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Abstract

Testing is one of the most expensive and time consumingtiastivn the software development cycle.
In order to reduce the cost and the time to market, many amghes to automate certain testing tasks
have been devised. Nevertheless, a great deal of testind masried out manually. This paper gives
an overview of different testing scenarios and shows hoatdese technigues (e.g., declarative specifi-
cations and logical data independence) can help to optitfieegeneration of test databases.

1 Introduction

Everybody loves writing new code; nobody likes to test it.fdftunately, however, testing is a crucial phase of
the software life cycle. Itis not unusual that testing igomssible for 50 percent of the cost of a software project.
Furthermore, testing can significantly impact the time toketbecause the bulk of testing must be carried out
after the development of the code has been completed. Exhrhuge efforts in testing, a report of the NIST
[16] estimated the cost for the economy of the Unites Statésnerica caused by software errors in the year
2000 to range fron$22.2 to $59.5 billion (or about 0.6 percent of the gross domestic product)

In the early days of software engineering, most of the tgstias carried out manually. One of the big trends
of modern software engineering is to automate testingidiesvas much as possible. Obviously, machines are
cheaper, faster, and less error-prone than humans. Thdéapf test automation is that tests become programs.
Writing such test programs is not as much fun as writing nepliegtion code, but it is more fun than manually
executing the tests [3]. Automating testing is particylattractive for the maintenance of existing software
products. With every new release of a product, the impleatiemt of a change request, or a change in the
configuration of a deployment, a series of similar tests nedx carried out in order to make sure that the core
functionality of the system remains intact. In fact, modtware vendors carry out nightly so-called regression
tests in order to track changes in the behavior of their softvproducts on a daily basis.

In a nutshell, test automation involves writing and mainitag code and it is just as difficult as writing and
maintaining application code. In fact, as will be arguediting and maintaining test code is more difficult
because it has additional dependencies. One such depgnalkinh is of particular interest to this work is the
test databasevhich needs to be built and maintained together with thecedé as part of a test infrastructure.

In order to deal with the complexity of managing test code,gbftware engineering community has devel-
oped a number of methods and tools. The main hypothesis op#per is that testing is (to a large extent) a
database problerand that many testing activities can be addressed best datajase technology. It is argued
that test code should be declarative. In particular, theiipation of a test database should be declarative, rather
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than a bunch of, say, Perl scripts. Given such a declargtizeification (actually, we propose the use of SQL for
this purpose), testing can be optimized in various ways; kigher coverage of test cases, less storage overhead,
higher priority for the execution of critical test cases,. ésinother important argument in favor of a declarative
specification of test code is the maintainability and evolubf the test code. Again, the belief is that logical
data independence helps with the evolution of test codeestdiatabases in similar ways as with the evolution
of application or system code. Finally, testing actuallgslinvolve the management of large amounts of data
(test runs and test databases).

Of course, all software quality problems could be solvedhvfitrmal methods of program verification, if
they would work. Unfortunately, they do not work yet for largcale systems and breakthroughs in this field are
not foreseeable in the near future. Fortunately, test aatiom can benefit nicely from the results of the formal
methods community, as will be shown in Section 3.

The remainder of this paper is organized as follows. Se@idefines the many different aspects of test-
ing. Section 3 gives an overview on how database technolagybe used in order to generate test databases.
Section 4 describes some research problems that we betieveecaddressed by the database community.

2 TheBigPicture

There has been a great deal of work in the area of softwarédtyjassurance. Obviously, one reason is the
commercial importance of the topic. Another reason is thatirig involves many different activities. This
section gives a brief overview.

First of all, testing requires &@st infrastructure Such a test infrastructure is composed of four parts:

1. Aninstallation of thesystem under test (SUPossibly on different hardware and software platformg.(e.
operating systems, application servers). The SUT can beokewapplication with its customizations (e.g.,
an SAP R/3 installation at a particular SAP customer), aiip@omponent, or a whole sub-system. One
specific sub-system that we are particularly interested the testing of a database management system
as needs to be carried out by all DBMS vendors (e.g., IBM, dsioft, MySQL, Oracle, Sybase).

2. Aseries ofestruns Atest run is a program that involves calls to the SUT witleddnt parameter settings
[13]. Depending on the kind of test (see below), the test mm specify preconditions, postconditions,
and expected results for each call to the SUT. Test runs ger mhplemented using a scripting language
(e.g., Perl), the same programming language as the SUT &B@P, Java, or VisualBasic), or some
declarative format (e.g., Canoo’s WebTest [1] and HTTrd&)[ In practice, it is not unusual to have
tens of thousands of test runs.

3. Test DatabaseThe behavior of the SUT strongly depends onsitate which is ideally captured in a
database. In order to test a sales function of a CRM systarimdtance, the database of the CRM system
must contain customers. When testing a DBMS, it does not makeh sense to issue SQL queries to
an empty database instance (at least not always). In conapiebications, the state of the SUT might
be distributed across a set of databases, queues, files filetlsystem (e.g., configuration files), and
even encapsulated into external Web Services which arédeut$ the control of the test infrastructure.
Obviously, for testing purposes, it is advantageous if tgess centralized as much as possible into a
single test database instance and if that test databasadesis as small as possible. For certain kinds
of tests (e.g., scalability tests), however, it is importanhave large test database instances. In order to
deal with external Web Services (e.g., testing an onlineestdhich involves credit card transactions), a
common technique is to make use of mock objects [4].

4. Test ManagerThe test manager executes test runs according to a certadide. Again, schedules can
be specified manually or computed automatically [13]. Dyithee execution of a test run, the test manager
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records differences between the actual and expecteds¢galisibly response times for performance tests)
and compiles all differences into a test report. Furtheentire test manager controls the state of the test
database if test runs have side effects.

Establishing such a test infrastructure is a significanéstwment. In practice, test infrastructures are often built
using a mix of proprietary code from vendors of componentthefSUT, from home-grown developments of
test engineers, and dedicated testing tools (e.g., froncdgior as part of IBM’s Rationale Rose suite). Often,
a great deal of testing needs to be carried out manuallyeltlganaking the test team the fifth component of the
test infrastructure. To the best of our knowledge, thereoisitver bullet solution on how to best build a test
infrastructure; likewise, there is no silver bullet sodutito evolve a test infrastructure when the SUT evolves.
The situation becomes even worse when considering the dilemsions of testing such as the granularity
of testing (component test vs. integration test vs. sysest),tkinds of test (functional specification vs. non-
functional requirements such as scalability, securitg eoncurrency), and the time at which tests are carried
out (before or after deployment).

Obviously, we have no coherent solution to address all ttestescenarios. Nevertheless, we believe that
declarative specifications help in most cases. As an exashple case, the next section shows how declarative
specifications can be used in order to automate one partiaatavity that is important for software quality
assurance: the generation of test databases.

3 Generating Test Databases

This section presents several related techniques in codgerterate test databases. Both the generation of test
databases in order to test application systems such as ERPRIM systems and the generation of test databases
specifically for the testing of DBMS are studied. The noveltfiee of these techniques is that the generation of
the test databasesagsieryand/orapplication-aware This way it is possible to generatelevanttest databases
that take characteristics of the SUT and test case into atcolraditionally, generic tools to generate test
databases (e.g., IBM DB2 Test Database Generator [2],38]of [14]) generate a test database based on the
schema only (and possibly some constants and scaling $actéis a result, many test databases in practice
are either manually constructed (possibly using the redwdtgeneric database generator as a starting point) or
constructed using scripts that must be programmed by thaamer of the SUT for that particular purpose.
Query-awareand/orApplication-awaregeneration of test databases has two advantages. Firgerbeation
of test databases is simplified; only high-level declagaspecifications are needed in order to generate a test
database: the programming of scripts or manual adjustnaeeattypically not needed. Second, the evolution of
the system is easy. When the SUT changes and additionaldestsdneeded, only the high-level declarative
description needs to be adjusted. As shown in Section 3tén @f is only necessary to provide an additional
(SQL) query in order to specify the missing part that needsetgenerated for the evolved SUT.

3.1 ReverseQuery Processing

Traditional query processing takes a database and a (S@LY gag input and returns the result of that query for
that specific database. The key idea of reverse query pingg$¥QP, for short) is to turn that process around.
The input of RQP is a query, a query result and a database scfieaiuding integrity constraints); the result
is one possible database which has the property that if taeygsi applied to that database, the specified query
result is produced. Furthermore, the generated databasis albconstraints specified in the database schema.
The most obvious application of RQP is the generation of deshbases. In an OLAP application, for

example, RQP can be used to compute test databases fronfitiidateof a data cube and an example report.
In OLTP applications, typically, several queries are need@rder to specify a meaningful test database (Section
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Figure 1: RQP Architecture

3.2). However, in general RQP has many more applicatiogs; curity and the maintenance of materialized
views.

In principle, there are many different database instandeishacan be generated for a given query and a
result of that query. Depending on the usage of the test ds¢alsome of these instances might be better than
others. For functional testing of a database applicatid@PRhould generate a small database which satisfies
the correctness criteria mentioned above, so that the mgnimine for executing the tests is reduced. Thus,
our prototype implementation tries to generate a minimstl database for a given query and a result of that
query. However, other implementations are conceivable ghisfy different properties. The details of our
implementation are described in [5].

Figure 1 shows the architecture of our implementation. Imynaays, it resembles the architecture of a
traditional (forward) query processor: A query is parsewlyzed, optimized, and executed. Some of the key
differences are that SQL queries are parsed imavarse relational algebrahe optimizations are very different
than in traditional query processing, and that the run tilgerdhms are quite different.

The reverse relational algebra can be seen as the reverapt\@frthe traditional relational algebra and its
extensions for group-by and aggregation [10]. Conseqyeskcuting reverse relational algebra operators at
runtime involves generating data. For example, the reverggction operator generates columns while the
forward projection operator deletes columns. In order twegate data that satisfies the constraints of the query
(e.g., a selection predicate) and the database schemasmdegrocedure of a model checker is called by some
reverse relational algebra operators. This is one examphhich test automation benefits from results of the
formal methods community.

In theory, reverse query processing is not decidable; hat is not always possible to determine whether
a database exists that meets the schema and the RQP casectmalition. In practice, however, RQP is
effective. For instance, RQP can be applied to all querighafTPC-H benchmark and to all queries that we
have encountered so far. For complex queries with agguegd®QP is not trivial and involves quite complex
computations. In our experiments with queries of the TPCeHdnmark, the bandwidth to generate test data
on a Linux AMD Opteron 2.2 GHz Server with 4 GB of main memoryied from 600GB per hour in the best
cases to around 100MB per hour in the worst cases.



3.2 Multi Reverse Query Processing

In contrast to OLAP applications which implement reportst tiead a huge amount of correlated data from the
database, OLTP applications usually implement use cagesxbcute a sequence of actions wherein each action
reads or updates only a small set of tuples in the databasan Asample, think of an online library application.
One potential use case of such an application is that a usgswa@borrow a book. The sequence of actions
which is implemented by that use case could be as follows:

1. The user enters the ISBN of the book (where the ISBN is wniqueach book of the library).
2. The system shows the details of that book.

e Exception 1: The book is borrowed by another user. The sydtmes the request.
e Exception 2: The book belongs to the closed stack of therljbihe system denies the request.

3. The user enters personal data (username, password) @irdnsothat she wants to borrow the book.
4. The system checks the user data and updates the database.

e Exception 3: The user has entered an incorrect usernameaswped. The system denies the request.
e Exception 4: There are charges on the user account thateaasstain limit. The system denies the request.

Functional testing the implementation of such a use casasbat we have to check the conformance of
the implementation with the specification of the functidtygl] (i.e., the use case). Consequently, we need to
create a set of test cases to test the correctness of theedtfexecution paths of a use case. In order to execute
all the test cases of an OLTP application, one or more teabdaes need to be created. For example, in order
to test the use case above, a test database needs to be wigatedomprises the different types of books (i.e.,
books which are already borrowed by another user or not, aolkishwhich belong to the closed stack and other
books which do not) and different user accounts (i.e., useounts with and without charges which exceed a
certain limit).

In order to specify a test database for the test cases of af® @pplication, one SQEELECTquery and
one expected result are usually not sufficient. The reastmtsmost test cases of an OLTP applicatiead
or updatedifferent tuples in the database that are not necessaritglated. Therefore, in order to specify the
relevant values of the tuples that are read or updated bytiaydar test case, we suggest that a tester uses SQL
as a database specification language; i.e., the testerfispdbie test database for one test casemiayually
creating a set of SQISELECTqueries and their expected results (called test datab&s#fisption). A test
database which returns these expected results for all ke §QLSELECTqueries enables the execution of a
particular test case of an OLTP application. Compared to RQ&tre the queries are derived from the definition
of a data cube, in MRQP the queries for the test databasefisption are not extracted directly from the code
of the OLTP application. Consequently, the queries in teedatabase specification are independent from the
SQL statements implemented by the OLTP application (ite2e SELECT, INSERT, UPDATE and DELETE
statements).

For example, in order to execute a test case for the use asesded before where the user borrows a book
successfully (i.e., no exception occurs), the test databasds to comprise a book with a particular ISBN which
does not belong to the closed stack and is not borrowed byanaser (i.e., the attributeclosedstack must
have the valugfalse and the value of the attributeuid must beNULL) as well as a user whose charges do
not exceed a certain limit (e.g., $20). The desirable datalstate, can be specified by multiple queries and the
corresponding expected query results (Figure 2a) and ttabase schema of the application (Figure 2b). By
doing so, the tester can focus on the data that is relevant (lee values fob_isbn andb_closedstack specified
by Q1 and R,) and she does not have to take care of the irrelevant datatfeegralues fob_title).

RQP is not capable to support multiple queries and the quoreng expected results as input. Thus, in [6]
we studied the problem of Multi-RQP (or MRQP for short). WeliRQP, MRQP gets set of SQLSELECT



CREATE TABLE user (
u_id INTEGER PRIMARY KEY,

Q1: SELECT b_closedstack, b_uid u_name VARCHAR(20) UNIQUE, u_id u_name|u_passwor{;u_charges
FROM book u_password VARCHAR(20), 1 Jtest |test 0.0
WHERE b _isbn="12345' u_charges FLOAT NOT NULL

RL: {<false, NULL>} CHECK(u_charges>=0)); user

b_id |b_title |b_closed|b_isbn|b_uid

. CREATE TABLE book ( stack
Q2: SELECT u_password, u_charges b_id INTEGER PRIMARY KEY, :

~ WHERE u_name='est b_closedstack BOOLEAN NOT NULL,
R2: {<test, 0.0>} b_isbn VARCHAR(20) UNIQUE, book

b_uid INTEGER FOREIGN KEY
REFERENCES user(u_id));
(a) Test database specification (b) Database sctitma (c) Test databas®

Figure 2: MRQP Example for OLTP testing

queries thecorresponding expected query resudtsd a database schema as input and tries to generate one test
database that returns the expected results for all the gjuenes. A test database which could be generated
for the example above is shown in Figure 2c. In [6] we showed BMRQP is undecidable for arbitrary SQL
SELECTqueries. Consequently, we defined a database specificatigudge called MSQL based on SQL

for which the MRQP problem becomes decidable. Moreoveredasn MSQL we suggested a solution for
MRQP which utilizes the RQP engine discussed in Section 3.1.

3.3 Symbolic Query Processing

Symbolic query processing (SQP), which first appeared ini§7a fusion of traditional query processing and

a formal verification technique called symbolic executi@d][ In symbolic query processing, the data in a
database is represented by symbols and a database quepulases symbolic data rather than concrete data.
One predominant application of SQP is to test componentBdfi Bs.

In the database industry, when a component or a techniqueing go be integrated into a DBMS, it is
necessary to validate the system correctness and evaheatelative system improvements under a wide range
of test cases and workloads. Consider that there is a nevalgarithm available and a company which offers
a commercial DBMS product wants to evaluate the performanhdtieat algorithm in their DBMS product. For
example, the company wants to know how much memory wouldiemtiy such algorithm during the execution
of a simple query like the one in Figure 3a. Usually, giventtst query® like the one in the figure, different
test casesan be constructed by varying the results of the query (épeja In DBMS component testing, a test
casel is a parametric quer§ with a set of constraints (e.g., output cardinalifyannotated on the operators of
the query. Figure 3b shows an example test @adbat is based on the given quepyin Figure 3a. Test casg
enforces that if the test quety is executed on a test databd3evith two tablesk andS (whereR and .S have
2000 and 4000 tuples respectively), then the intermed@éEBonor <.y, (a is an attribute in tablé? and p;
is a parameter) and the final join result are expected to haatlg 10 and 40 tuples respectively. Test cases
helpful to test how much memory the join algorithm would takeen its two inputs have large size differences
and the final result is small. As another example, test €ase Figure 3c can test the memory consumption of
the join algorithm when its two inputs have large size dédfezes but the final result is big (3800 tuples).

Currently, testing the components of a DBMS is a manual m®emd thus very time consuming. Itis a
manual process because no tools are able to generate @saskd that can fulfill the cardinality requirements
of a test case. For example, in order to execute test’Ease Figure 3b, a tester first needs to use a normal
database generator (e.g., IBM DB2 Test Database Gend@&td8], or [14]) to generate a test databa3ewith
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Figure 3: Examples for DBMS component testing

two tablesR and S, and themmanuallyadjust the content ik and.S in order to ensure that the execution(@f
can obtain the desired (intermediate) query results (E0duiples should be returned by the selectign, <., ).

SQP can be used to build a database generator to automatedtirig) process. In fact, a test database
generator called QAGen has been developed by us using SQRAGen is a “Query-Aware” test database
GENerator which generates a query-aware test databasepfotieular test case. It takes as input a database
schemalM and a test casé, and directly generates a databd3eind query parameter valuéssuch thatD
satisfiesM and@ p (D) satisfiesC (where@ p(D) means the execution of queywith parameter value® on
databasé), and,C are the constraints defined T). For the example test cagé in Figure 3b, QAGen first
instantiates the two tabldg and.S. In particular, tablek consists of 2008ymbolic tuplega symbolic tuple is a
tuple containing symbols rather than concrete values; &delf details) and tablé' consists of 4000 symbolic
tuples. Afterwards, the input query is evaluated bgyebolic query engingn QAGen. The symbolic query
engine follows the paradigm of traditional query procegsire., each operator is implemented as an iterator, and
the data flows from the base tables up to the root of the queey{1r1]. In addition, the operators in the symbolic
guery engine manipulate input data (which are symbolice)phccording to (1) the operator's semantics and
(2) the test-case-defined constraints. On the one handn@Lj2a are transformed into a set of propositional
constraints and the set of constraints is imposed on a sobisgtut tuples (and returned to the parent operator).
On the other hand, the same set of constraints is directlpsegh on a subset of tuples in the base tables. For
the example in Figure 3b, the selection operator would iraple constrainR.a <: p; on ten of its input tuples
(as well asR.a >: p; on all other input tuples) and return the ten tuples whicls plas selection operator to the
join operator. At the same time, the selection operator doupose the same constraint on the corresponding
symbolic tuples in tabl& as well. At the end of symbolic query processing, the tupiebeé base tables would
capture all the requirements (constraints) defined in thetitest case but without concrete data. Finally, QAGen
uses a constraint solver to instantiate the constrainddgimpthe base tables to obtain the final test database.

By using SQP, it could be shown that QAGen is able to geneestadtabases for a variety of complicated
test cases. In our experiments with queries of the TPC-Hteadk, the bandwidth to generate test data on a
Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varfeom 230MB per hour in the best cases
to 6MB per hour in the worst case [7].

4 Outlook

Test automation is an important technique in order to redineecost and time to market of software projects.
Since there are many different test scenarios with diffef@rets, a large number of alternative tools have been
developed in order to support automated testing. Most afetheols are ad-hoc and support only one particular
testing activity (e.g., the generation of test reports flarge number of test runs.)

This work made the hypothesis that test automationdatabase problemt was shown how test databases
for OLAP and OLTP applications and DBMSs can be specifiedguSiQL queries. The ultimate goal is to



support test engineers even further and to have more stadtdisations of test activities.

The whole area of test automation is still in its infancy. fehare still a number of open questions. We
believe that in particular the following questions can bdradsed using database techniques and plan to study
these topics as part of future research:

e Optimize the generation of test databases; that is, gerkdatabases with certain additional properties
(e.g., the smallest possible test databases that meetdbeements or the fewest possible set of test
databases).

e The evolution of test databases and test runs is a pressing fer most software vendors who need to
re-program a great deal of their test infrastructure witkrgvmajor release.

e Testing distributed systems with virtualization is stileagely unexplored area; in such systems, the SUT
is not known prior to deployment and changes dynamically.

e Testing the concurrency and scalability properties of éesgss also largely unexplored.
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