
Oracle’s SQL Performance Analyzer

Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Dias, Shantanu Joshi, and Hailing Yu
Oracle USA

{khaled.yagoub, pete.belknap, benoit.dageville, karl.dias, shantanu.joshi, hailing.yu}@oracle.com

Abstract

We present the SQL Performance Analyzer, a novel approach inOracle Database 11g to testing database
changes, such as upgrades, parameter changes, schema changes, and gathering optimizer statistics. The
SQL Performance Analyzer offers a comprehensive solution to enable users to forecast and analyze how
a system change will impact SQL query plans and run time performance, so they can tune their system
before they make the change in production. The SQL Performance Analyzer identifies potential problems
that may occur and makes suggestions for avoiding any SQL performance degradation. It provides
quantitative estimates of the system’s performance in the new environment with high confidence and
performs a comparative analysis of the response time of the SQL workload thus allowing for an easy
assessment of the change. In this paper we describe the architecture of the SQL Performance Analyzer,
its usage model, and its integration points with other Oracle database components to form an end-to-end
change management solution.

1 Introduction

The past decade has witnessed significant advances in self-managing database technology. The major emphasis
of these works [5, 1, 7] has been monitoring a currently running database system for performance regressions,
diagnosing any existing performance problems, and suggesting solutions to improve such regressions. While this
provides a very effective and complete solution to automatically manage database systems, there is an important
aspect of query performance regressions that has been largely overlooked in the database literature:testing the
performance impact of a planned change.In other words, how well do database systems help administrators
prepare for and cope with changes?

System changes could range from simple ones like a new value for a database parameter or the addition
of a new index structure to more complex changes like migrating to a newer version of the database or up-
grading hardware. Since such changes are inevitable and even the smallest change to the system could have
an adverse effect on the performance of certain queries, this is an extremely important problem. Since SQL
performance issues are inherently unpredictable, a statement-centric solution makes sense. Users administering
critical database systems need a solution to predict the negative effects of a change and take measures to avoid
them. Problems left to be discovered on a live system cost theenterprise precious time and resources.

In this paper, we describe the Oracle SQL Performance Analyzer (SPA), which is our solution to the problem
of controlling the impact of system changes on query performance. SPA completely automates the manual and

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

time-consuming process of testing the impact of change on potentially large SQL workloads. SPA provides a
granular view of the impact of changes on SQL execution plansby executing the SQL statements in isolation
before and after a change. Then it compares the SQL executionresult before and after the change, and generates
a report highlighting the improved and regressed SQL statements and giving precise measurements of their
performance impact. Regressed statements are presented with recommendations to remedy their performance.

There have also been some efforts in the industry to address the problem of measuring performance impact
caused by system changes. The Quest Plan Change Analyzer [6]relies on the Oracle explain plan command
for retrieving the query plans of a set of SQL statements before and after making the desired change and then
compares them. While the query plan is often a fair indicatorof the actual execution cost of a SQL statement,
it may not be very accurate in several situations when there is really no substitute to actually executing the
SQL statement to determine its cost. Moreover, unlike SPA, the Quest Plan Change Analyzer does not consider
the frequency of execution of SQL statements in a workload while computing performance impact, leading to
inaccurate estimates. SPA executes each SQL before and after a change and presents SQL statements ordered
by the magnitude of their change on the overall workload performance. For very large workloads, users may not
have time to examine each change one by one, so separating themeaningful changes from the rest is very useful.

Hewlett Packard’s LoadRunner [8] and Oracle’s Database Replay [2] are two more examples of products
for evaluating the impact of change on a system. However, these two differ from SPA by providing a complete
system workload with timing and concurrency characteristics to a test system. In contrast, SPA computes the
performance impact of a change, at the granularity of an individual SQL statement. In this context, SPA is
analogous to unit-testing tools while LoadRunner and Database Replay are similar to stress-testing tools.

2 Common Usage Scenarios

SPA can be used to analyze the performance impact of a varietyof system changes that can affect the perfor-
mance of SQL statements. Examples of common system changes include:

• Database upgrades including patch deployments: Usually, database administrators (DBAs) are reluc-
tant to upgrade to a new release of the database despite the promising new capabilities the new release
offers. This is mainly because they know from past experience that any major release involves significant
changes in the database’s internal components, which may directly affect SQL performance.

• Database initialization parameter changes: The value of a specific parameter can be changed to improve
performance, but it may produce unexpected results becausethe system constraints may change.

• Schema changes: Changes such as creating new indexes are intended to improve SQL performance, but
they may have adverse effects on certain SQL statements.

• Optimizer statistics refresh: Gathering new statistics for database objects whose statistics are stale or
missing can cause the optimizer to generate new execution plans. In this case, DBAs can use SPA to assess
the benefit of gathering statistics.

• Implementation of tuning recommendations: Accepting tuning recommendations from an advisor such
as Oracle’s SQL Tuning Advisor [5], may require users to testthe effect of the recommendations before
implementing them.

• Changes to operating systems and hardware: Changes, such as installing a new operating system,
adding more CPUs, or moving to Oracle Real Application Clusters may also have a significant effect on
SQL performance.

2

3 SQL Performance Analyzer Architecture

Reporting

PerformanceExecute
Test Compare

SQL Tuning Set

Advisor
SQL TuningSQL Plan

Management

Figure 1: SPA Architecture

Figure 1 illustrates the high level components of the SPA andtheir interac-
tions with each other.

SPA takes a SQL workload as an input in the format of a SQL tuning
set (see Sec. 3.1), executes every statement in the tuning set before and after
making the planned change, compares the results of the two executions, and
then produces a rich graphical report highlighting the impact of the change at
both the SQL workload and individual SQL statement level. SPA is integrated
with the optimizer’s SQL Plan Management facility and the SQL Tuning Ad-
visor (see Sec. 3.6 and 3.7) to provide support for fixing any regressions that
might be caused by the change.

3.1 SQL Tuning Set

The SQL tuning set is a database object that provides a complete facility for DBAs to easily manage SQL
workload information. A SQL tuning set can be used to captureand persistently store user or application-issued
SQL statements along with their execution context, including the text of the SQL, parsing schema under which
the SQL statement can be compiled, real bind values used to execute the SQL statement, as well as its execution
plans and execution statistics, such as the number of times the SQL statement was executed.

A SQL tuning set can be populated from different SQL sources,including the cursor cache, Automatic
Workload Repository (AWR) [5], existing SQL tuning sets, orcustom SQL statements provided by the user.
SQL tuning sets are transportable across databases and can be exported from one system to another, allowing
for the transfer of SQL workloads between databases for remote performance diagnostics and tuning.

3.2 Test-execute

We believe the best way to assess the impact of a change on the performance of a SQL statement is to execute
the statement before and after the change and then check if its execution time has regressed or improved. SPA
test-executes SQL statements in a SQL tuning set, collects their associated execution statistics and compares
them with a previous run of the same statements.

SPA employs an internal SQL service called test-execute to run SQL statements. Test-execute takes as input
the text of the SQL statement to execute, actual bind values used on the production system, and a schema name
to use to compile the SQL. It then performs a mock execution ofthe SQL statement with the goal of gathering
the SQL execution plan and runtime statistics required for performance comparison. Runtime statistics include
elapsed time, CPU time, I/O time, buffer gets, disk reads, disk writes, and row count. During test-execute, the
SQL is executed and the produced rows are fetched until the last row in the result set, but never returned to the
caller. All rows will be blocked to avoid any side effect, particularly when testing DML and DDL statements. In
order to avoid updating the database state, test-execute runs only the query parts of DML and DDL statements,
testing the portion of the SQL that is the most vulnerable to change.

SPA executes SQL statements once, one at a time, and in isolation from each other without regard to their
initial order of execution and concurrency. This ensures that SPA performs a repeatable experiment whose re-
sults can accurately be presented on a per-SQL basis, greatly simplifying the task of interpreting the results.

Explain Plan Option: This option can be used to retrieve only the execution plans for the SQL statements
before and after a change and then determine the impact of thechange on the structure of the plans. This option
is far cheaper than actually executing the statements.

3

Note that SPA still uses test-execute, but stops it after compilation of the statement to return its execution
plan, which is exactly the same execution plan the optimizerwould choose, had the SQL been executed with
user specified bind values.

Remote Test-execute:SPA also provides the ability to perform test-execute on a remote database using database
links. For example, assume that the user is upgrading from Oracle 10.2 to Oracle 11.1 and already has an 11.1
test system set up. She can use SPA on the 11.1 system to first remotely test-execute all SQL statements on the
10.2 system. Next, she can perform another test-execute, but on the local system and then compare the two sets
of execution plans and runtime statistics.

To perform a remote test-execute, SPA automatically establishes a connection to the remote database using a
database link specified by the user, executes the SQL statements on that database, collects the execution statistics
and plan for each statement, and then stores them back in the local database for analysis and comparison.

Time Limit: To control the time spent while processing a SQL tuning set, SPA allows users to specify two
time limits for test-execute: 1) A global time limit which represents the maximum duration for processing a
SQL tuning set. This time limit is important, particularly,when using a large SQL workload. 2) A per-SQL
time limit which is the maximum duration for the processing of a single SQL. The per-SQL time limit is used to
control runaway queries. When set by the user, the same time limit applies to every SQL in the SQL tuning set.

3.3 Compare Performance

This SPA module is responsible for comparing the performance of the SQL workload before and after a change,
and calculating the impact of the change on the SQL workload.

SQL Trial: The output of test-executing a SQL tuning set, i.e., the resulting execution plans and runtime statis-
tics, are stored in the database in a container called a SQL trial. A SQL trial represents a particular experiment
or scenario when testing a given change. It encapsulates theperformance of a SQL workload under particular
conditions of the system.

SQL

SQL Trial
post−changepre−change

SQL Trial

SQL
Tuning Set

...SQL Trial
pre−change

SQL Trial
post−change 1

SQL Trial
post−change N

Implement change

Tuning Set

test−executetest−execute test−execute test−execute test−execute

Figure 2: SPA with (a) Two SQL Trials, (b) Multiple SQL Trials

As the above diagram shows, the user can create any number of SQL trials, where each trial corresponds to
the SQL workload performance data under a different change,and compare any two trials. All trials will reside
in the database, thus forming a history of all testing experiments conducted by the user for a SQL workload. This
is a very useful feature of SPA as it allows users to keep trackof changes and perform historical performance
analysis. SPA’s iterative usage model is a recognition to the fact that the nature of system testing is one of one
change leading to another, with each being tested in isolation until a steady state is reached.

Performance Comparison: Once performance data has been gathered under each SQL trial, the performance
comparison module analyzes the differences between two trials and unmasks the SQL statements that are im-
pacted by the tested change. The compare module measures theimpact of the change on both the overall

4

performance of the SQL workload as well as on each individualSQL statement. By default, SPA uses the
elapsed time as a metric for comparison. The user can also choose from a variety of available SQL runtime
statistics, including SQL CPU time, I/O time, buffer gets, disk reads, disk writes, or any combination of them
as an expression (e.g., cputime + 10*buffer gets). The module also compares the execution plans’ structural
changes of SQL between the two trials.

Change Impact Calculation: Change impact is a measure of how a system change affects the performance
of a SQL statement. SPA calculates the change impact based onthe difference in resource consumption across
two trials of the SQL workload as follows:

ciw =

∑
i ebifi −

∑
i eaifi

∑
i ebifi

cisi =
ebi − eai

ebi

ciswi =
fi(ebi − eai)

∑
i ebifi

(1)

ciw: change impact on the overall performance of the workload.
cisi: change impact on individual SQL in the workload.
ciswi: impact of a SQL performance change on the overall performance of the workload.
fi: execution frequency, i.e., number of executions, of a given SQL captured in SQL tuning set.
ebi: execution metric of a SQL single test-execution from the before change SQL trial.
eai: execution metric of a SQL single test-execution from the after change SQL trial.

These measurements are presented to the user through the SPAreport. As a general rule, negative values
indicate regressions, while positive values indicate improvements in performance.

The SQL execution frequency is used by SPA to weight the importance of each SQL statement in the work-
load. This allows users to correctly determine the impact onlong running SQL statements that are executed only
a few times as well as statements which are very fast, but repetitively executed.

3.4 Reporting

When the performance comparison and analysis are complete,all resulting data are written into the database.
The end user can then review the analysis findings produced bySPA by either directly querying the exposed
schema or simply requesting the analysis report from SPA.

 Overall Impact: 41.04 %

Improvement Impact: 43.82 %
 Regression Impact: −2.78 %

Plan Structure Changed
Plan Structure Unchanged

0

2M

6M

4M

before
change

after
changeP

ro
je

ct
ed

 w
or

kl
oa

d
bu

ffe
r

ge
ts

0

10

20

30

40

50

60

S
Q

L
st

at
em

en
t c

ou
nt

regressed
unchangedimproved

Figure 3: Example of a Partial SPA Report

The SPA report is divided into two main sections: Analysis
Summary and Analysis Details. The summary section gives statis-
tics about the overall change in performance of the SQL work-
load and points out the SQL statements that are impacted by the
change. The detail section has an entry for every SQL statement
in the SQL workload with detailed information about the SQL as
well as a side-by-side comparison of the SQL runtime statistics
and execution plans from the trials used in the comparison. In the
report SQL statements are ordered by their change impact on the
SQL workload performance.

As depicted in Figure 3, the report shows graphically the over-
all value of anbuffer getsbefore and after making the system

change, along with a second graph for the count of SQL statements whose performance improves, regresses
or remains unchanged as a result of the change. Both these graphs have drill-down capabilities to view details at
individual SQL statement level. The example above indicates that overall, the workload performance improved
by 41.04% even though it experienced some regressions as shown by the impact of -2.78%.

5

3.5 SQL Plan Management

If the comparison of two SQL trials shows some SQL statementswith regressed performance, SPA will recom-
mend creation of plan baselines1 [3] for the subset of regressed SQL using execution plans from thefirst SQL
trial. This ensures that the optimizer will always use thoseplans for future executions of this subset of SQL
statements preserving their performance, regardless of changes occurring in the system.

3.6 SQL Tuning Advisor

SPA will also recommend SQL tuning advisor [4] to fix performance problems. The SQL tuning advisor an-
alyzes each regressed SQL statement with the goal of finding aSQL profile that will counteract the negative
impact of the change. SQL profiling attempts to discover the root cause of a SQL performance problem by
understanding the complex relationships in the data relevant to the execution of the SQL statement.

For statements whose performance could not be improved by the tuning advisor, the user can create plan
baselines with SPA to ensure that their performance will be no worse than what it used to be before the change.

4 Usage Model

Oracle Enterprise Manager provides a graphical interface that guides a user through each of the steps mentioned
in this section. We assume that a test system is available andthat it resembles the production system as closely
as possible. However, users can run SPA directly on the production system if, for example, they cannot afford a
test system or if they have a sufficient time window to test their changes on production.2

4.1 Basic Testing Workflow

As Figure 4 illustrates, the testing process using SPA has the following steps:

SQL Workload
Test−Execute

SQL Workload

Regressed SQL

SQL Tuning Set
Workload in
Capture SQL

Performance
Workload

Compare SQL

Changes
Make

Fix and Tune

Test−Execute

Production System Test System

Figure 4: SPA Basic Testing Workflow

1. Capture SQL Workload: Before running SPA, users have to capture on the production system a set of SQL
statements that represent the SQL workload they intend to analyze. The higher the number of SQL statements
captured in the workload, the more accurate the prediction of performance changes will be. The set of SQL
statements is captured and stored in a SQL tuning set. SQL tuning set provides an incremental SQL workload
capture facility that enables the capture of the entire system SQL workload with minimal performance overhead.
Incremental capture works by repeatedly polling the cache of currently executing SQL statements over a period
of time.

1A plan baseline is an optimizer feature that guarantees stable performance in the face of runtime changes by maintaininga history
of past execution plans for repeatable statements.

2Using a test system is not mandatory, but recommended since SPA test executes SQL before and after the change and this could be
very resource-intensive depending on the complexity and size of the workload.

6

2. Transport SQL Tuning Set: After creating the SQL tuning set with the appropriate SQL workload, it is
exported from the production system and imported into a testsystem where the system change under considera-
tion will be tested. This can be achieved by using SQL tuning set export/import capabilities.

3. Test-execute SQL Before Change:After the SQL workload is captured and the SQL tuning set trans-
ported to the test system, SPA can be used to build thepre-changeSQL Trial. SPA test-executes the SQL tuning
set and produces execution plans and runtime statistics foreach statement in the tuning set. SPA can also be run
to generate SQL execution plans only, i.e., without collecting execution statistics. This technique reduces the
time of SPA execution, but the results of the comparison analysis are not as complete because, without executing
the SQL, it is impossible to make accurate predictions aboutits impact on system resource statistics.

4. Perform Change: After the pre-change trial is built, the system change to test can be implemented on
the test system. This change can be any kind of change that might impact the performance of SQL statements
such as a database upgrade, new index creation, initialization parameter changes, optimizer statistics refresh, etc.

5. Test-execute SQL After Change:After implementing the planned change, SPA can be invoked again to
re-execute the SQL statements and produce execution plans and execution statistics for each SQL statement, a
second time. This execution result represents thepost-changetrial that SPA uses to compare against thepre-
changeSQL trial. The user can also combine the explain plan option with test-execute to speed up the testing
process. For example, she can start by running SPA using the explain option to retrieve the plans for all SQL
in the workload and then execute only the subset of SQL whose plans changed to verify whether those plans
improved or regressed.

6. Compare Performance: SPA uses the metric specified by the user and compares the performance data
of SQL statements in the pre-change SQL trial to the post-change SQL trial. Finally, it produces a report identi-
fying any changes in execution plan structures or performance of the SQL statements. The SPA analysis report
explains how the tested change impacts the performance of a SQL workload and what actions can remedy the
uncovered regressions.

It is important to note that neither the before nor the after SQL trial gains an undue advantage from certain
system conditions such as cached data. In this case, the usercan perform a dummy test execute trial to guaran-
tee consistent caching of data across the two trials or simply use a comparison metric that is not dependent on
caching such as, CPU time or buffer gets.

7. Re-iterate: If the performance comparison reveals regressed SQL statements, then the user can make further
changes to fix the problematic SQL by creating SQL plan baselines or SQL profiles. The testing process can
be repeated until the user has a clear understanding of the impact of the change and the corrective actions to
improve the potential performance regressions. The user can then be confident to permanently make the change
on production and implement the tuning actions even before the performance degradations occur.

4.2 Parameter Change Workflow

In addition to the basic testing workflow, SPA provides a predefined workflow to test database parameter alter-
ations. This workflow enables the user to test the performance effect on a SQL tuning set when varying the value
of an environment initialization parameter. Given a SQL tuning set and a comparison metric, SPA automatically
creates two SQL trials and compares them. The first trial captures SQL performance with the initialization
parameter set to the original value, whereas the second trial uses the new value of the parameter.

7

5 Conclusion

Database changes happen all the time and affect SQL performance. Therefore, one of the most important tasks
for DBAs is to assess the potential impact of any changes to the database environment on SQL performance. This
is a very challenging task because it is almost impossible topredict the impact of changes on SQL performance
before actually implementing them in the production system. Building a thorough test bed with the ability
to make reliable predictions about the impact of such changes has historically been beyond the reach of most
system administrators.

In this paper, we have described SQL Performance Analyzer, which was introduced in Oracle 11g. SPA
gives users the ability to measure the impact of system changes on the performance of SQL statements and
fix any potential regressions before they happen in production. SPA helps DBAs build and compare different
versions of SQL execution plans and runtime statistics, andthen suggests tuning recommendations to overcome
potential performance problems.

We have discussed the primary end user of SPA as a production DBA, but it can also be used by other types
of users, such as QA testers and application developers. With SPA, DBAs have the necessary information to
determine what performance changes may occur in a SQL workload and what corrective actions to undertake
to fix regressions. At the same time, QA teams can use it to identify, investigate, and solve performance issues
before they occur during a new application deployment. Likewise, application developers can use SPA to mea-
sure and control the risk of performance changes throughouttheir application’s life cycle. All of these users can
benefit from a comprehensive product with the ability to measure the performance impact of a change to a real
SQL workload. As long as enterprises continue to expand and adapt to new environments, change will be a con-
stant in database systems. By forecasting the impact of changes before they are implemented in production, we
believe that tools like SPA eanble DBAs to clearly understand the performance ramifications of system changes
and take corrective actions to avoid any potential degradations.

References

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. Narasayya. Autoadmin: Self-tuning Database Systems Tech-
nology. IEEE Data Eng. Bull., 29(3):7–15, 2006.

[2] J. Athreya and M. Minhas. Oracle Database 11g Real Application Testing Overview. Technical report,
Oracle, USA, http://www.oracle.com, 2007.

[3] M. Colgan. SQL Plan Management in Oracle Database 11g. Technical report, Oracle, USA,
http://www.oracle.com, 2007.

[4] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin. Automatic SQL Tuning in Oracle 10g.
In VLDB, pages 1098–1109, 2004.

[5] B. Dageville and K. Dias. Oracle’s Self-Tuning Architecture and Solutions.IEEE Data Eng. Bull., 29(3):24–
31, 2006.

[6] C. Fernandez and J. Leslie. Predicting and Preventing Performance Bottlenecks in Oracle 10g. Technical
report, Quest Software, http://www.quest.com, 2005.

[7] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, A. Storm, M. Surendra, and D. Zilio. Making DB2
Products Self-Managing: Strategies and Experiences.IEEE Data Eng. Bull., 29(3):16–23, 2006.

[8] H. Packard. LoadRunner. Technical report, http://www.hp.com, 2007.

8

