer version of the database or up-
grading hardware. Since such changes are inevitable amdtegesmallest change to the system could have
an adverse effect on the performance of certain queries,iglan extremely important problem. Since SQL
performance issues are inherently unpredictable, a statiecentric solution makes sense. Users administering
critical database systems need a solution to predict thatiwegeffects of a change and take measures to avoid
them. Problems left to be discovered on a live system costriterprise precious time and resources.

In this paper, we describe the Oracle SQL Performance AaaliaPA), which is our solution to the problem
of controlling the impact of system changes on query peréorte. SPA completely automates the manual and

Copyright 2008 IEEE. Personal use of this material is petait However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering




time-consuming process of testing the impact of change tenpally large SQL workloads. SPA provides a
granular view of the impact of changes on SQL execution planexecuting the SQL statements in isolation
before and after a change. Then it compares the SQL exeaesait before and after the change, and generates
a report highlighting the improved and regressed SQL statésnand giving precise measurements of their
performance impact. Regressed statements are preseiegt@ammendations to remedy their performance.
There have also been some efforts in the industry to addnegzroblem of measuring performance impact
caused by system changes. The Quest Plan Change Analyzefi¢s] on the Oracle explain plan command
for retrieving the query plans of a set of SQL statementsreedmd after making the desired change and then
compares them. While the query plan is often a fair indicafdhe actual execution cost of a SQL statement,
it may not be very accurate in several situations when thereally no substitute to actually executing the
SQL statement to determine its cost. Moreover, unlike SP&Quest Plan Change Analyzer does not consider
the frequency of execution of SQL statements in a workloadendomputing performance impact, leading to
inaccurate estimates. SPA executes each SQL before andaft@ange and presents SQL statements ordered
by the magnitude of their change on the overall workloadgreréince. For very large workloads, users may not
have time to examine each change one by one, so separatimg#rengful changes from the rest is very useful.
Hewlett Packard’'s LoadRunner [8] and Oracle’s Databasddydg@] are two more examples of products
for evaluating the impact of change on a system. Howevesgethgo differ from SPA by providing a complete
system workload with timing and concurrency charactessto a test system. In contrast, SPA computes the
performance impact of a change, at the granularity of arviddal SQL statement. In this context, SPA is
analogous to unit-testing tools while LoadRunner and DegaliReplay are similar to stress-testing tools.

2 Common Usage Scenarios

SPA can be used to analyze the performance impact of a varfietystem changes that can affect the perfor-
mance of SQL statements. Examples of common system chamdeda:

e Database upgrades including patch deploymentdJsually, database administrators (DBAs) are reluc-
tant to upgrade to a new release of the database despitediméspprg new capabilities the new release
offers. This is mainly because they know from past expegghat any major release involves significant
changes in the database’s internal components, which megtlgi affect SQL performance.

e Database initialization parameter changesThe value of a specific parameter can be changed to improve
performance, but it may produce unexpected results bethesystem constraints may change.

e Schema changesChanges such as creating new indexes are intended to i@l performance, but
they may have adverse effects on certain SQL statements.

e Optimizer statistics refresh: Gathering new statistics for database objects whosestitatiare stale or
missing can cause the optimizer to generate new executms pln this case, DBAs can use SPA to assess
the benefit of gathering statistics.

e Implementation of tuning recommendations Accepting tuning recommendations from an advisor such
as Oracle’s SQL Tuning Advisor [5], may require users to thsteffect of the recommendations before
implementing them.

e Changes to operating systems and hardwareChanges, such as installing a new operating system,
adding more CPUs, or moving to Oracle Real Application @sstay also have a significant effect on
SQL performance.



3 SQL Performance Analyzer Architecture

Figure 1 illustrates the high level components of the SPAthed interac-

tions with each other. L SQL Plan j E SQL Tuning }
SPA takes a SQL workload as an input in the format of a SQL tunin “a"a9emen Advisor

set (see Sec. 3.1), executes every statement in the turtibgfeee and after | Reporting ? |

making the planned change, compares the results of the tasutians, and

then produces a rich graphical report highlighting the iotpéthe change at rest o ompare

both the SQL workload and individual SQL statement levelA Bintegrated

with the optimizer's SQL Plan Management facility and theL.SKpning Ad- | oL Tltning - |

visor (see Sec. 3.6 and 3.7) to provide support for fixing &gyassions that

might be caused by the change. Figure 1: SPA Architecture

3.1 SQL Tuning Set

The SQL tuning set is a database object that provides a ctenfaleility for DBAs to easily manage SQL
workload information. A SQL tuning set can be used to capamet persistently store user or application-issued
SQL statements along with their execution context, inclgahe text of the SQL, parsing schema under which
the SQL statement can be compiled, real bind values usectutxthe SQL statement, as well as its execution
plans and execution statistics, such as the number of tineeSQL statement was executed.

A SQL tuning set can be populated from different SQL sourasduding the cursor cache, Automatic
Workload Repository (AWR) [5], existing SQL tuning sets, austom SQL statements provided by the user.
SQL tuning sets are transportable across databases an@ expdrted from one system to another, allowing
for the transfer of SQL workloads between databases for teperformance diagnostics and tuning.

3.2 Test-execute

We believe the best way to assess the impact of a change oetloerpance of a SQL statement is to execute
the statement before and after the change and then chesleifétution time has regressed or improved. SPA
test-executes SQL statements in a SQL tuning set, colleets dssociated execution statistics and compares
them with a previous run of the same statements.

SPA employs an internal SQL service called test-executen®@QL statements. Test-execute takes as input
the text of the SQL statement to execute, actual bind valsed an the production system, and a schema name
to use to compile the SQL. It then performs a mock executiom®fSQL statement with the goal of gathering
the SQL execution plan and runtime statistics required &fggmance comparison. Runtime statistics include
elapsed time, CPU time, I/O time, buffer gets, disk readsk dirites, and row count. During test-execute, the
SQL is executed and the produced rows are fetched until gtedw in the result set, but never returned to the
caller. All rows will be blocked to avoid any side effect, pemlarly when testing DML and DDL statements. In
order to avoid updating the database state, test-exeauseonly the query parts of DML and DDL statements,
testing the portion of the SQL that is the most vulnerableh@nge.

SPA executes SQL statements once, one at a time, and inasofaim each other without regard to their
initial order of execution and concurrency. This ensureg 8PA performs a repeatable experiment whose re-
sults can accurately be presented on a per-SQL basis,\gs@athlifying the task of interpreting the results.

Explain Plan Option: This option can be used to retrieve only the execution planghie SQL statements
before and after a change and then determine the impact oh#imegye on the structure of the plans. This option
is far cheaper than actually executing the statements.



Note that SPA still uses test-execute, but stops it afterptiation of the statement to return its execution
plan, which is exactly the same execution plan the optimizauld choose, had the SQL been executed with
user specified bind values.

Remote Test-executeSPA also provides the ability to perform test-execute omeote database using database
links. For example, assume that the user is upgrading froacl®r10.2 to Oracle 11.1 and already has an 11.1
test system set up. She can use SPA on the 11.1 system torfictielg test-execute all SQL statements on the
10.2 system. Next, she can perform another test-executentihe local system and then compare the two sets
of execution plans and runtime statistics.

To perform a remote test-execute, SPA automatically dstads a connection to the remote database using a
database link specified by the user, executes the SQL stateomethat database, collects the execution statistics
and plan for each statement, and then stores them back indhledatabase for analysis and comparison.

Time Limit: To control the time spent while processing a SQL tuning sBA 8llows users to specify two
time limits for test-execute: 1) A global time limit whichpeesents the maximum duration for processing a
SQL tuning set. This time limit is important, particularlghen using a large SQL workload. 2) A per-SQL
time limit which is the maximum duration for the processirfi@@ingle SQL. The per-SQL time limit is used to
control runaway queries. When set by the user, the same itimteapplies to every SQL in the SQL tuning set.

3.3 Compare Performance

This SPA module is responsible for comparing the perforraari¢che SQL workload before and after a change,
and calculating the impact of the change on the SQL workload.

SQL Trial: The output of test-executing a SQL tuning set, i.e., theltieguexecution plans and runtime statis-
tics, are stored in the database in a container called a S&QLArSQL trial represents a particular experiment
or scenario when testing a given change. It encapsulatgsetiiermance of a SQL workload under particular

conditions of the system.
SQL SQL
Tuning Set Tuning Set
test-execute test-execute tes-t-—--e'xecute
N

test-execute, :
SQL Trial : SQL Trial SQL Trial
pre—change ! post-change pre—change
|
|
|

Implement change

test-execute

SQL Trial
post-change 1

SQL Trial
post—-change N

Figure 2: SPA with (a) Two SQL Trials, (b) Multiple SQL Trials

As the above diagram shows, the user can create any numb@idfridls, where each trial corresponds to
the SQL workload performance data under a different chaauge compare any two trials. All trials will reside
in the database, thus forming a history of all testing experits conducted by the user for a SQL workload. This
is a very useful feature of SPA as it allows users to keep todiahanges and perform historical performance
analysis. SPA’s iterative usage model is a recognition eédfdiet that the nature of system testing is one of one
change leading to another, with each being tested in isolatntil a steady state is reached.

Performance Comparison: Once performance data has been gathered under each SQtheigkerformance
comparison module analyzes the differences between tais ind unmasks the SQL statements that are im-
pacted by the tested change. The compare module measurgsphet of the change on both the overall



performance of the SQL workload as well as on each indivik@L statement. By default, SPA uses the
elapsed time as a metric for comparison. The user can alsuseHoom a variety of available SQL runtime
statistics, including SQL CPU time, 1/O time, buffer getskdreads, disk writes, or any combination of them
as an expression (e.g., cpime + 10*buffergets). The module also compares the execution plans’ gtaict
changes of SQL between the two trials.

Change Impact Calculation: Change impact is a measure of how a system change affectetfoenpance
of a SQL statement. SPA calculates the change impact bastw alifference in resource consumption across
two trials of the SQL workload as follows:

€bi — €aj - Ji(evri — €ai)

dievifi — D €aili cis; = cisw; = Q)
doievifi €bi >ievifi

ciw: change impact on the overall performance of the workload.

cis;: change impact on individual SQL in the workload.

cisw;: impact of a SQL performance change on the overall perfocaan the workload.

fi: execution frequency, i.e., number of executions, of argBeL captured in SQL tuning set.

epi: execution metric of a SQL single test-execution from thimkeechange SQL trial.

eq;- €xecution metric of a SQL single test-execution from therathange SQL trial.

caw =

These measurements are presented to the user through thee|8®A As a general rule, negative values
indicate regressions, while positive values indicate mapments in performance.

The SQL execution frequency is used by SPA to weight the itapoe of each SQL statement in the work-
load. This allows users to correctly determine the impadbog running SQL statements that are executed only
a few times as well as statements which are very fast, butitigply executed.

3.4 Reporting

When the performance comparison and analysis are complétesulting data are written into the database.
The end user can then review the analysis findings producegPByby either directly querying the exposed
schema or simply requesting the analysis report from SPA.

The SPA report is divided into two main sections: Analysis
Summary and Analysis Details. The summary section giveissta
tics about the overall change in performance of the SQL work-
load and points out the SQL statements that are impactedeby th
change. The detail section has an entry for every SQL stateme
] in the SQL workload with detailed information about the SQL a
chanpe  change mproved ressea”™" "% well as a side-by-side comparison of the SQL runtime siegist
Improvement Impact: 4382 % M Plan Stucture Changed — @nd execution plans from the trials used in the comparisothe

egression Impact: -2.78 % @ pjan Structure Unchanged . .

Overall Impact: 41.04 % report SQL statements are ordered by their change impadieon t

SQL workload performance.
Figure 3: Example of a Partial SPA Report  As depicted in Figure 3, the report shows graphically the-ove
all value of anbuffer getsbefore and after making the system
change, along with a second graph for the count of SQL statemvehose performance improves, regresses
or remains unchanged as a result of the change. Both thgsesgnave drill-down capabilities to view details at
individual SQL statement level. The example above indi#tat overall, the workload performance improved
by 41.04% even though it experienced some regressions as $hyothe impact of -2.78%.

=2}
<
=)
S

@
S

IS

<
IS
]
I

w
S
h

N
<

SQL statement count
N
5

3

0

Projected workload buffer gets




3.5 SQL Plan Management

If the comparison of two SQL trials shows some SQL statemwittsregressed performance, SPA will recom-
mend creation of plan baselifel8] for the subset of regressed SQL using execution plama flefirst SQL
trial. This ensures that the optimizer will always use thpkes for future executions of this subset of SQL
statements preserving their performance, regardlessaniges occurring in the system.

3.6 SQL Tuning Advisor

SPA will also recommend SQL tuning advisor [4] to fix performa problems. The SQL tuning advisor an-
alyzes each regressed SQL statement with the goal of findB@laprofile that will counteract the negative
impact of the change. SQL profiling attempts to discover thw cause of a SQL performance problem by
understanding the complex relationships in the data reteeathe execution of the SQL statement.

For statements whose performance could not be improvedebjutiing advisor, the user can create plan
baselines with SPA to ensure that their performance willdearse than what it used to be before the change.

4 Usage Model

Oracle Enterprise Manager provides a graphical interfaaeduides a user through each of the steps mentioned
in this section. We assume that a test system is availabléhahd resembles the production system as closely
as possible. However, users can run SPA directly on the ptimatusystem if, for example, they cannot afford a
test system or if they have a sufficient time window to tesirtbieanges on productich.

4.1 Basic Testing Workflow
As Figure 4 illustrates, the testing process using SPA rafollowing steps:

Production System Test System

|
|
|
I
I
Capture SQL |
Workload in Iy | Test-Execute | g Make »| Test-Execute
SQL Tuning Set : SQL Workload Changes SQL Workload
I
! A
|
|
I
I
|
|
|

Workload
Performance

Compare SQL

i
I S i
i
|

Fixand Tune |
Regressed SQL \

Figure 4: SPA Basic Testing Workflow

1. Capture SQL Workload: Before running SPA, users have to capture on the producyisters a set of SQL
statements that represent the SQL workload they intendatyzs The higher the number of SQL statements
captured in the workload, the more accurate the predictigmedormance changes will be. The set of SQL
statements is captured and stored in a SQL tuning set. SQhgtget provides an incremental SQL workload
capture facility that enables the capture of the entireesgs$QL workload with minimal performance overhead.
Incremental capture works by repeatedly polling the cadloeiwently executing SQL statements over a period
of time.

1A plan baseline is an optimizer feature that guaranteesestetiformance in the face of runtime changes by maintaiaihistory
of past execution plans for repeatable statements.

2Using a test system is not mandatory, but recommended siPeeSt executes SQL before and after the change and thig beul
very resource-intensive depending on the complexity arel afi the workload.



2. Transport SQL Tuning Set: After creating the SQL tuning set with the appropriate SQLlrkhamd, it is
exported from the production system and imported into asiestem where the system change under considera-
tion will be tested. This can be achieved by using SQL tunetgegport/import capabilities.

3. Test-execute SQL Before ChangeAfter the SQL workload is captured and the SQL tuning setstran
ported to the test system, SPA can be used to builgtirehangeSQL Trial. SPA test-executes the SQL tuning
set and produces execution plans and runtime statistieafdr statement in the tuning set. SPA can also be run
to generate SQL execution plans only, i.e., without coltgcexecution statistics. This technique reduces the
time of SPA execution, but the results of the comparisonyasigmhre not as complete because, without executing
the SQL, it is impossible to make accurate predictions altelutpact on system resource statistics.

4. Perform Change: After the pre-change trial is built, the system change tb ¢as be implemented on
the test system. This change can be any kind of change th&t imgact the performance of SQL statements
such as a database upgrade, new index creation, initializgarameter changes, optimizer statistics refresh, etc.

5. Test-execute SQL After Change:After implementing the planned change, SPA can be invokedhag
re-execute the SQL statements and produce execution pidnsxacution statistics for each SQL statement, a
second time. This execution result representspib&t-changerial that SPA uses to compare against fine-
changeSQL trial. The user can also combine the explain plan optidh test-execute to speed up the testing
process. For example, she can start by running SPA usingkfiiei® option to retrieve the plans for all SQL
in the workload and then execute only the subset of SQL whtzses ghanged to verify whether those plans
improved or regressed.

6. Compare Performance: SPA uses the metric specified by the user and compares tharparice data

of SQL statements in the pre-change SQL trial to the postgh&QL trial. Finally, it produces a report identi-
fying any changes in execution plan structures or perfoomari the SQL statements. The SPA analysis report
explains how the tested change impacts the performance QlLan®rkload and what actions can remedy the
uncovered regressions.

It is important to note that neither the before nor the afi@t. $rial gains an undue advantage from certain
system conditions such as cached data. In this case, thearseerform a dummy test execute trial to guaran-
tee consistent caching of data across the two trials or ging®# a comparison metric that is not dependent on
caching such as, CPU time or buffer gets.

7. Re-iterate: If the performance comparison reveals regressed SQL statsithen the user can make further
changes to fix the problematic SQL by creating SQL plan basglor SQL profiles. The testing process can
be repeated until the user has a clear understanding of {hecinof the change and the corrective actions to
improve the potential performance regressions. The usethem be confident to permanently make the change
on production and implement the tuning actions even befa@eerformance degradations occur.

4.2 Parameter Change Workflow

In addition to the basic testing workflow, SPA provides a pfetd workflow to test database parameter alter-
ations. This workflow enables the user to test the performaffect on a SQL tuning set when varying the value
of an environment initialization parameter. Given a SQLlirigrset and a comparison metric, SPA automatically
creates two SQL trials and compares them. The first trialucaptSQL performance with the initialization
parameter set to the original value, whereas the secondi$esa the new value of the parameter.



5 Conclusion

Database changes happen all the time and affect SQL perioendherefore, one of the most important tasks
for DBAs is to assess the potential impact of any changestddtabase environment on SQL performance. This
is a very challenging task because it is almost impossibfgddict the impact of changes on SQL performance
before actually implementing them in the production systdBuilding a thorough test bed with the ability
to make reliable predictions about the impact of such chauge historically been beyond the reach of most
system administrators.

In this paper, we have described SQL Performance AnalyZeichawas introduced in Oracle 11g. SPA
gives users the ability to measure the impact of system @sang the performance of SQL statements and
fix any potential regressions before they happen in proonctSPA helps DBAs build and compare different
versions of SQL execution plans and runtime statistics,thad suggests tuning recommendations to overcome
potential performance problems.

We have discussed the primary end user of SPA as a producBeén It it can also be used by other types
of users, such as QA testers and application developerdh S®A, DBAs have the necessary information to
determine what performance changes may occur in a SQL vaitldmd what corrective actions to undertake
to fix regressions. At the same time, QA teams can use it tdifglemvestigate, and solve performance issues
before they occur during a new application deployment. Wwike, application developers can use SPA to mea-
sure and control the risk of performance changes througheutapplication’s life cycle. All of these users can
benefit from a comprehensive product with the ability to nieashe performance impact of a change to a real
SQL workload. As long as enterprises continue to expand daptdao new environments, change will be a con-
stant in database systems. By forecasting the impact ofesamefore they are implemented in production, we
believe that tools like SPA eanble DBAs to clearly understdre performance ramifications of system changes
and take corrective actions to avoid any potential degiawast

References

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. Narasayya. oadimin: Self-tuning Database Systems Tech-
nology. IEEE Data Eng. Bull.29(3):7-15, 2006.

[2] J. Athreya and M. Minhas. Oracle Database 11g Real Apptia Testing Overview. Technical report,
Oracle, USA, http://www.oracle.com, 2007.

[3] M. Colgan. SQL Plan Management in Oracle Database 11g.chriieal report, Oracle, USA,
http://www.oracle.com, 2007.

[4] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M.a&iddin. Automatic SQL Tuning in Oracle 10g.
In VLDB, pages 1098-1109, 2004.

[5] B. Dageville and K. Dias. Oracle’s Self-Tuning Architace and SolutiondEEE Data Eng. Bull.29(3):24—
31, 2006.

[6] C. Fernandez and J. Leslie. Predicting and PreventimfpfPe@ance Bottlenecks in Oracle 10g. Technical
report, Quest Software, http://www.quest.com, 2005.

[7] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, Ar@toM. Surendra, and D. Zilio. Making DB2
Products Self-Managing: Strategies and Experiend&lSE Data Eng. Bull.29(3):16—-23, 2006.

[8] H. Packard. LoadRunner. Technical report, http://wiagvcom, 2007.



