
Testing Berkeley DB

Ashok Joshi, Charles Lamb, Carol Sandstrom
Oracle Corporation

{ashok.joshi,charles.lamb,carol.sandstrom}@oracle.com

Abstract

Oracle Berkeley DB is a family of database engines that provide high performance, transactional
data management on a wide variety of platforms. Berkeley DB products are available under a dual
license: an open source license and a commercial license. Wediscuss some of the standard testing and
tuning techniques used for ensuring the quality and reliability of the Berkeley DB library, emphasizing
some of the interesting testing challenges arising due to multi-platform support. Since Berkeley DB is
available in source code form, it can be adapted/modified by users in the field. It is necessary to test
and validate the modified version of Berkeley DB before it canbe deployed in production. We discuss
some testing tools and techniques provided with the Berkeley DB distribution that simplify the process
of user-testing and certifying Berkeley DB ports to new platforms.

1 Introduction

Database software is complex along many dimensions: large number of features and APIs, concurrent read and
write activity, fault-tolerance and recovery, performance, scalability, and reliability. In a wide variety of situa-
tions, database applications manage mission critical data, and there is an implicit assumption that the underlying
data management services are well tested, reliable and correct. This article discusses some of the testing and tun-
ing methodologies and practices used to ensure high qualityfor Berkeley DB, a family of embeddable database
engines.

Oracle Berkeley DB [1] is a family of database engines that provide robust data management services in
a wide variety of usage scenarios ranging from enterprise-class applications to applications running on mobile
devices such as cell phones. Berkeley DB products are distributed under a dual license - the open source GPL-
like license for open source applications, and a commerciallicense for closed source applications.

It is important to highlight some of the differences betweenan open source product such as Berkeley DB,
and proprietary, closed source products. Note that Berkeley DB is not anopen development project; Berkeley
DB products are developed by a dedicated group of software engineers. Berkeley DB products are distributed in
source code form, complete with a comprehensive test suite.Source code distribution adds an interesting set of
development and testing challenges, since the user is free to choose from a variety of compilers and development
environments to build Berkeley DB and the application. Further, a small number of users can and do modify the
Berkeley DB sources, primarily for porting to new platforms; the Berkeley DB distribution includes a test suite
that can be run by end users in order to validate their changes.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



The rest of this paper is organized as follows. We begin with adescription of each of the products. This is
followed by a discussion of some of thestatic testingtools that we use internally to verify the correctness of the
code. This is followed by a section on testing - this includesunit testing, stress testing, performance testing and
analysis as well as ad-hoc, use-case-specific testing. Next, we discuss the Berkeley DB approach to portability,
platform support and testing. Portability is particularlyinteresting in the Berkeley DB context because we allow
and encourage our users to port Berkeley DB to the platform oftheir choice. The Berkeley DB distribution
includes a platform test suite designed to exercise the platform-specific aspects of the port.

Oracle Berkeley DB has benefited tremendously from a large and active community of users who test the
products, review the code, report problems and suggest enhancements and features. The involvement of the user
community has been critical to the success of the Berkeley DBproducts.

2 Berkeley DB product family overview

The Berkeley DB product family consists of three products: Berkeley DB, Berkeley DB Java Edition and Berke-
ley DB XML. Berkeley DB products are available as libraries with simple, proprietary APIs for data access and
manipulation as well as database administration. BerkeleyDB does not support SQL, though it has been used
as the storage engine for SQL database products. A typical Berkeley DB application makes API calls to start
and end transactions, store and retrieve data as well as to perform administrative functions such as checkpoints
and backups. Thus, a Berkeley DB application is completely ”self-contained” with respect to all data manage-
ment activities; this enables azero manual administrationapproach to application development. This capability
is critical in a large number of applications including embedded applications, where manual administration is
impossible.

Berkeley DB Java Edition is a 100% pure Java implementation whereas Berkeley DB is implemented in
C; both products have similar APIs and capabilities for datamanagement. Berkeley DB XML (implemented
in C++) is an XML database engine with XQuery and XPath capabilities; Berkeley DB XML layers on top of
Berkeley DB and uses it for storage, indexing, transactionsand other database capabilities.

Although Berkeley DB and Berkeley DB Java Edition are very similar with respect to the features and
functionality they provide, architecturally, they are quite different. From a testing point of view, porting is not as
big an issue for Berkeley DB Java Edition, since the JVM is inherently portable. Both products provide indexed
access to data; Berkeley DB supports B-trees as well as hash indexing whereas Berkeley DB Java Edition only
supports B-tree indices. Both products support concurrentaccess to data. Berkeley DB permits concurrent
threads, or concurrent processes or both, whereas BerkeleyDB Java Edition typically supports multiple threads
within a process and more limited multi-process access. Both products support transactions, including support
for the various ANSI isolation levels. A row is simply an opaque key:valuepair; Berkeley DB does not have
the notion of data types, but the Direct Persistence Layer ofBerkeley DB Java Edition does provide an optional
schema-like capability. Interpreting the opaque contentsof the row is left entirely up to the application. APIs
for administrative operations like database checkpoints and backups are provided by all three products.

Architecturally, Berkeley DB is similar to the ”update-in-place” architecture of most other traditional
database systems. Berkeley DB Java Edition, on the other hand, uses log-structured storage for managing
on-disk data. Every change results in a new entry in the log. Aseparate garbage collector thread that runs in
the background reclaims space occupied by obsolete data. Thus, though there are commonalities between the
test suites for Berkeley DB and Berkeley DB Java Edition withrespect to testing API behavior, the Berkeley DB
Java Edition test suite also contains specific tests for exercising the log cleaner, ”out of disk space” scenarios,
log archiving and other aspects specific to the log structured architecture of Berkeley DB Java Edition.

Berkeley DB XML, on the other hand, manages XML documents. Documents can either be stored as whole
documents, or as individual nodes. Berkeley DB XML creates indices on various attributes to improve access
performance. Since Berkeley DB XML is layered on the Berkeley DB database engine, it can leverage the test

2



suite of the underlying storage engine, including the replication and high availability features. Berkeley DB
XML also leverages the XML standards specifications in orderto test the correctness of XML processing.

2.1 Feature sets

Early on in the history of Berkeley DB development, we made the decision to provide a variety of feature sets for
the Berkeley DB products. Applications that use Berkeley DBhave varying data management needs; rather than
a ”one size fits all” approach, Berkeley DB products offer theuser a choice of which features to use. Further,
an application using the simpler feature sets can build a small footprint Berkeley DB library; this is particularly
important for applications running on resource-constrained devices such as mobile devices.

The simplest feature set is calledData Store(available in Berkeley DB and Berkeley DB XML). This allows
either a single writer or concurrent readers. The data storeoption is ideal for simple applications that need high
performance indexed access to data without the need for read-write concurrency or transactions.

The Concurrent Data Storefeature set allows concurrent readers and one writer, but without transactions
and recovery. This is most suitable for situations where simplicity, footprint and performance of the application
are more important than data consistency or integrity. In most of these situations, the data managed by Berkeley
DB is either transient data, or the data can be retrieved fromanother (perhaps transactionally managed) data
source in case of data loss.

TheTransactional Data Storefeature set provides the full set of features including concurrency, transactions,
logging and recovery. This is the option of choice for applications that have stringent data consistency and
integrity requirements. As mentioned earlier, Berkeley DBalso provides APIs (and standalone utilities) for
administrative functions such as backups, checkpoints andrecovery, further simplifying the task of building
zero manual administration applications.

Finally, Berkeley DB provides theHigh Availability (HA) option for applications that need multi-node scal-
ability and extremely high availability. Berkeley DB HA supports a single read-write master and multiple reader
configuration implemented via log shipping. If the master fails, a new master is elected and processing continues
uninterrupted. Berkeley DB HA also supports a variety of options for improving transaction performance; for
example, it is possible to commit a transaction either by writing the commit log record to the master’s local
disk (commit to disk), or by sending reliable commit messages to a majority of the secondaries(commit to the
network).

The Berkeley DB design philosophy has always been to providemechanisms, not policy. This provides
tremendous flexibility to the application developer with respect to choosing the features to use as well as con-
figuring memory, IO, network traffic, disk usage and other system resources. This level of flexibility implies
multiple permutations of choices and configurations duringtesting and tuning.

3 Ensuring product quality

In general, we follow theextreme programmingmethodology for unit testing - implement the test first, then
implement the code. This methodology results in much bettercode quality in the minimum amount of time.
We’ll discuss unit test development in more detail below.

We use a combination of code reviews and software tools in order to ensure the correctness of the new im-
plementation. A good code review is highly effective in ensuring better code quality. Tools such aslint can de-
tect potential problems such as uninitialized variables, type-incompatible assignments and incorrect arguments.
Tools such asPurify [3] check for memory leaks and potential out-of-bounds references. Our development
methodology requires that code is peer-reviewed and checked for memory leaks, adherence to language and
portability standards and standard coding conventions. All lint inconsistencies are fixed before the code changes

3



are approved. Since Berkeley DB products are distributed insource form, we periodically compile and build the
product using a wide variety of compilers and address compiler issues and warnings.

3.1 Static testing

The termstatic testingrefers to various tools for measuring code coverage, memorycorruption and memory leak
checkers such asPurify, and programs such aslint that are used to identify problems in the code and/or tests.

Code coverage is a very useful technique for determining theeffectiveness of the test suite. In a code
coverage run, the code is instrumented to monitor coverage,and then the entire test suite is run to determine
which code blocks are executed, and which code blocks are notexercised. Code coverage testing is done
periodically since analyzing the results and adding new tests can be a significant amount of work.

A code coverage run will highlight the lines of code that are not exercised. Rather than a ”brute force”
approach to achieving very high code coverage, we focus on developing tests that target the important code
paths. Code coverage results need to be interpreted carefully since they do not indicate whether every possible
codepath was exercised. For example, if there are multiple ways of reaching a particular code block, a code
coverage run will identify that code block as covered even ifthe test only exercises one of the ways of reaching
that code block. It may be necessary to use other techniques such as logging and/or using a debugger to ensure
that tests exercise specific code paths. This certainly improves the quality of the tests, but may not result in
increasing code coverage.

We run Purify periodically to identify and eliminate memory leaks. We re-compile, build and run tests
periodically on many different families of systems including Linux, Windows, Solaris, HP-UX, AIX, and others.
Testing starts with the compiler native to a system, but we also test non-native compilers in situations where they
are commonly used, e.g.gcc. We also make a point of testing different versions of the same compiler. Build
failures are fixed when possible and silenced when necessaryto avoid the possibility of real failures vanishing
in the noise of unimportant warnings. All engineers receivee-mail from automatedlint runs daily and are
responsible for fixing errors found in their code.

3.2 Regression Testing

Test execution is automated. Under normal circumstances, the test suite is run on two or three different platforms
concurrently. Builds are verified at least daily. Tests generate detailed logs of the execution, and the scripts
supporting the tests automatically report build and test failures by email. The QA group analyzes the results of
each test run; test failures are fixed by the QA group, whereasprogrammatic errors are reported to the relevant
developer. Code changes are logged in CVS with tracking numbers so it is usually possible for a QA engineer
to pinpoint the piece of code that changed and inform the appropriate development engineer in order to address
the issue expeditiously.

3.3 Unit testing

We follow the extreme programming principle of ”test first, code later” in developing unit tests. We first im-
plement a set of tests that are designed to verify the correctness of the change. Depending on the scope of the
change, developing unit tests can be a significant effort. The developer responsible for a certain feature usually
develops the required unit tests, with input from other teammembers. The QA group expands and standardizes
tests from development. Having the unit tests ready before the feature is developed has several benefits including
potential improvement of the design and eliminating the possibility that the feature will go untested.

The complete unit test suite is included with each Berkeley DB distribution and can be run by the end user
who needs to verify their specific Berkeley DB application implementation and deployment.

4



3.4 Instrumenting the code for testing

Sometimes, it is necessary to add special code to simulate certain conditions for testing (e.g. IO failure). In such
cases, we instrument the code with assertions and hooks. Forexample, we use Javaassertions; assertions are
enabled only during debugging and testing. We also haveassertstatements that allow us to forceIOExceptions
to be thrown at specific points in the code and these points canbe specified by the test program. These simulated
write failures ensure that the error handling code is correct.

3.5 System and Stress testing

System and stress testing is designed to test the end-to-endbehavior of the software. We use a parameterized
driver program; this enables us to easily tailor a particular test run to exercise specific aspects, features and
configurations. For example, it is possible to select the number of threads, the ratio of writes to reads, memory
size and various configuration parameters.

The driver is normally run in randomized mode to force the testing of new combinations, and is routinely run
on multi-processor machines (even slow multi-processors)to increase contention. The driver program runs for
extended periods of time and exercises the various BerkeleyDB APIs with the objective of finding a problem.
Since the driver program is well parameterized, it is possible to use the same program not only to stress test
specific aspects of the software but also to measure performance of basic operations.

Running system and stress tests is an on-going activity. Problems identified by unit tests are usually re-
producible and hence relatively easy to analyze. On the other hand, diagnosing and fixing problems found by
system and stress tests is harder since it is not easy to reproduce the problem. Stress tests run for extended
periods of time, making it difficult to reproduce the exact state of the system at the time of the failure. Berkeley
DBs extensive logging capabilities are extremely helpful in analyzing system test failures.

Testing Berkeley DB HA requires a test harness that can exercise a distributed application running on mul-
tiple nodes. We are in the process of developing a test harness based onErlang [2].

Developing comprehensive system and stress tests is alwaysa challenging task, and an on-going process.
Recently, we encountered a customer issue which highlighted a limitation in one of our stress tests that exercises
themulti-version concurrency controlfeature in Berkeley DB. Multi-version concurrency controlrequires addi-
tional memory in the buffer pool in order to store previous versions (snapshots) of database pages; when there is
no more room in the buffer pool, Berkeley DB temporarily overflows the snapshots to disk. Though overflow to
disk for snapshots is supported, the expectation is that theuser will configure the buffer pool so that overflowing
to disk is rare. In this particular customer situation, a combination of a long-running writer transaction, multiple
reader transactions and a small buffer pool resulted in a large number of snapshots being written to disk. Further,
there was a bug in the ”read snapshot from disk” code, which resulted in the incorrect version being returned to
the transaction.

It took a significant amount of investigation to recreate thescenario and diagnose the problem, since the
problem was not easy to reproduce. Fortunately, once the problem was identified, the fix was very easy (just a
few lines of changed code). Needless to say, we have added stress tests to exercise the ”overflow snapshot to
disk” scenario.

3.6 Performance testing and analysis

Performance testing and analysis is an on-going activity. As mentioned earlier, the system test driver program is
parameterized; this enables us to use it to measure the performance of various operations.

We maintain performance data history for all releases in order to detect regressions. This is particularly help-
ful during the development of new features and functionality, since we can quickly identify and fix performance
problems that are introduced by the new code. Our experiencesuggests that measuring the performance of basic
operations is sufficient to identify performance regressions in most situations; a complex test is not required.

5



We often get requests for performance data for certain, customer-specific workloads. The customer workload
usually has specific requirements for record size, number ofrecords in the database, throughput and response
time constraints and so on. Having a simple, parameterized driver program is tremendously helpful in being able
to respond quickly to such requests. In most cases, it is possible to easily modify the driver program in order to
approximate the specific workload and generate performancedata.

3.7 Release testing

In addition to the continual testing during the developmentphase, we run an additional set of tests after a release
is code-complete, in order to verify some of the uncommon platform configurations and to ensure that add-on
modules (likePerl - http://perl.com) are tested and ready for release.

Berkeley DB has been in widespread use for more than a decade and use of historical versions is quite
common. Release testing also includes upgrade tests, to verify that databases from earlier versions can be
seamlessly upgraded to the new version.

3.8 Platform porting and testing

Berkeley DB products are different from most commercially available database systems because Berkeley DB
is shipped in source code form (along with the source code forthe tests). This makes it convenient for our users
to port Berkeley DB to the platform of their choice. We often work jointly with our customers on such porting
efforts.

Portability is not an issue for Berkeley DB Java Edition; therest of this discussion applies mainly to Berkeley
DB and Berkeley DB XML. By design, Berkeley DB products adhere strictly to programming language stan-
dards and have minimal dependence on platform primitives. As is the case with other portable software products,
Berkeley DB isolates the operating system dependent code toa small set of code modules. This ensures that
port-specific differences are localized.

Berkeley DB supports a long list of popular platforms. Each new version is released simultaneously on all
supported platforms. This is achieved by continuous and frequent testing on a wide variety of platforms in a
round-robin manner. Though it is not very common to find platform-specific problems, the advantage of this
approach is that such problems are identified early in the development stage.

Occasionally, a customer requires Berkeley DB on a platformthat is not already supported. In order to assist
our users in porting Berkeley DB, we have developed a portingguide and a platform-specific test suite in C.
Though not as comprehensive as the full test suite, this compact, but complete test suite is designed to thoroughly
exercise the various operating system primitives that Berkeley DB uses. The tests can also be modified to suit
the requirements of the underlying platform. This is especially critical when testing on resource-constrained
devices such as mobile phones.

A typical customer-porting scenario is as follows. The customer will download and build the source code on
the target platform. This can be an iterative edit-and-build process. After Berkeley DB is built successfully, the
user can run either the full test suite (if the platform is capable) or just the platform-specific test suite. When all
tests execute successfully, the user can be confident that Berkeley DB will run on the target platform.

If the user had to make changes to the code, build scripts or tests, we request them to send us the changes so
that we can incorporate them into future releases.

We recently had a very positive experience where a customer worked with one of our field engineers in Japan
to demonstrate that Berkeley DB could be ported to a new platform easily and painlessly. They used the porting
guide and tools provided with the Berkeley DB distribution in order to compile, build and validate Berkeley
DB on the new platform in less than two months. Typically, a port to a new platform of a commercial database
products takes many person-months of work, so this is a remarkable achievement.

6



4 Tuning

The Berkeley DB philosophy is to provide mechanisms, not policy. Berkeley DB (like other DBMSs) provides
a large number of ”knobs” to influence the run-time behavior and performance of the system. The user can
control system parameters such as amount of memory, threads, synchronous vs. buffered IO etc. The user can
also choose to enable or disable features such as transactions, locking and multi-version concurrency control.

Choosing the various parameters appropriately requires a good understanding of the system; this is further
complicated because some choices have dependencies on other choices and settings.

Berkeley DB has a comprehensive statistics and logging facility that provides useful data to aid tuning.
Berkeley DB documentation provides detailed information on the various parameters and settings available to
the user. Further, there are several source code sample programs included with the distribution that illustrate
how certain parameters may be used. The Berkeley DB discussion forums are an excellent source for getting
advice and feedback on tuning Berkeley DB. In specific situations, we provide customer-specific consulting
for performance analysis and tuning. Finally, having access to the Berkeley DB source code can be helpful in
understanding and tuning the software. On a number of occasions, users have been able to achieve significant
(ten-fold or more) improvements in performance by modifying just a few Berkeley DB parameters.

We are planning to develop a utility that will interpret the statistics and make recommendations. We are
also considering integration with other comprehensive monitoring and tuning utilities such as Oracle Enterprise
Manager.

5 Conclusions

Exhaustive testing is fundamental to the quality and success of the Berkeley DB family of products. We pay
attention to testing, code quality and performance throughout the development cycle. In terms of lines of code,
the test suite is about 40% of the lines of code in the productsand it continues to evolve along with the products.

Acknowledgements

We work closely with our user community in order to improve the products as well as to port to specific platforms. Berkeley
DB products have benefited tremendously from user feedback and help. A large portion of the credit goes to the excellent
development team; their expertise and painstaking attention to quality, performance and overall maintainability of the code
continues to be instrumental in delivering world-class products.

References

[1] Berkeley DB Documentation: http://www.oracle.com/technology/documentation/
berkeley-db/db/

[2] Erlang:www.erlang.org

[3] Purify: www.ibm.com/software/awdtools/purify

7


