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ETH Zürich

Eric Lo
The Hong Kong Polytechnic University

Abstract

Testing is one of the most expensive and time consuming activities in the software development cycle.
In order to reduce the cost and the time to market, many approaches to automate certain testing tasks
have been devised. Nevertheless, a great deal of testing is still carried out manually. This paper gives
an overview of different testing scenarios and shows how database techniques (e.g., declarative specifi-
cations and logical data independence) can help to optimizethe generation of test databases.

1 Introduction

Everybody loves writing new code; nobody likes to test it. Unfortunately, however, testing is a crucial phase of
the software life cycle. It is not unusual that testing is responsible for 50 percent of the cost of a software project.
Furthermore, testing can significantly impact the time to market because the bulk of testing must be carried out
after the development of the code has been completed. Even with huge efforts in testing, a report of the NIST
[16] estimated the cost for the economy of the Unites States of America caused by software errors in the year
2000 to range from$22.2 to $59.5 billion (or about 0.6 percent of the gross domestic product).

In the early days of software engineering, most of the testing was carried out manually. One of the big trends
of modern software engineering is to automate testing activities as much as possible. Obviously, machines are
cheaper, faster, and less error-prone than humans. The key idea of test automation is that tests become programs.
Writing such test programs is not as much fun as writing new application code, but it is more fun than manually
executing the tests [3]. Automating testing is particularly attractive for the maintenance of existing software
products. With every new release of a product, the implementation of a change request, or a change in the
configuration of a deployment, a series of similar tests needto be carried out in order to make sure that the core
functionality of the system remains intact. In fact, most software vendors carry out nightly so-called regression
tests in order to track changes in the behavior of their software products on a daily basis.

In a nutshell, test automation involves writing and maintaining code and it is just as difficult as writing and
maintaining application code. In fact, as will be argued, writing and maintaining test code is more difficult
because it has additional dependencies. One such dependency which is of particular interest to this work is the
test databasewhich needs to be built and maintained together with the testcode as part of a test infrastructure.

In order to deal with the complexity of managing test code, the software engineering community has devel-
oped a number of methods and tools. The main hypothesis of this paper is that testing is (to a large extent) a
database problemand that many testing activities can be addressed best usingdatabase technology. It is argued
that test code should be declarative. In particular, the specification of a test database should be declarative, rather
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than a bunch of, say, Perl scripts. Given such a declarative specification (actually, we propose the use of SQL for
this purpose), testing can be optimized in various ways; e.g., higher coverage of test cases, less storage overhead,
higher priority for the execution of critical test cases, etc. Another important argument in favor of a declarative
specification of test code is the maintainability and evolution of the test code. Again, the belief is that logical
data independence helps with the evolution of test code and test databases in similar ways as with the evolution
of application or system code. Finally, testing actually does involve the management of large amounts of data
(test runs and test databases).

Of course, all software quality problems could be solved with formal methods of program verification, if
they would work. Unfortunately, they do not work yet for large-scale systems and breakthroughs in this field are
not foreseeable in the near future. Fortunately, test automation can benefit nicely from the results of the formal
methods community, as will be shown in Section 3.

The remainder of this paper is organized as follows. Section2 defines the many different aspects of test-
ing. Section 3 gives an overview on how database technology can be used in order to generate test databases.
Section 4 describes some research problems that we believe can be addressed by the database community.

2 The Big Picture

There has been a great deal of work in the area of software quality assurance. Obviously, one reason is the
commercial importance of the topic. Another reason is that testing involves many different activities. This
section gives a brief overview.

First of all, testing requires atest infrastructure. Such a test infrastructure is composed of four parts:

1. An installation of thesystem under test (SUT), possibly on different hardware and software platforms (e.g.,
operating systems, application servers). The SUT can be a whole application with its customizations (e.g.,
an SAP R/3 installation at a particular SAP customer), a specific component, or a whole sub-system. One
specific sub-system that we are particularly interested in is the testing of a database management system
as needs to be carried out by all DBMS vendors (e.g., IBM, Microsoft, MySQL, Oracle, Sybase).

2. A series oftest runs. A test run is a program that involves calls to the SUT with different parameter settings
[13]. Depending on the kind of test (see below), the test run can specify preconditions, postconditions,
and expected results for each call to the SUT. Test runs are often implemented using a scripting language
(e.g., Perl), the same programming language as the SUT (e.g., ABAP, Java, or VisualBasic), or some
declarative format (e.g., Canoo’s WebTest [1] and HTTrace [12]). In practice, it is not unusual to have
tens of thousands of test runs.

3. Test Database:The behavior of the SUT strongly depends on itsstate, which is ideally captured in a
database. In order to test a sales function of a CRM system, for instance, the database of the CRM system
must contain customers. When testing a DBMS, it does not makemuch sense to issue SQL queries to
an empty database instance (at least not always). In complexapplications, the state of the SUT might
be distributed across a set of databases, queues, files in thefile system (e.g., configuration files), and
even encapsulated into external Web Services which are outside of the control of the test infrastructure.
Obviously, for testing purposes, it is advantageous if the state is centralized as much as possible into a
single test database instance and if that test database instance is as small as possible. For certain kinds
of tests (e.g., scalability tests), however, it is important to have large test database instances. In order to
deal with external Web Services (e.g., testing an online store which involves credit card transactions), a
common technique is to make use of mock objects [4].

4. Test Manager:The test manager executes test runs according to a certain schedule. Again, schedules can
be specified manually or computed automatically [13]. During the execution of a test run, the test manager
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records differences between the actual and expected results (possibly response times for performance tests)
and compiles all differences into a test report. Furthermore, the test manager controls the state of the test
database if test runs have side effects.

Establishing such a test infrastructure is a significant investment. In practice, test infrastructures are often built
using a mix of proprietary code from vendors of components ofthe SUT, from home-grown developments of
test engineers, and dedicated testing tools (e.g., from Mercury or as part of IBM’s Rationale Rose suite). Often,
a great deal of testing needs to be carried out manually, thereby making the test team the fifth component of the
test infrastructure. To the best of our knowledge, there is no silver bullet solution on how to best build a test
infrastructure; likewise, there is no silver bullet solution to evolve a test infrastructure when the SUT evolves.
The situation becomes even worse when considering the otherdimensions of testing such as the granularity
of testing (component test vs. integration test vs. system test), kinds of test (functional specification vs. non-
functional requirements such as scalability, security, and concurrency), and the time at which tests are carried
out (before or after deployment).

Obviously, we have no coherent solution to address all thesetest scenarios. Nevertheless, we believe that
declarative specifications help in most cases. As an exampleshow case, the next section shows how declarative
specifications can be used in order to automate one particular activity that is important for software quality
assurance: the generation of test databases.

3 Generating Test Databases

This section presents several related techniques in order to generate test databases. Both the generation of test
databases in order to test application systems such as ERP and CRM systems and the generation of test databases
specifically for the testing of DBMS are studied. The novel feature of these techniques is that the generation of
the test databases isqueryand/orapplication-aware. This way it is possible to generaterelevanttest databases
that take characteristics of the SUT and test case into account. Traditionally, generic tools to generate test
databases (e.g., IBM DB2 Test Database Generator [2], [9], [8], or [14]) generate a test database based on the
schema only (and possibly some constants and scaling factors). As a result, many test databases in practice
are either manually constructed (possibly using the resultof a generic database generator as a starting point) or
constructed using scripts that must be programmed by the developer of the SUT for that particular purpose.

Query-awareand/orApplication-awaregeneration of test databases has two advantages. First, thegeneration
of test databases is simplified; only high-level declarative specifications are needed in order to generate a test
database: the programming of scripts or manual adjustmentsare typically not needed. Second, the evolution of
the system is easy. When the SUT changes and additional test data is needed, only the high-level declarative
description needs to be adjusted. As shown in Section 3.2, often it is only necessary to provide an additional
(SQL) query in order to specify the missing part that needs tobe generated for the evolved SUT.

3.1 Reverse Query Processing

Traditional query processing takes a database and a (SQL) query as input and returns the result of that query for
that specific database. The key idea of reverse query processing (RQP, for short) is to turn that process around.
The input of RQP is a query, a query result and a database schema (including integrity constraints); the result
is one possible database which has the property that if the query is applied to that database, the specified query
result is produced. Furthermore, the generated database meets all constraints specified in the database schema.

The most obvious application of RQP is the generation of testdatabases. In an OLAP application, for
example, RQP can be used to compute test databases from the definition of a data cube and an example report.
In OLTP applications, typically, several queries are needed in order to specify a meaningful test database (Section
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Figure 1: RQP Architecture

3.2). However, in general RQP has many more applications; e.g., security and the maintenance of materialized
views.

In principle, there are many different database instances which can be generated for a given query and a
result of that query. Depending on the usage of the test database, some of these instances might be better than
others. For functional testing of a database application, RQP should generate a small database which satisfies
the correctness criteria mentioned above, so that the running time for executing the tests is reduced. Thus,
our prototype implementation tries to generate a minimal test database for a given query and a result of that
query. However, other implementations are conceivable that satisfy different properties. The details of our
implementation are described in [5].

Figure 1 shows the architecture of our implementation. In many ways, it resembles the architecture of a
traditional (forward) query processor: A query is parsed, analyzed, optimized, and executed. Some of the key
differences are that SQL queries are parsed into areverse relational algebra, the optimizations are very different
than in traditional query processing, and that the run time algorithms are quite different.

The reverse relational algebra can be seen as the reverse variant of the traditional relational algebra and its
extensions for group-by and aggregation [10]. Consequently, executing reverse relational algebra operators at
runtime involves generating data. For example, the reverseprojection operator generates columns while the
forward projection operator deletes columns. In order to generate data that satisfies the constraints of the query
(e.g., a selection predicate) and the database schema, a decision procedure of a model checker is called by some
reverse relational algebra operators. This is one example in which test automation benefits from results of the
formal methods community.

In theory, reverse query processing is not decidable; that is, it is not always possible to determine whether
a database exists that meets the schema and the RQP correctness condition. In practice, however, RQP is
effective. For instance, RQP can be applied to all queries ofthe TPC-H benchmark and to all queries that we
have encountered so far. For complex queries with aggregation, RQP is not trivial and involves quite complex
computations. In our experiments with queries of the TPC-H benchmark, the bandwidth to generate test data
on a Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varied from 600GB per hour in the best
cases to around 100MB per hour in the worst cases.
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3.2 Multi Reverse Query Processing

In contrast to OLAP applications which implement reports that read a huge amount of correlated data from the
database, OLTP applications usually implement use cases that execute a sequence of actions wherein each action
reads or updates only a small set of tuples in the database. Asan example, think of an online library application.
One potential use case of such an application is that a user wants to borrow a book. The sequence of actions
which is implemented by that use case could be as follows:

1. The user enters the ISBN of the book (where the ISBN is unique for each book of the library).

2. The system shows the details of that book.

• Exception 1: The book is borrowed by another user. The systemdenies the request.

• Exception 2: The book belongs to the closed stack of the library. The system denies the request.

3. The user enters personal data (username, password) and confirms that she wants to borrow the book.

4. The system checks the user data and updates the database.

• Exception 3: The user has entered an incorrect username or password. The system denies the request.

• Exception 4: There are charges on the user account that exceed a certain limit. The system denies the request.

Functional testing the implementation of such a use case means that we have to check the conformance of
the implementation with the specification of the functionality [4] (i.e., the use case). Consequently, we need to
create a set of test cases to test the correctness of the different execution paths of a use case. In order to execute
all the test cases of an OLTP application, one or more test databases need to be created. For example, in order
to test the use case above, a test database needs to be createdwhich comprises the different types of books (i.e.,
books which are already borrowed by another user or not, and books which belong to the closed stack and other
books which do not) and different user accounts (i.e., user accounts with and without charges which exceed a
certain limit).

In order to specify a test database for the test cases of an OLTP application, one SQLSELECTquery and
one expected result are usually not sufficient. The reason isthat most test cases of an OLTP applicationread
or updatedifferent tuples in the database that are not necessarily correlated. Therefore, in order to specify the
relevant values of the tuples that are read or updated by a particular test case, we suggest that a tester uses SQL
as a database specification language; i.e., the tester specifies the test database for one test case bymanually
creating a set of SQLSELECTqueries and their expected results (called test database specification). A test
database which returns these expected results for all the given SQLSELECTqueries enables the execution of a
particular test case of an OLTP application. Compared to RQPwhere the queries are derived from the definition
of a data cube, in MRQP the queries for the test database specification are not extracted directly from the code
of the OLTP application. Consequently, the queries in the test database specification are independent from the
SQL statements implemented by the OLTP application (i.e., the SELECT, INSERT, UPDATE, andDELETE
statements).

For example, in order to execute a test case for the use case discussed before where the user borrows a book
successfully (i.e., no exception occurs), the test database needs to comprise a book with a particular ISBN which
does not belong to the closed stack and is not borrowed by another user (i.e., the attributeb closedstack must
have the valuefalse and the value of the attributeb uid must beNULL) as well as a user whose charges do
not exceed a certain limit (e.g., $20). The desirable database state, can be specified by multiple queries and the
corresponding expected query results (Figure 2a) and the database schema of the application (Figure 2b). By
doing so, the tester can focus on the data that is relevant (e.g., the values forb isbn andb closedstack specified
by Q1 andR1) and she does not have to take care of the irrelevant data (e.g., the values forb title).

RQP is not capable to support multiple queries and the corresponding expected results as input. Thus, in [6]
we studied the problem of Multi-RQP (or MRQP for short). Unlike RQP, MRQP gets aset of SQLSELECT
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Q1: SELECT b_closedstack, b_uid
FROM book
WHERE b_isbn= '12345'

R1: {<false, NULL>}

Q2: SELECT u_password, u_charges
FROM user
WHERE u_name='test'

R2: {<test, 0.0>}

CREATE TABLE user (
u_id INTEGER PRIMARY KEY,
u_name VARCHAR(20) UNIQUE, 
u_password VARCHAR(20),
u_charges FLOAT NOT NULL

CHECK(u_charges>=0));

CREATE TABLE book (
b_id INTEGER PRIMARY KEY,
b_title VARCHAR (20) NOT NULL,
b_closedstack BOOLEAN NOT NULL, 
b_isbn VARCHAR(20) UNIQUE, 
b_uid INTEGER FOREIGN KEY 

REFERENCES user(u_id));

12345

b_isbn

NULLfalseTitleA1

b_uidb_closed

stack

b_titleb_id

0.0testtest1

u_chargesu_passwordu_nameu_id

user

book

(a) Test database specification (b) Database schemaS (c) Test databaseD

Figure 2: MRQP Example for OLTP testing

queries, thecorresponding expected query resultsand a database schema as input and tries to generate one test
database that returns the expected results for all the givenqueries. A test database which could be generated
for the example above is shown in Figure 2c. In [6] we showed that MRQP is undecidable for arbitrary SQL
SELECTqueries. Consequently, we defined a database specification language called MSQL based on SQL
for which the MRQP problem becomes decidable. Moreover, based on MSQL we suggested a solution for
MRQP which utilizes the RQP engine discussed in Section 3.1.

3.3 Symbolic Query Processing

Symbolic query processing (SQP), which first appeared in [7], is a fusion of traditional query processing and
a formal verification technique called symbolic execution [15]. In symbolic query processing, the data in a
database is represented by symbols and a database query manipulates symbolic data rather than concrete data.
One predominant application of SQP is to test components of DBMSs.

In the database industry, when a component or a technique is going to be integrated into a DBMS, it is
necessary to validate the system correctness and evaluate the relative system improvements under a wide range
of test cases and workloads. Consider that there is a new joinalgorithm available and a company which offers
a commercial DBMS product wants to evaluate the performanceof that algorithm in their DBMS product. For
example, the company wants to know how much memory would be taken by such algorithm during the execution
of a simple query like the one in Figure 3a. Usually, given thetest queryQ like the one in the figure, different
test casescan be constructed by varying the results of the query (operators). In DBMS component testing, a test
caseT is a parametric queryQ with a set of constraints (e.g., output cardinality)C annotated on the operators of
the query. Figure 3b shows an example test caseT1 that is based on the given queryQ in Figure 3a. Test caseT1

enforces that if the test queryQ is executed on a test databaseD with two tablesR andS (whereR andS have
2000 and 4000 tuples respectively), then the intermediate selectionσR.a<:p1

(a is an attribute in tableR and :p1

is a parameter) and the final join result are expected to have exactly 10 and 40 tuples respectively. Test caseT1 is
helpful to test how much memory the join algorithm would takewhen its two inputs have large size differences
and the final result is small. As another example, test caseT2 in Figure 3c can test the memory consumption of
the join algorithm when its two inputs have large size differences but the final result is big (3800 tuples).

Currently, testing the components of a DBMS is a manual process and thus very time consuming. It is a
manual process because no tools are able to generate test databases that can fulfill the cardinality requirements
of a test case. For example, in order to execute test caseT1 in Figure 3b, a tester first needs to use a normal
database generator (e.g., IBM DB2 Test Database Generator,[9], [8], or [14]) to generate a test databaseD with
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(a) The test queryQ (b) Test caseT1 (c) Test caseT2

Figure 3: Examples for DBMS component testing

two tablesR andS, and thenmanuallyadjust the content inR andS in order to ensure that the execution ofQ

can obtain the desired (intermediate) query results (e.g.,10 tuples should be returned by the selectionσR.a<:p1
).

SQP can be used to build a database generator to automate thistesting process. In fact, a test database
generator called QAGen has been developed by us using SQP [7]. QAGen is a “Query-Aware” test database
GENerator which generates a query-aware test database for aparticular test case. It takes as input a database
schemaM and a test caseT , and directly generates a databaseD and query parameter valuesP such thatD
satisfiesM andQP (D) satisfiesC (whereQP (D) means the execution of queryQ with parameter valuesP on
databaseD, and,C are the constraints defined inT ). For the example test caseT1 in Figure 3b, QAGen first
instantiates the two tablesR andS. In particular, tableR consists of 2000symbolic tuples(a symbolic tuple is a
tuple containing symbols rather than concrete values; see [7] for details) and tableS consists of 4000 symbolic
tuples. Afterwards, the input query is evaluated by asymbolic query enginein QAGen. The symbolic query
engine follows the paradigm of traditional query processing; i.e., each operator is implemented as an iterator, and
the data flows from the base tables up to the root of the query tree [11]. In addition, the operators in the symbolic
query engine manipulate input data (which are symbolic tuples) according to (1) the operator’s semantics and
(2) the test-case-defined constraints. On the one hand, (1) and (2) are transformed into a set of propositional
constraints and the set of constraints is imposed on a subsetof input tuples (and returned to the parent operator).
On the other hand, the same set of constraints is directly imposed on a subset of tuples in the base tables. For
the example in Figure 3b, the selection operator would impose the constraintR.a <: p1 on ten of its input tuples
(as well asR.a ≥: p1 on all other input tuples) and return the ten tuples which pass the selection operator to the
join operator. At the same time, the selection operator would impose the same constraint on the corresponding
symbolic tuples in tableR as well. At the end of symbolic query processing, the tuples in the base tables would
capture all the requirements (constraints) defined in the input test case but without concrete data. Finally, QAGen
uses a constraint solver to instantiate the constrained tuples in the base tables to obtain the final test database.

By using SQP, it could be shown that QAGen is able to generate test databases for a variety of complicated
test cases. In our experiments with queries of the TPC-H benchmark, the bandwidth to generate test data on a
Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varied from 230MB per hour in the best cases
to 6MB per hour in the worst case [7].

4 Outlook

Test automation is an important technique in order to reducethe cost and time to market of software projects.
Since there are many different test scenarios with different facets, a large number of alternative tools have been
developed in order to support automated testing. Most of these tools are ad-hoc and support only one particular
testing activity (e.g., the generation of test reports for alarge number of test runs.)

This work made the hypothesis that test automation is adatabase problem. It was shown how test databases
for OLAP and OLTP applications and DBMSs can be specified using SQL queries. The ultimate goal is to
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support test engineers even further and to have more stable specifications of test activities.
The whole area of test automation is still in its infancy. There are still a number of open questions. We

believe that in particular the following questions can be addressed using database techniques and plan to study
these topics as part of future research:

• Optimize the generation of test databases; that is, generated databases with certain additional properties
(e.g., the smallest possible test databases that meet the requirements or the fewest possible set of test
databases).

• The evolution of test databases and test runs is a pressing issue for most software vendors who need to
re-program a great deal of their test infrastructure with every major release.

• Testing distributed systems with virtualization is still alargely unexplored area; in such systems, the SUT
is not known prior to deployment and changes dynamically.

• Testing the concurrency and scalability properties of a system is also largely unexplored.
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