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Abstract

Database administrators struggle when managing worklabhdshave widely different performance
requirements. For example, the same database may supmotirsimning OLTP queries and batch jobs
containing multitudes of queries with varying complexidifferent workloads may have different perfor-
mance requirements, expressed in terms of service levetinlgs (SLOs) that must be fulfilled in order
to keep the issuing database users satisfied. In this papeiglentify basic query classes and describe
the challenges they pose for SLO-aware workload managerAéditionally, we propose a generic ar-
chitecture for an SLO-aware DBMS. We give an overview of lwmatckmanagement techniques already
implemented in today’s DBMS and outline future researchdions for as yet unsupported concepts.

1 Introduction

Imagine you are a database system administrator for a langgpany. Your job is to administer a variety of
workloads running on the database. These workloads areitebroy different customers who have unique re-
quirements. The company’s Web front end produces an OL{IBssbrkload with short-running parameterized
gueries that must be processed quickly in order to provideddiate feedback to the customers. Depending
on the customer, the queries have varying importance arfdrpeance requirements. While processing the
OLTP queries, your database must also handle busineskgiatele (Bl) workloads. For example, sales man-
agers submit analytic batch workloads to prepare finanebnts for a meeting with your company’s CEO.
These workloads have a hard deadline and partial results@thless. To complicate matters, members of the
marketing team simultaneously need to execute complewmugtieries in order to craft their new campaign.

In today’s databases, OLTP and Bl workloads are usually &eparate: OLTP workloads are submitted to
and processed by operational databases, and Bl workloadathywarehouses. For the management of each
individual workload, you as the database administratortraddress a variety of problems: First, you need
concrete metrics that describe the customers’ expectaiiva way you can measure. For example, you cannot
measure whether or not you meet the customer’s vague ekipectd a “short response time”, but you can
measure the elapsed time needed to respond to a query. $Sgoantked policies to manage incoming queries.
For example, you must decide whether or not to admit a newyguleen you expect the query to have a negative
impact on concurrent queries. Third, you need workload mpemeent policies that consider the characteristics
of the workloads as a whole. In particular, you need worklmathagement techniques to address questions like:
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e What is the number of concurrent queries in the databasemytbiat optimizes throughput for a particular
workload? What if multiple workloads are running simultansly?

e Can the queries be scheduled according to their prioriti&®# should the priorities be determined?

e How long should you wait before killing an unexpectedly lemgning query that hogs resources? How
can you tell that the query hogs resources? What if this gigdmysiness-critical and must be completed?

Increasingly, we are seeing trends towards “operational stares” or “operational BI”, where mixed work-
loads run on the same database. The parallel execution &famds with different requirements on the same
database poses new challenges and requires an integratedepfor workload management. As a preparatory
work, this paper focuses on workload management techniguegparate execution of the different workload
types. Workload management for operational data storasgising work in our research collaboration.

The rest of this paper is organized as follows: Section 2aztiarizes the workloads we focus on in this paper.
Section 3 defines service level objectives for different khaad classes. Section 4 describes how workload
management is used to meet service level objectives. 8e€gsommarizes prior art in industry and academia.
Our proposed solution for managing OLTP workloads is priesem Section 6. Section 7 describes challenges
in workload management for Bl workloads. Finally, SectiosuBmarizes the contents of the paper.

2 Characterization of Workloads

Table 1 characterizes business intelligence (Bl) and OLOFkMads. The ver-

tical axis describes how queries are generated. The steusfeannedqueries interactive batch
is fixed; the only variety stems from the parameterizatiorcaistants. This amed  OLTP/BI B
kind of query is typically issued by software clients, oftey using prepared 4 noc BI BI
statements. In contrast, the structur@dthocqueries is not known in advance;
and may vary widely. Ad hoc queries may cause performancessbecauseTable 1: Characterization of
they are often only executed once and thus may not be as ttdyooptimized workloads

as canned queries.

The horizontal axis indicates whether queries are issnutedactivelyor as part ofbatchjobs. In the case
of interactive invocation, the user is waiting for the réswdf each query before submitting the next one. A
subsequent query may depend on the result of its predecssseven long-term monitoring of query patterns
will not necessarily yield a good prediction model for qusegjuences. The opposite is true for batch workloads,
where all queries are known in advance.

OLTP workloads are interactive, canned workloads thatglpyi consist of a large number of small uniform-
ly-sized queries. Results must be returned quickly for Hie ©f a good user experience. Bl workloads, on the
other hand, may contain queries from all quadrants of Tabiletéractive OLTP-like queries may be interleaved
with long-running canned batch workloads that create lmssimeports or statistics. Bl workloads additionally
include ad hoc queries, e. g., if a business analyst infeehcperforms drill-down analysis or requests a custom
report to be run as an overnight batch job.

3 ServiceLevel Objectives

From a user’s point of view, a database system performs ki performance requirements the user cares
about are met. A first prerequisite is to translate user-ddfperformance requirements into a common set of
metrics that can be obtained through monitoring. Examplasich metrics includexecution timgthe elapsed
wall clock time between the start and completion of a quettyjoughput(number of successfully executed
gueries in a given time span), a@dPU time(time the CPU is available for a specific query).
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Figure 1: Visualization of SLO constraint

A service level objective (SLO) is formed by a combinatiorooé or more performance goals and an asso-
ciated priority, which typically depends on the penaltiesuirred if the goals are not met. Often, these objectives
do not apply to all queries, but instead must be satisfied éertin percentage. Sugi.O conformancenetrics
are defined as ratio of the number of queries that meet an ShCi@the total number of queries.

The SLOs for the workload categories described in Sectioiffer én the way performance is measured -
either in terms of individual queries or in terms of groupgjoéries. Users are explicitly aware of the individual
response times of interactively submitted queries, butésponse time for batch jobs is measured for a set of
queries as a whole. Similarly, performance for canned qa€g. g., a canned report or OLTP query) tends to be
measured and reported in terms of the query class as a whubeeas ad hoc queries are measured individually.

An example for an SLO in the OLTP context is the so-caitep-wise SLGhat consists of one or moper-
centile constraints Since users typically expect fast responses for OLTP gsiepiercentile constraints require
n% of all service requests to be processed withiseconds. Otherwise, a penafiyfor every m percentage
points under fulfillment is due. A percentile constraint lioifly defines an SLO penalty function with steps
(service levels). The penalty function for a constrain(90% in < 5s; p = $900 per 20 percentage points,
maximum penalty$1800) is shown in Figure 1 (black solid lines).

In contrast, batch workloads are typically deadline-drie@d may incur penalties if work is not completed
before a given deadline. This translates directly into aecation time constraint. Another common SLO for
batch workloads specifies a lower-bound for the throughpet, the batch workload does not have a fixed
deadline, but should be assigned a specific portion of thiéable system resources.

4 Workload M anagement

The goal of workload management for database sys-
tems is to increase user satisfaction by meeting SLOs.
Note that in general, neither the customer nor the
provider benefits from over-fulfilled SLOs, because
there is no advantage to providing results befo
a given deadline, and the execution time requir
ments already ensure a responsive interaction with the
DBMS. Over-fulfilling an SLO will not excuse a future
SLO violation and moreover could raise unreasonahle . .
performance expectations. Igure 2: Generic workload management architecture
Figure 2 sketches a generic workload management

architecture. The DBMS core offers the following composenihe Execution Enginewhich manages the
processing of queries, tleesource Managemhich provides priority based allocation of resourcesuerigs,
and thePerformance Monitorfor monitoring the execution of queries. Modern DBMS offeveral knobs
for tuning workload performance at all points in the workldde cycle. Workload management begins with
the opportunity to prevent a new query from being placed omxatution queue, continues with queuing and
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scheduling decisions, and includes the ability to contnel éxecution of a running query. These mechanisms
are implemented by th&dmission Controllerthe Query Schedulerand theExecution Controllerrespectively.
The latter contains a rule base for identifying unexpectegrload situations and deciding which workload
management action should be performed for which queries vildrkload management decisions are driven by
the SLOs that are annotated to each batch job and interaptery of every client. The objectives must be made
available for the DBMS prior to the execution of the job.

Admission control can prevent potential problem queriesifbeing started in the first place. Query schedul-
ing optimizes the order of execution and the number of caratly running queries by deciding when to admit
which query. Admission control and scheduling operate atofne database layer, and can be implemented
without modifying the database core engine. If the DBMS fiaterfaces to control already running queries,
then finer grained control of request execution is possible presence of execution control mechanisms that
can, e. g., kill or suspend and resume queries at run-timéuctner improve performance. For example, killing
a query that hogs system resources for an unexpectedly ilmegcan limit the negative impact on the overall
execution performance. Similarly, if the DBMS offers piiation mechanisms for allocating resources like
memory, CPU, and locks, then complex queries can be adjugtemver priorities when necessary, leaving
enough resources for newly arriving interactive querieth Wwigher priorities.

5 Reated Work

Workload Management Techniques Regarding work on workload management techniques for resal-
location, we share a focus with researchers such as [1, &115who consider how to govern resource allo-
cation for queries with widely varying resource requiretser-or example, Davison and Graefe [6] present a
framework for resource allocation based on concepts froangaconomics. Their framework aims at reducing
response time of queries in a multi-user environment. Tinéraecomponent is a resource broker that assigns
operators the share of the resource they are willing to payieikum et al. [24] discuss what metrics are ap-
propriate for identifying the root causes of performanasbfgms in an OLTP workload (e. g., overload caused
by excessive lock conflicts). They focus on tuning decisianhdifferent stages such as system configuration,
database configuration, and application tuning.

Query progress indicators (e. g., [3, 14]) attempt to eginaarunning query’s degree of completion. Re-
search in this area is complementary to our goals, and patlgriffers a means to identify long-running queries
at early stages — before the workload has been negativelydteg.

Recently, research has been done on query suspension antpties, €. g., [2, 4]. When a query is sus-
pended, the DBMS releases all resources held by the quewylader point in time, the query can be resumed,
ideally without wasting a large amount of work that has beenedprior to the suspension. We believe that
database products will implement these techniques in taefoture.

Workload Management Implementations Some workload management techniques for admission control
scheduling, and execution management policies are aliegalgmented in products such as those by HP (e. g.,
Workload Manager for Neoview [8]), IBM (e. g., Query Pateslfor DB2 [17], Optimization Service Center [9],
zSeries [13]), Microsoft (SQL Server [16]), Oracle (Diseoer [19], Resource Manager [20]), and Teradata
(Workload Manager [23]). We only present a short overviemae detailed description can be found in [12].

Admission control uses thresholds to prevent overly-espergueries from running in the system. Database
vendors provide different metrics like optimizer costs mgessing time estimates. Queries for which the values
of the metrics exceed administrator-defined thresholdsititer rejected or put on hold. The latter case requires
the administrator to decide whether to submit the queryeaititabase or to reject it.

Some databases allow the administrator to limit the levaetafcurrency on the database system and to
schedule the delayed queries. There are three approaahksifing the concurrency: limit the maximum
resource utilization, restrict access to database obligetsables, indexes, and views, and limit the number of



simultaneous queries in the database system. Delayedceguae typically managed in three different types
of scheduling queues: FIFO, size-based, and priority¢haSize-based queues prevent short-running queries
from getting stuck behind long-running queries, thus esifay a consistent elapsed time for short queries in the
presence of long-running queries. Priority-based quenfesae the preferred execution of high-priority queries
compared to their lower-priority counterparts. It is thektaf the database administrator to define priorities for
the users in order to balance the performance of the systewri€3d are then ordered in the queue according to
the priority of the submitting user.

Execution control is usually implemented by using rules nghge condition triggers an execution manage-
ment action. The different vendors support a variety of iogtio be used in the conditions, e. g., cardinality,
CPU time, number of 1/0Os, and elapsed wall clock time. Alnadktlatabase vendors implement some notifica-
tion mechanism to inform the administrator about exceptigituations, e. g., when the elapsed time of a query
exceeds a specified threshold. It is then the task of the astnaitor to analyze and tackle workload management
problems. If the administrator does not take action, theygues to completion. In addition to that, HP’s and
Teradata’s Workload Manager can be configured to autontigitiGh a query.

6 Workload Management for OLTP Workloads

This section focuses on OLTP-style workloads that condist multitude of a priori unknown short-running
transactions that may be started by clients at any time. Eanbkaction consists of a set of interactively submit-
ted queries for which the user expects short response tifilniesefore, users often negotiate SLOs similar to the
step-wise SLOs introduced in Section 3, which limit the pese time for a percentage of transactions. From the
workload management perspective, the main challenge {3y a query scheduling policy that meets the SLO
requirements for as many users as possible. A common apphoatich settings is to provide priority-based
gueues to manage pending queries. Typically, the priofityueries is defined externally, e. g., by a database
administrator and usually depends on the priority of theeesve user. If only a percentage of all queries must
meet the performance requirements, static prioritizatoms to over-fulfill SLOs of high-priority users because
their queries are almost always processed in time at thenerps their lower-priority counterparts.

Therefore, our approach derives an adaptive penalty basad economic model and annotates the queries
with the penalty information. These penalties are usedtionige the execution order of the pending queries. We
define the penalty of a query as the maximum of two economidfgostions. Opportunity costémonotonically
decreasing parts of the parabolas in Figure 1) model theedarfgfalling to the next lower service level. If
the current SLO conformance converges to the next loweicgetgvel, the penalty for processing the service
too late increases because delaying an additional quergases the likelihood of an ultimate SLO violation.
Marginal gains(monotonically increasing parts of the parabolas in Figrenodel the chance that a service
class re-achieves a higher service level. If this appeaps tvithin reach”, individual queries are increasingly
penalized until eventually the higher level is reached.

The computation of penalties, scheduling algorithms faidieg queries, and a performance analysis are de-
scribed in [7, 10]. The experimental results show the effeness of our novel adaptive penalization approach,
which provides a higher overall SLO conformance by redutimegover-fulfillment for high-priority clients.

7 Workload Management for Bl Workloads

Bl workloads contain a wide variety of requests, rangingrftmatch jobs to short-running interactive queries to
ad hoc queries of varying complexity. For the batch part eftbrkload, we focus here on deadline-driven SLOs.
The optimization goal for these jobs is to minimize the tineeded to complete the workload. Interactively
submitted queries, on the other hand, require short resptimes, because users easily become dissatisfied if
they must wait for responses too long. SLOs for interactiverigs therefore require an execution time below a



given threshold. If a batch and an interactive job are rupsimultaneously on the database, the challenge is to
optimize the execution of all jobs subject to their SLOs. #iddally, a workload management system must be

capable of dealing with ad hoc designed queries that may unakmown execution characteristics or may cause

performance problems.

Admission Control One approach for optimizing the performance of Bl workloasd® reject overly-expen-
sive queries that may hog system resources and thus prerenireently running queries from making progress.
The administrator may choose to run these queries in a dl@atrmanner, e. g., in isolation, to minimize the
impact of these problem queries on others. The challengbe tldressed are twofold: First, a threshold for
identifying overly-expensive queries must be found. If vh&ue is set too low, many queries will be rejected. A
threshold that is too high may admit too many expensive gaeresulting in exceptional situations at run-time.
Second, admission control requires accurate optimizématts and knowledge about how a query impacts
concurrent queries. Query optimizers do a good job estngatie costs of queries when requirements like
uniformity of data, independence of attributes, and ugdte statistics are met. However, in the Bl context,
data may be heavily skewed and statistics cannot be kemi-dpté for update-intensive workloads. Therefore,
the optimizer might return estimates that are off by ordéraagnitude from the actual processing costs, making
the estimates unusable for admission control.

Query Scheduling The task of the query scheduling component is to decide whedinit which query.
Scheduling must obey inter-query dependencies, i. e., sequeests cannot be reordered arbitrarily because they
depend on the results of other requests. Another challenggedetermine the optimal number of concurrently
running queries in the database that would maximize theeushgll system resources. The optimal number of
queries in the system depends on parameters like the databaBguration, the underlying hardware, and the
requests themselves, and might even vary during the eracotithe workload. In practice, finding an optimal
solution to the scheduling problem itself is not feasiblesaese of the high complexity and the large instance
sizes containing hundreds of requests. Therefore goodstiesrmust be found. Additionally, a reasonable
reordering of workload requests needs to consider the impgoests have on one another. Some requests are
potentially working well together while others interferéhveach other.

A prerequisite for scheduling is a concise representatfdrenefits and detri-
ments of concurrent request execution. This informatiam lsa subsumed in a R, R, R
“synergy maitrix” as exemplified in Figure 3. Each enfd;, R;) in the two-
dimensional matrix is a numerical value denoting the regatinpact of the parallel R, | 0.70
execution of request®; and R;. There exist several metrics for quantifying the

(dis)advantages, like consumed CPU cycles, disk accesseggecution time. In R3 - 1085
this work, we focus on the ratio of the elapsed times measimegarallel and
sequential execution of requests. A value less than 1 itedichat the parallel exe-Ra | - | 0.92

cution is faster than the sequential execution. For exantipdesynergy valué.70
for 2, and R, (light gray) denotes that executing the two requests cooly rigyre 3: Synergy matrix
takes70% of the time it takes to execute them sequentially. In cottthe parallel

execution ofR3 and R, takes longer than running them in sequence (dark gray). Astyeentry (“—") in the
matrix indicates that a synergy value is not yet available.

In order to increase the quality of the scheduling resutis,nhatrix must be populated with as many values
as possible. This can be accomplished through either asalysnonitoring. The former approach applies
a white box technique and is based on an analysis of the vamtldagequests in order to determine potential
synergies before the actual execution. Sources of suchg@gaestem from caching behavior and multi-query
optimization (MQO). In the context of MQO, extensive resdahas been done on identification of common
sub-expressions [5, 22] and cooperative scans [25]. Drekgbaf the white box approach are that some of the
required information may not be available prior to the execuof a request and that predictions errors in the
analysis phase may result in incorrect assumptions abdividiial requests and, thus, potential synergies.
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The monitoring approach treats the workload'’s jobs as blamtes, i. e., does not make any assumptions
about their characteristics. It monitors the executionhef tequests and iteratively derives information about
potential synergies. For example, O’Gorman et al. [18] eyphis approach by running all pairs of TPC-H
requests both concurrently and sequentially and then congpthe number of disk accesses. A substantial
drawback of the black box approach is that the synergy matronly populated during workload execution.
Another difficulty is to infer (dis)advantages for pairs afegies if monitored data is only available for a whole
set of concurrently executing queries.

Analysis and monitoring are complementary approaches ande combined for better results. Prior to
the execution of the batch, analysis can be used to providatal population of the matrix, while monitoring
during run-time can be used to refine inaccurate results flmranalysis and provide values for requests that
cannot be analyzed or that interfere with each other unéeghc

Execution Control There are two major challenges for run-time execution cbatrqueries. First, execution
control needs to detect exceptional situations based amé¢itiécs that can be monitored at run-time. Identifying
a problem could be as easy as comparing the actual elapsedftaquery to a threshold provided by, e. g., the
user or the administrator. More sophisticated conditiamgrfggering an execution control action could include
additional metrics like CPU time and number of disk I/Os. hiligh a greater number of metrics provides a
higher flexibility, monitoring the metrics may cause ovexth@t run-time, thus slowing down the processing of
the requests. Even if a set of metrics has been identified;ithkkenge is to set thresholds. Practitioners with
experience in workload management can attest not only theriance of good thresholds but also the difficulty
of finding these values. Second, the execution managemedsrie choose from a set of corrective actions
like killing or suspending a query. If a query is killed, theeeution control needs to decide when, if at all,
to resubmit it. Similarly, an appropriate policy for resungia suspended query must be found. Of course, the
execution control must obey the service level objectiveg,, igh-priority queries with tight deadlines might
not be killed, even if they hog the system resources for a tioneg.

Experimental Framework for Workload Management In order to provide a more application-oriented ap-
proach for workload management, we have developed an expetal framework, introduced in [11] for eval-
uating the effectiveness of workload management techeiqiiéie architecture of the framework follows the
architecture in Figure 2. Admission Controller, Query Stilier, and Execution Controller represent knobs that
can be adjusted to select from a variety of workload managépaicies and algorithms. Our framework is
not limited to workload management policies already impated by existing database systems and tools, but
allows us to experiment with new workload management cdscdfurthermore, we implemented a simulator
for the execution engine, which mimics the execution of akle@d in a database system. We model a workload
as composed of one or more jobs. Each job consists of an drdetef typed queries and is associated with a
performance objective. Each query type maps to a tree oftgrer and each operator in a tree maps in turn to
its resource costs. Our current implementation assodiagesost of each operator with the dominant resource
associated with that particular operator type (e. g., disknemory). The life cycle of the data that drives the
experimental runs is described in [11].

8 Summary

In this paper, we have characterized OLTP and Bl workloadsi@entified factors in workload generation and
submission that impact their service level objectives (SL.ONe outlined SLOs in the database context and
the current state of the art in workload management teclksidpr enforcing these objectives. We summarized
our contributions for managing OLTP workloads by adapyiyetnalizing individual queries. We looked at Bl
workload management where we sketched at which points inrkleanl’s life cycle management is applicable,
and presented a synergy matrix that characterizes the tropagnning particular batch queries concurrently.



Finally, we overviewed our experimental framework for iegtthe impact of the various workload management
techniques on the execution of workloads. For more dethibsitathis work, we refer readers to [7, 10, 11, 12].
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