
Exploiting the Impact of Database System Configuration
Parameters: A Design of Experiments Approach

Biplob K. Debnath, Mohamed F. Mokbel, and David J. Lilja
University of Minnesota, Twin Cities, USA.

debna004@umn.edu, mokbel@cs.umn.edu, and lilja@ece.umn.edu

Abstract

Tuning database system configuration parameters to proper values according to the expected query
workload plays a very important role in determining DBMS performance. However, the number of
configuration parameters in a DBMS is very large. Furthermore, typical query workloads have a large
number of constituent queries, which makes tuning very timeand effort intensive. To reduce tuning time
and effort, database administrators rely on their experience and some rules of thumb to select a set of
important configuration parameters for tuning. Nonetheless, as a statistically rigorous methodology is
not used, time and effort may be wasted by tuning those parameters which may have no or marginal
effects on the DBMS performance for the given query workload. Database administrators also use
compressed query workloads to reduce tuning time. If not carefully selected, the compressed query
workload may fail to include a query which may reveal important performance bottleneck parameters.
In this article, we provide a systematic approach to help thedatabase administrators in tuning activities.
We achieve our goals through two phases. First, we estimate the effects of the configuration parameters
for each workload query. The effects are estimated through adesign of experiments-basedPLACKETT &
BURMAN design methodology where the number of experiments required is linearly proportional to the
number of input parameters. Second, we exploit the estimated effects to: 1) rank DBMS configuration
parameters for a given query workload based on their impact on the DBMS performance, and 2) select
a compressed query workload that preserves the fidelity of the original workload. Experimental results
using PostgreSQL and TPC-H query workload show that our methodologies are working correctly.

1 Introduction

Businesses are increasingly building larger databases to cope with the rapid current growth of data. Consistent
performance of the underlying database system is key to success of a business. A typical database management
system (DBMS) has hundreds of configuration parameters and the appropriate setting of these parameters plays
a critical role in performance. Database administrators (DBAs) are expected to tune the configuration param-
eters to appropriate values that get the best DBMS performance for the application of interest. The success
of tuning depends on many factors including the query workload, relational schemas, as well as the exper-
tise of the DBAs [20]. However, skilled DBAs are becoming increasingly rare and expensive [16]. A recent

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



study on information technology versus DBA costs showed that personnel cost is estimated at 47% of the total
cost of ownership [13]. As has been recenlty reported, DBAs spend nearly a quarter of their time on tuning
activities [20]. To reduce the total cost of ownership, it isof essence that DBAs focus only on tuning those con-
figuration parameters which have the most impact on system performance for a representative query workload.

Different database configuration parameters have different impact on a DBMS performance. A sound statis-
tical methodology for quantifying the impact of each configuration parameter and the interactions among these
parameters on a DBMS performance is to perform afull factorial design[17], where all possible combinations
of the input values of the configuration parameters are considered. However, the major problem in applying a
full factorial designin a DBMS is the large number of configuration parameters. Forexample, PostgreSQL [1]
has approximately 100 configuration parameters and all parameters have multiple possible values. Even if each
configuration parameter assumes only two values, then, given a query workload ofq queries, we have to perform
q ∗ 2100 experiments at least twice to apply a full factorial design,which is not feasible in terms of time and
effort. To avoid this problem, in many cases, DBAs rely on their experience and rules of thumb to select the
appropriate values for the configuration parameters. As heuristics based on experience and intuition are often
used, time and effort may be wasted to enhance the performance by tuning those parameters that may have no or
marginal effects on the overall performance of the given query workload. In general, misdirected tuning efforts
increase the total cost of ownership [8, 12, 6, 14].

In this article, we are addressing the following problem:Given a DBMS, a set of configuration parameters,
a range of values for all parameters, and a query workload; estimate the effect of each configuration parameter
based on its impact on the DBMS performance for the query workload. In particular, we propose a methodology
based on the PLACKETT & B URMAN (P&B) design [19] to estimate the impact of database system configuration
parameters. The main idea is to conduct a linear number of experiments that provide an approximate sampling of
the entire search space. In each experiment, the values of the configuration parameters are varied systematically
over a specified range of acceptable values. Subsequent analysis of the collected experimental data is used to
estimate the effects of the configuration parameters on the DBMS performance for the given query workload.
Once we have the estimated effect of each configuration parameter for all workload queries, we can exploit
these effects for: (1) ranking the configuration parametersbased on the impact on DBMS performance for the
entire query workload, and (2) selecting a compressed queryworkload based on the similarities of performance
bottleneck parameters that preserves the fidelity of the original workload.

The rest of this article is organized as follows: Section 2 describes ourdesign of experiments-based method-
ology. The methodology to estimate the effects of the configuration parameters is described in Section 3. Rank-
ing configuration parameter and selecting a compressed workload are explained in Section 4. Experimental
results are described in Section 5. Section 6 highlights related work. Finally, Section 7 concludes the article.

2 Design of Experiments Based Methodology

The simplest design strategy to quantify the impact of all factors and interactions is to apply afull factorial
design, for example, ANOVA [17], in which system response is measured for all possible input combinations.
However, afull factorial designrequires an exponential number of experiments. To reduce the number of
experiments, we make two assumptions. First, the provoked response, such as the total execution time, is a
monotonic function of the input parameter values. This indicates that for each configuration parameter, we can
consider only two values: minimum and maximum. The intuition behind this is that stimulating the system with
inputs at their extreme values will provoke the maximum range of output responses for each input. Second,
according to thesparsity of effects principle, system response is largely dominated by a few main factors and
low-order interactions. As a consequence, we can safely ignore the effects of higher order interactions. Based
on these assumptions, we use atwo-level factorialdesign methodology named PLACKETT & B URMAN (P&B)
design [19], which requires only linear number of experiments.

2



P&B Design Matrix Execution Time
P1 P2 P3 P4 P5 P6 P7 Q1 Q2 Q3

Exp1 +1 +1 +1 -1 +1 -1 -1 34 110 10.2
Exp2 -1 +1 +1 +1 -1 +1 -1 19 72 10.1
Exp3 -1 -1 +1 +1 +1 -1 +1 111 89 10.3
Exp4 +1 -1 -1 +1 +1 +1 -1 37 41 10.3
Exp5 -1 +1 -1 -1 +1 +1 +1 61 96 10.2
Exp6 +1 -1 +1 -1 -1 +1 +1 29 57 10.2
Exp7 +1 +1 -1 +1 -1 -1 +1 79 131 10.3
Exp8 -1 -1 -1 -1 -1 -1 -1 19 47 10.1

Exp9 -1 -1 -1 +1 -1 +1 +1 135 107 10.3
Exp10 +1 -1 -1 -1 +1 -1 +1 56 74 10.3
Exp11 +1 +1 -1 -1 -1 +1 -1 112 48 10.1
Exp12 -1 +1 +1 -1 -1 -1 +1 74 91 10.1
Exp13 +1 -1 +1 +1 -1 -1 -1 55 99 10.3
Exp14 -1 +1 -1 +1 +1 -1 -1 117 123 10.1
Exp15 -1 -1 +1 -1 +1 +1 -1 51 77 10.3
Exp16 +1 +1 +1 +1 +1 +1 +1 76 81 10.2

Table 1:The P&B design matrix with foldover forN = 7. Execution time of queries Q1-Q3 are in the last three columns.

For each experiment of the P&B design, the value of each parameter is given by a prescribedP&B design
matrix. Table 1 gives an example of thedesign matrixfor the seven parametersP1, P2, P3, P4, P5, P6, and
P7 depicted by the columns 2-8. TheExpi indicates the values of the configuration parameters that will be
used in thei-th experiment. An entry in the parameter columns of the design matrix is either “+1” or “-1”, that
corresponds to a value slightly higher or lower than the normal range of values for the corresponding parameter,
respectively. The “+1” and “-1” values are not restricted toonly numeric values. For example, for the buffer
page replacement algorithm, the “-1” value can be “RANDOM” and “+1” value can be “CLOCK”. TheP&B
design matrixis constructed by cyclic repetition of a single series usinga simple methodology. It has been
verified that such a method would result in desirable statistical properties [4]. Also, it has been verified that if
the monotonic and low interactions assumptions are valid, the P&B design generates comparable results as the
full factorial design. The detailed theoretical explanation behind this behavior is explained in [19].

The dimensions of theP&B design matrixdepend on the number of configuration parameters,N . The
base design matrix hasX rows andX − 1 columns, whereX is the next multiple of four greater thanN , i.e.,
X = ⌊(N/4)+1⌋∗4. For example, ifN = 7, thenX = 8, while if N = 8, thenX = 12. If N < (X−1), then the
number of columns in theP&B design matrixis more than the number of configuration parameters. In this case,
the additional(X − N − 1) last columns of theP&B design matrixare simply ignored. The recommendations
of the “+1” and “-1” parameter value settings forX = 8, 12, 16,. . ., 96, 100 experiments are given in [19]. The
first row of theP&B design matrixis selected based on those recommendations according to thevalue ofX. The
rest(X − 1) rows of theP&B design matrixare constructed by right cyclic shifting of the immediate preceding
row. All entries of theExpX-th row of the P&B design matrix are set to “-1”. The columns 2-8 in the first eight
experiments (Exp1-Exp8) of the Table 1 indicates the baseP&B design matrixfor N=7.

An improvement of the baseP&B designmethodology is theP&B design with foldover[18]. Thefoldover
helps to quantify the two parameter interactions more accurately. However, it requiresX additional experiments.
The additional rows in theP&B design matrixare constructed by reversing the sign of the topX rows matrix
entries. The last eight rows (Exp9-Exp16) of Table 1 gives the additional design matrix entries for the foldover
for N= 7. Experiments are conducted by setting up the values of theconfiguration parameters according to the
P&B design matrixand response time is recorded to estimate the effect of each parameter.

3



P&B Effect
P1 P2 P3 P4 P5 P6 P7 COV of Execution Times

Q1 109 79 167 193 21 25 177 0.55
Q2 61 161 9 143 39 185 109 0.32
Q3 0.40 0.80 0.00 0.40 0.40 0.00 0.40 0.01

Table 2:The P&B effects for the queries Q1, Q2, and Q3.

P1 P2 P3 P4 P5 P6 P7

Q1 0.56 0.41 0.87 1.0 0.11 0.13 0.92
Q2 0.33 0.87 0.05 0.77 0.21 1.0 0.59

Table 3:The P&B normalized effects with respect to the maximum effect for the queries Q1 and Q2.

3 Effect Estimation of the Configuration Parameters

This section describes how to use theP&B designmethodology described in Section 2 to estimate the effects
of configuration parameters for each query of the given workload. The effect of each configuration parameter
is calculated by multiplying the corresponding “+1” or “-1”of that parameter in theExpi-th row of theP&B
design matrixwith the query execution time of thei-th experiment, and summing up the products across all rows
of the design matrix. The absolute value of the net effect is used in the subsequent analysis.

For illustration, suppose we estimate the P&B effects of a query workload consisting of three queries Q1, Q2,
and Q3 as listed in Table 1. We have seven configuration parameters,P1 to P7. In this example, we assume that
foldover is used, therefore we conduct 16 experiments. The specification of the parameter values that need to be
used in all16 experiments are given in columns 2-8 and rowsExp1-Exp16 of Table 1. The net effect of the first
parameterP1 for query Q1 is calculated by multiplying the entries in the second column with the entries in the
ninth column and summing up across all 16 rows (Exp1-Exp16). For query Q1, the net effect of the parameter
P1 is estimated as:EffectP1

= abs((+1∗34)+(−1∗19)+ . . .+(−1∗51)+(+1∗76)) = abs(−109) = 109.
Similarly, the net effect of the second parameterP2 for query Q1 is calculated by multiplying the entries in the
third column with the entries in the ninth column and summingacross all 16 rows (Exp1-Exp16), and so on.
Table 2 gives the net P&B effects of all seven parameters for the queries Q1, Q2, and Q3.

The last column of Table 2 gives thecoefficient of variation (COV)of the response time across all experi-
ments for queries Q1, Q2, and Q3. COV is defined as the ratio of thestandard deviationto theaverageexecution
time. A very low COV value indicates that all effects are essentially the same, i.e., the query performance will
not be affected by the change in configuration parameters settings. In general, if the COV is less than 0.05, we
can safely ignore the effects and mark the corresponding query as tuning insensitive. In the illustrative example,
query Q3 is tuning insensitive as its COV is 0.01.

4 Exploiting the Configuration Parameters Effects

Once we have the P&B effects of the configuration parameters for all workload queries, we can use these
estimated effects to: (1) rank the configuration parametersfor the entire workload based on their relative impact
on the DBMS performance, and (2) select a compressed query workload that preserves the fidelity of the original
query workload. We describe these two methodologies in detail in the following subsections. Throughout this
section, we will use the query workload in Table 1 as a runningexample.

4



P1 P2 P3 P4 P5 P6 P7

Q1 3 4 1 1 7 7 1
Q2 5 1 7 2 6 1 3

Table 4:Ranking of the configuration parameters for the queries Q1 and Q2.

4.1 Ranking the Configuration Parameters for a Query Workload

Ranking configuration parameters for a query workload consists of two steps. First, we rank the parameters
for each tuning sensitive query of the workload based on the relative magnitude of their P&B effects. Second,
rankings of individual tuning sensitive queries are combined to estimate the overall ranking of a parameter for
the workload. The queries which are insensitive to parameter tuning are not included in the workload ranking
calculation. Therefore, we do not consider query Q3.

To rank the configuration parameters for a tuning sensitive query, the estimated P&B effects are normalized
with respect to the maximum effect and the range of normalized effects are divided intoN buckets, whereN is
number of configuration parameters. A parameter is assignedto the ranki if its normalized effect falls into thei-
th bucket range. In the continuing example, we have seven parameters. Therefore the range for the first, second,
third, fourth, fifth, sixth, and seventh buckets are, [1, 0.86), [0.86, 0.71), [0.71, 0.57), [0.57, 0.43), [0.43, 0.29),
[0.29, 0.14), and [0.14, 0.0], respectively. The normalized and rounded P&B effects for the queries Q1 and Q2
are listed in Table 3. For Q1, the rank ofP1 is 3 as its normalized P&B effect 0.56 falls into the third bucket.
Similarly, the rank ofP2 is 4, and so on. The ranking of parameters for queries Q1 and Q2are listed in Table 4.
In the next step, ranks are summed across all tuning sensitive queries, averaged, and sorted in ascending order.
The most important parameters will have the lowest cumulative rank. The average rankings of the parameters
P1, P2, P3, P4, P5, P6 andP7 of queries Q1 and Q2 as listed in Table 4 are 4.0, 2.5, 4.0, 1.5,6.5, 4.0, and 2.0,
respectively. Therefore, final ranking is 4, 3, 4, 1, 7, 4, and2, respectively. Ranking indicates thatP4 is the most
important configuration parameter,P7 is the second most important configuration parameter, followed byP2,
{P1, P3, P6}, andP5, in order. A detailed description of this methodology can befound in [10].

4.2 Compressing a Query Workload

To select a compressed query, all queries of the original workload are divided into two groups: tuning sensitive
and insensitive. One query from the insensitive group is included in the compressed query workload, while the
tuning sensitive group is further divided into subgroups based on the similarities of the effects of the configu-
ration parameters. For each query, the effects are normalized to the maximum effect of the parameters for the
corresponding query. Then, the Euclidean distance of the normalized effects among the queries is calculated to
estimate a similarity score. If the Euclidean distance between the effects of the two queries is less than the user-
chosen similarity threshold, we consider them as similar queries in terms of the performance bottlenecks and
place them in the same group. Finally, one query is selected from each subgroup to include in the compressed
query workload.

In the continuing example, the tuning sensitive group consists of queries Q1 and Q2; and the insensitive
group consists of query Q3. The Euclidean distance between the normalized effects of queries Q1 and Q2 from
Table 3 is

√

(0.56 − 0.33)2 + (0.41 − 0.87)2 + . . . + (0.13 − 1.0)2 + (0.92 − 0.59)2 = 1.36. If the threshold
of similarity score is 1.50, then we can consider queries Q1 and Q2 to be similar in terms of their impact of
the performance bottleneck parameters. In the compressed query workload, we can include either query Q1 or
query Q2. If we select query Q1, then the compressed query workload consists of queries Q1 and Q3. A detailed
description of this methodology can be found in [21].

5



5 Experimental Results

All the experiments in this section are conducted in a machine with two Intel XEON 2.0 GHz w/HT CPUs, 2
GB RAM, and 74 GB 10,000 RPM disk. We use the TPC-H benchmark [2] and PostgreSQL [1] to demonstrate
our methodologies. For demonstration, we use 22 read-only TPC-H queries, Q1-Q22, and data size of 1 GB.
We consider only those PostgreSQL configuration parametersthat are relevant to the read-only queries. The
high and low values of each parameter are chosen in a range such that it will act as a monotonic parameter. A
detailed information of the values used can be found in [21].Furthermore, we have included some parameters,
for example,fsync andcheckpoint timeout, which are not relevant for the read-only queries, yet they
help in verifying that our method is working correctly. If their rankings or effects become low compared to other
parameters, then it will give an indication that our method correctly identifies the performance bottlenecks.

The P&B effects of all configuration parameters are calculated using theP&B design with foldover. In order
to identify the insensitive queries, COV of 0.05 is selectedas a threshold. Out of 22 queries, the COVs of the
queries Q4, Q6, Q7, Q10, Q11, Q12, Q14, Q15, Q17, Q18, and Q22 are found to be less than 0.05. These
11 queries formed one single group of tuning insensitive queries. The ranking of the parameters for tuning
sensitive queries is listed in Table 5. For more detailed results of the estimated and normalized P&B effects,
the readers are referred to [21]. Different parameters withthe same rank indicates that they have similar effects
on the performance. For query Q1,work mem is the most important parameter, while other parameters do not
have any impact on performance. For query Q2,effective cache size andshared buffers are the
first and sixth most important parameters, respectively, while other parameters do not have significant impact
on performance. Similarly, the ranking of the parameters for other queries indicates the relative importance of
corresponding parameter in the query performance.

The ranking of the parameters for the original TPC-H query workload consisting of tuning sensitive queries
is listed in the first and second columns of Table 6. The results indicate thatwork mem is the most impor-
tant configuration parameter,shared buffers andeffective cache size are second most important
parameters, followed bycpu operator cost, random page cost, and so on. The result also indicates
that fsync andcheckpoint time out do not appear in the top five most important parameters list. To
verify that our results match with the decisions made by DBAs, we compare our parameter ranking against the
PostgreSQL 8.0 Performance Checklist [5]. This checklist is a set of rules of thumb for setting up PostgreSQL
server where it suggests the settings of configuration parameters that most DBAs will want to change. Among
the parameters we are considering, according to this checklist there are six important parameters that need
to be tuned, namely,max connections, shared buffers, work mem, maintenance work mem,
effective cache size, andrandom page cost. Four of these six parameters appear in our top five
important parameters list. The differences between our result and this list are: (1) we find that the parameter
cpu operator cost is an important one to our query workload and (2) the parameter max connections
appears to be less important to our workload as we do not consider concurrently running queries. Therefore,
in general, our ranking methodology matches the general guidelines that are suggested for database tuning in
addition to adding specific tuning decisions that match the given query workload.

To select a compressed query workload, we set a threshold of 0.5 for the Euclidean distance. At this threshold
the 11 tuning sensitive queries form eight groups:{Q1, Q8, Q16}, {Q2, Q13}, {Q3}, {Q5}, {Q9}, {Q19, Q21},
and{Q20}. In the compressed workload, from each group we include the query which creates less perturbations
in the original query workload ranking. In addition, we haveto include one query from the insensitive group
in the compressed workload. We select the query which has thelargest execution time. Our compressed query
workload includes queries Q2, Q3, Q5, Q8, Q9, Q18, Q20, and Q21. The new ranking for the compressed query
workload is given in the third and fourth columns of Table 6. The result indicates that exceptshared buffers
andeffective cache size, the ranking of the rest of the parameters is identical.shared buffers is
ranked second in the original query workload, while it is ranked third in the compressed query workload. On
the other hand,effective cache size is ranked second in the original query workload, while it is ranked

6



Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21
checkpointtimeout 15 15 15 13 15 4 15 15 15 7 15
deadlocktimeout 15 15 13 15 13 4 15 15 15 7 14
fsync 15 15 15 15 15 2 15 15 15 6 15
max connections 15 15 12 13 13 11 15 15 15 6 14
sharedbuffers 15 6 15 15 15 12 7 14 1 6 1
statsstart collector 15 15 15 15 15 11 15 15 15 7 14
cpu index tuple cost 15 15 13 15 15 9 15 15 15 7 12
cpu operatorcost 15 15 10 13 15 1 15 15 15 1 15
cpu tuple cost 15 15 13 13 14 8 15 15 15 7 14
effective cachesize 15 1 11 13 15 1 1 15 15 6 13
geqo 15 15 9 13 12 10 15 15 15 7 14
maintenancework mem 15 15 11 15 11 10 15 15 15 6 12
randompagecost 15 15 13 1 13 4 15 15 15 12 15
temp buffers 15 15 11 15 15 3 15 15 15 7 15
work mem 1 15 1 13 1 9 15 1 15 7 15

Table 5:Ranking of the configuration parameters for the tuning sensitive TPC-H queries.

Rank Original Workload Rank Compressed Workload
1 work mem 1 work mem
2 effective cachesize 1 effective cachesize
2 sharedbuffers 3 sharedbuffers
4 cpu operatorcost 3 cpu operatorcost
5 randompagecost 5 randompagecost
6 geqo 6 geqo
6 maintenancework mem 6 maintenancework mem
6 deadlocktimeout 6 deadlocktimeout
6 tempbuffers 6 temp buffers
10 max connections 10 max connections
10 cpu tuple cost 10 cpu tuple cost
10 fsync 10 fsync
10 checkpointtimeout 10 checkpointtimeout
14 cpu index tuple cost 14 cpu index tuple cost
15 statsstart collector 15 statsstart collector

Table 6:Ranking of the configuration parameters estimated by the original and compressed query workloads.

first in the compressed query workload. However, as long as the list of topmost important parameters does not
change drastically, in reality it does not cause much impactin tuning activities.

6 Related Work

Major database vendors offer tools for tuning database physical design [9, 3, 22]. IBM DB2 provides a utility
namedautoconfigure for automatically selecting the initial values for the configuration parameters based
on generic workload behavior [15]. Oracle Automatic Database Diagnostic Monitor (ADDM) tool possesses a
holistic view of the database, identifies root causes of the performance bottlenecks, and estimates the benefits of
eliminating performance bottlenecks [12]. In Microsoft SQL Server, most of the parameters can be configured
either through Enterprise Manager or with the T-SQLsp configure command [11]. However, none of the
current tools rank the configuration parameters based on their impact on the DBMS performance.

Two major techniques for query workload compression are proposed in the literature. The first technique
groups SQL statements based on the accessed tables and join columns [7]. The second technique focuses on the
most complex and costly queries in the workload and ignore other queries [22]. In contrast, our proposed work-
load compression methodology selects subset workload based on similarities of the performance bottlenecks of
the configuration parameters.

7



7 Conclusion

We have proposed methodologies for ranking configuration parameters and selecting a compressed query work-
load based on the impact of configuration parameters on the DBMS performance for a given query workload.
These methodologies are quite generic and can also be applied to non-database systems. They will greatly help
DBAs of all knowledge levels to prioritize tuning activities and reduce time and effort. In the future, we are plan-
ning to perform the following extensions: 1) validating theassumptions behind calculating parameter effects,
and 2) suggesting the appropriate values of the configuration parameters using the estimated P&B effects.

8 Acknowledgements

This work was supported in part by NSF grant nos. CCF-0621462and CCF-0541162, the University of Min-
nesota Digital Technology Center Intelligent Storage Consortium, and the Minnesota Supercomputing Institute.

References
[1] PostgreSQL DBMS Documentation.http://www.postgresql.org/.
[2] Transaction Processing Council.http://www.tpc.org/.
[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya and M. Syamala. Database Tuning Advisor for

Microsoft SQL Server 2005. InProc. of VLDB, 2004.
[4] T. Allen. Introduction to Engineering Statistics and Six Sigma: Statistical Quality Control and Design of Experiments

and Systems. Springer, 2006.
[5] J. Berkus. Power PostgreSQL: PostgreSQL Performance Pontificated. http://www.powerpostgresql.

com/PerfList/.
[6] D. Cappucio, B. Keyworth and W. Kirwin. The Total Cost of Ownership: The Impact of System Management Tools.

Strategic Analysis Technical Report, Gartner Group, Stamford, CT, 1996.
[7] S. Chaudhuri, A. K. Gupta and V. Narasayya. Compressing sql workloads. InProc. of SIGMOD, 2002.
[8] S. Chaudhuri and G. Weikum. Rethinking Database Architecture: Towards s Self-tuning RISC-style Database Sys-

tem. InProc. of VLDB, 2000.
[9] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait and M. Ziauddin. Automatic SQL Tuning in Oracle 10g. InProc.

of VLDB, 2004.
[10] B. Debnath, D. Lilja and M. Mokbel. SARD: A Statistical Approach for Ranking Database Tuning Parameters. In

Proc. of 3rd Intl. Workshop on Self-Managing Database Systems, 2008.
[11] S. DeLuca, M. Garcia, J. Reding and E. Whalen.Microsoft SQL Server 7.0 Performance Tuning Technical Reference.

Microsoft Press, March 2000.
[12] K. Dias, M. Ramacher, U. Shaft, V. Venkataramamani and G. Wood. Automatic Performance Diagnosis and Tuning

in Oracle. InProc. of CIDR, 2005.
[13] C. Garry. Who’s Afraid of Self-Managing Databases?http://www.eweek.com/article2/0,1895,

1833662,00.asp, June 30, 2005.
[14] Hurwitz Group. Achieving Faster Time-to-Benefit and Reduced TCO with Oracle Certified Configurations. March,

2002.
[15] E. Kwan, S. Lightstone, A. Storm and L. Wu. Automatic Configuration for IBM DB2 Universal Database. InIBM

Perfromance Technical Report, January 2002.
[16] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, A. Storm, M. Surendra and D. Zilio. Making DB2 Products

Self-Managing: Strategies and Experiences.IEEE Data Engineering Bulletin, 29(3), 2006.
[17] D. Lilja. Measuring Computer Performance A Practitioner‘s Guide. Cambridge University Press, 2000.
[18] D. Montgomery.Design and Analysis of Experiments. Wiley, 2001.
[19] R. Plackett and J. Burman. The Design of Optimum Multifactorial Experiments. InBiometrika Vol. 33 No. 4, 1946.
[20] A. Rosenberg. Improving Query Performance in Data Warehouses. http://www.tdwi.org/

Publications/BIJournal/display.aspx?ID=7891, 2005.
[21] J. Skarie, B. Debnath, D. Lilja and M. Mokbel. SCRAP: A Statistical Approach for Creating Compact Representa-

tional Query Workload based on Performance Bottlenecks. InProc. of IISWC, 2007.
[22] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano and S. Fadden. DB2 Design Advisor:

Integrated Automated Physical Database Design. InProc. of VLDB, 2004.

8


