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Abstract

Query optimization is an inherently complex problem, anitiasing the correctness and effectiveness of
a query optimizer can be a task of comparable complexity.oleeall process of measuring query opti-
mization quality becomes increasingly challenging as modeery optimizers provide more advanced
optimization strategies and adaptive techniques. In tlaiggp we present a practitioner’s account of
query optimization testing. We discuss some of the unicuessin testing a query optimizer, and we
provide a high-level overview of the testing techniquesl tis@alidate the query optimizer of Microsoft's
SQL Server. We offer our experiences and discuss a few angbailenges, which we hope can inspire
additional research in the area of query optimization andNDEBtesting.

1 Introduction

Today’s query optimizers provide highly sophisticateddtionality that is designed to serve a large variety of
workloads, data sizes and usage patterns. They are theaeswny years of research and development, which
has come at the cost of increased engineering complexiygifgglly in validating correctness and measuring
quality. There are several unique characteristics thatengaiery optimizers exceptionally complex systems to
validate, more so than most other software systems.

Query optimizers handle a practically infinite input spateeclarative data queries (e.g. SQL, XQuery),
logical/physical schema and data. A simple enumeratiofi pbasible input combinations is unfeasible and itis
hard to predict or extrapolate expected behavior by graugimilar elements of the input space into equivalence
classes. The query optimization process itself is of higjodthmic complexity, and relies on inexact cost
estimation models. Moreover, query optimizers ought tizsgatvorkloads and usage scenarios with a variety of
different requirements and expectations, e.g. to optirfae¢éhroughout or for response time.

Over time, the number of existing customers that need to ppmsted increases, a fact that introduces con-
straints in advancing query optimization technology withdisturbing existing customer expectations. While
new optimizations may improve query performance by ordérsamgnitude for some workloads, the same opti-
mizations may cause performance regressions (or unnegessahead) to other workloads. For those reasons,
a large part of the validation process of the query optimigzeneant to provide an understanding of the different
tradeoffs and design choices in respect to their impactsaaldferent customer scenarios. At the same time,
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the validation process needs to provide an assessmentressamn risk for code changes that may have a large
impact across a large number of workload and query types.

2 Key Challenges

The goal of query optimization is to produce efficient exemustrategies for declarative queries. This involves
the selection of an optimal execution plan out of a spacetefradtives, while operating within a set of resource
constraints. Depending on the optimization goals, the-pedbrming strategy could be optimized for response
time, throughput, 1/0, memory, or a combination of such go&he different attributes of the query optimization

process and the constraints within which it has to functicakenthe tuning of the optimization choices and
tradeoffs a challenging problem.

Large input space and multiple paths: The expressive power of query languages results in a padlgtic
infinite space of inputs to the query optimizer. For each ytiee query optimizer considers a large number of
execution plans, which are code paths that need to be exdraisd validated. The unbounded input space of
possible queries along with the large number of alternakexution paths, generate a combinatorial explosion
that makes exhaustive testing impossible. The selecti@representative set of test cases in order to achieve
appropriate coverage of the input space can be a rathemudtitsk.

Optimization time: The problem of finding the optimal join order in query optiadibn is NP-hard [8, 4].
Thus, in many cases the query optimizer has to cut its patheagigely through the search space and settle
for a plan that is hopefully near to the theoretical optimurne infeasibility of exhaustive search introduces a
tradeoff between optimization time and plan performandes finding of the "sweet spot” between optimization
time/resources and plan performance along with the turfitfgedlifferent heuristics is a challenging engineering
problem. New optimizations typically introduce new alt#imes and extend the search space, often making
necessary the tuning of such tradeoff decisions.

Cardinality estimation: A factor that complicates the validation of execution plgtimality is the reliance

of the query optimizer on cardinality estimation. Queryimizers mainly rely on statistical information to
make cardinality estimates, which is inherently inexaat &mas known limitations as data and query patterns
become more complex [9]. Moreover, there are query constiarnd data patterns that are not covered by the
mathematical model used to estimate cardinalities. In sasks, query optimizers make crude estimations or
resort to simple heuristics [12]. While in the early days QiLSServer the majority of workloads consisted of
prepared, single query-block statements, at this timeyggenerator interfaces are very common, producing
complex ad-hoc queries with characteristics that makemrality estimation very challenging. Inevitably, test-
ing the plan selection functionality of the query optimigeipends on the accuracy of the cardinality estimation.
Improvements in the estimation model, such as increasia@ihount of detail captured by statistics and en-
hancing the cardinality estimation algorithms, incredmeduality of the plan selection process. However, such
enhancements typically come with additional CPU cost anckased memory consumption.

Cost estimation: Cost models used by query optimizers, similarly to cardipastimation models are also
inexact and incomplete. Not all hardware characteristioetime conditions, and physical data layouts are
modeled by the query optimizer. Although such design clsoiaa obviously lead to reliability problems, there
are often reasonable compromises chosen in order to avgidyitomplex designs or to satisfy optimization
time and memory constraints.
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Figure 1: Anillustration of the database application space

"Two wrongs can make a right” and Overfitting:  Occasionally, the query optimizer can produce nearly-
optimal plans, even in presence of large estimation ernodsestimation guesses. They can be the result of
"lucky” combinations of two or more inaccuracies canceliggch other. Additionally, applications may be
built in a way that they rely on specific limitations of the iopizer's model. Sucloverfitting of the applica-
tion’s behavior around the limitations of the optimizersdel can happen intentionally, when a developer has
knowledge of specific system idiosyncrasies and develags dipplication in a way that depends on those id-
iosyncrasies. It can also happen unintentionally, whewléveloper continuously tries different ways to develop
their application until the desired performance is achiel@cause a specific combination of events was hit).
Of course there are no guarantees that system idiosyrerasélucky combinations of events would remain
constant between product releases or over changes duermgghication lifecycle. Therefore, applications (and
any tests based on such applications) that rely on ovetfittiay experience unpredictable regressions when the
conditions on which they depend change.

Adaptive optimization and self-tuning techniques: The use of self-tuning techniques to simplify the tasks
of system administration and to mitigate the effect of eation errors, themselves generate tuning and valida-
tion challenges. For example, SQL Server’s policy for awboally updating statistics [10], can be too eager

for certain customer scenarios, resulting in unnecessity &nd I/O consumption and for others it can be too
lazy, resulting in inaccurate cost estimations. Advanahniques used to mitigate the cost model inaccu-
racies and limitations, for example the use of executioulfaek to correct cardinality estimates [14], or the

implementation of corrective actions during executiongiinmtroduce similar tradeoffs and tuning problems.

Optimization quality is a problem of statistical nature: SQL Server’s customer base includes a variety of
workload types with varying performance requirements.ufédl illustrates the space of different workloads.
Workloads on the left-bottom area of the space are typicdin®ransaction Processing (OLTP) workloads,
which include simple, often parameterized queries. Suctklwads require short optimization times and they
benefit from plan reuse. Workloads on the right side of thesmpaay include Decision Support System (DSS)
or data warehousing applications, which usually consisbaiplex queries over large data sets. DSS workloads
have higher tolerance for longer optimization times and thore advanced optimization techniques can be used
for those. They typically contain ad-hoc queries, gendrbtequery-generator tools/interfaces. The middle area
of the application space contains a larger variety of apptins that cannot be characterized as simply as the
ones above. Those applications can contain a mixture ofisiemu more complex queries, which can be either
short or long running. Changes in the optimization procéfestagueries from different parts of the application



16

= ®

O g :

E *

@ a o L
=T LI )

o2 & * 4

a = 2 + * & *f‘ &

E o 1 Q*‘\%’ % N of oo o;‘ﬁ%ol\vﬁ.
@2 * * 40 Pe & 8

c o 0.5

8

o

i 0,125 @

ar

= 0,1 1 10 100 1000

Baseline query execution time (minutes)

Figure 2: Performance impact of new optimizations

space in different ways, either because of shifts in exgdtiadeoffs and policies, or because of issues related to
overfitting. Inevitably, that makes the measurement ofroiatation quality a problem of statistical nature. As
an example, Figure 2 illustrates the results of experimeiitsnew query optimizer features on a realistic query
workload. In most cases the new features provide signifiparformance gains (especially for long-running
queries), but they cause regressions for some parts of thidoad (all points below 1 in Figure 2). Some
short-running queries were affected by increases in catigil time, while a few others regressed because of a
suboptimal plan choice or lack of tuning for the specific kaark used in the experiment. While in this example
the benefits of the new functionality outweigh the perforosregressions, there have been other cases where
it was more difficult to make a judgment about the advantageshe disadvantages of introducing a particular
new feature.

3  Query Optimization Testing Techniques

The practices of validating a software system can be tylgiciided in two categories: a) those that aim to
simulate usage scenarios and verify that the end resultystars operation satisfies the customer’s requirements
and b) those that aim to exercise specific subcomponentsoatedpaths to ensure that they function according
to system design. Test cases typically aim to validate theectmess of query results, measure query and
optimization performance, or verify that specific optimiiaa functionality works as expected. We provide
some examples of testing techniques from these two caesgarsed to validate SQL Server’s query optimizer.

Correctness testing: The query optimization process should produce executiansplvhich are "correct”, i.e.
plans that will produce correct results when execu@akrectnessan be validated up to some extent logically,
by verifying that the various query tree transformatiorsutein semantically correct alternatives. Additionally,
it can be validated by executing various alternative exeonytlans using plan enumeration techniques [15] and
then comparing their results with each other and/or witHeremce implementation (that is typically a previous
product release or a different database product). Anothimnmon practice is to ruplaybacks Playbacks are
SQL traces [1] collected from customers also used to vedfyectness against a reference implementation.

Large-scale stochastic testing: Typical steps in test engineering are to identify the spdadfferent inputs

to the system under test, to recognize the equivalenceeslagghin the input space, and then to define test
scenarios that exercise the system using instances skfemtethese equivalence classes. As mentioned earlier,
the input space for a query optimizer is multidimensional aery large. Different server configurations and
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query execution settings introduce additional dimenstorthie input space. An effective testing technique for
tackling large input spaces is to use test/query gener#tatscan generate massive sets of test cases. The
generation process can be random or can be guided towaresngpgpecific areas of the input space or certain
areas of the product. Such technigues have been very effeatiesting SQL Server [7, 13, 15].

Performance baselines: The task of validating changes in the query optimizer’s glaoice logic in presence

of the various engineering tradeoffs can become rathecdlifi A typical approach is to evaluate changes by
measuring query performance against a known baseline stiydstandard benchmarks, like TPCH [3] cover
only a small part of SQL Server’s functionality and contaarwwell-behaved data distributions. Therefore,
our testing process includes a wider set of benchmarks thadr@ larger variety of scenarios and product
features. Normally, those benchmarks consist of test dzesed on real customer scenarios. They are used for
performance comparisons with a previous product releasatioran alternative implementation.

Optimization quality scorecards: Although optimization time and query performance are goahsures

of plan choice effectiveness, they are not sufficient for raaépth understanding of the impact of changes
to the optimization process. Improvements in the optinszerodel will not always result in improvements
in plan choice (for the queries included in a benchmark),thist should not necessarily mean that they have
no value overall. On the other hand, new exploration ruleg ex@pand the search space with valuable new
alternatives but at the cost of increased memory consumptibich may cause performance bottlenecks on a
loaded server. In order to gain as much insight as possibietiie impact of changes, our process includes a
variety of metrics in addition to query and optimizationfpemance. Examples of such metrics are: the amount
of optimization memory, cardinality estimation errorseeution plan size, search space size, and others. These
metrics can be collected across the whole set of queriasdadlin our various benchmarks, across an individual
benchmark and across segments of the application taxonprayiding a number of differenbptimization
quality scorecards

4 Experiences and Lessons Learned

The testing techniques mentioned in this article targdeint classes of defects. We briefly discuss a few
representative classes here, and how they correspond varibes testing techniques. We then continue with a
summary of some of the lessons learned during our efforts.

Large scale stochastic testing has been effective in eixtgride coverage provided by regular tests. Specif-
ically, it has contributed in eliminatinlEMO cyclesand incorrect results. MEMO cycles can occur when
defects in the implementation of a set of transformatiorgalllow cycles to be generated in the recursive group
structures. We refer the reader to [15] for an explanatio®@QL Server's MEMO structure. SQL Server's
code contains self-verification mechanisms to detect syatel other inconsistencies in the MEMO structure.
Therefore, the discovery of such a defect is an exerciseradrgéing the appropriate test case. Query generators
can be driven towards exploring the space of queries ang glems much further than what can be achieved by
other types of testing. The combination of stochasticrigstiith self-checking mechanisms in the code has been
very effective in detecting irregularities in internal datructures that would result to incorrect query results.

In past releases of SQL Server, the performance tuning ofiatebase engine was done towards the final
phases of product development and hence regressions imipgiiion time were detected late. The establishment
and regular monitoring of the query optimization scoreaudng the development cycle has allowed us to be
proactive in identifying regressions as compared to thé. pEsrly detection allows more time to tune the
optimization heuristics towards an appropriate balantedsen plan efficiency and optimization time.

The combination of stochastic testing techniques and beadks based on realistic customer workloads has
been very helpful for the development of some features of S@iver. A case in point is the USE PLAN query



hint [2], which allows forcing the optimizer to use a partenuquery plan that is provided by the user. While
the initial prototyping and testing using real customerragggedidn’t indicate major issues, testing with complex
queries generated by query generators showed that ouridgeehrequired a lot more memory than what was
anticipated. That discovery led to a number of generic igmoents to the original algorithm.

The importance of a reliable benchmark: Given the statistical nature of optimization quality, iEissential
that the benchmark used for making quality measuremenwligble and balanced. During the SQL Server
2000 release, our testing practice was to add a new test vasgtene each of our customers and partners
would experience a performance regression. Adding reigresssts in order to prevent future reoccurrences of
code defects is a standard practice in test engineeringer Adftiowing this practice for some time, the net of
regression tests becomes increasingly denser and evgmit@lides complete coverage of areas that may have
been missed in the original test plan. The regular apptinati the above process introduced a large number of
regressions tests in our benchmark. A significant numbenefégression tests corresponded to queries with
large estimation errors, and included areas of query opétin with known limitations, i.e. areas where the
cost model was inaccurate. During the development cyclrettvere times when our benchmark was heavily
affected by the performance of those tests. In some caggsmiate improvements in the cost model would
cause performance regressions. The performance of thpesseon tests was often unpredictable, and it could
drop enough to overshadow the performance gains in othex. té¢ that point, it became evident to us that
the practice of continuously extending our benchmark wathous regression tests was problematic. While the
regression tests represented areas in which customergpaded problems, they led to a benchmark that could
produce inconclusive results and skew the coverage of osria ways that were not well-understood. Today,
we try to develop benchmarks that are more complete anddedan terms of application type but also in terms
of their conformance to the optimizer's model. If there ipadfic application with which we had issues in the
past and we want to track its performance, we will add a sulfdbat application workload into the benchmark.
That helps us understand the impact of a code change on fautieries from that application. We also try to
characterize each query in the benchmark and understaddgtee of conformance to the optimizer's model.
That is helping us determine when a regression is causedauddfect, a shift in optimization tradeoffs or due
to side-effects of overfitting.

You improve on what you measure: The blend of application scenarios and their correspondirgyies in-
cluded in the benchmark influences the decisions made fadiffegent engineering tradeoffs and eventually
the tuning of the query optimizer. Initially, our testingopess included a larger set of OLTP scenarios and a
much smaller set of DSS-like application scenarios. OLT&amer databases were more easily accessible at
the time and since they are typically smaller in size it waserao adopt them in our test labs. Consequently,
increases in compilation time during the development cheld a significant impact across a large part of the
overall benchmark, while the effect of more advanced op@tions only appeared in smaller areas. The hard-
ware configuration used for executing the benchmark cautéfie making of tuning decisions in similar ways.
For this reason, the different scenarios and hardware agafigns need to be defined and maintained in a way
that represents the product’s goals as rigorously as gessib

Test each component in isolation: The use of end-to-end query performance as the sole mepiathoice
quality has often been ineffective. First, changes madetoponents downstream from the optimizer in the
Query Execution and Storage layers could result in enditbgeerformance changes. Although the source of
the regression could be pinpointed to the right componersiimply checking for changes in the execution
plan, there were times during the development cycle wheh tha execution plan and the implementation of
the downstream components would change at the same timachncases, it was difficult to determine which
component contained the root cause of the regression. Assmymptions made by the query optimizer (such



as the CPU cost for a certain operator) would change cauegrgssions across our benchmark. This problem
was mitigated by putting in place a parallel developmentess, which allows development in isolated code
branches. Thus, changes could be tested in isolation, arekbifed, component assumptions and expectations
could be adjusted before the final code integration. The epingf testing in isolation extends to testing the
internal subcomponents of the query optimizer as well. bitawh to evaluating the optimizer using end-to-end
qguery performance metrics, it is valuable to be able to tashdayer of the cost model independently, so that
the root cause of defects can be identified quickly withinféwdty subcomponent. Additionally, validating the
subcomponents located lower in the optimization stackdlation (e.g. the Statistics subcomponent) guarantees
that the subcomponent located higher in the stack (e.g. &ngiitality Estimation subcomponent) operates with
valid inputs and assumptions when being validated itself.

Clarify the model: It is essential that the contracts between the differentpmorants and any assumptions
made in the design are crisply defined in order to validate@uponents in isolation. For example, the cardi-
nality estimation component operates over histogramsruh@eassumptions of independence and uniformity.
Inputs that violate those assumptions will surely resukestimation errors and possibly in suboptimal plans.
Creating inputs that provide the ideal conditions expetigthe cardinality estimation component allows the
development of highly deterministic tests, which returouaate results. While some assumptions and contracts
are fundamental and well-understood, query optimizatgiclcan be very fine-grained. Over time, the original
rationale for certain parts of that logic can fade unless téll-documented and ensured by tests.

Agree on when a regression is a defect: As discussed earlier, it is likely that legitimate code apesican
result in slower execution for some queries. It is very intgot that the engineering team agrees on a well-
defined process on how to treat such issues, both internallyell as externally when communicating with
customers. Fixing regressions in ways that do not conforth thie optimizer's model and assumptions, results
in code health issues and architectural debt. Supportiegiapcases creates instant legacy on which new
applications may rely on. For this reason it is very impdrtenhave a clear definition of the optimizer’s
model. At the same time, every decision needs to take intoustthe expected impact on customer experience.
Customers need to be given the appropriate tools to workndrplan choice issues, and guidance through tools
and documentation so that they can correct and avoid batqaac

Design for testability. During the past four to five years of product development wetwack several times
to add testability features into the query optimizer in ortteexpose internal run-time information and add
control-flow mechanisms for white-box testing. Designimgvrfeatures with testability in mind is a task much
easier that retrofitting testability later on. This help€larifying the interfaces and contracts between different
subcomponents and the resulting test cases ensure thaethain valid during future development.

5 Future Challenges and Conclusions

Query optimization has a very big impact on the performariege@BMS and it continuously evolves with new,
more sophisticated optimization strategies. We descwbeartore challenges, which we expect will play a larger
role in the future.

The transformation-based optimizer architecture of Motcgp] and Cascades [5] provides an elegant frame-
work, which makes the addition of new optimization rulesyed&hile it is straightforward to test each rule in
isolation using simple use cases, it is harder to test theiljescombinations and interactions between rules and
ensure plan correctness. Also, with every addition of a nguloeation rule, the search space expands and the
number of possible plan choices increases accordinglyrelibex need of advanced metrics and tools that help
the analysis of the impact of such changes in the plan spacquéry optimizers advance, the opportunities for



optimizations that provide value across most scenariosedse, hence optimization logic becomes more gran-
ular. There has been research that indicates that queryiapts are already making very fine-grained choices
[11], perhaps unnecessarily so, given the presence oinzditgli estimation errors.

Although we described query optimization testing with fe@n correctness and optimality, another inter-
esting dimension of the query optimization quality is theaept of performance predictability. For a certain
segment of mission-critical applications we see the neegredictable performance to be as important as the
need for optimal performance. More work is needed on definimgasuring and validating predictability for
different classes of applications.

Clearly, not all the challenges that we presented in thiepbhpve been fully tackled. The validation process
and testing techniques will continue to evolve along with #dvolution of the optimization technology and
product goals. The techniques described in this paper dbmsic validation and also provide insight regarding
the impact of code changes in the optimization process. A&sygoptimizers become more sophisticated and
supplemented with more self -tuning techniques, additiohallenges will continue to surface.
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