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Abstract

Modern enterprise data warehouses have complex workldaatsare notoriously difficult to manage.
Additionally, RDBMSs have many “knobs” for managing woedse efficiently. These knobs affect the
performance of query workloads in complex interrelated svagd require expert manual attention to
change. It often takes a long time for a performance expedeibenough experience with a large
warehouse to be able to set the knobs optimally. Typicatlysthrehouse and its workload change sig-
nificantly within that time. This makes the task of manugtigmoizing the knob settings on a warehouse
an impossible one. In this context, our goal is to create mahaging Enterprise Data Warehouses. In
this paper we describe some recent advances in building fonaatic workload management system.
We test this system against real workloads against rearpn$e data warehouses.

1 Introduction

Many organizations are creating and deploying Enterprisa WWarehouses (EDW) to serve as the single source
of corporate data for business intelligence. Not only aes¢henterprise data warehouses expected to scale to
enormous data volumes (hundreds of terabytes), but thegisoeexpected to perform well under increasingly
complex workloads, consisting of batch and incrementa t&tds, batch reports and complex ad hoc queries.

The problem of database workload management aimed atusefigt database systems has been studied in
the literature (see Weikum [28] for a review of the advanodhiis area). We have borrowed from this work the
idea of using multiprogramming level (MPL) to model the laadthe system. However, the previous work was
done in the context of OLTP workloads, not the complex quenykioads typical of Business Intelligence (BI)
data warehouses, which is the focus of our work.

In this work we deal with two important challenges towardsieging Automatic Workload Management:
Predictability and Manageability In the next few sections, for each of these challenges waepte sketch of
our solution. The detailed discussions and results canledfo [16] and [17].

Figure 1(a) depicts the architecture of an automatic waidklmanagement system. Toygtimizeroutputs an
execution plan for a query and an estimate of the query cdsthsare input to th&rediction of Query Runtime
(PQR)block. In addition, d_oad Monitorextracts a load feature vector, which is also input toR@Rblock.
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Figure 1: (a) System Diagram for an Autonomic EDW (b) Relaidp between Optimizer Cost and Actual
Execution Time

Whenever a new query comes in, tAR@Rblock estimates the execution time of the query under ctifozdl
conditions. This estimate is passed on toWmrkload Managerwhich schedules the queries. Other components
in the system (not shown in the figure) keep track of the gegrgogress relative to its predicted execution time,
and use this information to detect problem queries (suchraamwvay queries). All of this information is fed back
to theWorkload Managerwhich can then apply the appropriate control actions ttfyeihe problems.

2 Related Work

There has been a tremendous amount of work on cost modelsdoy gptimization (see for example Graefe [9]
for a survey). However, while these cost models are usefthaéooptimizer for selecting low cost execution
plans, their cost estimates are very often not good predicioactual query execution times (See Figure 1(b)).

Analytical approaches have been used for estimating queponse times [23, 27] and there are a few
commercial products that use analytical and simulationetso predict query execution times [1,14,20,21,25].
The analytical approaches depend on the creation of resouvdels which are notoriously complex and difficult
to create and hence the results may not be relevant in pgactic

Certain machine learning techniques have been used in thextof databases. The LEO learning optimizer
uses a feedback loop of query statistics to improve the apginduring run time [15, 26]. Raatikainen [22]
summarizes some of the early work in using clustering forkload classification. In PLASTIC [8] queries
are clustered to increase the possibility of plan reusehotigh these are interesting applications of machine
learning techniques, none of these apply machine learningit problem at hand.

Furthermore, statistical techniques, analytical teahesy and machine learning techniques have been used
previously to predict execution times of tasks and resowassumption in fields other than database sys-
tems [10]. However, to the best of our knowledge there is mar pvork in using machine learning techniques
to build models for predicting query execution time ranges.

The related work for throughput control falls into threeaaethrashing control in operating systems, creative
memory management in DBMSs, feedback control of workloads.

The problem of over subscription of memory, the primary eaofsthrashing has been studied extensively
since the 1960s. Several heuristics have been proposeaifay ddmission control either by explicitly con-



trolling the MPL or otherwise. These include the Knee Ciater the L=S criterion, the Page Fault Frequency
algorithm, and the 50% rule [6]. However, thrashing is stillunsolved problem in operating systems and work
continues in this area [11].

Another area of related work is in the design of memory marsafge DBMSs. Several proposals have been
made for memory managers in DBMS: [2-4]. The drawback ofehmsethods is that the internal workings of
the database memory manager have to be changed.

One more area of related work is in the feedback control oklgads. Most of the previous work using
this approach has been targeted towards OLTP (On-line dctina Processing) systems where thrashing due to
data contention has been the main problem. Several of theeods have been summarized in [18]. Another
good demonstration of this approach is provided by [19] deatls with real-time database systems, and by [24].
More recently, Web servers have employed a feedback loopagip [5,7,12,13].

To our knowledge, the most common approach used by comrBiggstems is a “static MPL” approach.
In this approach, a “typical workload” is run multiple tim#sough the system and an appropriate MPL com-
puted. The workload is then “throttled” down to this stati®®M] which may be different for different times of
the day. There are several problems with this approach: akpensive, it results in a very approximate and
inaccurate setting and since it is static it is not suitabteheterogeneous nature of a Bl workload.

3 Predictability

The execution time of Bl queries that run on large EDWs cawg fram microseconds for simple lookup queries
all the way to multiple hours for complex data mining querigsn effective workload management system
depends heavily on an estimate of the execution times ofegigr the workload, prior to running the queries.
Estimating execution time accurately is a hard probleme&sfly on a loaded EDW with a complex workload.

Previous researchers have focused on predicting precsaiion times. In our experience, this is extremely
difficult to do with high accuracy. Furthermore, for worktbmanagement, it is actually unnecessary to estimate
a precise value for execution time - it is sufficient to praglam estimate of the query execution times in the
form of time ranges (for instance, queries may be assigneifferent queues based on their execution time
ranges). This allows us to reformulate the problem and krirthe machinery of machine learning to address
it. It is precisely this problem of estimating query exeounttime ranges that we address in this paper. We focus
on the following issues:

1. Discovering, selecting, and computing query plan festand system load features as classification at-
tributes.

2. Finding appropriate execution time ranges to be usedrémtligtion.
3. Ensuring high prediction accuracy.
4. Efficient algorithms for model building and deployment.

Researchers and practitioners have built increasingljisbpated cost models for query optimization. How-
ever, building an accurate analytical model is difficultexsplly under varying load conditions. Using an opti-
mizer’s analytical cost model to estimate the actual execuime of a query on a loaded system has met with
limited success in the field and it is common knowledge thatyuoost estimates produced by query optimizers
do not accurately reflect query run times. For example, inifeid.(b), we have plotted the actual query execu-
tion time and cost estimates for a batch of queries run on@mes database. The scatter plot and the best fit
line show that the optimizer cost is not an ideal predictorgfieery execution time.

We take a different approach: we “learn” from the executigstdnies of various queries under varying
load conditions. In particular, from the execution histsri we extract query plan features provided by the



optimizer and system load features from the environment loistwthe queries were run. Discovering features
and selecting which features to use is itself a challengnadplpm. We then build a predictive model that can
estimate the execution time range of a query.

We found that conventional machine learning approachesitdilbbg predictive models, such as regression
and decision tree classifiers were not adequate. The challemere several since we are interested in not only
predicting the time ranges but also in discovering them:

1. The time ranges should be sufficient in number. It would bamingless to predict that all queries belong
to a single time range.

2. Their span should be meaningful. Very small or very laige tbuckets are not very useful.
3. As with all predictive models the accuracy of predictiblm@d be high.
4. The model should be cheap to build and deploy.

To address these we came up with a novel hierarchical agprése call the predictive models built using
this approach, PQR (Predicting Query Run-time) Trees. A H@HR is a hierarchical classification tree such
that for every node, there is a binary classifier that dedmb®g best to divide the time range of the node into
two sub ranges for the two children of the node. There is alsasaociated accuracy for each node. Every node
and leaf of the tree corresponds to a time range. At every,veel@ot only find the two sub ranges for the time
range of the node but also a classifier that can predict theanges.

As illustrated in Figure 2(a), the prediction model is firgflband trained using a set of execution histories
of various queries under varying load conditions. Thenafoincoming query in the workload, PQR Tree will
return an estimated execution time range with an assocéaieatacy. There are two overall steps:

1. Obtaining a PQR Tree based on historical data of queries nuth@ systemT his involves three steps:

(a) From the historical data extract query plan features digtimizer cost, number of joins, join cardi-
nality, and etc.

(b) From the historical data extract the system load vecoeéch query. The system load vector con-
sists of the number of queries and the number of processasguwhile the query was executing.

(c) Build a PQR Tree with the feature vectors built above sTitidone by choosing the combination of
the classifier and the time interval that gives the highestiiacy.

2. Obtaining a time range for a new query by applying the PQR Teea new query This is done by
extracting a feature vector from the new query and applyiregRQR Tree obtained in the previous step.

A sample PQR Tree is presented in Figure 2(b). The classjfjeassociated with the root node divides the
time range of [1, 2690] seconds into two: [1, 170) and [17@®@&econds with associated accuracy of 93.5%.
The rest of the nodes can be interpreted similarly.

We did two series of experiments to verify our approach. Témysisted of two different systems, both
running a commercial, enterprise class DBMS and two diffedata sets. We ran a thousand queries against
SF =1, 50, 100, 200 TPCH databases. The queries were gaehatdtamatically and ran against all the tables.
They include joins and order-bys. Sixteen of these queree WPCH benchmark queries. We looked at four
query MPL values: 4, 6, 8 and 10, i.e., we executed the queriparallel with the number of parallel streams
equal to the MPL value.

For the second set we took a set of actual Bl (Business lgeeltie) queries run in a day by one of HP’s
customers. They include both ad hoc queries and cannedseftiere were a total of 500 queries in this data
set. The database has more than 38G rows and total size i DVBr. This experimental setup consisted of
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Figure 2: (a) Solution Components for Building PQR Tree (@Ble PQR Tree where Time is in Seconds

hundred different tests. We took ten different MPLs: 8, 18, 48, 64, 96, 128, 192, 224, 256 and ran each
experiment ten times. In another series of hundred diffelesis we used a subset of smaller queries from the
original five hundred queries.

In consultations with DBAs who manage workloads, we createdality metric: a model that can predict
at least four “reasonable” randesf query execution times with an accuracy of greater than 80&énsidered
acceptable. This metric captures all the key attributes is®udsed earlier. Over 90% of the PQR Tree models
were found to be acceptable. The results from various exgets were found to be extremely encouraging [16].

4 Manageability

Traditionally, the Multi Programming Level (MPL), whichdicates the number of queries running concurrently
on the system, has been used to control the load on the sy$teanoid system underload or overload, MPL
must be carefully set. Figure 3(a) shows the throughputesufar three different TPC-H workloads. Each
workload has a range of MPL values for which there is no oeetlor underload. Clearly, different workloads
require different optimal MPLs. However, a typical Bl batalorkload can fluctuate rapidly between long,
resource intensive queries, and short, less intensivaeguérhis requirement makes it very challenging, if not
impossible for a human (or a system) to keep the workload iopdimal region using the MPL setting.

We have created a Bl Batch Manager, which is a database vaorki@nagement system for running batches
of Bl queries. The Bl Batch Manager has the following saligoints:

1. It employs new way of executing Bl queries, Priority Geadi Multiprogramming (PGM), which auto-
matically protects against overload.

2. The scheduling algorithm, Largest Memory Priority (LMBEther enhances the stability of execution.

3. Estimated memory is used as a basis for admission contEDWs.

IWe ensure “reasonableness” by stipulating that no chila:ia less than 25% examples of the parent node.
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A common way of looking at throughput is by means of throudlquuves where the throughput is plotted
against the MPL on the system. When a user first confronts avwkload the precise shape of the throughput
curve is unknown to him/her and the user has to determine ke & which to execute the workload. The user
does not want to be on the left part of the curve since inangasie MPL can lead to an increase in throughput.
But as the MPL is increased there is a danger of entering tedaad region where higher MPLs mean a
significantly lower throughput. At the boundary betweendpémal region and the overload region, increasing
the MPL by even one, can cause severe performance deteniorather than a gradual decline in performance.
This is because of thrashing, a problem that is inherent wirthal memory, multiprogramming systems.

Our focus is on addressing the problem of automatically miageBI| batch workloads, so that we are in the
optimal region of the throughput curve, where there is ncediodd or overload. We focus on issues as follows:

1. Identify a manipulated variable whose predicted valuiigable for Bl workload management.
2. Make the execution of the queries stable over a wide rahgstination errors of this variable.
3. Schedule the queries so that the system behaves withdetload or overload for the admitted batch.

4. Use the manipulated variable for admission control,ddmit queries based on an estimated value of the
manipulated variable.

Our solution is depicted in Figure 3(b). The Bl Batch Managas three primary components, that address
the issues highlighted above: @Admission Controller(2) Scheduleand (3)Execution Manager

We use memory as the variable of choice to manipulate. Wiegrkegre is an over-subscription of memory,
there is a potential for serious degradation in performaheeto thrashing. A workload thrashes whenever its
cumulative peak memory requirement per CPU exceeds thialblaimemory per CPU. Overload behavior can
be predicted more accurately with memory rather than with.MFhus, in contrast to MPL, memory behaves
much more predictably as a manipulated variable.

Current execution control technology centers around Egualrity Multiprogramming (EPM), in which
every query is executed at the same process priority. EPbbisst for a reasonable range of overestimates of
the memory requirement. However, it is very unstable foranagtimates, which will result in a sudden drop in
throughput as the size of the workload memory increasesroelye available memory at runtime.



To overcome the sensitivity to thrashing for underestismatememory, we introduce Priority Gradient
Multiprogramming (PGM). In PGM, queries are executed dedint process priorities such that a gradient of
priorities is created. PGM requires that the operatingesgssupports preemptive priority scheduling, which
is standard on many commercial systems, including Linux [d6¢&. This results in queries asking for, and
releasing resources at different rates. This solution rasep to be very effective in protecting against overload.
Ironically, PGM is an effective execution control mechamibecause it uses the priority gradient to distribute
memory to queries in an unfair way. The priority gradienbab the operating system to automatically allocate
resources to queries down the gradient without any ovecatlion of resources and keeps the system in an
optimal range of execution.

Since the throughput penalty for being in the overload medggsomuch higher than being in the underload
region, we designed a scheduler that stabilizes the systermémory underestimation errors. We call our
ordering scheme: Largest Memory Priority (LMP). The querthwhe largest memory requirement is given the
highest priority.

For admission control we create batches whose estimatedorgeraquirement is equal to the available
memory per CPU on the system. The whole batch is divided i@se sub-batches using the standard technique
of bin packing called First Fit Decreasing(FFD). Once a Ibditasishes, a new batch is admitted for execution.
Here, we can have various definitions of what is meant by ehbdaging “done”. For example, one definition
could be that a batch is done when 90% of the queries in théa lsa&cdone or if all the memory is released.
Estimation errors are compensated for, by our PGM execugtiotrol mechanism as described previously.

Our experiments have shown that the Bl Batch Manager (BIBbBsdnot cause thrashing for memory
estimates that underestimate the memory requirement taHiedeof what it actually is. Similarly, it does not
go into underload if we overestimate the memory to upto thirees the actual memory requirement. Also,
most DBMS put bounds on the memory available to BMOs. Thisiced the extent to which memory can be
underestimated. Finally, in our paper [17] we give a staatproof that shows that errors in memory estimates
of a batch are much less than the errors in the memory essno@tihe individual queries. Thus, the main
contribution of BIBM is that it makes the system tolerant afmory estimation errors. BIBM compensates upto
a factor of 3, or 300% error in the estimate for how much menaomorkload is going to need. This is seen as
a sufficient margin of error for most practical workloads.

We have done a series of experiments to test various aspiects &1 Batch Manager. For the purpose
of experimentation we used a TPC-H workload with three Skeal 50, 100, 200. It was installed on a two
Segment (32 Nodes) commercial class Enterprise Data Wasehavith 8GB physical memory per CPU. We
created forty-eight mixed workloads of random sizes byamif random sampling (with replacement).

We compared the throughput obtained with BIBM with ti®M Throughpu(throughput achieved when all
gueries are running with the same priority) and litheal Throughpuitheoretic maximum throughput achieved
when CPU utilization is 100%). Note that, in practice it ioossible to obtain the ideal throughput, since even
for a highly parallelized query there are a number of senrations. Thus, the ideal throughput should be
viewed as a good upper bound, but not necessarily achievable

In our experiment result shown in Figure 4, Bl Batch Managenagally achieved a system throughput of
greater than 80% of ideal throughput. There was approxigndat&B of memory available per CPU during the
experimental runs. The workloads were created by first chg@memory number between 1.33GB and 12GB
(approximately 1/3 to 3 times of memory per CPU). Then queriere randomly chosen from TPC-H queries
(with replacement) until the memory boundary was reacheakeMxperiment results are available in [17].

2If memory is under-estimated, a batch that requires lanygnat of memory might be submitted causing thrashing.
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5 Conclusion

In this work we have dealt with predictability and managtgbin an effective way. Our results have been
validated on real life commercial class EDWSs. As a next steplan to extend manageability to a continuous
stream of queries and detect problem queries.
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