Exploiting the Impact of Database System Configuration
Parameters: A Design of Experiments Approach

Biplob K. Debnath, Mohamed F. Mokbel, and David J. Lilja
University of Minnesota, Twin Cities, USA.
debna004@umn.edu, mokbel@cs.umn.edu, and lilja@ecesdmn

Abstract

Tuning database system configuration parameters to proglees according to the expected query
workload plays a very important role in determining DBMSfpamance. However, the number of
configuration parameters in a DBMS is very large. Furthermdypical query workloads have a large
number of constituent queries, which makes tuning very dingeeffort intensive. To reduce tuning time
and effort, database administrators rely on their expetgmand some rules of thumb to select a set of
important configuration parameters for tuning. Nonethgjess a statistically rigorous methodology is
not used, time and effort may be wasted by tuning those paeasnehich may have no or marginal
effects on the DBMS performance for the given query workloBdtabase administrators also use
compressed query workloads to reduce tuning time. If notfally selected, the compressed query
workload may fail to include a query which may reveal impottperformance bottleneck parameters.
In this article, we provide a systematic approach to helpdawbase administrators in tuning activities.
We achieve our goals through two phases. First, we estirhateffects of the configuration parameters
for each workload query. The effects are estimated throudgasggn of experiments-bas®dACKETT &
BURMAN design methodology where the number of experiments rebjigitenearly proportional to the
number of input parameters. Second, we exploit the estiheftects to: 1) rank DBMS configuration
parameters for a given query workload based on their impadhe DBMS performance, and 2) select
a compressed query workload that preserves the fidelityeobtiginal workload. Experimental results
using PostgreSQL and TPC-H query workload show that our agetlogies are working correctly.

1 Introduction

Businesses are increasingly building larger databasesp® with the rapid current growth of data. Consistent
performance of the underlying database system is key tesaaif a business. A typical database management
system (DBMS) has hundreds of configuration parameterstendgdpropriate setting of these parameters plays
a critical role in performance. Database administratoiBAE) are expected to tune the configuration param-
eters to appropriate values that get the best DBMS perfacenéor the application of interest. The success
of tuning depends on many factors including the query weardt)arelational schemas, as well as the exper-
tise of the DBAs [20]. However, skilled DBAs are becomingrigesingly rare and expensive [16]. A recent

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

study on information technology versus DBA costs showetlfiteesonnel cost is estimated at 47% of the total
cost of ownership [13]. As has been recenlty reported, DB#end nearly a quarter of their time on tuning
activities [20]. To reduce the total cost of ownership, ibigssence that DBAs focus only on tuning those con-
figuration parameters which have the most impact on systefarpgance for a representative query workload.

Different database configuration parameters have diffemngmact on a DBMS performance. A sound statis-
tical methodology for quantifying the impact of each confagion parameter and the interactions among these
parameters on a DBMS performance is to perforfullefactorial design[17], where all possible combinations
of the input values of the configuration parameters are densil. However, the major problem in applying a
full factorial designin a DBMS is the large number of configuration parameters.eikample, PostgreSQL [1]
has approximately 100 configuration parameters and alhpetexs have multiple possible values. Even if each
configuration parameter assumes only two values, them givgiery workload of queries, we have to perform
q * 2100 experiments at least twice to apply a full factorial desigmhijch is not feasible in terms of time and
effort. To avoid this problem, in many cases, DBAs rely ornirtiegperience and rules of thumb to select the
appropriate values for the configuration parameters. Asisteas based on experience and intuition are often
used, time and effort may be wasted to enhance the perfomignitining those parameters that may have no or
marginal effects on the overall performance of the giverrguerkload. In general, misdirected tuning efforts
increase the total cost of ownership [8, 12, 6, 14].

In this article, we are addressing the following proble&iven a DBMS, a set of configuration parameters,
a range of values for all parameters, and a query workloadineste the effect of each configuration parameter
based on its impact on the DBMS performance for the querylaaakIn particular, we propose a methodology
based onthe ACKETT & B URMAN (P&B) design [19] to estimate the impact of database systerfiguration
parameters. The main idea is to conduct a linear number effempnts that provide an approximate sampling of
the entire search space. In each experiment, the valuee obtifiguration parameters are varied systematically
over a specified range of acceptable values. Subsequegsanal the collected experimental data is used to
estimate the effects of the configuration parameters on B ® performance for the given query workload.
Once we have the estimated effect of each configuration peearfor all workload queries, we can exploit
these effects for: (1) ranking the configuration paramdbassed on the impact on DBMS performance for the
entire query workload, and (2) selecting a compressed guerigload based on the similarities of performance
bottleneck parameters that preserves the fidelity of thggrai workload.

The rest of this article is organized as follows: Section &dbes oudesign of experimentsased method-
ology. The methodology to estimate the effects of the corditjon parameters is described in Section 3. Rank-
ing configuration parameter and selecting a compressedlaaatiare explained in Section 4. Experimental
results are described in Section 5. Section 6 highlighttedlwork. Finally, Section 7 concludes the article.

2 Design of Experiments Based Methodology

The simplest design strategy to quantify the impact of altdes and interactions is to applyfall factorial
design for example, ANOVA [17], in which system response is meadupr all possible input combinations.
However, afull factorial designrequires an exponential number of experiments. To redueentimber of
experiments, we make two assumptions. First, the provoksdonse, such as the total execution time, is a
monotonic function of the input parameter values. Thisdatis that for each configuration parameter, we can
consider only two values: minimum and maximum. The intaitoeehind this is that stimulating the system with
inputs at their extreme values will provoke the maximum eanf output responses for each input. Second,
according to thesparsity of effects principlesystem response is largely dominated by a few main factmis a
low-order interactions. As a consequence, we can safetyrégthe effects of higher order interactions. Based
on these assumptions, we useva-level factorialdesign methodology named RCKETT & BURMAN (P&B)
design [19], which requires only linear number of experitsen

P&B Design Matrix Execution Time
P | P | P |P| P | P | Pr Ql | Q2| Q3
Expy +1 | +1 | +1 R I -1 -1 34 | 110 | 10.2

Exps 1| 41| +1 | +1 1| +1 -1 19 72 | 10.1
Exp3 -1 1| 41| 41| +1 -1+ 111 89 | 10.3
Expy +1 -1 1| 41| +1 | +1 -1 37 41 | 10.3
Exps 1| +1 -1 1| 41| 41| +1 61 96 | 10.2
Ezpg +1 1] +1 -1 1| +1] +1 29 57 | 10.2
Ezpy +1 | +1 1| +1 -1 1] +1 79 | 131 | 10.3
Ezpg -1 -1 1 -1 1 -1 -1 19 47 | 10.1
Expg -1 -1 1|+ 1| +1] +1 135 | 107 | 10.3
Expio | +1 -1 1 -1 +1 -1+ 56 74 | 10.3
Expir | +1 | +1 -1 -1 1] +1 -1 112 48 | 10.1
Ezxpio 1] 41| +1 -1 1 -1 +1 74 91 | 10.1

Expis | +1 | ‘1| #1 | +1 | 1] -1 -1 55 | 99 | 10.3
Expig | ‘1| #1 | -1 [+#1| +1] 2| -1 127] 123 10.1
Expis | -1 | -1 +1| -1 | +1] +1| -1 51 77| 103
Expig | +1 | +1 | +1 | +1 | +1 | +1 | +1 76 | 81| 10.2

Table 1:The P&B design matrix with foldover falV = 7. Execution time of queries Q1-Q3 are in the last threernak!

For each experiment of the P&B design, the value of each petearnis given by a prescribd@&B design
matrix. Table 1 gives an example of thiesign matrixfor the seven parametefy, P, Ps, Py, Ps, Ps, and
P; depicted by the columns 2-8. Thexp; indicates the values of the configuration parameters thihtei
used in the-th experiment. An entry in the parameter columns of thegiesiatrix is either “+1” or “-1”, that
corresponds to a value slightly higher or lower than the rmbmange of values for the corresponding parameter,
respectively. The “+1” and “-1” values are not restrictedotdy numeric values. For example, for the buffer
page replacement algorithm, the “-1” value can be “RANDOMU&+1" value can be “CLOCK”. Thd?&B
design matrixis constructed by cyclic repetition of a single series usaingimple methodology. It has been
verified that such a method would result in desirable stedisproperties [4]. Also, it has been verified that if
the monotonic and low interactions assumptions are vdig P&B design generates comparable results as the
full factorial design The detailed theoretical explanation behind this behasiexplained in [19].

The dimensions of th®&B design matrixdepend on the number of configuration parametafs, The
base design matrix has rows andX — 1 columns, whereX is the next multiple of four greater tha, i.e.,

X = [(N/4)+1] 4. For example, itV = 7, thenX =8, while if ¥ = 8, thenX =12. If N < (X —1), then the
number of columns in thB&B design matrixs more than the number of configuration parameters. In tgs,c
the additionall X — N — 1) last columns of thé&B design matrixare simply ignored. The recommendations
of the “+1” and “-1” parameter value settings f&r=8, 12, 16... ., 96, 100 experiments are given in [19]. The
first row of theP&B design matris selected based on those recommendations accordingualtieeof X. The
rest(X — 1) rows of theP&B design matrixare constructed by right cyclic shifting of the immediateqading
row. All entries of theExzp x-th row of the P&B design matrix are set to “-1”. The column8 & the first eight
experiments Kxp,-Fxpg) of the Table 1 indicates the baB&B design matrixor N=7.

An improvement of the bade&B designmethodology is th&&B design with foldovefl18]. Thefoldover
helps to quantify the two parameter interactions more ately: However, it requireX additional experiments.
The additional rows in th®&B design matrixare constructed by reversing the sign of the #opows matrix
entries. The last eight row&{rpe- Exp1¢) of Table 1 gives the additional design matrix entries ferftidover
for N=7. Experiments are conducted by setting up the values afdh&guration parameters according to the
P&B design matrixand response time is recorded to estimate the effect of eaeimeter.

P&B Effect

P Py P3 Py P Py P; | COV of Execution Times
Q1 109 79 167 193 21 25 177 0.55
Q2 61 161 9 143 39 185 109 0.32
Q3| 040 | 0.80| 0.00| 040 | 0.40 | 0.00 | 0.40 0.01

Table 2:The P&B effects for the queries Q1, Q2, and Q3.

Py Py P3 Py Ps Ps Pr
Q1| 056 | 041 | 0.87 1.0 | 0.11 | 0.13 | 0.92
Q2| 033|087 005 0.77 | 0.21 1.0 | 0.59

Table 3:The P&B normalized effects with respect to the maximum éffecthe queries Q1 and Q2.

3 Effect Estimation of the Configuration Parameters

This section describes how to use ®&B designmethodology described in Section 2 to estimate the effects
of configuration parameters for each query of the given vearttl The effect of each configuration parameter
is calculated by multiplying the corresponding “+1” or “-bf that parameter in thé&zp;-th row of theP&B
design matriwith the query execution time of thieth experiment, and summing up the products across all rows
of the design matrix. The absolute value of the net effecsédun the subsequent analysis.

For illustration, suppose we estimate the P&B effects ofergworkload consisting of three queries Q1, Q2,
and Q3 as listed in Table 1. We have seven configuration paeasn®, to P;. In this example, we assume that
foldoveris used, therefore we conduct 16 experiments. The spewificat the parameter values that need to be
used in alll6 experiments are given in columns 2-8 and rdwsp: - Exp16 Of Table 1. The net effect of the first
parameterP; for query Q1 is calculated by multiplying the entries in tiee@nd column with the entries in the
ninth column and summing up across all 16 rol&f,-Fxpi). For query Q1, the net effect of the parameter
Py isestimated astl f fectp, = abs((+1%34)+ (—1%19)+...+(—1%51)+ (+1%76)) = abs(—109) = 109.
Similarly, the net effect of the second parameteifor query Q1 is calculated by multiplying the entries in the
third column with the entries in the ninth column and summaegoss all 16 rowsHxpi-Fxpig), and so on.
Table 2 gives the net P&B effects of all seven parameterdogueries Q1, Q2, and Q3.

The last column of Table 2 gives tlwoefficient of variation (COW)f the response time across all experi-
ments for queries Q1, Q2, and Q3. COV is defined as the ratliestandard deviationo theaverageexecution
time. A very low COV value indicates that all effects are etisdly the same, i.e., the query performance will
not be affected by the change in configuration parametetiag®t In general, if the COV is less than 0.05, we
can safely ignore the effects and mark the correspondingy @setuning insensitive. In the illustrative example,
query Q3 is tuning insensitive as its COV is 0.01.

4 Exploiting the Configuration Parameters Effects

Once we have the P&B effects of the configuration parametarslf workload queries, we can use these
estimated effects to: (1) rank the configuration paramdterthe entire workload based on their relative impact
on the DBMS performance, and (2) select a compressed quekjoad that preserves the fidelity of the original
guery workload. We describe these two methodologies inldatthe following subsections. Throughout this
section, we will use the query workload in Table 1 as a runeixgmple.

P | P | P3| Py | Ps | Ps | Pr
Q1| 3| 4 1] 7| 7] 1
Q2| 5] 1| 7] 2 6] 1] 3

Table 4:Ranking of the configuration parameters for the queries QICGih

4.1 Ranking the Configuration Parameters for a Query Workload

Ranking configuration parameters for a query workload sesif two steps. First, we rank the parameters
for each tuning sensitive query of the workload based onetaive magnitude of their P&B effects. Second,
rankings of individual tuning sensitive queries are coretito estimate the overall ranking of a parameter for
the workload. The queries which are insensitive to paraniateng are not included in the workload ranking
calculation. Therefore, we do not consider query Q3.

To rank the configuration parameters for a tuning sensitiveryy the estimated P&B effects are normalized
with respect to the maximum effect and the range of normaleftects are divided int&V buckets, wheréV is
number of configuration parameters. A parameter is assignid ranki if its normalized effect falls into thée
th bucket range. In the continuing example, we have sevaanpeters. Therefore the range for the first, second,
third, fourth, fifth, sixth, and seventh buckets are, [160,80.86, 0.71), [0.71, 0.57), [0.57, 0.43), [0.43, 0.29),
[0.29, 0.14), and [0.14, 0.0], respectively. The normaliaed rounded P&B effects for the queries Q1 and Q2
are listed in Table 3. For Q1, the rank Bf is 3 as its normalized P&B effect 0.56 falls into the third bucket
Similarly, the rank ofP is 4, and so on. The ranking of parameters for queries Q1 arar®listed in Table 4.

In the next step, ranks are summed across all tuning semsjtigries, averaged, and sorted in ascending order.
The most important parameters will have the lowest cumudatank. The average rankings of the parameters
P, P, P3, Py, Ps, Ps; and P; of queries Q1 and Q2 as listed in Table 4 are 4.0, 2.5, 4.061554.0, and 2.0,
respectively. Therefore, final ranking is 4, 3, 4, 1, 7, 4, anekspectively. Ranking indicates that is the most
important configuration parametdr; is the second most important configuration parameter,\ietbby P,

{Py, P3, Ps}, andPs, in order. A detailed description of this methodology caridyend in [10].

4.2 Compressing a Query Workload

To select a compressed query, all queries of the originakivad are divided into two groups: tuning sensitive
and insensitive. One query from the insensitive group ikthexd in the compressed query workload, while the
tuning sensitive group is further divided into subgroupsdshon the similarities of the effects of the configu-
ration parameters. For each query, the effects are nomdalthe maximum effect of the parameters for the
corresponding query. Then, the Euclidean distance of thmaled effects among the queries is calculated to
estimate a similarity score. If the Euclidean distance betwhe effects of the two queries is less than the user-
chosen similarity threshold, we consider them as similarigsg in terms of the performance bottlenecks and
place them in the same group. Finally, one query is selected €ach subgroup to include in the compressed
query workload.

In the continuing example, the tuning sensitive group &iasif queries Q1 and Q2; and the insensitive
group consists of query Q3. The Euclidean distance betweendrmalized effects of queries Q1 and Q2 from
Table 3 isy/(0.56 — 0.33)2 + (0.41 — 0.87)% + ... + (0.13 — 1.0)2 + (0.92 — 0.59)2 = 1.36. If the threshold
of similarity score is 1.50, then we can consider queries @l @2 to be similar in terms of their impact of
the performance bottleneck parameters. In the compressag workload, we can include either query Q1 or
query Q2. If we select query Q1, then the compressed quergleaat consists of queries Q1 and Q3. A detailed
description of this methodology can be found in [21].

5 Experimental Results

All the experiments in this section are conducted in a mazkhiith two Intel XEON 2.0 GHz w/HT CPUs, 2
GB RAM, and 74 GB 10,000 RPM disk. We use the TPC-H benchmdr&rid PostgreSQL [1] to demonstrate
our methodologies. For demonstration, we use 22 read-oR[g-H queries, Q1-Q22, and data size of 1 GB.
We consider only those PostgreSQL configuration param#tatsare relevant to the read-only queries. The
high and low values of each parameter are chosen in a ranetsatct will act as a monotonic parameter. A
detailed information of the values used can be found in [Edlfthermore, we have included some parameters,
for examplef sync andcheckpoi nt _t i meout , which are not relevant for the read-only queries, yet they
help in verifying that our method is working correctly. I#lin rankings or effects become low compared to other
parameters, then it will give an indication that our methodectly identifies the performance bottlenecks.

The P&B effects of all configuration parameters are caledlaising thd>&B design with foldoverin order
to identify the insensitive queries, COV of 0.05 is seleasd threshold. Out of 22 queries, the COVs of the
queries Q4, Q6, Q7, Q10, Q11, Q12, Q14, Q15, Q17, Q18, and @2fand to be less than 0.05. These
11 queries formed one single group of tuning insensitiverigae The ranking of the parameters for tuning
sensitive queries is listed in Table 5. For more detailedlte®f the estimated and normalized P&B effects,
the readers are referred to [21]. Different parameters thighsame rank indicates that they have similar effects
on the performance. For query Qdor k_memis the most important parameter, while other parametersotlo n
have any impact on performance. For query @2f ecti ve_cache_si ze andshar ed_buf f er s are the
first and sixth most important parameters, respectivelylendther parameters do not have significant impact
on performance. Similarly, the ranking of the parameterstber queries indicates the relative importance of
corresponding parameter in the query performance.

The ranking of the parameters for the original TPC-H queryklead consisting of tuning sensitive queries
is listed in the first and second columns of Table 6. The resaollicate thawwor k_nemis the most impor-
tant configuration parameteshar ed_buf f er s andef f ecti ve_cache_si ze are second most important
parameters, followed bgpu_oper at or cost, randompage_cost, and so on. The result also indicates
thatf sync andcheckpoi nt ti nme_out do not appear in the top five most important parameters list. T
verify that our results match with the decisions made by DB#& compare our parameter ranking against the
PostgreSQL 8.0 Performance Checklist [5]. This checldist set of rules of thumb for setting up PostgreSQL
server where it suggests the settings of configuration petenithat most DBAs will want to change. Among
the parameters we are considering, according to this dsedkkere are six important parameters that need
to be tuned, namelyrax_connecti ons, shared_buffers, wor k_.nem mai nt enance_wor k_nem
ef fective_cachesi ze, andrandompage_cost. Four of these six parameters appear in our top five
important parameters list. The differences between owdtragd this list are: (1) we find that the parameter
cpu_oper at or _cost is an important one to our query workload and (2) the paranmetg _connect i ons
appears to be less important to our workload as we do notaensbncurrently running queries. Therefore,
in general, our ranking methodology matches the generaletjoes that are suggested for database tuning in
addition to adding specific tuning decisions that match thergquery workload.

To select a compressed query workload, we set a threshol8 @dthe Euclidean distance. At this threshold
the 11 tuning sensitive queries form eight grouf@1, Q8, Q16, {Q2, Q13, {Q3}, {Q5}, {Q9}, {Q19, Q21
and{Q20}. In the compressed workload, from each group we include tleeygvhich creates less perturbations
in the original query workload ranking. In addition, we haeeinclude one query from the insensitive group
in the compressed workload. We select the query which hasitgest execution time. Our compressed query
workload includes queries Q2, Q3, Q5, Q8, Q9, Q18, Q20, arfd PRe new ranking for the compressed query
workload is given in the third and fourth columns of Table GeTesult indicates that excegdtar ed_buf fers
andef f ecti ve_cache_si ze, the ranking of the rest of the parameters is identisddar ed _buf f er s is
ranked second in the original query workload, while it iskemh third in the compressed query workload. On
the other handef f ecti ve_cache_si ze is ranked second in the original query workload, while itasked

Parameter Q1 | Q2| Q3| Q5| Q8| Q9| Q13| Q16 | Q19 | Q20 | Q21
checkpointtimeout 15| 15| 15| 13| 15 4 15 15 15 7 15
deadlocktimeout 15| 15| 13| 15| 13 4 15 15 15 7 14
fsync 15| 15| 15| 15| 15 2 15 15 15 6 15
max.connections 15| 15| 12 13| 13| 11 15 15 15 6 14
sharedbuffers 15 6| 15| 15| 15| 12 7 14 1 6 1
statsstartcollector 15| 15| 15 15| 15| 11 15 15 15 7 14
cpwindextuple_cost 15| 15| 13| 15| 15 9 15 15 15 7 12
cpu.operatorcost 15| 15| 10| 13| 15 1 15 15 15 1 15
cputuple_cost 15| 15| 13| 13| 14 8 15 15 15 7 14
effective.cachesize 15 1 11 13| 15 1 1 15 15 6 13
geqo 15| 15 9| 13| 12| 10 15 15 15 7 14
maintenancevorkmem | 15| 15| 11| 15| 11 | 10 15 15 15 6 12
randompagecost 15| 15| 13 1 13 4 15 15 15 12 15
tempbuffers 15| 15| 11| 15| 15 3 15 15 15 7 15
work_mem 1 15 1 13 1 9 15 1 15 7 15

Table 5:Ranking of the configuration parameters for the tuning seesTPC-H queries.

Rank | Original Workload Rank | Compressed Workload
1 work_-mem 1 work_-mem

2 effective.cachesize 1 effective.cachesize

2 sharedbuffers 3 sharedbuffers

4 cpuoperatorcost 3 cpuoperatorcost

5 randompagecost 5 randompagecost

6 geqo 6 geqo

6 maintenancevork_mem || 6 maintenancevork_-mem
6 deadlocktimeout 6 deadlocktimeout

6 tempbuffers 6 tempbuffers

10 max.connections 10 max.connections

10 cputuple.cost 10 cputuplecost

10 fsync 10 fsync

10 checkpointtimeout 10 checkpointtimeout

14 cpuwindextuple_cost 14 cpuwindextuple_cost

15 statsstart.collector 15 statsstart.collector

Table 6:Ranking of the configuration parameters estimated by thggnaii and compressed query workloads.

first in the compressed query workload. However, as longadighof topmost important parameters does not
change drastically, in reality it does not cause much imipeittning activities.

6 Related Work

Major database vendors offer tools for tuning databaseigdlysesign [9, 3, 22]. IBM DB2 provides a utility
namedaut oconf i gur e for automatically selecting the initial values for the cgnufiation parameters based
on generic workload behavior [15]. Oracle Automatic DatsbBiagnostic Monitor (ADDM) tool possesses a
holistic view of the database, identifies root causes of #ropmance bottlenecks, and estimates the benefits of
eliminating performance bottlenecks [12]. In Microsoft ISQerver, most of the parameters can be configured
either through Enterprise Manager or with the T-S§ji.conf i gur e command [11]. However, none of the
current tools rank the configuration parameters based anittygact on the DBMS performance.

Two major techniques for query workload compression ar@gsed in the literature. The first technique
groups SQL statements based on the accessed tables andljmims [7]. The second technique focuses on the
most complex and costly queries in the workload and igndnerajueries [22]. In contrast, our proposed work-
load compression methodology selects subset workloadilmassimilarities of the performance bottlenecks of
the configuration parameters.

7 Conclusion

We have proposed methodologies for ranking configuratioamaters and selecting a compressed query work-
load based on the impact of configuration parameters on tHd®Berformance for a given query workload.
These methodologies are quite generic and can also be épplimn-database systems. They will greatly help
DBAs of all knowledge levels to prioritize tuning activiiend reduce time and effort. In the future, we are plan-
ning to perform the following extensions: 1) validating #esumptions behind calculating parameter effects,
and 2) suggesting the appropriate values of the configurgoameters using the estimated P&B effects.

8 Acknowledgements

This work was supported in part by NSF grant nos. CCF-062B46PCCF-0541162, the University of Min-
nesota Digital Technology Center Intelligent Storage ©@aiism, and the Minnesota Supercomputing Institute.

References

[1] PostgreSQL DBMS Documentatioht t p: / / www. post gr esql . org/ .
[2] Transaction Processing Coundilt t p: / / ww. t pc. or g/ .
[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Naagyga and M. Syamala. Database Tuning Advisor for
Microsoft SQL Server 2005. IRroc. of VLDB 2004.
[4] T. Allen. Introduction to Engineering Statistics and Six Sigma: iStiztal Quality Control and Design of Experiments
and SystemsSpringer, 2006.
[5] J. Berkus. Power PostgreSQL: PostgreSQL Performancdifieated. htt p: / / www. power post gresql .
com PerflList/.
[6] D. Cappucio, B. Keyworth and W. Kirwin. The Total Cost oh@ership: The Impact of System Management Tools.
Strategic Analysis Technical Report, Gartner Group, Stad)fCT, 1996.
[7] S. Chaudhuri, A. K. Gupta and V. Narasayya. Compresgihgverkloads. InProc. of SIGMOD 2002.
[8] S. Chaudhuriand G. Weikum. Rethinking Database Architee: Towards s Self-tuning RISC-style Database Sys-
tem. InProc. of VLDB 2000.
[9] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait and M. Ziddin. Automatic SQL Tuning in Oracle 10g. Rroc.
of VLDB, 2004.
[10] B. Debnath, D. Lilja and M. Mokbel. SARD: A Statisticalpfroach for Ranking Database Tuning Parameters. In
Proc. of 3rd Intl. Workshop on Self-Managing Database $yst2008.
[11] S.Deluca, M. Garcia, J. Reding and E. Whalkticrosoft SQL Server 7.0 Performance Tuning Technicali@ete
Microsoft Press, March 2000.
[12] K. Dias, M. Ramacher, U. Shaft, V. Venkataramamani antV@od. Automatic Performance Diagnosis and Tuning
in Oracle. InProc. of CIDR 2005.
[13] C. Garry. Who's Afraid of Self-Managing Databases®tt p: / / ww. eweek. com arti cl e2/ 0, 1895,
1833662, 00. asp, June 30, 2005.
[14] Hurwitz Group. Achieving Faster Time-to-Benefit anddReed TCO with Oracle Certified Configurations. March,
2002.
[15] E. Kwan, S. Lightstone, A. Storm and L. Wu. Automatic @igaration for IBM DB2 Universal Database. IBM
Perfromance Technical Reppdanuary 2002.
[16] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, Arft, M. Surendra and D. Zilio. Making DB2 Products
Self-Managing: Strategies and Experiend&&E Data Engineering Bulletir29(3), 2006.
[17] D. Lilja. Measuring Computer Performance A Practitioner's Gui@ambridge University Press, 2000.
[18] D. Montgomery.Design and Analysis of Experimenwiley, 2001.
[19] R. Plackett and J. Burman. The Design of Optimum Muttifaial Experiments. IiBiometrika Vol. 33 No. 41946.
[20] A. Rosenberg. Improving Query Performance in Data Wauses. http://ww. tdw .org/
Publ i cati ons/ Bl Jour nal / di spl ay. aspx?l D=7891, 2005.
[21] J. Skarie, B. Debnath, D. Lilja and M. Mokbel. SCRAP: Aafistical Approach for Creating Compact Representa-
tional Query Workload based on Performance BottleneckBrde. of ISWC 2007.
[22] D. zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, CarGia-Arellano and S. Fadden. DB2 Design Advisor:
Integrated Automated Physical Database Desigerart. of VLDB 2004.

