Testing Berkeley DB

Ashok Joshi, Charles Lamb, Carol Sandstrom
Oracle Corporation
{ashok.joshi,charles.lamb,carol.sandstf@woracle.com

Abstract

Oracle Berkeley DB is a family of database engines that peviigh performance, transactional
data management on a wide variety of platforms. Berkeley BEyzts are available under a dual
license: an open source license and a commercial licensedi$fass some of the standard testing and
tuning techniques used for ensuring the quality and relighof the Berkeley DB library, emphasizing
some of the interesting testing challenges arising due ti4platform support. Since Berkeley DB is
available in source code form, it can be adapted/modified dBrauin the field. It is necessary to test
and validate the modified version of Berkeley DB before it lsameployed in production. We discuss
some testing tools and techniques provided with the Berk@R:distribution that simplify the process
of user-testing and certifying Berkeley DB ports to newfplans.

1 Introduction

Database software is complex along many dimensions: largear of features and APIs, concurrent read and
write activity, fault-tolerance and recovery, performanscalability, and reliability. In a wide variety of situa-
tions, database applications manage mission critical daththere is an implicit assumption that the underlying
data management services are well tested, reliable anebtofithis article discusses some of the testing and tun-
ing methodologies and practices used to ensure high gdati§erkeley DB, a family of embeddable database
engines.

Oracle Berkeley DB [1] is a family of database engines thavidle robust data management services in
a wide variety of usage scenarios ranging from enterptagscapplications to applications running on mobile
devices such as cell phones. Berkeley DB products arelistéd under a dual license - the open source GPL-
like license for open source applications, and a commelicese for closed source applications.

It is important to highlight some of the differences betwasnopen source product such as Berkeley DB,
and proprietary, closed source products. Note that BeykeR is not anopen development projedBerkeley
DB products are developed by a dedicated group of softwagimeers. Berkeley DB products are distributed in
source code form, complete with a comprehensive test shdarce code distribution adds an interesting set of
development and testing challenges, since the user isdfid®bse from a variety of compilers and development
environments to build Berkeley DB and the application. Rerta small number of users can and do modify the
Berkeley DB sources, primarily for porting to new platfornise Berkeley DB distribution includes a test suite
that can be run by end users in order to validate their changes

Copyright 2008 IEEE. Personal use of this material is petait However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

The rest of this paper is organized as follows. We begin witlescription of each of the products. This is
followed by a discussion of some of thtatic testingools that we use internally to verify the correctness of the
code. This is followed by a section on testing - this includes testing, stress testing, performance testing and
analysis as well as ad-hoc, use-case-specific testing.,, Wexdiscuss the Berkeley DB approach to portability,
platform support and testing. Portability is particularyeresting in the Berkeley DB context because we allow
and encourage our users to port Berkeley DB to the platformiaif choice. The Berkeley DB distribution
includes a platform test suite designed to exercise théoptatspecific aspects of the port.

Oracle Berkeley DB has benefited tremendously from a largeaative community of users who test the
products, review the code, report problems and suggesheaheents and features. The involvement of the user
community has been critical to the success of the BerkeleypDHucts.

2 Berkeley DB product family overview

The Berkeley DB product family consists of three producterkley DB, Berkeley DB Java Edition and Berke-
ley DB XML. Berkeley DB products are available as librarieshasimple, proprietary APIs for data access and
manipulation as well as database administration. BerkeByloes not support SQL, though it has been used
as the storage engine for SQL database products. A typiakkRy DB application makes API calls to start
and end transactions, store and retrieve data as well asfwrpeadministrative functions such as checkpoints
and backups. Thus, a Berkeley DB application is completsglf“‘contained” with respect to all data manage-
ment activities; this enableszaro manual administratioapproach to application development. This capability
is critical in a large number of applications including ertied applications, where manual administration is
impossible.

Berkeley DB Java Edition is a 100% pure Java implementatibereas Berkeley DB is implemented in
C; both products have similar APIs and capabilities for datmagement. Berkeley DB XML (implemented
in C++) is an XML database engine with XQuery and XPath cdjiisi Berkeley DB XML layers on top of
Berkeley DB and uses it for storage, indexing, transactamsother database capabilities.

Although Berkeley DB and Berkeley DB Java Edition are vemikr with respect to the features and
functionality they provide, architecturally, they are tguilifferent. From a testing point of view, porting is not as
big an issue for Berkeley DB Java Edition, since the JVM iemaintly portable. Both products provide indexed
access to data; Berkeley DB supports B-trees as well as hdeking whereas Berkeley DB Java Edition only
supports B-tree indices. Both products support concuraeness to data. Berkeley DB permits concurrent
threads, or concurrent processes or both, whereas BelR@8elava Edition typically supports multiple threads
within a process and more limited multi-process accessh Baiducts support transactions, including support
for the various ANSI isolation levels. A row is simply an opadey:valuepair; Berkeley DB does not have
the notion of data types, but the Direct Persistence LayBeokeley DB Java Edition does provide an optional
schema-like capability. Interpreting the opaque contehtse row is left entirely up to the application. APIs
for administrative operations like database checkpointstackups are provided by all three products.

Architecturally, Berkeley DB is similar to the "update-ptace” architecture of most other traditional
database systems. Berkeley DB Java Edition, on the othet, haes log-structured storage for managing
on-disk data. Every change results in a new entry in the logeparate garbage collector thread that runs in
the background reclaims space occupied by obsolete datss, Though there are commonalities between the
test suites for Berkeley DB and Berkeley DB Java Edition wé&igpect to testing APl behavior, the Berkeley DB
Java Edition test suite also contains specific tests forcesteg the log cleaner, "out of disk space” scenarios,
log archiving and other aspects specific to the log strudtarehitecture of Berkeley DB Java Edition.

Berkeley DB XML, on the other hand, manages XML documentscubaents can either be stored as whole
documents, or as individual nodes. Berkeley DB XML creanghlices on various attributes to improve access
performance. Since Berkeley DB XML is layered on the Bernké&d database engine, it can leverage the test

suite of the underlying storage engine, including the ogpion and high availability features. Berkeley DB
XML also leverages the XML standards specifications in otdeest the correctness of XML processing.

2.1 Feature sets

Early on in the history of Berkeley DB development, we madedacision to provide a variety of feature sets for
the Berkeley DB products. Applications that use BerkeleyHaBe varying data management needs; rather than
a "one size fits all” approach, Berkeley DB products offer tiser a choice of which features to use. Further,
an application using the simpler feature sets can build dl $owdprint Berkeley DB library; this is particularly
important for applications running on resource-consgdidevices such as mobile devices.

The simplest feature set is callBéita Store(available in Berkeley DB and Berkeley DB XML). This allows
either a single writer or concurrent readers. The data sigtien is ideal for simple applications that need high
performance indexed access to data without the need foiwesglconcurrency or transactions.

The Concurrent Data Stordeature set allows concurrent readers and one writer, ibowi transactions
and recovery. This is most suitable for situations where#haity, footprint and performance of the application
are more important than data consistency or integrity. Istrobthese situations, the data managed by Berkeley
DB is either transient data, or the data can be retrieved froother (perhaps transactionally managed) data
source in case of data loss.

TheTransactional Data Storeature set provides the full set of features including corency, transactions,
logging and recovery. This is the option of choice for apgtiiens that have stringent data consistency and
integrity requirements. As mentioned earlier, Berkeley &80 provides APIs (and standalone utilities) for
administrative functions such as backups, checkpointsraocavery, further simplifying the task of building
zero manual administration applications.

Finally, Berkeley DB provides theligh Availability (HA) option for applications that need multi-node scal-
ability and extremely high availability. Berkeley DB HA sugrts a single read-write master and multiple reader
configuration implemented via log shipping. If the mastdsfa new master is elected and processing continues
uninterrupted. Berkeley DB HA also supports a variety ofiap for improving transaction performance; for
example, it is possible to commit a transaction either bytimgithe commit log record to the master’s local
disk (commit to disk)or by sending reliable commit messages to a majority of dw®rsdariegcommit to the
network)

The Berkeley DB design philosophy has always been to prowidehanisms, not policy. This provides
tremendous flexibility to the application developer witkgect to choosing the features to use as well as con-
figuring memory, 10, network traffic, disk usage and othettesysresources. This level of flexibility implies
multiple permutations of choices and configurations dutésging and tuning.

3 Ensuring product quality

In general, we follow theextreme programmingnethodology for unit testing - implement the test first, then
implement the code. This methodology results in much betele quality in the minimum amount of time.
We'll discuss unit test development in more detail below.

We use a combination of code reviews and software tools iardalensure the correctness of the new im-
plementation. A good code review is highly effective in eirsy better code quality. Tools such ks can de-
tect potential problems such as uninitialized variablgse{incompatible assignments and incorrect arguments.
Tools such agurify [3] check for memory leaks and potential out-of-bounds nexfees. Our development
methodology requires that code is peer-reviewed and cheidtememory leaks, adherence to language and
portability standards and standard coding conventionklirilinconsistencies are fixed before the code changes

are approved. Since Berkeley DB products are distributesthimce form, we periodically compile and build the
product using a wide variety of compilers and address cangsues and warnings.

3.1 Statictesting

The termstatic testingefers to various tools for measuring code coverage, meaaryption and memory leak
checkers such &urify, and programs such &at that are used to identify problems in the code and/or tests.

Code coverage is a very useful technique for determiningeffectiveness of the test suite. In a code
coverage run, the code is instrumented to monitor coverage then the entire test suite is run to determine
which code blocks are executed, and which code blocks arexetised. Code coverage testing is done
periodically since analyzing the results and adding netg e be a significant amount of work.

A code coverage run will highlight the lines of code that aot exercised. Rather than a "brute force”
approach to achieving very high code coverage, we focus wvelagng tests that target the important code
paths. Code coverage results need to be interpreted dgrgifute they do not indicate whether every possible
codepath was exercised. For example, if there are multiple ways ofhieg a particular code block, a code
coverage run will identify that code block as covered eveheftest only exercises one of the ways of reaching
that code block. It may be necessary to use other technigudsas logging and/or using a debugger to ensure
that tests exercise specific code paths. This certainlydugs the quality of the tests, but may not result in
increasing code coverage.

We run Purify periodically to identify and eliminate memory leaks. Wecmnpile, build and run tests
periodically on many different families of systems inclugliLinux, Windows, Solaris, HP-UX, AlX, and others.
Testing starts with the compiler native to a system, but we tdst non-native compilers in situations where they
are commonly used, e.ggcc We also make a point of testing different versions of theesaompiler. Build
failures are fixed when possible and silenced when necetsamoid the possibility of real failures vanishing
in the noise of unimportant warnings. All engineers recavmail from automatedint runs daily and are
responsible for fixing errors found in their code.

3.2 Regression Testing

Test execution is automated. Under normal circumstanicegest suite is run on two or three different platforms
concurrently. Builds are verified at least daily. Tests gateedetailed logs of the execution, and the scripts
supporting the tests automatically report build and takirizs by email. The QA group analyzes the results of
each test run; test failures are fixed by the QA group, whepeagrammatic errors are reported to the relevant
developer. Code changes are logged in CVS with tracking eusndo it is usually possible for a QA engineer
to pinpoint the piece of code that changed and inform theagpjate development engineer in order to address
the issue expeditiously.

3.3 Unit testing

We follow the extreme programming principle of "test firsbde later” in developing unit tests. We first im-
plement a set of tests that are designed to verify the corsstof the change. Depending on the scope of the
change, developing unit tests can be a significant efforé déveloper responsible for a certain feature usually
develops the required unit tests, with input from other tea@mbers. The QA group expands and standardizes
tests from development. Having the unit tests ready befarésature is developed has several benefits including
potential improvement of the design and eliminating thespimity that the feature will go untested.

The complete unit test suite is included with each Berkel8ydistribution and can be run by the end user
who needs to verify their specific Berkeley DB applicatiorplementation and deployment.

3.4 Instrumenting the code for testing

Sometimes, it is necessary to add special code to simulgttgrceonditions for testing (e.g. 10 failure). In such
cases, we instrument the code with assertions and hookexgarple, we use Jawssertions assertions are
enabled only during debugging and testing. We also laagertstatements that allow us to ford®Exceptions

to be thrown at specific points in the code and these pointbeapecified by the test program. These simulated
write failures ensure that the error handling code is correc

3.5 System and Stresstesting

System and stress testing is designed to test the end-tbedravior of the software. We use a parameterized
driver program; this enables us to easily tailor a partictést run to exercise specific aspects, features and
configurations. For example, it is possible to select thelemof threads, the ratio of writes to reads, memory
size and various configuration parameters.

The driver is normally run in randomized mode to force thérngsof new combinations, and is routinely run
on multi-processor machines (even slow multi-procesdorg)crease contention. The driver program runs for
extended periods of time and exercises the various Berlk@B\PIs with the objective of finding a problem.
Since the driver program is well parameterized, it is pdesib use the same program not only to stress test
specific aspects of the software but also to measure penfmenaf basic operations.

Running system and stress tests is an on-going activitybl&res identified by unit tests are usually re-
producible and hence relatively easy to analyze. On the dititied, diagnosing and fixing problems found by
system and stress tests is harder since it is not easy toduegrdhe problem. Stress tests run for extended
periods of time, making it difficult to reproduce the exaettstof the system at the time of the failure. Berkeley
DBs extensive logging capabilities are extremely helpfidmalyzing system test failures.

Testing Berkeley DB HA requires a test harness that can isesacdistributed application running on mul-
tiple nodes. We are in the process of developing a test habeesed oftrlang [2].

Developing comprehensive system and stress tests is alvelgallenging task, and an on-going process.
Recently, we encountered a customer issue which hightigltanitation in one of our stress tests that exercises
themulti-version concurrency contrééature in Berkeley DB. Multi-version concurrency contrejuires addi-
tional memory in the buffer pool in order to store previoussi@ns (snapshots) of database pages; when there is
no more room in the buffer pool, Berkeley DB temporarily dl@ws the snapshots to disk. Though overflow to
disk for snapshots is supported, the expectation is thatsbewill configure the buffer pool so that overflowing
to disk is rare. In this particular customer situation, a boration of a long-running writer transaction, multiple
reader transactions and a small buffer pool resulted irga lanmber of snapshots being written to disk. Further,
there was a bug in the "read snapshot from disk” code, whistlted in the incorrect version being returned to
the transaction.

It took a significant amount of investigation to recreate sbenario and diagnose the problem, since the
problem was not easy to reproduce. Fortunately, once tHa#gmmowas identified, the fix was very easy (just a
few lines of changed code). Needless to say, we have addess s&sts to exercise the "overflow snapshot to
disk” scenario.

3.6 Performancetesting and analysis

Performance testing and analysis is an on-going activisym&ntioned earlier, the system test driver program is
parameterized; this enables us to use it to measure theparice of various operations.

We maintain performance data history for all releases iemialdetect regressions. This is particularly help-
ful during the development of new features and functiopadiince we can quickly identify and fix performance
problems that are introduced by the new code. Our expersimggests that measuring the performance of basic
operations is sufficient to identify performance regrassim most situations; a complex test is not required.

5

We often get requests for performance data for certainpmest-specific workloads. The customer workload
usually has specific requirements for record size, numbeeatfrds in the database, throughput and response
time constraints and so on. Having a simple, parameteridgeergrrogram is tremendously helpful in being able
to respond quickly to such requests. In most cases, it iskgeds easily modify the driver program in order to
approximate the specific workload and generate performdaize

3.7 Releasetesting

In addition to the continual testing during the developnmrdse, we run an additional set of tests after a release
is code-complete, in order to verify some of the uncommotfgia configurations and to ensure that add-on
modules (likePerl - http://perl.com are tested and ready for release.

Berkeley DB has been in widespread use for more than a decatleise of historical versions is quite
common. Release testing also includes upgrade tests, ify teat databases from earlier versions can be
seamlessly upgraded to the new version.

3.8 Platform porting and testing

Berkeley DB products are different from most commercialgikable database systems because Berkeley DB
is shipped in source code form (along with the source codthéotests). This makes it convenient for our users
to port Berkeley DB to the platform of their choice. We oftennw jointly with our customers on such porting
efforts.

Portability is not an issue for Berkeley DB Java Edition; tbst of this discussion applies mainly to Berkeley
DB and Berkeley DB XML. By design, Berkeley DB products adhstrictly to programming language stan-
dards and have minimal dependence on platform primitiveds ghe case with other portable software products,
Berkeley DB isolates the operating system dependent codestoall set of code modules. This ensures that
port-specific differences are localized.

Berkeley DB supports a long list of popular platforms. Eaelwversion is released simultaneously on all
supported platforms. This is achieved by continuous angufat testing on a wide variety of platforms in a
round-robin manner. Though it is not very common to find platf-specific problems, the advantage of this
approach is that such problems are identified early in theldpment stage.

Occasionally, a customer requires Berkeley DB on a platfiiahis not already supported. In order to assist
our users in porting Berkeley DB, we have developed a poduide and a platform-specific test suite in C.
Though not as comprehensive as the full test suite, this aotnput complete test suite is designed to thoroughly
exercise the various operating system primitives that &eykDB uses. The tests can also be modified to suit
the requirements of the underlying platform. This is esgfcicritical when testing on resource-constrained
devices such as mobile phones.

A typical customer-porting scenario is as follows. The cowr will download and build the source code on
the target platform. This can be an iterative edit-andebpilocess. After Berkeley DB is built successfully, the
user can run either the full test suite (if the platform isalalp) or just the platform-specific test suite. When all
tests execute successfully, the user can be confident thieglBy DB will run on the target platform.

If the user had to make changes to the code, build scriptsts, t@e request them to send us the changes so
that we can incorporate them into future releases.

We recently had a very positive experience where a custormeked with one of our field engineers in Japan
to demonstrate that Berkeley DB could be ported to a newgtatkasily and painlessly. They used the porting
guide and tools provided with the Berkeley DB distributionarder to compile, build and validate Berkeley
DB on the new platform in less than two months. Typically, & po a new platform of a commercial database
products takes many person-months of work, so this is a keahbkr achievement.

4 Tuning

The Berkeley DB philosophy is to provide mechanisms, noicgoBerkeley DB (like other DBMSSs) provides

a large number of "knobs” to influence the run-time behaviod performance of the system. The user can
control system parameters such as amount of memory, thregushronous vs. buffered 10 etc. The user can
also choose to enable or disable features such as tramsadtoking and multi-version concurrency control.

Choosing the various parameters appropriately requiresd gnderstanding of the system; this is further
complicated because some choices have dependencies ogluims and settings.

Berkeley DB has a comprehensive statistics and logginditfatiat provides useful data to aid tuning.
Berkeley DB documentation provides detailed informationtive various parameters and settings available to
the user. Further, there are several source code samplepredncluded with the distribution that illustrate
how certain parameters may be used. The Berkeley DB disgu$siums are an excellent source for getting
advice and feedback on tuning Berkeley DB. In specific simat we provide customer-specific consulting
for performance analysis and tuning. Finally, having asdeshe Berkeley DB source code can be helpful in
understanding and tuning the software. On a number of amtssusers have been able to achieve significant
(ten-fold or more) improvements in performance by modifyjust a few Berkeley DB parameters.

We are planning to develop a utility that will interpret thiatsstics and make recommendations. We are
also considering integration with other comprehensiveitodng and tuning utilities such as Oracle Enterprise
Manager.

5 Conclusions

Exhaustive testing is fundamental to the quality and siscoéshe Berkeley DB family of products. We pay
attention to testing, code quality and performance througthe development cycle. In terms of lines of code,
the test suite is about 40% of the lines of code in the prodamdisit continues to evolve along with the products.

Acknowledgements

We work closely with our user community in order to improve groducts as well as to port to specific platforms. Berkeley
DB products have benefited tremendously from user feedbatkelp. A large portion of the credit goes to the excellent
development team; their expertise and painstaking atteii quality, performance and overall maintainabilityloé tode
continues to be instrumental in delivering world-classjurts.

References

[1] Berkeley DB Documentation: http://wwv. or acl e. com' t echnol ogy/ docunent ati on/
ber kel ey- db/ db/

[2] Erlang:www. er | ang. or g

[3] Purify: www. i bm com sof t war e/ awdt ool s/ purify

