Bulletin of the Technical Committee on

Data |
Engineering

March 2008 Vol. 31 No. 1 @ IEEE Computer Society
®
Letters
Letter from the Editor-in-Chief. e David Lomet 1
Letter from the Special Issue EdItor. i e e e Jayant R. Haritsa 2

Special Issue on Testing and Tuning of Database Systems

Exploiting the Impact of Database System Configuration iatars: A Design of Experiments Approach.
.. Biplob K. Debnath, Mohamed F. Mokbel, David J. Lilja 3

Automated Workload Management for Enterprise DataWared®u. i
.................................... Abhay Mehta, Chetan Gupta, Song Wang, Umeshwar Dagél

Quiality of Service-enabled Management of Database Wadkloa. Stefan Krompass,
Andreas Scholz, Martina-Cezara Albutiu, Harumi Kuno, Jawgener, Umeshwar Dayal, Alfons Kempe20
Towards Automatic Test Database Generation. Carsten Binnig, Donald Kossmann, Eric L&8

Testing SQL Server’'s Query Optimizer: Challenges, Teamsoand Experiences.
.. Leo Giakoumakis, Cesar Galindo-Legarié86

Testing Berkeley DB. i Ashok Joshi, Charles Lamb, Carol Sandstrod

Oracle’s SQL Performance ANalyzer. i e e e e e e e e
................ Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Didgr$anu Joshi, Hailing Yu 51

Focused lIterative Testing: A Test Automation Case Study.t e
Mechelle Gittens, Pramod Gupta, David Godwin, Hebert Rexgdeff Riihimaki 59

Conference and Journal Notices

ICDE CONfBIENCE . . . it e e e e e e back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
lomet@microsoft.com

Associate Editors
Anastassia Ailamaki
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Jayant Haritsa

Supercomputer Education & Research Center
Indian Institute of Science

Bangalore-560012, India

Nick Koudas

Department of Computer Science
University of Toronto

Toronto, ON, M5S 2E4 Canada

Dan Suciu

Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

The TC on Data Engineering

Membership in the TC on Data Engineering is open
to all current members of the IEEE Computer Society
who are interested in database systems. The TC on
Data Engineering web page is
http://tab.computer.org/tcde/index . .html.

The Data Engineering Bulletin

The Bulletin of the Technical Committee on Data
Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

The Data Engineering Bulletin web site is at
http://tab.computer.org/tcde/bull_about.html.

TC Executive Committee

Chair
Paul Larson
Microsoft Research
One Microsoft Way
Redmond WA 98052, USA
palarson@microsoft.com

Vice-Chair
Calton Pu
Georgia Tech
266 Ferst Drive
Atlanta, GA 30332, USA

Secretary/Treasurer
Thomas Risse
L3S Research Center
Appelstrasse 9a
D-30167 Hannover, Germany

Past Chair
Erich Neuhold
University of Vienna
Liebiggasse 4
A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.
Sam Lightstone
IBM Toronto Lab
Markham, ON, Canada

Geographic Coordinators
Karl Aberer (Europe)
EPFL
Batiment BC, Station 14
CH-1015 Lausanne, Switzerland

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
Tokyo 106, Japan

SIGMOD Liason
Yannis Toannidis
Department of Informatics
University Of Athens
157 84 Ilissia, Athens, Greece

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

Letter from the Editor-in-Chief

Bulletin Announcement

In the last issue of the Bulletin, | very proudly announcedt tall issue of the Bulletin are now available on
the Bulletin web site. | now want to announce changes to the site itself. For this effort, | want to thank
Thomas Risse, who is the Secretary/Treasurer of the TC oa Bragineering. Thomas does much more than
this, including much of the administrative work for the IC[Heering Committee. With respect to the web
site, Thomas has reorganized and designed an integratediteeimcluding information about the TC on Data
Engineering, the ICDE Conference, and the Data Engine&uidigtin. This effort brings together the database
activity of the Computer Society into one integrated web.sit

The new web site is hosted by the IEEE Computer Society. Allithb pages mentioned earlier are Imked to-
gether. The URL for the TC on Data Engineerindnitp://tab.computer.org/tcde/index.html ;
for the Data Engineering Bulletin, it isttp://tab.computer.org/tcde/bull_about.html . The
new Bulletin main web page links to newly designed web pagéisg the issues, though these web pages do
not change their URLSs, nor does the location for the issuesslelves. The earlier main Bulletin web pages
will be phased out, but currently redirect browsers to the page. Additional changes will surely come over
time, so stay tuned.

I encourage all of you to explore the new web site. Your feeklbg surely welcome. And thanks again to
Thomas Risse for making this happen.

The Current Issue

Many in the database field were surprised 20 years ago whérPtGdenchmarks first emerged as standards for
comparing database performance. The differences in peaftce of commercial database systems on TPC-A
and TPC- B, the debit/credit benchmarks, were substatttidh in terms of cost and peak performance. The
TPC benchmarks, both these early ones and the several teey loave had a wonderful impact in improving
database products and is yet another example of our debnhtGdy, who played a very large role in getting
the benchmarking efforts started. The result of this is #ibtommercial database systems have improved
enormously. And this is not simply that these systems rodeniéive of hardware improvements. Much more
has happened. Now, all commercial database vendors ha@eslzenchmarking and testing groups. And these
groups have done much to improve both the quality and the@peénce of the database products.

The current issue explores not the performance of datalgatenss so much as the strategies and techniques
used in efforts to enhance the ability to test correctnedsraprove performance. This is an issue in which the
majority of the articles come from people working for indiatvendors of database products and applications,
but leavened with research articles as well. Publicatiothisfcombination of industrial practice and research
on an important topic for our field is a real strength of thedDAhgineering Bulletin and an important part of
what | consider to be its charter.

Jayant Haritsa has brought together this interesting ciadie of articles from major database, application,
and hardware vendors, with university researchers thdbeghow databases are tested and tuned. | think
that as you read this issue, you will be impressed by the tdobw, effort, and insights that have gone into
these efforts. The success of efforts like those descrileed Is demonstrated regularly via the continuous
improvement that we see in the products offered by the datalalustry. | want to thank Jayant for his very
successful effort in producing this issue.

David Lomet
Microsoft Corporation

Letter from the Special Issue Editor

Today’s industrial-strength database engines, both camateand public-domain, are designed to provide
highly sophisticated functionalities, making them thekKimme of the information society. Not surprisingly,

a fallout of this sophistication is that the internal softevinfrastructure has become extremely complex, mak-
ing it a technically challenging task to (a) verify the catreess of the engine components, and (b) tune the
system to meet the desired performance objectives.

This issue of the Data Engineering Bulletin describes batrehresearch proposals and current industrial
practices for the testing and tuning of enterprise datalsgstems. Historically, these topics have received
comparatively little attention in the research literatukgowever, there has been growing awareness in recent
years of the rich set of problems on offer, which are sim@tarsly technically challenging and of immediate
practical relevance, as exemplified by the articles fedturé¢his issue.

The first article, by Debnath, Mokbel and Lilja from U. of Mi@sota, considers the problem of efficently se-
lecting, from among a dauntingly large number, the mosvegieconfiguration parameters for tuning a database
engine. They employ an experimental design methodologyrh&es the computational effort linear in the num-
ber of parameters, and quantitatively demonstrate withmgoteémentation on PostgreSQL, that this approach is
capable of successfully identifying the critical paramste

The second article by Mehta, Gupta, Wang and Dayal of HP Labsepts a holistic machine-learning-
based approach towards workload management for entegataewvarehouses addressing issues of admission
control, scheduling and progress monitoring. Their teghes have been evaluated on real-world warehousing
environments with promising results.

The third article by Krompass, Scholz, Albutiu and KempenirTU Munich, and Kuno, Wiener and Dayal
from HP Labs, investigates the specification and satigfaatif quality-of-service objectives in the context of
operational data stores hosting workloads with a mix ofdaational and decision support queries. They also
survey the infrastructure provided by current industri@ducts to support these objectives.

The fourth article by Binnig, Kossmann and Lo from SAP, ETHd &ong Kong Polytechnic U., respectively,
brings a fresh outlook to the design of test databases thrtheguse of database techniques such as declarative
specifications and logical data independence. Specifithfly advocate the ideas of “reverse query processing”
(given a schema, a query and a result, generate a complitatiage), and “symbolic query processing” (the
database consists of symbolic, rather than concrete,, aatah can be used to test engine components.

We then have a series of articles on current industry pestid-irst, Giakoumakis and Galindo-Legaria
from Microsoft provide a guided tour through the arduousld/@f testing database query optimizers. They
also overview the array of techniques used in testing the S&Wer optimizer. Then, Joshi, Lamb and Sand-
strom from Oracle present the testing tools utilized for Beekeley DB family of database engines, their task
rendered additionally difficult because users, taking athge of the source-code availability, may either mod-
ify or port the engines to new platforms. Next, Yagoub, BalxnDageville, Dias, Joshi and Yu from Oracle
present the SQL performance analyzer implemented in Ofdgeo help users investigate “what-if” scenarios
by forecasting and analyzing the impact of system change@nworkload performance before deployment.
Finally, Gittens, Gupta, Godwin, Pereyra and RiihimakiBM, tackle the notoriously tricky problem of catch-
ing timing-related errors and defects in complex multedded systems such as database engines. Their pro-
posed technique attempts to trigger unexpected behaviberdagively executing system tests with a background
workload.

In closing, we thank all the article authors for their paaking and timely efforts in developing their con-
tributions for this special issue. Our hope is that the wadspnted here will serve as a strong stimulus for the
academic and industrial research communities to addragsyenewed vigor and resources, the development
of stable and efficient database engines.

Jayant R. Haritsa
Indian Institute of Science, Bangalore

Exploiting the Impact of Database System Configuration
Parameters: A Design of Experiments Approach

Biplob K. Debnath, Mohamed F. Mokbel, and David J. Lilja
University of Minnesota, Twin Cities, USA.
debna004@umn.edu, mokbel@cs.umn.edu, and lilja@ecesdmn

Abstract

Tuning database system configuration parameters to progleles according to the expected query
workload plays a very important role in determining DBMSfpamance. However, the number of
configuration parameters in a DBMS is very large. Furthermdypical query workloads have a large
number of constituent queries, which makes tuning very dinaeeffort intensive. To reduce tuning time
and effort, database administrators rely on their expetegand some rules of thumb to select a set of
important configuration parameters for tuning. Nonethgjess a statistically rigorous methodology is
not used, time and effort may be wasted by tuning those paeasnehich may have no or marginal
effects on the DBMS performance for the given query workloBdtabase administrators also use
compressed query workloads to reduce tuning time. If noéfally selected, the compressed query
workload may fail to include a query which may reveal impottperformance bottleneck parameters.
In this article, we provide a systematic approach to helpdawbase administrators in tuning activities.
We achieve our goals through two phases. First, we estirhateffects of the configuration parameters
for each workload query. The effects are estimated throudgasggn of experiments-bas®dACKETT &
BURMAN design methodology where the number of experiments rebjigitenearly proportional to the
number of input parameters. Second, we exploit the estiheftects to: 1) rank DBMS configuration
parameters for a given query workload based on their impadhe DBMS performance, and 2) select
a compressed query workload that preserves the fidelityeobtiginal workload. Experimental results
using PostgreSQL and TPC-H query workload show that our auetlogies are working correctly.

1 Introduction

Businesses are increasingly building larger databasesp® with the rapid current growth of data. Consistent
performance of the underlying database system is key tesaaf a business. A typical database management
system (DBMS) has hundreds of configuration parameterstendgdpropriate setting of these parameters plays
a critical role in performance. Database administratoiBAE) are expected to tune the configuration param-
eters to appropriate values that get the best DBMS perfacenéor the application of interest. The success
of tuning depends on many factors including the query weardtarelational schemas, as well as the exper-
tise of the DBAs [20]. However, skilled DBAs are becomingriggsingly rare and expensive [16]. A recent

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

study on information technology versus DBA costs showetlfieesonnel cost is estimated at 47% of the total
cost of ownership [13]. As has been recenlty reported, DB#end nearly a quarter of their time on tuning
activities [20]. To reduce the total cost of ownership, ibigssence that DBAs focus only on tuning those con-
figuration parameters which have the most impact on systefarpgance for a representative query workload.

Different database configuration parameters have diffemngmact on a DBMS performance. A sound statis-
tical methodology for quantifying the impact of each confagion parameter and the interactions among these
parameters on a DBMS performance is to perforfullefactorial design[17], where all possible combinations
of the input values of the configuration parameters are densil. However, the major problem in applying a
full factorial designin a DBMS is the large number of configuration parameters.eixample, PostgreSQL [1]
has approximately 100 configuration parameters and alhpetexrs have multiple possible values. Even if each
configuration parameter assumes only two values, them givgiery workload of queries, we have to perform
q * 2100 experiments at least twice to apply a full factorial desigmhijch is not feasible in terms of time and
effort. To avoid this problem, in many cases, DBASs rely onirtiegperience and rules of thumb to select the
appropriate values for the configuration parameters. Asisteas based on experience and intuition are often
used, time and effort may be wasted to enhance the perfomipnitning those parameters that may have no or
marginal effects on the overall performance of the giverrguerkload. In general, misdirected tuning efforts
increase the total cost of ownership [6, 8,12, 14].

In this article, we are addressing the following proble&iven a DBMS, a set of configuration parameters,
a range of values for all parameters, and a query workloadineste the effect of each configuration parameter
based on its impact on the DBMS performance for the querylaaakIn particular, we propose a methodology
based onthe RACKETT & BURMAN (P&B) design [19] to estimate the impact of database systerfiguration
parameters. The main idea is to conduct a linear number efrerpnts that provide an approximate sampling of
the entire search space. In each experiment, the values obtifiguration parameters are varied systematically
over a specified range of acceptable values. Subsequegsanal the collected experimental data is used to
estimate the effects of the configuration parameters on B ® performance for the given query workload.
Once we have the estimated effect of each configuration peearfor all workload queries, we can exploit
these effects for: (1) ranking the configuration paramdbessed on the impact on DBMS performance for the
entire query workload, and (2) selecting a compressed gueriload based on the similarities of performance
bottleneck parameters that preserves the fidelity of thggrai workload.

The rest of this article is organized as follows: Section &dbes oudesign of experimentsased method-
ology. The methodology to estimate the effects of the corditjon parameters is described in Section 3. Rank-
ing configuration parameter and selecting a compressedlaeatiare explained in Section 4. Experimental
results are described in Section 5. Section 6 highlightgedlwork. Finally, Section 7 concludes the article.

2 Design of Experiments Based Methodology

The simplest design strategy to quantify the impact of altdes and interactions is to applyfall factorial
design for example, ANOVA [17], in which system response is meadupr all possible input combinations.
However, afull factorial designrequires an exponential number of experiments. To redueentimber of
experiments, we make two assumptions. First, the provoksgonse, such as the total execution time, is a
monotonic function of the input parameter values. Thisdatis that for each configuration parameter, we can
consider only two values: minimum and maximum. The intwitieehind this is that stimulating the system with
inputs at their extreme values will provoke the maximum eanf output responses for each input. Second,
according to thesparsity of effects principlesystem response is largely dominated by a few main factmis a
low-order interactions. As a consequence, we can safetyrégtne effects of higher order interactions. Based
on these assumptions, we useva-level factorialdesign methodology named RCKETT & BURMAN (P&B)
design [19], which requires only linear number of experitsen

P&B Design Matrix Execution Time
P | PP | P3| P | P | P | Pr Ql | Q2| Q3
Expy +1 | +1 | +1 1]+ -1 -1 34 | 110 | 10.2

Exps 1| 41| +1 | +1 1| +1 -1 19 72 | 10.1
Exp3 -1 1| 41| 41| +1 -1 +1 111 89 | 10.3
Expy +1 -1 1| 41| +1 | +1 -1 37 41 | 10.3
Exps 1| +1 -1 1| +1 | 41| +1 61 96 | 10.2
Ezpg +1 -l +1 -1 1| +1] +1 29 57 | 10.2
Ezpr +1 | +1 1| +1 -1 -l +1 79 | 131 | 10.3
Ezxpg -1 -1 1 -1 1 -1 -1 19 47 | 10.1
Expg -1 -1 1| +1 1| +1] +1 135 | 107 | 10.3
Expio | +1 -1 1 -1 +1 -1 +1 56 74 | 10.3
Expir | +1 | +1 -1 -1 1] +1 -1 112 48 | 10.1
Expio 1) 41| +1 -1 1 -1 +1 74 91 | 10.1

Expis | +1 | ‘1| #1 | +1 | 1] -1 -1 55 | 99 | 10.3
Expig | ‘1| +#1 | -1 [+#1 | +1] -2 | -1 127] 123 10.1
Expis | -1 | -1 +1| -1 | +1 | +1| -1 51 77] 103
Expig | +1 | +1 | +1 | +1 | +1 | +1 | +1 76 | 81| 10.2

Table 1:The P&B design matrix with foldover faV = 7. Execution time of queries Q1-Q3 are in the last threernaokl

For each experiment of the P&B design, the value of each peteans given by a prescribg@&B design
matrix. Table 1 gives an example of tlieesign matrixfor the seven parametefy, P, Ps;, Py, Ps, Ps, and
P depicted by the columns 2-8. Thexp; indicates the values of the configuration parameters thiatei
used in the-th experiment. An entry in the parameter columns of thegiesiatrix is either “+1” or “-1”, that
corresponds to a value slightly higher or lower than the rmbmange of values for the corresponding parameter,
respectively. The “+1” and “-1” values are not restrictedotdy numeric values. For example, for the buffer
page replacement algorithm, the “-1” value can be “RANDOMU&+1" value can be “CLOCK”. ThdP&B
design matrixis constructed by cyclic repetition of a single series usangimple methodology. It has been
verified that such a method would result in desirable stedilsproperties [4]. Also, it has been verified that if
the monotonic and low interactions assumptions are vdieg P&B design generates comparable results as the
full factorial design The detailed theoretical explanation behind this behlasiexplained in [19].

The dimensions of th®&B design matrixdepend on the number of configuration parametafs, The
base design matrix has rows andX — 1 columns, whereX is the next multiple of four greater tha, i.e.,

X = [(N/4)+1] 4. For example, itV = 7, thenX =8, while if N = 8, thenX =12. If N < (X —1), then the
number of columns in thB&B design matrixs more than the number of configuration parameters. In tgs,c
the additional(X — N — 1) last columns of thé&B design matrixare simply ignored. The recommendations
of the “+1” and “-1” parameter value settings f&r= 8, 12, 16... ., 96, 100 experiments are given in [19]. The
first row of theP&B design matrixs selected based on those recommendations accordingvaltieeof X. The
rest(X — 1) rows of theP&B design matrixare constructed by right cyclic shifting of the immediateqading
row. All entries of theEzp x-th row of the P&B design matrix are set to “-1”. The column8 & the first eight
experiments Kxp,-Fxpg) of the Table 1 indicates the baB&B design matrixfor N=7.

An improvement of the bade&B designmethodology is th&&B design with foldovefl18]. Thefoldover
helps to quantify the two parameter interactions more ately: However, it requireX” additional experiments.
The additional rows in th®&B design matrixare constructed by reversing the sign of the #opows matrix
entries. The last eight row#{rpe- Exp1¢) of Table 1 gives the additional design matrix entries ferftidover
for N=7. Experiments are conducted by setting up the values afdhgguration parameters according to the
P&B design matrixand response time is recorded to estimate the effect of eaemeter.

P&B Effect

P Py P3 Py P Py P; | COV of Execution Times
Q1 109 79 167 193 21 25 177 0.55
Q2 61 161 9 143 39 185 109 0.32
Q3| 040 (| 0.80| 0.00| 040 | 0.40 | 0.00 | 0.40 0.01

Table 2:The P&B effects for the queries Q1, Q2, and Q3.

P Py P3 Py Ps Ps P
Q1| 056 | 041 | 0.87 1.0 | 0.11 | 0.13| 0.92
Q2| 033 | 087 | 0.05| 0.77 | 0.21 1.0 | 0.59

Table 3:The P&B normalized effects with respect to the maximum éffecthe queries Q1 and Q2.

3 Effect Estimation of the Configuration Parameters

This section describes how to use ®&B designmethodology described in Section 2 to estimate the effects
of configuration parameters for each query of the given vearttl The effect of each configuration parameter
is calculated by multiplying the corresponding “+1” or “-bf that parameter in thé&zp;-th row of theP&B
design matriwith the query execution time of thieth experiment, and summing up the products across all rows
of the design matrix. The absolute value of the net effecsédun the subsequent analysis.

For illustration, suppose we estimate the P&B effects ofergworkload consisting of three queries Q1, Q2,
and Q3 as listed in Table 1. We have seven configuration paeasn®, to P;. In this example, we assume that
foldoveris used, therefore we conduct 16 experiments. The speuwficat the parameter values that need to be
used in alll6 experiments are given in columns 2-8 and rdspy: - Exp16 Of Table 1. The net effect of the first
parameterP; for query Q1 is calculated by multiplying the entries in tiee@nd column with the entries in the
ninth column and summing up across all 16 rol&,-FExpi). For query Q1, the net effect of the parameter
Py is estimated ast' f fectp, = abs((+1%34)+ (—1%19)+...+(—1%51)+ (+1%76)) = abs(—109) = 109.
Similarly, the net effect of the second parameteirfor query Q1 is calculated by multiplying the entries in the
third column with the entries in the ninth column and summaegoss all 16 rowsHxpi-Fxpig), and so on.
Table 2 gives the net P&B effects of all seven parameterogteries Q1, Q2, and Q3.

The last column of Table 2 gives tlweefficient of variation (COW)f the response time across all experi-
ments for queries Q1, Q2, and Q3. COV is defined as the ratltestandard deviationo theaverageexecution
time. A very low COV value indicates that all effects are etisdly the same, i.e., the query performance will
not be affected by the change in configuration parametetiag®t In general, if the COV is less than 0.05, we
can safely ignore the effects and mark the correspondingy @sctuning insensitive. In the illustrative example,
query Q3 is tuning insensitive as its COV is 0.01.

4 Exploiting the Configuration Parameters Effects

Once we have the P&B effects of the configuration parametrslf workload queries, we can use these
estimated effects to: (1) rank the configuration paramédterthe entire workload based on their relative impact
on the DBMS performance, and (2) select a compressed quekjoad that preserves the fidelity of the original
query workload. We describe these two methodologies inldetthe following subsections. Throughout this
section, we will use the query workload in Table 1 as a runeixgmple.

P | P | P3| Py | Ps | Ps | Pr
Q1| 3| 4 1] 7| 7] 1
Q2| 5] 1| 7] 2 6] 1] 3

Table 4:Ranking of the configuration parameters for the queries QI1CGih

4.1 Ranking the Configuration Parameters for a Query Workload

Ranking configuration parameters for a query workload siesif two steps. First, we rank the parameters
for each tuning sensitive query of the workload based onelaive magnitude of their P&B effects. Second,
rankings of individual tuning sensitive queries are coretito estimate the overall ranking of a parameter for
the workload. The queries which are insensitive to parantateng are not included in the workload ranking
calculation. Therefore, we do not consider query Q3.

To rank the configuration parameters for a tuning sensitiveryy the estimated P&B effects are normalized
with respect to the maximum effect and the range of normaleféects are divided int&V buckets, whereV is
number of configuration parameters. A parameter is assignide ranki if its normalized effect falls into thé
th bucket range. In the continuing example, we have sevaanpeters. Therefore the range for the first, second,
third, fourth, fifth, sixth, and seventh buckets are, [160,80.86, 0.71), [0.71, 0.57), [0.57, 0.43), [0.43, 0.29),
[0.29, 0.14), and [0.14, 0.0], respectively. The normaliaed rounded P&B effects for the queries Q1 and Q2
are listed in Table 3. For Q1, the rank Bf is 3 as its normalized P&B effect 0.56 falls into the third bucket
Similarly, the rank ofP is 4, and so on. The ranking of parameters for queries Q1 arar®listed in Table 4.

In the next step, ranks are summed across all tuning semsitigries, averaged, and sorted in ascending order.
The most important parameters will have the lowest cumudataink. The average rankings of the parameters
P, P, P3, Py, Ps, P; and P; of queries Q1 and Q2 as listed in Table 4 are 4.0, 2.5, 4.061554.0, and 2.0,
respectively. Therefore, final ranking is 4, 3, 4, 1, 7, 4, aneespectively. Ranking indicates that is the most
important configuration parametdr; is the second most important configuration parameter,\ietbby P,

{Py, P3, Ps}, andPs, in order. A detailed description of this methodology carfdaend in [10].

4.2 Compressing a Query Workload

To select a compressed query, all queries of the originakiwad are divided into two groups: tuning sensitive
and insensitive. One query from the insensitive group ikighexd in the compressed query workload, while the
tuning sensitive group is further divided into subgroupsdshon the similarities of the effects of the configu-
ration parameters. For each query, the effects are nomdalthe maximum effect of the parameters for the
corresponding query. Then, the Euclidean distance of thmal@ed effects among the queries is calculated to
estimate a similarity score. If the Euclidean distance betwhe effects of the two queries is less than the user-
chosen similarity threshold, we consider them as similarigsg in terms of the performance bottlenecks and
place them in the same group. Finally, one query is selected éach subgroup to include in the compressed
query workload.

In the continuing example, the tuning sensitive group &iasif queries Q1 and Q2; and the insensitive
group consists of query Q3. The Euclidean distance betweendrmalized effects of queries Q1 and Q2 from
Table 3is,/(0.56 — 0.33)2 + (0.41 — 0.87)2 + ... + (0.13 — 1.0)2 + (0.92 — 0.59)% = 1.36. If the threshold
of similarity score is 1.50, then we can consider queries QL @2 to be similar in terms of their impact of
the performance bottleneck parameters. In the compressag workload, we can include either query Q1 or
query Q2. If we select query Q1, then the compressed quergleaat consists of queries Q1 and Q3. A detailed
description of this methodology can be found in [21].

5 Experimental Results

All the experiments in this section are conducted in a mazhiith two Intel XEON 2.0 GHz w/HT CPUs, 2
GB RAM, and 74 GB 10,000 RPM disk. We use the TPC-H benchmdr&ri@ PostgreSQL [1] to demonstrate
our methodologies. For demonstration, we use 22 read-oR[g-H queries, Q1-Q22, and data size of 1 GB.
We consider only those PostgreSQL configuration param#étatsare relevant to the read-only queries. The
high and low values of each parameter are chosen in a ranetsalct will act as a monotonic parameter. A
detailed information of the values used can be found in [Elfthermore, we have included some parameters,
for examplefsync andcheckpoint _timeout , which are not relevant for the read-only queries, yet they
help in verifying that our method is working correctly. Il rankings or effects become low compared to other
parameters, then it will give an indication that our methodectly identifies the performance bottlenecks.

The P&B effects of all configuration parameters are caledlaising thé>&B design with foldoverin order
to identify the insensitive queries, COV of 0.05 is seleaed threshold. Out of 22 queries, the COVs of the
queries Q4, Q6, Q7, Q10, Q11, Q12, Q14, Q15, Q17, Q18, and @2fand to be less than 0.05. These
11 queries formed one single group of tuning insensitiverigae The ranking of the parameters for tuning
sensitive queries is listed in Table 5. For more detailedlte®f the estimated and normalized P&B effects,
the readers are referred to [21]. Different parameters thighsame rank indicates that they have similar effects
on the performance. For query Q&ork _-memis the most important parameter, while other parametersotio n
have any impact on performance. For query &2ective _cache _size andshared _buffers are the
first and sixth most important parameters, respectivelylendther parameters do not have significant impact
on performance. Similarly, the ranking of the parameterstber queries indicates the relative importance of
corresponding parameter in the query performance.

The ranking of the parameters for the original TPC-H queryklead consisting of tuning sensitive queries
is listed in the first and second columns of Table 6. The resaollicate thatvork _memis the most impor-
tant configuration parameteshared _buffers andeffective _cache _size are second most important
parameters, followed bgpu _operator _cost , random _page _cost , and so on. The result also indicates
thatfsync andcheckpoint _time _out do not appear in the top five most important parameters list. T
verify that our results match with the decisions made by DB# compare our parameter ranking against the
PostgreSQL 8.0 Performance Checklist [5]. This checldist set of rules of thumb for setting up PostgreSQL
server where it suggests the settings of configuration patenithat most DBAs will want to change. Among
the parameters we are considering, according to this dsedkkere are six important parameters that need
to be tuned, namelymax.connections , shared _buffers , work _mem maintenance _work _mem
effective _cache _size , andrandom _page _cost . Four of these six parameters appear in our top five
important parameters list. The differences between owdtrasd this list are: (1) we find that the parameter
Cpu _operator _cost is animportant one to our query workload and (2) the paranmetec.connections
appears to be less important to our workload as we do notaensbncurrently running queries. Therefore,
in general, our ranking methodology matches the generaletjoes that are suggested for database tuning in
addition to adding specific tuning decisions that match thergquery workload.

To select a compressed query workload, we set a threshol8 @dthe Euclidean distance. At this threshold
the 11 tuning sensitive queries form eight grouf@1, Q8, Q16, {Q2, Q13, {Q3}, {Q5}, {Q9}, {Q19, Q21
and{Q20}. In the compressed workload, from each group we include tleeygvhich creates less perturbations
in the original query workload ranking. In addition, we haeeinclude one query from the insensitive group
in the compressed workload. We select the query which hasitgest execution time. Our compressed query
workload includes queries Q2, Q3, Q5, Q8, Q9, Q18, Q20, arfd PRe new ranking for the compressed query
workload is given in the third and fourth columns of Table GBeTesult indicates that excegftared _buffers
andeffective _cache _size , the ranking of the rest of the parameters is identishlared _buffers s
ranked second in the original query workload, while it iskexh third in the compressed query workload. On
the other handgffective _cache _size is ranked second in the original query workload, while itasked

Parameter Ql | Q2| Q3| Q5| Q8| Q9 | Q13| Q16 | Q19 | Q20 | Q21
checkpointtimeout 15| 15| 15| 13| 15 4 15 15 15 7 15
deadlocktimeout 15| 15| 13| 15| 13 4 15 15 15 7 14
fsync 15| 15| 15| 15| 15 2 15 15 15 6 15
max.connections 15| 15| 12 13| 13| 11 15 15 15 6 14
sharedbuffers 15 6| 15| 15| 15| 12 7 14 1 6 1
statsstartcollector 15| 15| 15 15| 15| 11 15 15 15 7 14
cpwindextuple_cost 15| 15| 13| 15| 15 9 15 15 15 7 12
cpu.operatorcost 15| 15| 10| 13| 15 1 15 15 15 1 15
cputuple_cost 15| 15| 13| 13| 14 8 15 15 15 7 14
effective.cachesize 15 1 11 13| 15 1 1 15 15 6 13
geqo 15| 15 9| 13| 12| 10 15 15 15 7 14
maintenancevorkmem | 15| 15| 11| 15| 11 | 10 15 15 15 6 12
randompagecost 15| 15| 13 1 13 4 15 15 15 12 15
tempbuffers 15| 15| 11| 15| 15 3 15 15 15 7 15
work_mem 1 15 1 13 1 9 15 1 15 7 15

Table 5:Ranking of the configuration parameters for the tuning seesTPC-H queries.

Rank | Original Workload Rank | Compressed Workload
1 work_-mem 1 work_-mem

2 effective.cachesize 1 effective.cachesize

2 sharedbuffers 3 sharedbuffers

4 cpuoperatorcost 3 cpuoperatorcost

5 randompagecost 5 randompagecost

6 geqo 6 geqo

6 maintenancevork_-mem || 6 maintenancevork_mem
6 deadlocktimeout 6 deadlocktimeout

6 tempbuffers 6 tempbuffers

10 max.connections 10 max.connections

10 cputuple.cost 10 cputuplecost

10 fsync 10 fsync

10 checkpointtimeout 10 checkpointtimeout

14 cpuwindextuple_cost 14 cpuwindextuple_cost

15 statsstart.collector 15 statsstart.collector

Table 6:Ranking of the configuration parameters estimated by thggnaiiand compressed query workloads.

first in the compressed query workload. However, as longeadighof topmost important parameters does not
change drastically, in reality it does not cause much imipeittning activities.

6 Related Work

Major database vendors offer tools for tuning databaseigdiydesign [3, 9, 22]. IBM DB2 provides a utility
namedautoconfigure for automatically selecting the initial values for the cgufiation parameters based
on generic workload behavior [15]. Oracle Automatic DatsbBiagnostic Monitor (ADDM) tool possesses a
holistic view of the database, identifies root causes of #ropmance bottlenecks, and estimates the benefits of
eliminating performance bottlenecks [12]. In Microsoft ISQerver, most of the parameters can be configured
either through Enterprise Manager or with the T-S§_configure command [11]. However, none of the
current tools rank the configuration parameters based anittygact on the DBMS performance.

Two major techniques for query workload compression ar@gsed in the literature. The first technique
groups SQL statements based on the accessed tables andljmims [7]. The second technique focuses on the
most complex and costly queries in the workload and igndnerajueries [22]. In contrast, our proposed work-
load compression methodology selects subset workloadilmassimilarities of the performance bottlenecks of
the configuration parameters.

7 Conclusion

We have proposed methodologies for ranking configuratioamaters and selecting a compressed query work-
load based on the impact of configuration parameters on tHd®Berformance for a given query workload.
These methodologies are quite generic and can also be @éppliemn-database systems. They will greatly help
DBAs of all knowledge levels to prioritize tuning activiiend reduce time and effort. In the future, we are plan-
ning to perform the following extensions: 1) validating #esumptions behind calculating parameter effects,
and 2) suggesting the appropriate values of the configurggoameters using the estimated P&B effects.

8 Acknowledgements

This work was supported in part by NSF grant nos. CCF-062B6PCCF-0541162, the University of Min-
nesota Digital Technology Center Intelligent Storage ©@aiism, and the Minnesota Supercomputing Institute.

References

[1] PostgreSQL DBMS Documentatiohttp://www.postgresql.org/
[2] Transaction Processing Coundilttp://www.tpc.org/
[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Naaaga and M. Syamala. Database Tuning Advisor for
Microsoft SQL Server 2005. IRroc. of VLDB 2004.
[4] T. Allen. Introduction to Engineering Statistics and Six Sigma: iStizial Quality Control and Design of Experiments
and SystemsSpringer, 2006.
[5] J. Berkus. Power PostgreSQL: PostgreSQL Performancdifieated. http://www.powerpostgresql.
com/PerfList/
[6] D. Cappucio, B. Keyworth and W. Kirwin. The Total Cost oi@ership: The Impact of System Management Tools.
Strategic Analysis Technical Report, Gartner Group, Stad)fCT, 1996.
[7] S. Chaudhuri, A. K. Gupta and V. Narasayya. Compresgihgverkloads. InProc. of SIGMOD 2002.
[8] S. Chaudhuriand G. Weikum. Rethinking Database Architee: Towards s Self-tuning RISC-style Database Sys-
tem. InProc. of VLDB 2000.
[9] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait and M. Ziddin. Automatic SQL Tuning in Oracle 10g. Rroc.
of VLDB, 2004.
[10] B. Debnath, D. Lilja and M. Mokbel. SARD: A Statisticalpfroach for Ranking Database Tuning Parameters. In
Proc. of 3rd Intl. Workshop on Self-Managing Database $yst2008.
[11] S.Deluca, M. Garcia, J. Reding and E. Whalklicrosoft SQL Server 7.0 Performance Tuning Technicali@ete
Microsoft Press, March 2000.
[12] K. Dias, M. Ramacher, U. Shaft, V. Venkataramamani anthV@od. Automatic Performance Diagnosis and Tuning
in Oracle. InProc. of CIDR 2005.
[13] C. Garry. Who's Afraid of Self-Managing Databases®ttp://www.eweek.com/article2/0,1895,
1833662,00.asp , June 30, 2005.
[14] Hurwitz Group. Achieving Faster Time-to-Benefit andd®eed TCO with Oracle Certified Configurations. March,
2002.
[15] E. Kwan, S. Lightstone, A. Storm and L. Wu. Automatic @igaration for IBM DB2 Universal Database. IBM
Perfromance Technical Reppdanuary 2002.
[16] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, Arft, M. Surendra and D. Zilio. Making DB2 Products
Self-Managing: Strategies and Experiend&&E Data Engineering Bulletir29(3), 2006.
[17] D. Lilja. Measuring Computer Performance A Practitioner's Gui@ambridge University Press, 2000.
[18] D. Montgomery.Design and Analysis of Experimenwiley, 2001.
[19] R. Plackett and J. Burman. The Design of Optimum Muttifeial Experiments. liBiometrika Vol. 33 No. 41946.
[20] A. Rosenberg. Improving Query Performance in Data Wauses. http://www.tdwi.org/
Publications/BlJournal/display.aspx?ID=7891 ,2005.
[21] J. Skarie, B. Debnath, D. Lilja and M. Mokbel. SCRAP: Aasistical Approach for Creating Compact Representa-
tional Query Workload based on Performance BottleneckBrde. of ISWC 2007.
[22] D. zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, CarGia-Arellano and S. Fadden. DB2 Design Advisor:
Integrated Automated Physical Database Desigierait. of VLDB 2004.

10

Automated Workload Management for Enterprise Data
Warehouses

Abhay Mehta Chetan Gupta Song Wang Umeshwar Dayal

Hewlett Packard Labs
firstname.lastnan@hp.com

Abstract

Modern enterprise data warehouses have complex workldaatsare notoriously difficult to manage.
Additionally, RDBMSs have many “knobs” for managing woedse efficiently. These knobs affect the
performance of query workloads in complex interrelated svagd require expert manual attention to
change. It often takes a long time for a performance expedeioenough experience with a large
warehouse to be able to set the knobs optimally. Typicatlywthrehouse and its workload change sig-
nificantly within that time. This makes the task of manugtigmoizing the knob settings on a warehouse
an impossible one. In this context, our goal is to create mahaging Enterprise Data Warehouses. In
this paper we describe some recent advances in building &onaatic workload management system.
We test this system against real workloads against rearpn$e data warehouses.

1 Introduction

Many organizations are creating and deploying Enterprista Warehouses (EDW) to serve as the single source
of corporate data for business intelligence. Not only aes¢henterprise data warehouses expected to scale to
enormous data volumes (hundreds of terabytes), but thegisseexpected to perform well under increasingly
complex workloads, consisting of batch and incrementa t&tds, batch reports and complex ad hoc queries.

The problem of database workload management aimed atusefigt database systems has been studied in
the literature (see Weikum [28] for a review of the advanoadiis area). We have borrowed from this work the
idea of using multiprogramming level (MPL) to model the laadthe system. However, the previous work was
done in the context of OLTP workloads, not the complex quenykloads typical of Business Intelligence (BI)
data warehouses, which is the focus of our work.

In this work we deal with two important challenges towardsieging Automatic Workload Management:
Predictability and Manageability In the next few sections, for each of these challenges waeptea sketch of
our solution. The detailed discussions and results candedfon [16] and [17].

Figure 1(a) depicts the architecture of an automatic waidklmanagement system. Toygtimizeroutputs an
execution plan for a query and an estimate of the query cdsthsare input to th@rediction of Query Runtime
(PQR)block. In addition, d_oad Monitorextracts a load feature vector, which is also input toRRblock.

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

11

Queries
.
—*| Optimizer 100
90 N
Query + Optimizer Cost o ot 4 *.
.
System Load + Execution Cost 70 ¢ . .
PQR .) . . .
() 60 . . -
Load System Load E .
Query + Monitor N o
Predicted Run Time & £ .
Y =
§ 30
E S
Queue 1 X Q;\g;
E 20
Query Queue 2 ¢
SLAs Workload Y 0
Manager |
Queue k g 0 5 10 15 20 25 30
Optimizer Cost
T System Load + Execution Cost

(b)

@)
Figure 1: (a) System Diagram for an Autonomic EDW (b) Relaidp between Optimizer Cost and Actual
Execution Time

Whenever a new query comes in, tAR@Rblock estimates the execution time of the query under ctifozal
conditions. This estimate is passed on toWmrkload Managerwhich schedules the queries. Other components
in the system (not shown in the figure) keep track of the gegrgogress relative to its predicted execution time,
and use this information to detect problem queries (suchraamwvay queries). All of this information is fed back
to theWorkload Managerwhich can then apply the appropriate control actions ttfyeihe problems.

2 Related Work

There has been a tremendous amount of work on cost modelsdoy gptimization (see for example Graefe [9]
for a survey). However, while these cost models are usefthaooptimizer for selecting low cost execution
plans, their cost estimates are very often not good pradictoactual query execution times (See Figure 1(b)).

Analytical approaches have been used for estimating quesponse times [23, 27] and there are a few
commercial products that use analytical and simulationetso predict query execution times [1,14,20,21,25].
The analytical approaches depend on the creation of resouvdels which are notoriously complex and difficult
to create and hence the results may not be relevant in pgactic

Certain machine learning techniques have been used in tiiextof databases. The LEO learning optimizer
uses a feedback loop of query statistics to improve the apginduring run time [15, 26]. Raatikainen [22]
summarizes some of the early work in using clustering forkload classification. In PLASTIC [8] queries
are clustered to increase the possibility of plan reusehoilgh these are interesting applications of machine
learning techniques, none of these apply machine learningit problem at hand.

Furthermore, statistical techniques, analytical teahesg and machine learning techniques have been used
previously to predict execution times of tasks and resowmssumption in fields other than database sys-
tems [10]. However, to the best of our knowledge there is mar pvork in using machine learning techniques
to build models for predicting query execution time ranges.

The related work for throughput control falls into threeaaethrashing control in operating systems, creative
memory management in DBMSs, feedback control of workloads.

The problem of over subscription of memory, the primary eaofsthrashing has been studied extensively
since the 1960s. Several heuristics have been proposeaifay ddmission control either by explicitly con-

12

trolling the MPL or otherwise. These include the Knee Ciater the L=S criterion, the Page Fault Frequency
algorithm, and the 50% rule [6]. However, thrashing is stillunsolved problem in operating systems and work
continues in this area [11].

Another area of related work is in the design of memory marsaige DBMSs. Several proposals have been
made for memory managers in DBMS: [2—-4]. The drawback ofehmsethods is that the internal workings of
the database memory manager have to be changed.

One more area of related work is in the feedback control oklwads. Most of the previous work using
this approach has been targeted towards OLTP (On-line dctina Processing) systems where thrashing due to
data contention has been the main problem. Several of the8®ds have been summarized in [18]. Another
good demonstration of this approach is provided by [19] deatls with real-time database systems, and by [24].
More recently, Web servers have employed a feedback loopagip [5,7,12,13].

To our knowledge, the most common approach used by comrhBiggstems is a “static MPL” approach.
In this approach, a “typical workload” is run multiple tim#sough the system and an appropriate MPL com-
puted. The workload is then “throttled” down to this statié®®l] which may be different for different times of
the day. There are several problems with this approach: @kpensive, it results in a very approximate and
inaccurate setting and since it is static it is not suitabteheterogeneous nature of a Bl workload.

3 Predictability

The execution time of Bl queries that run on large EDWs cay fram microseconds for simple lookup queries
all the way to multiple hours for complex data mining querigsn effective workload management system
depends heavily on an estimate of the execution times ofegigr the workload, prior to running the queries.
Estimating execution time accurately is a hard problemee@sfly on a loaded EDW with a complex workload.

Previous researchers have focused on predicting precseition times. In our experience, this is extremely
difficult to do with high accuracy. Furthermore, for worktbmmanagement, it is actually unnecessary to estimate
a precise value for execution time - it is sufficient to praglam estimate of the query execution times in the
form of time ranges (for instance, queries may be assigneifferent queues based on their execution time
ranges). This allows us to reformulate the problem and krirthe machinery of machine learning to address
it. It is precisely this problem of estimating query exeounttime ranges that we address in this paper. We focus
on the following issues:

1. Discovering, selecting, and computing query plan festiand system load features as classification at-
tributes.

2. Finding appropriate execution time ranges to be usedrémligtion.
3. Ensuring high prediction accuracy.
4. Efficient algorithms for model building and deployment.

Researchers and practitioners have built increasingljisbpated cost models for query optimization. How-
ever, building an accurate analytical model is difficultexsplly under varying load conditions. Using an opti-
mizer’s analytical cost model to estimate the actual executme of a query on a loaded system has met with
limited success in the field and it is common knowledge thatyoost estimates produced by query optimizers
do not accurately reflect query run times. For example, inifeid.(b), we have plotted the actual query execu-
tion time and cost estimates for a batch of queries run on @mes database. The scatter plot and the best fit
line show that the optimizer cost is not an ideal predictorgfieery execution time.

We take a different approach: we “learn” from the executigstdnies of various queries under varying
load conditions. In particular, from the execution histsri we extract query plan features provided by the

13

optimizer and system load features from the environment loistwthe queries were run. Discovering features
and selecting which features to use is itself a challengiadplpm. We then build a predictive model that can
estimate the execution time range of a query.

We found that conventional machine learning approachesitdilbg predictive models, such as regression
and decision tree classifiers were not adequate. The challemere several since we are interested in not only
predicting the time ranges but also in discovering them:

1. The time ranges should be sufficient in number. It would bamingless to predict that all queries belong
to a single time range.

2. Their span should be meaningful. Very small or very laige tbuckets are not very useful.
3. As with all predictive models the accuracy of predictiblo@d be high.
4. The model should be cheap to build and deploy.

To address these we came up with a novel hierarchical agprése call the predictive models built using
this approach, POQR (Predicting Query Run-time) Trees. A H@HR is a hierarchical classification tree such
that for every node, there is a binary classifier that dedmb®g best to divide the time range of the node into
two sub ranges for the two children of the node. There is alsasaociated accuracy for each node. Every node
and leaf of the tree corresponds to a time range. At every,veel@ot only find the two sub ranges for the time
range of the node but also a classifier that can predict thednges.

As illustrated in Figure 2(a), the prediction model is firstlband trained using a set of execution histories
of various queries under varying load conditions. Thenafoincoming query in the workload, PQR Tree will
return an estimated execution time range with an assocéateatacy. There are two overall steps:

1. Obtaining a PQR Tree based on historical data of queries nuth@ systemT his involves three steps:

(a) From the historical data extract query plan features digtimizer cost, number of joins, join cardi-
nality, and etc.

(b) From the historical data extract the system load veaoeéch query. The system load vector con-
sists of the number of queries and the number of processasguwhile the query was executing.

(c) Build a PQR Tree with the feature vectors built above sTiidone by choosing the combination of
the classifier and the time interval that gives the highestiacy.

2. Obtaining a time range for a new query by applying the PQR Teea new query This is done by
extracting a feature vector from the new query and applyiregRQR Tree obtained in the previous step.

A sample PQR Tree is presented in Figure 2(b). The classjfjeassociated with the root node divides the
time range of [1, 2690] seconds into two: [1, 170) and [17®Q@&econds with associated accuracy of 93.5%.
The rest of the nodes can be interpreted similarly.

We did two series of experiments to verify our approach. Témysisted of two different systems, both
running a commercial, enterprise class DBMS and two diffedata sets. We ran a thousand queries against
SF =1, 50, 100, 200 TPCH databases. The queries were gehatdtamatically and ran against all the tables.
They include joins and order-bys. Sixteen of these quere®WPCH benchmark queries. We looked at four
query MPL values: 4, 6, 8 and 10, i.e., we executed the queriparallel with the number of parallel streams
equal to the MPL value.

For the second set we took a set of actual Bl (Business lgeeltie) queries run in a day by one of HP’s
customers. They include both ad hoc queries and cannedseftiere were a total of 500 queries in this data
set. The database has more than 38G rows and total size i DVBr. This experimental setup consisted of

14

Obtaining a POR Obtaining a time
Tree range for a N1: {, = Classification Tree, [1 - 2690]
new query

Historic New
Queries Query [o)
93.5%
Extract -[: .
Features Extract N11: f, = Classification Tree N12: f, = Classification Tree
[1-170) [170 - 2690)
Plan &
Load
Vectors 00%
P1, P2:
Construct
Tree N111:= N112 N121 N122:f, = Tree
-1 [13-170) 1170~ 1000] 11000 - 26901
[Predicted
[] [] execution N1222
PQOR Tree time range] 11000 - 16291 | 11629 - 26901

@) (b)
Figure 2: (a) Solution Components for Building PQR Tree (@)nBle PQR Tree where Time is in Seconds

hundred different tests. We took ten different MPLs: 8, 18, 88, 64, 96, 128, 192, 224, 256 and ran each
experiment ten times. In another series of hundred diffelesis we used a subset of smaller queries from the
original five hundred queries.

In consultations with DBAs who manage workloads, we createdality metric: a model that can predict
at least four “reasonable” randesf query execution times with an accuracy of greater than 80&énsidered
acceptable. This metric captures all the key attributes is®udsed earlier. Over 90% of the PQR Tree models
were found to be acceptable. The results from various exgets were found to be extremely encouraging [16].

4 Manageability

Traditionally, the Multi Programming Level (MPL), whichdicates the number of queries running concurrently
on the system, has been used to control the load on the sy$teavoid system underload or overload, MPL
must be carefully set. Figure 3(a) shows the throughputesufar three different TPC-H workloads. Each
workload has a range of MPL values for which there is no oeetlor underload. Clearly, different workloads
require different optimal MPLs. However, a typical Bl batalorkload can fluctuate rapidly between long,
resource intensive queries, and short, less intensivaeguéerhis requirement makes it very challenging, if not
impossible for a human (or a system) to keep the workload iopdimal region using the MPL setting.

We have created a Bl Batch Manager, which is a database vaaorki@nagement system for running batches
of Bl queries. The Bl Batch Manager has the following saljgoints:

1. It employs new way of executing Bl queries, Priority GeadiMultiprogramming (PGM), which auto-
matically protects against overload.

2. The scheduling algorithm, Largest Memory Priority (LMBjther enhances the stability of execution.

3. Estimated memory is used as a basis for admission contEDWs.

IWe ensure “reasonableness” by stipulating that no chila i less than 25% examples of the parent node.

15

P || PGM

Multiple Copies of Query X for Different SFs

140 - l.. .
120 |

Tor 100 000

100 A M
80 | |,.
60—/",,,,‘_ T) 0
20 | SF 200 T ' . Admission | [Scheduler Execution
Contraol Control
o G
BIBatchManager

0 10 20 30 40 50
.) 1F: Full Memory Sub-boiches
Multiprogramming Level (MPL) LAP: Largest Aiemary Priority
PG Priority Gradient AMultiprogramming
@)

(b)
Figure 3: (a) Throughput as a Function of MPL (b) Componergi@refor Bl Batch Manager

Throughput
@
o=
Lo g
-
cODWMT <
|

A common way of looking at throughput is by means of throudlquuves where the throughput is plotted
against the MPL on the system. When a user first confronts avwkload the precise shape of the throughput
curve is unknown to him/her and the user has to determine ke &1 which to execute the workload. The user
does not want to be on the left part of the curve since inangasie MPL can lead to an increase in throughput.
But as the MPL is increased there is a danger of entering tedaad region where higher MPLs mean a
significantly lower throughput. At the boundary betweendp@mal region and the overload region, increasing
the MPL by even one, can cause severe performance deteniorather than a gradual decline in performance.
This is because of thrashing, a problem that is inherent wirthal memory, multiprogramming systems.

Our focus is on addressing the problem of automatically miageBI| batch workloads, so that we are in the
optimal region of the throughput curve, where there is ncediodd or overload. We focus on issues as follows:

1. Identify a manipulated variable whose predicted valwiigable for Bl workload management.

2. Make the execution of the queries stable over a wide rahgstionation errors of this variable.

3. Schedule the queries so that the system behaves withdetload or overload for the admitted batch.
4

. Use the manipulated variable for admission control,dadmit queries based on an estimated value of the
manipulated variable.

Our solution is depicted in Figure 3(b). The Bl Batch Managas three primary components, that address
the issues highlighted above: Aiimission Controller(2) Scheduleand (3)Execution Manager

We use memory as the variable of choice to manipulate. Wiegrikgre is an over-subscription of memory,
there is a potential for serious degradation in performaheeto thrashing. A workload thrashes whenever its
cumulative peak memory requirement per CPU exceeds thialbleaimemory per CPU. Overload behavior can
be predicted more accurately with memory rather than withLMFhus, in contrast to MPL, memory behaves
much more predictably as a manipulated variable.

Current execution control technology centers around Egualrity Multiprogramming (EPM), in which
every query is executed at the same process priority. EPbbisst for a reasonable range of overestimates of
the memory requirement. However, it is very unstable foramastimates, which will result in a sudden drop in
throughput as the size of the workload memory increasesroelye available memory at runtime.

16

To overcome the sensitivity to thrashing for underestismatememory, we introduce Priority Gradient
Multiprogramming (PGM). In PGM, queries are executed dedint process priorities such that a gradient of
priorities is created. PGM requires that the operatingesgssupports preemptive priority scheduling, which
is standard on many commercial systems, including Linux [d8¢&. This results in queries asking for, and
releasing resources at different rates. This solution hasep to be very effective in protecting against overload.
Ironically, PGM is an effective execution control mechamibecause it uses the priority gradient to distribute
memory to queries in an unfair way. The priority gradienbab the operating system to automatically allocate
resources to queries down the gradient without any ovecatlion of resources and keeps the system in an
optimal range of execution.

Since the throughput penalty for being in the overload medgsomuch higher than being in the underload
region, we designed a scheduler that stabilizes the systermémory underestimation errors. We call our
ordering scheme: Largest Memory Priority (LMP). The querthwhe largest memory requirement is given the
highest priority.

For admission control we create batches whose estimatedorgeraquirement is equal to the available
memory per CPU on the system. The whole batch is divided i@se sub-batches using the standard technique
of bin packing called First Fit Decreasing(FFD). Once a Ibditasishes, a new batch is admitted for execution.
Here, we can have various definitions of what is meant by ehbaging “done”. For example, one definition
could be that a batch is done when 90% of the queries in thén lsa&cdone or if all the memory is released.
Estimation errors are compensated for, by our PGM execugtiotrol mechanism as described previously.

Our experiments have shown that the Bl Batch Manager (BIBbBsdnot cause thrashing for memory
estimates that underestimate the memory requirement taHiedeof what it actually is. Similarly, it does not
go into underload if we overestimate the memory to upto thirees the actual memory requirement. Also,
most DBMS put bounds on the memory available to BMOs. Thisiced the extent to which memory can be
underestimated. Finally, in our paper [17] we give a staasproof that shows that errors in memory estimates
of a batch are much less than the errors in the memory essnoatihe individual queries. Thus, the main
contribution of BIBM is that it makes the system tolerant afmory estimation errors. BIBM compensates upto
a factor of 3, or 300% error in the estimate for how much menaomorkload is going to need. This is seen as
a sufficient margin of error for most practical workloads.

We have done a series of experiments to test various aspiects &1 Batch Manager. For the purpose
of experimentation we used a TPC-H workload with three Ske&l 50, 100, 200. It was installed on a two
Segment (32 Nodes) commercial class Enterprise Data Wasehavith 8GB physical memory per CPU. We
created forty-eight mixed workloads of random sizes byamif random sampling (with replacement).

We compared the throughput obtained with BIBM with ti®M Throughpu(throughput achieved when all
queries are running with the same priority) and litheal Throughpuitheoretic maximum throughput achieved
when CPU utilization is 100%). Note that, in practice it igoiossible to obtain the ideal throughput, since even
for a highly parallelized query there are a number of senedrations. Thus, the ideal throughput should be
viewed as a good upper bound, but not necessarily achievable

In our experiment result shown in Figure 4, Bl Batch Managanagally achieved a system throughput of
greater than 80% of ideal throughput. There was approxigndat&B of memory available per CPU during the
experimental runs. The workloads were created by first thg@memory number between 1.33GB and 12GB
(approximately 1/3 to 3 times of memory per CPU). Then queniere randomly chosen from TPC-H queries
(with replacement) until the memory boundary was reacheakeMxperiment results are available in [17].

2If memory is under-estimated, a batch that requires langenat of memory might be submitted causing thrashing.

17

100.00% *» * *—0— * ¢ g

90.00% A 1|\-\.__.’;’-\‘/.4-—/—'

80.00%

70.00%
60.00%

50.00%

40.00% -
30.00%

20.00%
10.00%

Relative Throughput (% of Ideal)

0.00%

0 2 4 6 8 10 12 14
Workload Peak Memory Consum ption (GB/CPU)

‘—0— ldeal —=— BIBatchManager Default (EPM) ‘

Figure 4: Throughput Results for Workloads from TPC-H SF200

5 Conclusion

In this work we have dealt with predictability and managtgbin an effective way. Our results have been
validated on real life commercial class EDWSs. As a next steplan to extend manageability to a continuous
stream of queries and detect problem queries.

References

[1] BEZ Systems Inc. BEZPlus for NCR Teradata and Oracle renments on MPP machines. http:/
www.bez.com/software.htm, 1999.

[2] K. P.Brown, M. J. Carey and M. Livny. Managing Memory to BteMulticlass Workload Response Time Goals. In
VLDB, pages 328-341, 1993.

[3] K.P.Brown, M. Mehta, M. J. Carey and M. Livny. Towards Autated Performance Tuning for Complex Workloads.
In VLDB, pages 72-84, 1994.

[4] M. J. Carey, R. Jauhari and M. Livny. Priority in DBMS resae scheduling. IWLDB, pages 397-410, 1989.

[5] X. Chen, P. Mohapatra and H. Chen. An admission contrbéste for predictable server response time for web
accesses. IWWW pages 545-554, 2001.

[6] P.J. Denning, K. C. Kahn, J. Leroudier, D. Potier and Rii.SO@ptimal Multiprogramming.Acta Inf, 7:197-216,
1976.

[7] S. Elnikety, E. M. Nahum, J. M. Tracey and W. Zwaenepoeindéthod for transparent admission control and request
scheduling in e-commerce web sites VWW pages 276—286, 2004.

[8] A. Ghosh, J. Parikh, V. S. Sengar and J. R. Haritsa. PldacS8en Based on Query Clustering. \LDB, pages
179-190, 2002.

[9] G. Graefe. Query Evaluation Techniques for Large DasabaACM Comput. Sury25(2):73-170, 1993.

[10] M. A. Iverson, FOzgiiner and G. J. Follen. Run-Time Statistical Estimatibfiask Execution Times for Heteroge-
neous Distributed Computing. HPDC, pages 263-270, 1996.

[11] S. Jiang and X. Zhang. TPF: a dynamic system thrashiatgption facility. Softw., Pract. Exper32(3):295-318,
2002.

18

[12] A. Kamra, V. Misra and E. M. Nahum. Yaksha: a self-tungantroller for managing the performance of 3-tiered
Web sites. INWQoS pages 47-56, 2004.

[13] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein&S. S. Parekh. Online Response Time Optimization of
Apache Web Server. IIWQoS pages 461-478, 2003.

[14] M. Garth. Modelling parallel architectures. http:iw.metron.co.uk/papers.htm, 1996. Metron Technologyevhi
paper.

[15] V. Markl, G. M. Lohman and V. Raman. LEO: An autonomic queptimizer for DB2. IBM Systems Journal
42(1):98-106, 2003.

[16] A.Mehta, C. Guptaand U. Dayal. How to Predict the Rugniime of Business Intelligence Queries on an Enterprise
Data Warehouse. Technical Report HPL-2007-165, HP Labs@c2007.

[17] A. Mehta, C. Gupta and U. Dayal. Bl Batch Manager: A Sgsfer Managing Batch Workloads on Enterprise Data
Warehouses. I1&DBT (To appear)2008.

[18] A. Monkeberg and G. Weikum. Performance EvaluatiomfAdaptive and Robust Load Control Method for the
Avoidance of Data-Contention Thrashing.\lh.DB, pages 432—443, 1992.

[19] H. Pang, M. J. Carey and M. Livny. Managing Memory for R€eme Queries. IrSIGMOD, pages 221-232, 1994.

[20] Platinum Technology. Proactive performance engimger http://www.softool.com/products/ppewhite.htm 999
Platinum Technology White paper.

[21] R. Eberhard. DB2 Estimator for Windows. http://wwwitseare.ibm.com/data/db2/0s390/estimate, 1999. IBM Corp

[22] K. E. E. Raatikainen. Cluster Analysis and WorkloadsSification.SIGMETRICS Performance Evaluation Review
20(4):24-30, 1993.

[23] S. Salza and M. Renzetti. Performance Modeling of Reddbatabase Systerinformatica (Slovenig)22(2), 1998.

[24] B. Schroeder, M. Harchol-Balter, A. lyengar, E. M. Nahand A. Wierman. How to Determine a Good Multi-
Programming Level for External Scheduling.I{®DE, page 60, 2006.

[25] SES Inc. Solutions for information systems performartttp://www.ses.com/Solution/IS.html, 1999.

[26] M. Stillger, G. M. Lohman, V. Markl and M. Kandil. LEO - DBs LEarning Optimizer. InWLDB, pages 19-28,
2001.

[27] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H.yllar, P. J. B. King and P. Broughton. Analytical response
time estimation in parallel relational database systdpPasallel Computing30(2):249-283, 2004.

[28] G. Weikum, A. Mdnkeberg, C. Hasse and P. Zabback. teling Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. MLDB, pages 20-31, 2002.

19

Quality of Service-Enabled Management of Database Workloas

Stefan Krompads Andreas Scholz Martina-Cezara Albutit
Harumi Kund Janet Wienér Umeshwar Daydl Alfons Kempef

Technische Universitat Miinchen, Munich, Germany ¥Hewlett-Packard Laboratories, Palo Alto, CA, USA
{albutiu,kemper,krompass,scholza t@in.tum.de {firstname.lastname }@hp.com

Abstract

Database administrators struggle when managing worklabhdshave widely different performance
requirements. For example, the same database may supmotirsimning OLTP queries and batch jobs
containing multitudes of queries with varying complexidifferent workloads may have different perfor-
mance requirements, expressed in terms of service levetinlgs (SLOs) that must be fulfilled in order
to keep the issuing database users satisfied. In this pageiglentify basic query classes and describe
the challenges they pose for SLO-aware workload managerAéditionally, we propose a generic ar-
chitecture for an SLO-aware DBMS. We give an overview of lwsatckmanagement techniques already
implemented in today’s DBMS and outline future researchdions for as yet unsupported concepts.

1 Introduction

Imagine you are a database system administrator for a langgpany. Your job is to administer a variety of
workloads running on the database. These workloads areitebroy different customers who have unique re-
quirements. The company’s Web front end produces an OL{IBssbrkload with short-running parameterized
gueries that must be processed quickly in order to provideddiate feedback to the customers. Depending
on the customer, the queries have varying importance arfdrpeance requirements. While processing the
OLTP queries, your database must also handle busineskgieele (Bl) workloads. For example, sales man-
agers submit analytic batch workloads to prepare finanegbnts for a meeting with your company’s CEO.
These workloads have a hard deadline and partial results@thless. To complicate matters, members of the
marketing team simultaneously need to execute complepmugtieries in order to craft their new campaign.

In today’s databases, OLTP and Bl workloads are usually eparate: OLTP workloads are submitted to
and processed by operational databases, and Bl workloadathywarehouses. For the management of each
individual workload, you as the database administratortraddress a variety of problems: First, you need
concrete metrics that describe the customers’ expectaiioa way you can measure. For example, you cannot
measure whether or not you meet the customer’s vague ekipectd a “short response time”, but you can
measure the elapsed time needed to respond to a query. $Sgoantked policies to manage incoming queries.
For example, you must decide whether or not to admit a newyguleen you expect the query to have a negative
impact on concurrent queries. Third, you need workload rmgemeent policies that consider the characteristics
of the workloads as a whole. In particular, you need worklmathagement techniques to address questions like:

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

20

e What is the number of concurrent queries in the databasemytbiat optimizes throughput for a particular
workload? What if multiple workloads are running simultansly?

e Can the queries be scheduled according to their prioriti&®# should the priorities be determined?

e How long should you wait before killing an unexpectedly lemgning query that hogs resources? How
can you tell that the query hogs resources? What if this gigdmysiness-critical and must be completed?

Increasingly, we are seeing trends towards “operational stares” or “operational BI”, where mixed work-
loads run on the same database. The parallel execution &fomds with different requirements on the same
database poses new challenges and requires an integratedepfor workload management. As a preparatory
work, this paper focuses on workload management techniguegparate execution of the different workload
types. Workload management for operational data storasgising work in our research collaboration.

The rest of this paper is organized as follows: Section 2aztiarizes the workloads we focus on in this paper.
Section 3 defines service level objectives for different khaad classes. Section 4 describes how workload
management is used to meet service level objectives. 8egeBommarizes prior art in industry and academia.
Our proposed solution for managing OLTP workloads is preeskeim Section 6. Section 7 describes challenges
in workload management for Bl workloads. Finally, Sectiosu8marizes the contents of the paper.

2 Characterization of Workloads

Table 1 characterizes business intelligence (Bl) and OLOFkMads. The ver-

tical axis describes how queries are generated. The steusfeannedqueries interactive batch
is fixed; the o_nly va_lrlety _stems from the parameterlzatlormni_stants. This arned OLTP/BI B
kind of query is typically issued by software clients, ofteyusing prepared L4 noc BI BI
statements. In contrast, the structur@dthocqueries is not known in advance;
and may vary widely. Ad hoc queries may cause performancessbecauseTable 1: Characterization of
they are often only executed once and thus may not be as tidyooptimized workloads

as canned queries.

The horizontal axis indicates whether queries are issnutedactivelyor as part ofbatchjobs. In the case
of interactive invocation, the user is waiting for the réswdf each query before submitting the next one. A
subsequent query may depend on the result of its predecssseven long-term monitoring of query patterns
will not necessarily yield a good prediction model for qusegjuences. The opposite is true for batch workloads,
where all queries are known in advance.

OLTP workloads are interactive, canned workloads thatglpi consist of a large number of small uniform-
ly-sized queries. Results must be returned quickly for Hie ©f a good user experience. Bl workloads, on the
other hand, may contain queries from all quadrants of Tabiletéractive OLTP-like queries may be interleaved
with long-running canned batch workloads that create lassimeports or statistics. Bl workloads additionally
include ad hoc queries, e. g., if a business analyst infeedcperforms drill-down analysis or requests a custom
report to be run as an overnight batch job.

3 Service Level Objectives

From a user’s point of view, a database system performs Wilkeiperformance requirements the user cares
about are met. A first prerequisite is to translate user-ddfperformance requirements into a common set of
metrics that can be obtained through monitoring. Examplasich metrics includexecution timgthe elapsed
wall clock time between the start and completion of a quettyjoughput(number of successfully executed
gueries in a given time span), a@dPU time(time the CPU is available for a specific query).

21

2000

SLO penalty —
Marginal gains - --
Opportunity costs —

Service level s3
1500 :

1000F Service level s,

Penalty

500F

................... - Service s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SLO conformance

Figure 1: Visualization of SLO constraint

A service level objective (SLO) is formed by a combinatiorooé or more performance goals and an asso-
ciated priority, which typically depends on the penaltiesuirred if the goals are not met. Often, these objectives
do not apply to all queries, but instead must be satisfied éertain percentage. Sui.O conformancenetrics
are defined as ratio of the number of queries that meet an ShCi@the total number of queries.

The SLOs for the workload categories described in Sectioiffer én the way performance is measured -
either in terms of individual queries or in terms of groupsjoéries. Users are explicitly aware of the individual
response times of interactively submitted queries, butésponse time for batch jobs is measured for a set of
gueries as a whole. Similarly, performance for canned gadg. g., a canned report or OLTP query) tends to be
measured and reported in terms of the query class as a whudeeas ad hoc queries are measured individually.

An example for an SLO in the OLTP context is the so-caitep-wise SLGhat consists of one or moper-
centile constraints Since users typically expect fast responses for OLTP gsiepiercentile constraints require
n% of all service requests to be processed withiseconds. Otherwise, a penatiyfor every m percentage
points under fulfillment is due. A percentile constraint lioitly defines an SLO penalty function with steps
(service levels). The penalty function for a constrain(90% in < 5s; p = $900 per 20 percentage points,
maximum penalty$1800) is shown in Figure 1 (black solid lines).

In contrast, batch workloads are typically deadline-drie@d may incur penalties if work is not completed
before a given deadline. This translates directly into aecetion time constraint. Another common SLO for
batch workloads specifies a lower-bound for the throughpet, the batch workload does not have a fixed
deadline, but should be assigned a specific portion of thiéabla system resources.

4 Workload Management

The goal of workload management for database sys-
tems is to increase user satisfaction by meeting SLOs.
Note that in general, neither the customer nor the
provider benefits from over-fulfilled SLOs, because
there is no advantage to providing results befo
a given deadline, and the execution time requir
ments already ensure a responsive interaction with the
DBMS. Over-fulfilling an SLO will not excuse a future
SLO violation and moreover could raise unreasonable . .
performance expectations. Igure 2: Generic workload management architecture
Figure 2 sketches a generic workload management

architecture. The DBMS core offers the following composenihe Execution Enginewhich manages the
processing of queries, tiResource Managemhich provides priority based allocation of resourcesuerigs,
and thePerformance Monitorfor monitoring the execution of queries. Modern DBMS offeveral knobs
for tuning workload performance at all points in the workldde cycle. Workload management begins with
the opportunity to prevent a new query from being placed omxatution queue, continues with queuing and

Workload Manager DBMS core
Admission Execution
Controller Engine
P ¥ ¥
Query Performance
@ i Scheduler Monitor
a . i ¥
I J

Service Level
Objective

Execution Resource
ob (Requests) Controller Manager

DBMS

22

scheduling decisions, and includes the ability to contnel éxecution of a running query. These mechanisms
are implemented by th&dmission Controllerthe Query Schedulerand theExecution Controllerrespectively.
The latter contains a rule base for identifying unexpectegerload situations and deciding which workload
management action should be performed for which queries vildtkload management decisions are driven by
the SLOs that are annotated to each batch job and interaptesy of every client. The objectives must be made
available for the DBMS prior to the execution of the job.

Admission control can prevent potential problem queriesifbeing started in the first place. Query schedul-
ing optimizes the order of execution and the number of caratly running queries by deciding when to admit
which query. Admission control and scheduling operate atofne database layer, and can be implemented
without modifying the database core engine. If the DBMSdfiaterfaces to control already running queries,
then finer grained control of request execution is possible presence of execution control mechanisms that
can, e.g., kill or suspend and resume queries at run-timéuctner improve performance. For example, killing
a query that hogs system resources for an unexpectedly ilmegcan limit the negative impact on the overall
execution performance. Similarly, if the DBMS offers piiation mechanisms for allocating resources like
memory, CPU, and locks, then complex queries can be adjustemver priorities when necessary, leaving
enough resources for newly arriving interactive querieth Wwigher priorities.

5 Related Work

Workload Management Techniques Regarding work on workload management techniques for resallo-
cation, we share a focus with researchers such as [1,6 J1®%/24d consider how to govern resource allocation for
gueries with widely varying resource requirements. FormgxXa, Davison and Graefe [6] present a framework
for resource allocation based on concepts from microecasonT heir framework aims at reducing response
time of queries in a multi-user environment. The central ponent is a resource broker that assigns operators
the share of the resource they are willing to pay for. Weikurale[24] discuss what metrics are appropriate
for identifying the root causes of performance problemsniOa TP workload (e. g., overload caused by exces-
sive lock conflicts). They focus on tuning decisions at ddfé stages such as system configuration, database
configuration, and application tuning.

Query progress indicators (e. g., [3, 14]) attempt to eggnaarunning query’s degree of completion. Re-
search in this area is complementary to our goals, and pallgriffers a means to identify long-running queries
at early stages — before the workload has been negativelyateg.

Recently, research has been done on query suspension antpteEs, e.d., [2,4]. When a query is sus-
pended, the DBMS releases all resources held by the quewrylaier point in time, the query can be resumed,
ideally without wasting a large amount of work that has beenedprior to the suspension. We believe that
database products will implement these techniques in taefoture.

Workload Management Implementations Some workload management techniques for admission control
scheduling, and execution management policies are aliegglgmented in products such as those by HP (e. g.,
Workload Manager for Neoview [8]), IBM (e. g., Query Patevlfor DB2 [17], Optimization Service Center [9],
zSeries [13]), Microsoft (SQL Server [16]), Oracle (Diseoer [19], Resource Manager [20]), and Teradata
(Workload Manager [23]). We only present a short overviemae detailed description can be found in [12].

Admission control uses thresholds to prevent overly-egpergueries from running in the system. Database
vendors provide different metrics like optimizer costs mgessing time estimates. Queries for which the values
of the metrics exceed administrator-defined thresholdsititer rejected or put on hold. The latter case requires
the administrator to decide whether to submit the queryeaititabase or to reject it.

Some databases allow the administrator to limit the levetafcurrency on the database system and to
schedule the delayed queries. There are three approaahisifing the concurrency: limit the maximum
resource utilization, restrict access to database obligetsables, indexes, and views, and limit the number of

23

simultaneous queries in the database system. Delayedeguae typically managed in three different types
of scheduling queues: FIFO, size-based, and priority¢haSize-based queues prevent short-running queries
from getting stuck behind long-running queries, thus esifay a consistent elapsed time for short queries in the
presence of long-running queries. Priority-based quenfesae the preferred execution of high-priority queries
compared to their lower-priority counterparts. It is thektaf the database administrator to define priorities for
the users in order to balance the performance of the systewri€3d are then ordered in the queue according to
the priority of the submitting user.

Execution control is usually implemented by using rules nghee condition triggers an execution manage-
ment action. The different vendors support a variety of iogtio be used in the conditions, e. g., cardinality,
CPU time, number of 1/0s, and elapsed wall clock time. Alnadktlatabase vendors implement some notifica-
tion mechanism to inform the administrator about exceptigituations, e. g., when the elapsed time of a query
exceeds a specified threshold. It is then the task of the astnaitor to analyze and tackle workload management
problems. If the administrator does not take action, theyguens to completion. In addition to that, HP’s and
Teradata’s Workload Manager can be configured to autontigitiah a query.

6 Workload Management for OLTP Workloads

This section focuses on OLTP-style workloads that condist multitude of a priori unknown short-running
transactions that may be started by clients at any time. Eanbkaction consists of a set of interactively submit-
ted queries for which the user expects short response tifilnesefore, users often negotiate SLOs similar to the
step-wise SLOs introduced in Section 3, which limit the oese time for a percentage of transactions. From the
workload management perspective, the main challenge 3y a query scheduling policy that meets the SLO
requirements for as many users as possible. A common apphoatich settings is to provide priority-based
gueues to manage pending queries. Typically, the priofityueries is defined externally, e. g., by a database
administrator and usually depends on the priority of thpeesve user. If only a percentage of all queries must
meet the performance requirements, static prioritizatoms to over-fulfill SLOs of high-priority users because
their queries are almost always processed in time at thenerpa their lower-priority counterparts.

Therefore, our approach derives an adaptive penalty basad economic model and annotates the queries
with the penalty information. These penalties are usedtionige the execution order of the pending queries. We
define the penalty of a query as the maximum of two economicfgostions. Opportunity costémonotonically
decreasing parts of the parabolas in Figure 1) model theedarfgfalling to the next lower service level. If
the current SLO conformance converges to the next loweicgetgvel, the penalty for processing the service
too late increases because delaying an additional quergases the likelihood of an ultimate SLO violation.
Marginal gains(monotonically increasing parts of the parabolas in Figirenodel the chance that a service
class re-achieves a higher service level. If this appedps tovithin reach”, individual queries are increasingly
penalized until eventually the higher level is reached.

The computation of penalties, scheduling algorithms fordigg queries, and a performance analysis are
described in [7,10]. The experimental results show thet¥feness of our novel adaptive penalization approach,
which provides a higher overall SLO conformance by redutimegover-fulfillment for high-priority clients.

7 Workload Management for Bl Workloads

Bl workloads contain a wide variety of requests, from batibsjto short-running interactive queries to ad hoc
gueries of varying complexity. For the batch jobs we focuglom deadline-driven SLOs. The optimization goal
for these jobs is to minimize the time needed to complete thdlovad. Interactively submitted queries, on the
other hand, require short response times, because usiydeasme dissatisfied if they must wait for responses
too long. SLOs for interactive queries therefore requirexgcution time below a given threshold. If a batch

24

and an interactive job are running simultaneously on thaliiete, the challenge is to optimize the execution of
all jobs subject to their SLOs. Additionally, a workload nagement system must be capable of dealing with ad
hoc designed queries that may have unknown execution ¢bastics or may cause performance problems.

Admission Control One approach for optimizing the performance of Bl workloasd® reject overly-expen-
sive queries that may hog system resources and thus prerenircently running queries from making progress.
The administrator may choose to run these queries in a dl@atrmanner, e. g., in isolation, to minimize the
impact of these problem queries on others. The challengbe tldressed are twofold: First, a threshold for
identifying overly-expensive queries must be found. If vh&ue is set too low, many queries will be rejected. A
threshold that is too high may admit too many expensive gageresulting in exceptional situations at run-time.
Second, admission control requires accurate optimizématdts and knowledge about how a query impacts
concurrent queries. Query optimizers do a good job estngatie costs of queries when requirements like
uniformity of data, independence of attributes, and ugdte statistics are met. However, in the Bl context,
data may be heavily skewed and statistics cannot be kep-dpte for update-intensive workloads. Therefore,
the optimizer might return estimates that are off by ordéraagnitude from the actual processing costs, making
the estimates unusable for admission control.

Query Scheduling The task of the query scheduling component is to decide wbhedinit which query.
Scheduling must obey inter-query dependencies, i. e., sequests cannot be reordered arbitrarily because they
depend on the results of other requests. Another challenggedetermine the optimal number of concurrently
running queries in the database that would maximize theeushgll system resources. The optimal number of
gueries in the system depends on parameters like the databagguration, the underlying hardware, and the
requests themselves, and might even vary during the erecotithe workload. In practice, finding an optimal
solution to the scheduling problem itself is not feasiblecwese of the high complexity and the large instance
sizes containing hundreds of requests. Therefore goodstiearmust be found. Additionally, a reasonable
reordering of workload requests needs to consider the impgoests have on one another. Some requests are
potentially working well together while others interferéhveach other.

A prerequisite for scheduling is a concise representatfdrenefits and detri-
ments of concurrent request execution. This informatiam lba subsumed in a R R, R
“synergy matrix” as exemplified in Figure 3. Each enfl;, R;) in the two-
dimensional matrix is a numerical value denoting the regatinpact of the parallel R, | 0.70
execution of request®&; and R;. There exist several metrics for quantifying the

(dis)advantages, like consumed CPU cycles, disk accessegecution time. In Rs - 1085
this work, we focus on the ratio of the elapsed times meastmegarallel and
sequential execution of requests. A value less than 1 itefidhat the parallel exe-Re | - | 0.92

cution is faster than the sequential execution. For exantipéesynergy value.70
for R, and R, (light gray) denotes that executing the two requests coantly Figure 3: Synergy matrix
takes70% of the time it takes to execute them sequentially. In cottthe parallel

execution ofR3 and R, takes longer than running them in sequence (dark gray). Astyeentry (“—") in the
matrix indicates that a synergy value is not yet available.

In order to increase the quality of the scheduling resutis,nhatrix must be populated with as many values
as possible. This can be accomplished through either asalysnonitoring. The former approach applies
a white box technigue and is based on an analysis of the vamtldaequests in order to determine potential
synergies before the actual execution. Sources of suchigggaestem from caching behavior and multi-query
optimization (MQO). In the context of MQO, extensive resdahas been done on identification of common
sub-expressions [5, 22] and cooperative scans [25]. Drelkgbaf the white box approach are that some of the
required information may not be available prior to the exiecuof a request and that predictions errors in the
analysis phase may result in incorrect assumptions abdividial requests and, thus, potential synergies.

25

The monitoring approach treats jobs as black boxes, i. ekesnao assumptions about their characteris-
tics. It monitors request execution and iteratively degiirformation about potential synergies. For example,
O’Gorman et al. [18] use this approach by running all pair§BC-H requests both concurrently and sequen-
tially and then comparing the number of disk accesses. Atantial drawback of the black box approach is that
the synergy matrix is only populated during workload exmeut Another difficulty is to infer (dis)advantages
for pairs of queries if monitored data is only available faed of concurrently executing queries.

Analysis and monitoring are complementary approaches ande combined for better results. Prior to
the execution of the batch, analysis can be used to providstai population of the matrix, while monitoring
during run-time can be used to refine inaccurate results th@ranalysis and provide values for requests that
cannot be analyzed or that interfere with each other uneeghc

Execution Control There are two major challenges for run-time execution cbatrqueries. First, execution
control needs to detect exceptional situations based améiigcs that can be monitored at run-time. Identifying
a problem could be as easy as comparing the actual elapsedftaquery to a threshold provided by, e. g., the
user or the administrator. More sophisticated conditiamngriggering an execution control action could include
additional metrics like CPU time and number of disk I/Os. haltigh a greater number of metrics provides a
higher flexibility, monitoring the metrics may cause ovexthi@t run-time, thus slowing down the processing of
the requests. Even if a set of metrics has been identified;ithkkenge is to set thresholds. Practitioners with
experience in workload management can attest not only thertaince of good thresholds but also the difficulty
of finding these values. Second, the execution managemedsrie choose from a set of corrective actions
like killing or suspending a query. If a query is killed, theeeution control needs to decide when, if at all,
to resubmit it. Similarly, an appropriate policy for resungia suspended query must be found. Of course, the
execution control must obey the service level objectiveg,,igh-priority queries with tight deadlines might
not be killed, even if they hog the system resources for a toneg.

Experimental Framework for Workload Management To provide a more application-oriented approach
for workload management, we have developed an experimieataéwork, introduced in [11] for evaluating the
effectiveness of workload management techniques. Thétectlre of the framework is illustrated in Figure 2.
Admission Controller, Query Scheduler, and Execution Gibletr represent knobs that can be adjusted to select
from a variety of workload management policies and algorigh Our framework is not limited to workload
management policies already implemented by existing daw@bystems and tools, but allows us to experiment
with new workload management concepts. Furthermore, wéeimgnted a simulator for the execution engine,
which mimics the execution of a workload in a database sysW#ermodel a workload as one or more jobs. Each
job consists of an ordered set of typed queries and is assdaidth a performance objective. Each query type
maps to a tree of operators, and each operator maps in turs rfiesburce costs. Our current implementation
associates the cost of each operator with the dominant nes@ssociated with that particular operator type
(e.g., disk or memory). We describe the life cycle of the dlasa drives the experimental runs in [11].

8 Summary

In this paper, we have characterized OLTP and Bl workloadsi@entified factors in workload generation and
submission that impact their service level objectives (SL.ONe outlined SLOs in the database context and
the current state of the art in workload management teclsidpr enforcing these objectives. We summarized
our contributions for managing OLTP workloads by adapyiyenalizing individual queries. We looked at Bl
workload management where we sketched at which points inrkleanl’s life cycle management is applicable,
and presented a synergy matrix that characterizes the tropagnning particular batch queries concurrently.
Finally, we overviewed our experimental framework for iregtthe impact of the various workload management
techniques on the execution of workloads. For more dethisitethis work, we refer readers to [7,10-12].

26

References

(1]
(2]
(3]
(4]
(5]
(6]
[7]

(8]
(9]

(10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

(23]
(24]

(25]

M. J. Carey, M. Livny, and H. Lu. Dynamic Task Allocation A Distributed Database System. Pmoc. of the5*"
Intl. Conf. on Distributed Computing Systems (ICDGs&ges 282—-291, 1985.

B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Quesp8nd And Resume. IRroc. of the ACM SIGMOD
Intl. Conf. on Management of Data007.

S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can kfstProgress Estimators For SQL QueriesPrioc.

of the ACM SIGMOD Intl. Conf. on Management of Dgiages 575-586, 2005.

S. Chaudhuri, R. Kaushik, R. Ramamurthy, and A. Pol. Stog-Restart Style Execution for Long Running Decision
Support Queries. IRroc. of the 337 Intl. Conf. on Very Large Data Bases (VLDRDO7.

S. R. Choenni, M. L. Kersten, and J. F. P. van den Akker. ankework for Multi-query Optimization. IRroc. of
the Intl. Conf. on Management of Data (COMADRP97.

D. L. Davison and G. Graefe. Dynamic Resource BrokermgMulti-User Query Execution. IRroc. of the ACM
SIGMOD Intl. Conf. on Management of Dafgages 281-292, 1995.

D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kempadaptive Quality of Service Management for
Enterprise ServicedAccepted for publication in ACM Transactions on the Web (B)VE, 2008.

HP NeoView Workload Management Services Guide, Aug0§72

IBM Optimization Service Center for DB2 for z/OSttp://www-306.ibm.com/software/data/db2/
zos/downloads/osc.html

S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and A.p&nQuality of Service Enabled Database Applications.
In Proc. of the &' Intl. Conf. on Service-Oriented Computing (ICSQ@Jges 215-226, 2006.

S. Krompass, H. Kuno, U. Dayal, and A. Kemper. Dynamiaklisad Management for Very Large Data Warehouses:
Juggling Feathers and Bowling Balls. Rmoc. of the 38' Intl. Conf. on Very Large Databases (VLDBpges 1105—
1115, 2007.

S. Krompass, H. Kuno, J. Wiener, U. Dayal, and A. Kempé¢anaging Long-Running Bl Queries: To Kill Or Not
To Kill, That Is The Question, 2008. Submitted for publicatj please contact authors for full version of paper.

N. Lei. Workload Management for DB2 Data Warehoulsip://www.redbooks.ibm.com/redpapers/
pdfs/redp3927.pdf

G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL Resg Indicators. 100" Intl. Conf. on Extending Database
Technology (EDBT)pages 921-941, 2006.

M. Mehta and D. J. DeWitt. Dynamic Memory Allocation fdtultiple-Query Workload. IrProc. of the Nineteenth
Intl. Conf. on Very Large Data Basgk993.

Microsoft SQL Server 2005 Books Online. http://msdn2.microsoft.com/en-us/library/

ms190419.aspx , September 2007.

B. Niu, P. Martin, W. Powley, R. Horman, and P. Bird. Whr&d Adaptation In Autonomic DBMSs. IBASCON
'06: Proc. of the 2006 Conf. of the Center for Advanced SwdieCollaborative ResearcR006.

K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple Que©ptimization by Cache-aware Middleware Using
Query TeamworkSoftw. Pract. Exper35(4):361-391, 2005.

Oracle Discoverer Administrator Administration Gai@lOg (9.0.4)http://download.oracle.com/docs/
html/B10270_01/adpqgta0l.htm

A. Rhee, S. Chatterjee, and T. Lahiri. The Oracle Dasald@esource Manager: Scheduling CPU Resources at the
Application Level.http://research.microsoft.com/ ~jamesrh/hpts2001/submissions/ ,2001.

B. Schroeder, M. Harchol-Balter, A. lyengar, and E. MaHdm. Achieving Class-Based QoS for Transactional
Workloads. InProc. of the 229 Intl. Conf. on Data Engineering (ICDEpage 153, 2006.

S. N. Subramanian and S. Venkataraman. Cost-based@ption of Decision Support Queries Using Transient-
views. InProc. of the ACM SIGMOD Intl. Conf. on Management of Datages 319-330, 1998.

Teradata. Teradata Dynamic Workload Manager User & 8éptember 2006.

G. Weikum, C. Hasse, A. Monkeberg, and P. Zabback. TGMEORT Automatic Tuning Projectinformation
Systemsl9(5):381-432, 1994.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Cooperdigans: Dynamic Bandwidth Sharing in a DBMS. In
Proc. of the 3%' Intl. Conf. on Very Large Databases (VLDBages 723-734, 2007.

27

Towards Automatic Test Database Generation

Carsten Binnig Donald Kossmann Eric Lo
SAP AG ETH Zurich The Hong Kong Polytechnic University

Abstract

Testing is one of the most expensive and time consumingtiastivn the software development cycle.
In order to reduce the cost and the time to market, many amghes to automate certain testing tasks
have been devised. Nevertheless, a great deal of testinil sasried out manually. This paper gives
an overview of different testing scenarios and shows hoatdese technigues (e.g., declarative specifi-
cations and logical data independence) can help to optitiieegeneration of test databases.

1 Introduction

Everybody loves writing new code; nobody likes to test it. fdwtunately, however, testing is a crucial phase
of the software life cycle. It is not unusual that testingasponsible for 50 percent of the cost of a software
project. Furthermore, testing can significantly impacttilee to market because the bulk of testing must be
carried out after the development of the code has been ctedplEven with huge efforts in testing, a report of
the NIST [16] estimated the cost for the economy of the Urfitteges of America caused by software errors in
the year 2000 to range frofi22.2 to $59.5 billion (or about 0.6 percent of the gross domestic product)

In the early days of software engineering, most of the tgstias carried out manually. One of the big trends
of modern software engineering is to automate testingidesvas much as possible. Obviously, machines are
cheaper, faster, and less error-prone than humans. Thdéayf test automation is that tests become programs.
Writing such test programs is not as much fun as writing nemliegtion code, but it is more fun than manually
executing the tests [3]. Automating testing is particylattractive for the maintenance of existing software
products. With every new release of a product, the impleatimt of a change request, or a change in the
configuration of a deployment, a series of similar tests nedxt carried out in order to make sure that the core
functionality of the system remains intact. In fact, modtware vendors carry out nightly so-called regression
tests in order to track changes in the behavior of their sofvproducts on a daily basis.

In a nutshell, test automation involves writing and mainitag code and it is just as difficult as writing and
maintaining application code. In fact, as will be arguediting and maintaining test code is more difficult
because it has additional dependencies. One such depgnakioh is of particular interest to this work is the
test databasevhich needs to be built and maintained together with thecedé as part of a test infrastructure.

In order to deal with the complexity of managing test code,sbftware engineering community has devel-
oped a number of methods and tools. The main hypothesis op#per is that testing is (to a large extent) a
database problerand that many testing activities can be addressed best datagase technology. It is argued
that test code should be declarative. In particular, theipation of a test database should be declarative, rather

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

28

than a bunch of, say, Perl scripts. Given such a declargtizeification (actually, we propose the use of SQL for
this purpose), testing can be optimized in various ways; eigher coverage of test cases, less storage overhead,
higher priority for the execution of critical test cases. ésinother important argument in favor of a declarative
specification of test code is the maintainability and evolubf the test code. Again, the belief is that logical
data independence helps with the evolution of test codeestdiatabases in similar ways as with the evolution
of application or system code. Finally, testing actuallgslinvolve the management of large amounts of data
(test runs and test databases).

Of course, all software quality problems could be solvedhviirmal methods of program verification, if
they would work. Unfortunately, they do not work yet for largcale systems and breakthroughs in this field are
not foreseeable in the near future. Fortunately, test aatiom can benefit nicely from the results of the formal
methods community, as will be shown in Section 3.

The remainder of this paper is organized as follows. Se@idefines the many different aspects of test-
ing. Section 3 gives an overview on how database technolagybe used in order to generate test databases.
Section 4 describes some research problems that we beéieveecaddressed by the database community.

2 The Big Picture

There has been a great deal of work in the area of softwarétygassurance. Obviously, one reason is the
commercial importance of the topic. Another reason is thatirig involves many different activities. This
section gives a brief overview.

First of all, testing requires &@st infrastructure Such a test infrastructure is composed of four parts:

1. Aninstallation of thesystem under test (SUPossibly on different hardware and software platformg.(e.
operating systems, application servers). The SUT can beokewapplication with its customizations (e.g.,
an SAP R/3 installation at a particular SAP customer), aiip@omponent, or a whole sub-system. One
specific sub-system that we are particularly interested the testing of a database management system
as needs to be carried out by all DBMS vendors (e.g., IBM, d&oft, MySQL, Oracle, Sybase).

2. Aseries ofestruns A test run is a program that involves calls to the SUT witleddnt parameter settings
[13]. Depending on the kind of test (see below), the test mm specify preconditions, postconditions,
and expected results for each call to the SUT. Test runs ser mhplemented using a scripting language
(e.g., Perl), the same programming language as the SUT £&B@P, Java, or VisualBasic), or some
declarative format (e.g., Canoo’s WebTest [1] and HTTrd&)[In practice, it is not unusual to have
tens of thousands of test runs.

3. Test DatabaseThe behavior of the SUT strongly depends onsitate which is ideally captured in a
database. In order to test a sales function of a CRM systarindtance, the database of the CRM system
must contain customers. When testing a DBMS, it does not makeh sense to issue SQL queries to
an empty database instance (at least not always). In conaplgbications, the state of the SUT might
be distributed across a set of databases, queues, files filetlsystem (e.g., configuration files), and
even encapsulated into external Web Services which arédeut$ the control of the test infrastructure.
Obviously, for testing purposes, it is advantageous if tgess centralized as much as possible into a
single test database instance and if that test databasedesis as small as possible. For certain kinds
of tests (e.g., scalability tests), however, it is importanhave large test database instances. In order to
deal with external Web Services (e.g., testing an onlineestdich involves credit card transactions), a
common technique is to make use of mock objects [4].

4. Test ManagerThe test manager executes test runs according to a certeadide. Again, schedules can
be specified manually or computed automatically [13]. Dyithre execution of a test run, the test manager

29

records differences between the actual and expecteds¢gafisibly response times for performance tests)
and compiles all differences into a test report. Furtheentire test manager controls the state of the test
database if test runs have side effects.

Establishing such a test infrastructure is a significaréstwment. In practice, test infrastructures are often built
using a mix of proprietary code from vendors of componentthefSUT, from home-grown developments of
test engineers, and dedicated testing tools (e.g., froncdgior as part of IBM’s Rationale Rose suite). Often,
a great deal of testing needs to be carried out manuallyelilgenaking the test team the fifth component of the
test infrastructure. To the best of our knowledge, thereoisitver bullet solution on how to best build a test
infrastructure; likewise, there is no silver bullet sodutito evolve a test infrastructure when the SUT evolves.
The situation becomes even worse when considering the dilmemsions of testing such as the granularity
of testing (component test vs. integration test vs. sysest),tkinds of test (functional specification vs. non-
functional requirements such as scalability, securitg eoncurrency), and the time at which tests are carried
out (before or after deployment).

Obviously, we have no coherent solution to address all ttestescenarios. Nevertheless, we believe that
declarative specifications help in most cases. As an exashple case, the next section shows how declarative
specifications can be used in order to automate one partiaatavity that is important for software quality
assurance: the generation of test databases.

3 Generating Test Databases

This section presents several related technigues in codggrterate test databases. Both the generation of test
databases in order to test application systems such as ERPRIM systems and the generation of test databases
specifically for the testing of DBMS are studied. The noveltfee of these techniques is that the generation of
the test databasesagsieryand/orapplication-aware This way it is possible to generatelevanttest databases
that take characteristics of the SUT and test case into atcolraditionally, generic tools to generate test
databases (e.g., IBM DB2 Test Database Generator [2],88]of [14]) generate a test database based on the
schema only (and possibly some constants and scaling $actéis a result, many test databases in practice
are either manually constructed (possibly using the redudtgeneric database generator as a starting point) or
constructed using scripts that must be programmed by thaamer of the SUT for that particular purpose.
Query-awareand/orApplication-awaregeneration of test databases has two advantages. Firgerbeation
of test databases is simplified; only high-level declaeapecifications are needed in order to generate a test
database: the programming of scripts or manual adjustnaeattypically not needed. Second, the evolution of
the system is easy. When the SUT changes and additionaldestsdneeded, only the high-level declarative
description needs to be adjusted. As shown in Section 3tén @f is only necessary to provide an additional
(SQL) query in order to specify the missing part that needsetgenerated for the evolved SUT.

3.1 Reverse Query Processing

Traditional query processing takes a database and a (S@LY ga input and returns the result of that query for
that specific database. The key idea of reverse query pingg$QP, for short) is to turn that process around.
The input of RQP is a query, a query result and a database scfieciuding integrity constraints); the result
is one possible database which has the property that if taeydgsi applied to that database, the specified query
result is produced. Furthermore, the generated databasis aleconstraints specified in the database schema.
The most obvious application of RQP is the generation of deshbases. In an OLAP application, for

example, RQP can be used to compute test databases fronfitiigateof a data cube and an example report.
In OLTP applications, typically, several queries are neled@®rder to specify a meaningful test database (Section

30

Compile-Time Reverse

Query
Query @ ———4 Query Processor
Database Compilation
Schema S
Reverse|Query Plan Run-Time
A,
Bottom-up Constraint
Schema Solver
Annotation
A
Annotated|Query Plan Constraints Data
Too-d Database
Query Optimized 0%’ town Instance D
o > ata
Optimization | QueryPlan .
Generation

-

Result R Parameter Values

Figure 1: RQP Architecture

3.2). However, in general RQP has many more applicatiogs; ®curity and the maintenance of materialized
views.

In principle, there are many different database instandeishacan be generated for a given query and a
result of that query. Depending on the usage of the test ds¢alsome of these instances might be better than
others. For functional testing of a database applicatidpPRhould generate a small database which satisfies
the correctness criteria mentioned above, so that the mgninine for executing the tests is reduced. Thus,
our prototype implementation tries to generate a minimstl database for a given query and a result of that
query. However, other implementations are conceivable ghisfy different properties. The details of our
implementation are described in [5].

Figure 1 shows the architecture of our implementation. Imynaays, it resembles the architecture of a
traditional (forward) query processor: A query is parsewlyzed, optimized, and executed. Some of the key
differences are that SQL queries are parsed imaverse relational algebrahe optimizations are very different
than in traditional query processing, and that the run tilgerdhms are quite different.

The reverse relational algebra can be seen as the reverant\@frthe traditional relational algebra and its
extensions for group-by and aggregation [10]. Conseqyeskcuting reverse relational algebra operators at
runtime involves generating data. For example, the reverggction operator generates columns while the
forward projection operator deletes columns. In order twegate data that satisfies the constraints of the query
(e.g., a selection predicate) and the database schemasmdegrocedure of a model checker is called by some
reverse relational algebra operators. This is one examphhich test automation benefits from results of the
formal methods community.

In theory, reverse query processing is not decidable; #hat is not always possible to determine whether
a database exists that meets the schema and the RQP casectmalition. In practice, however, RQP is
effective. For instance, RQP can be applied to all querighafTPC-H benchmark and to all queries that we
have encountered so far. For complex queries with agguegd®QP is not trivial and involves quite complex
computations. In our experiments with queries of the TPCeHdnmark, the bandwidth to generate test data
on a Linux AMD Opteron 2.2 GHz Server with 4 GB of main memoryied from 600GB per hour in the best
cases to around 100MB per hour in the worst cases.

31

3.2 Multi Reverse Query Processing

In contrast to OLAP applications which implement reporist tiead a huge amount of correlated data from the
database, OLTP applications usually implement use cagesxbcute a sequence of actions wherein each action
reads or updates only a small set of tuples in the databasan Asample, think of an online library application.
One potential use case of such an application is that a usgsw@borrow a book. The sequence of actions
which is implemented by that use case could be as follows:

1. The user enters the ISBN of the book (where the ISBN is uniqueach book of the library).
2. The system shows the details of that book.

e Exception 1: The book is borrowed by another user. The sydtames the request.
e Exception 2: The book belongs to the closed stack of therljbithe system denies the request.

3. The user enters personal data (username, password) @ivdnsothat she wants to borrow the book.
4. The system checks the user data and updates the database.

e Exception 3: The user has entered an incorrect usernameaswped. The system denies the request.
e Exception 4: There are charges on the user account thateeaasstain limit. The system denies the request.

Functional testing the implementation of such a use casasrbat we have to check the conformance of
the implementation with the specification of the functidtygl] (i.e., the use case). Consequently, we need to
create a set of test cases to test the correctness of theedtfexecution paths of a use case. In order to execute
all the test cases of an OLTP application, one or more teabdaes need to be created. For example, in order
to test the use case above, a test database needs to be wigatedomprises the different types of books (i.e.,
books which are already borrowed by another user or not, aokishwhich belong to the closed stack and other
books which do not) and different user accounts (i.e., useounts with and without charges which exceed a
certain limit).

In order to specify a test database for the test cases of af® @pplication, one SQEELECTquery and
one expected result are usually not sufficient. The reastmtsmost test cases of an OLTP applicatiead
or updatedifferent tuples in the database that are not necessaritglated. Therefore, in order to specify the
relevant values of the tuples that are read or updated bytiaydar test case, we suggest that a tester uses SQL
as a database specification language; i.e., the testerfispdbie test database for one test casenayually
creating a set of SQISELECTqueries and their expected results (called test databa&sifisation). A test
database which returns these expected results for all ke §GQLSELECTqueries enables the execution of a
particular test case of an OLTP application. Compared to RQ€tre the queries are derived from the definition
of a data cube, in MRQP the queries for the test databasefispion are not extracted directly from the code
of the OLTP application. Consequently, the queries in tsedatabase specification are independent from the
SQL statements implemented by the OLTP application (ite2e SELECT, INSERT, UPDATE and DELETE
statements).

For example, in order to execute a test case for the use saesded before where the user borrows a book
successfully (i.e., no exception occurs), the test databasds to comprise a book with a particular ISBN which
does not belong to the closed stack and is not borrowed byanaser (i.e., the attributeclosedstack must
have the valuegfalse and the value of the attributeuid must beNULL) as well as a user whose charges do
not exceed a certain limit (e.g., $20). The desirable datalstate, can be specified by multiple queries and the
corresponding expected query results (Figure 2a) and ttabase schema of the application (Figure 2b). By
doing so, the tester can focus on the data that is relevani {lee values fob_isbn andb_closedstack specified
by @1 and R,) and she does not have to take care of the irrelevant datatfeegralues fob_title).

RQP is not capable to support multiple queries and the quureng expected results as input. Thus, in [6]
we studied the problem of Multi-RQP (or MRQP for short). WeliRQP, MRQP gets set of SQLSELECT

32

CREATE TABLE user (
u_id INTEGER PRIMARY KEY,

Q1: SELECT b_closedstack, b_uid u_name VARCHAR(20) UNIQUE, u_id u_name|u_passwor{ij_charges
FROM book u_password VARCHAR(20), 1 Jtest |test 0.0
WHERE b _isbn="12345' u_charges FLOAT NOT NULL

RL: {<false, NULL>} CHECK(u_charges>=0)); user

b_id |b_title |b_closed|b_isbn|b_uid

. CREATE TABLE book (stack
Q2: SELECT u_password, u_charges b_id INTEGER PRIMARY KEY, :

~ WHERE u_name='est b_closedstack BOOLEAN NOT NULL,
R2: {<test, 0.0>} b_isbn VARCHAR(20) UNIQUE, book

b_uid INTEGER FOREIGN KEY
REFERENCES user(u_id));
(a) Test database specification (b) Database sctitma (c) Test databas®

Figure 2: MRQP Example for OLTP testing

queries thecorresponding expected query resudtsd a database schema as input and tries to generate one test
database that returns the expected results for all the gjuenes. A test database which could be generated
for the example above is shown in Figure 2c. In [6] we showed BMRQP is undecidable for arbitrary SQL
SELECTqueries. Consequently, we defined a database specificatigudge called MSQL based on SQL

for which the MRQP problem becomes decidable. Moreoveredas MSQL we suggested a solution for
MRQP which utilizes the RQP engine discussed in Section 3.1.

3.3 Symbolic Query Processing

Symbolic query processing (SQP), which first appeared ini§7& fusion of traditional query processing and

a formal verification technique called symbolic executi@d][In symbolic query processing, the data in a
database is represented by symbols and a database queputases symbolic data rather than concrete data.
One predominant application of SQP is to test componentBdfi Ss.

In the database industry, when a component or a techniqueing ¢o be integrated into a DBMS, it is
necessary to validate the system correctness and evaheatelative system improvements under a wide range
of test cases and workloads. Consider that there is a nevalgarithm available and a company which offers
a commercial DBMS product wants to evaluate the performanfdtieat algorithm in their DBMS product. For
example, the company wants to know how much memory wouldkemtiy such algorithm during the execution
of a simple query like the one in Figure 3a. Usually, giventtst query® like the one in the figure, different
test casesan be constructed by varying the results of the query (épeja In DBMS component testing, a test
casel is a parametric quer§ with a set of constraints (e.g., output cardinalifyannotated on the operators of
the query. Figure 3b shows an example test @adbat is based on the given quepyin Figure 3a. Test casg
enforces that if the test quety is executed on a test databd3evith two tablesk andS (whereR and .S have
2000 and 4000 tuples respectively), then the intermed@éEBonor <.y, (a is an attribute in tablé? and p;
is a parameter) and the final join result are expected to haaalg 10 and 40 tuples respectively. Test cases
helpful to test how much memory the join algorithm would takeen its two inputs have large size differences
and the final result is small. As another example, test Zase Figure 3c can test the memory consumption of
the join algorithm when its two inputs have large size dédfezes but the final result is big (3800 tuples).

Currently, testing the components of a DBMS is a manual m®esd thus very time consuming. Itis a
manual process because no tools are able to generate saskd that can fulfill the cardinality requirements
of a test case. For example, in order to execute test’tase Figure 3b, a tester first needs to use a normal
database generator (e.g., IBM DB2 Test Database Gend&jtd8], or [14]) to generate a test databa3ewith

33

| . | size=40 . | size=380".

M b= S.c ' MRb = S.c N b= S.c
}\ size_=_1() . size_=_1(_) .
O'/ S U/ '\\Ssize=4000 O'/ * g size=4000
| R.a <:p1 | R.a <:p1 | R.a <:p1
R R R
size=2000 size=2000
(a) The test query) (b) Test casd’ (c) Test casdy

Figure 3: Examples for DBMS component testing

two tablesR and S, and themmanuallyadjust the content ik and.S in order to ensure that the execution(@f
can obtain the desired (intermediate) query results (E0duiples should be returned by the selectign, <.,).

SQP can be used to build a database generator to automatedtig) process. In fact, a test database
generator called QAGen has been developed by us using SQRAGen is a “Query-Aware” test database
GENerator which generates a query-aware test databasepfotieular test case. It takes as input a database
schema)M and a test casé, and directly generates a databd3eind query parameter valuéssuch thatD
satisfiesM and@ p (D) satisfiesC (where@ p(D) means the execution of queywith parameter value® on
databasé), and,C are the constraints defined). For the example test cagé in Figure 3b, QAGen first
instantiates the two tabldg andsS. In particular, tablek consists of 2008ymbolic tuplega symbolic tuple is a
tuple containing symbols rather than concrete values; ddel] details) and tablé' consists of 4000 symbolic
tuples. Afterwards, the input query is evaluated bgyenbolic query enginan QAGen. The symbolic query
engine follows the paradigm of traditional query procegsire., each operator is implemented as an iterator, and
the data flows from the base tables up to the root of the quesy[1r1]. In addition, the operators in the symbolic
guery engine manipulate input data (which are symbolice)phccording to (1) the operator's semantics and
(2) the test-case-defined constraints. On the one handn@Lj2a are transformed into a set of propositional
constraints and the set of constraints is imposed on a sobisgtut tuples (and returned to the parent operator).
On the other hand, the same set of constraints is directlpsegh on a subset of tuples in the base tables. For
the example in Figure 3b, the selection operator would imles constrainR.a <: p; on ten of its input tuples
(as well asR.a >: p; on all other input tuples) and return the ten tuples whicls plas selection operator to the
join operator. At the same time, the selection operator doupose the same constraint on the corresponding
symbolic tuples in tabl& as well. At the end of symbolic query processing, the tupiebeé base tables would
capture all the requirements (constraints) defined in thetitest case but without concrete data. Finally, QAGen
uses a constraint solver to instantiate the constrainddgipthe base tables to obtain the final test database.

By using SQP, it could be shown that QAGen is able to geneestedatabases for a variety of complicated
test cases. In our experiments with queries of the TPC-Hhreadk, the bandwidth to generate test data on a
Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varfeom 230MB per hour in the best cases
to 6MB per hour in the worst case [7].

4 Qutlook

Test automation is an important technique in order to redibeecost and time to market of software projects.
Since there are many different test scenarios with diffefi@rets, a large number of alternative tools have been
developed in order to support automated testing. Most afetheols are ad-hoc and support only one particular
testing activity (e.g., the generation of test reports flarge number of test runs.)

This work made the hypothesis that test automationdatabase problemt was shown how test databases
for OLAP and OLTP applications and DBMSs can be specifiedguSiQL queries. The ultimate goal is to

34

support test engineers even further and to have more stadtdisations of test activities.

The whole area of test automation is still in its infancy. fehare still a number of open questions. We
believe that in particular the following questions can bdradsed using database techniques and plan to study
these topics as part of future research:

e Optimize the generation of test databases; that is, getkdatabases with certain additional properties
(e.g., the smallest possible test databases that meetdbeements or the fewest possible set of test
databases).

e The evolution of test databases and test runs is a pressing fer most software vendors who need to
re-program a great deal of their test infrastructure witkrgvmajor release.

e Testing distributed systems with virtualization is stileagely unexplored area; in such systems, the SUT
is not known prior to deployment and changes dynamically.

e Testing the concurrency and scalability properties of éesgss also largely unexplored.

References

[1] Canoo webtest. http://webtest.canoo.com.
[2] IBM DB2 Test Database Generator. http://www-306.ibom¢software/data/db2imstools/db2tools/db2tdbg/.
[3] K. Beck and E. Gamma. Programmers love writing tests981 ittp://members.pingnet.ch/gamma/junit.htm.

[4] R. V. Binder. Testing object-oriented systems: models, patterns, amld. té\ddison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[5] C. Binnig, D. Kossmann, and E. Lo. Reverse query proogsdin Proc. of ICDE pages 506-515, 2007.

[6] C. Binnig, D. Kossmann, and E. Lo. Multi RQP GeneratingflPatabases for the Functional Testing of OLTP
Applications. Technical report, ETH Zurich, 2008.

[7] C. Binnig, D. Kossmann, E. Lo, and M. Dzsu. QAGen: generating query-aware test database®roln of
SIGMOD, pages 341-352, 2007.

[8] N.Bruno and S. Chaudhuri. Flexible database generaboiBroc. of VLDB pages 1097-1107, 2005.

[9] D.Chays, Y. Deng, P. G. Frankl, S. Dan, F. |. Vokolos, and.B\Veyuker. An AGENDA for testing relational database
applications.Softw. Test., Verif. Reliaghl4(1):17—-44, 2004.

[10] H. Garcia-Molina, J. D. Ullman, and J. WidorDatabase Systems: The Complete Bd@ientice Hall PTR, 2001.
[11] G. Graefe. Query evaluation techniques for large detab ACM Comput. Sury25(2):73-170, 1993.

[12] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient ragien tests for database applications.Pmoc. of CIDR
pages 95-106, 2005.

[13] F. Haftmann, D. Kossmann, and E. Lo. A framework for édfitt regression tests on database applicatioltse
VLDB Journal (Best of VLDB 2005)6:145-164, 2007.

[14] K. Houkjeer, K. Torp, and R. Wind. Simple and realisticalgeneration. IfProc. of VLDB pages 1243-1246, 2006.
[15] J. C. King. Symbolic execution and program testi@@mmun. ACM19(7):385-394, 1976.

[16] RTI. The economic impacts of inadequate infrastruefor software testing. May 2002. www.nist.gov/directoofyy
ofc/report02-3.pdf.

35

Testing SQL Server’s Query Optimizer: Challenges, Techniges
and Experiences

Leo Giakoumakis, Cesar Galindo-Legaria
Microsoft SQL Server
{leogia,cesarg@microsoft.com

Abstract

Query optimization is an inherently complex problem, anitiasing the correctness and effectiveness of
a query optimizer can be a task of comparable complexity.olVeeall process of measuring query opti-
mization quality becomes increasingly challenging as modeery optimizers provide more advanced
optimization strategies and adaptive techniques. In tlaiggp we present a practitioner’s account of
query optimization testing. We discuss some of the unicuueessin testing a query optimizer, and we
provide a high-level overview of the testing techniquesl ts@alidate the query optimizer of Microsoft's
SQL Server. We offer our experiences and discuss a few angbailenges, which we hope can inspire
additional research in the area of query optimization and\NDiBtesting.

1 Introduction

Today’s query optimizers provide highly sophisticatedctionality that is designed to serve a large variety of
workloads, data sizes and usage patterns. They are theaeswny years of research and development, which
has come at the cost of increased engineering complexigifgglly in validating correctness and measuring
quality. There are several unique characteristics thatengalery optimizers exceptionally complex systems to
validate, more so than most other software systems.

Query optimizers handle a practically infinite input spateeclarative data queries (e.g. SQL, XQuery),
logical/physical schema and data. A simple enumeratiofi pbasible input combinations is unfeasible and itis
hard to predict or extrapolate expected behavior by graugimilar elements of the input space into equivalence
classes. The query optimization process itself is of higjodthmic complexity, and relies on inexact cost
estimation models. Moreover, query optimizers ought tizs§atvorkloads and usage scenarios with a variety of
different requirements and expectations, e.g. to optiffaz¢éhroughout or for response time.

Over time, the number of existing customers that need to ppmsted increases, a fact that introduces con-
straints in advancing query optimization technology withdisturbing existing customer expectations. While
new optimizations may improve query performance by ordémsamnitude for some workloads, the same opti-
mizations may cause performance regressions (or unnegessahead) to other workloads. For those reasons,
a large part of the validation process of the query optimizeneant to provide an understanding of the different
tradeoffs and design choices in respect to their impactsaaldferent customer scenarios. At the same time,

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

36

the validation process needs to provide an assessmentressamn risk for code changes that may have a large
impact across a large number of workload and query types.

2 Key Challenges

The goal of query optimization is to produce efficient exemnustrategies for declarative queries. This involves
the selection of an optimal execution plan out of a spacetefratives, while operating within a set of resource
constraints. Depending on the optimization goals, the-pedbrming strategy could be optimized for response
time, throughput, 1/0, memory, or a combination of such go&he different attributes of the query optimization

process and the constraints within which it has to functicakenthe tuning of the optimization choices and
tradeoffs a challenging problem.

Large input space and multiple paths: The expressive power of query languages results in a padlgtic
infinite space of inputs to the query optimizer. For each yjtiee query optimizer considers a large number of
execution plans, which are code paths that need to be exdraisd validated. The unbounded input space of
possible queries along with the large number of alternakexution paths, generate a combinatorial explosion
that makes exhaustive testing impossible. The selecti@representative set of test cases in order to achieve
appropriate coverage of the input space can be a rathemudtitask.

Optimization time: The problem of finding the optimal join order in query optiatipn is NP-hard [4, 8].
Thus, in many cases the query optimizer has to cut its patheagigely through the search space and settle
for a plan that is hopefully near to the theoretical optimurne infeasibility of exhaustive search introduces a
tradeoff between optimization time and plan performande finding of the "sweet spot” between optimization
time/resources and plan performance along with the turfitfiealifferent heuristics is a challenging engineering
problem. New optimizations typically introduce new altimes and extend the search space, often making
necessary the tuning of such tradeoff decisions.

Cardinality estimation: A factor that complicates the validation of execution plgtimality is the reliance

of the query optimizer on cardinality estimation. Queryimizers mainly rely on statistical information to
make cardinality estimates, which is inherently inexaat &mas known limitations as data and query patterns
become more complex [9]. Moreover, there are query constiamnd data patterns that are not covered by the
mathematical model used to estimate cardinalities. In sasks, query optimizers make crude estimations or
resort to simple heuristics [12]. While in the early days QiLSServer the majority of workloads consisted of
prepared, single query-block statements, at this timeyggenerator interfaces are very common, producing
complex ad-hoc queries with characteristics that makemality estimation very challenging. Inevitably, test-
ing the plan selection functionality of the query optimizepends on the accuracy of the cardinality estimation.
Improvements in the estimation model, such as increasie@ihount of detail captured by statistics and en-
hancing the cardinality estimation algorithms, incredmeduality of the plan selection process. However, such
enhancements typically come with additional CPU cost anceaised memory consumption.

Cost estimation: Cost models used by query optimizers, similarly to cardiypastimation models are also
inexact and incomplete. Not all hardware characteristioetime conditions, and physical data layouts are
modeled by the query optimizer. Although such design clsoiam obviously lead to reliability problems, there
are often reasonable compromises chosen in order to avgidyrcomplex designs or to satisfy optimization
time and memory constraints.

37

0ss

large

Line of Business &
Custom Apps

Query set
diversityand complexity

: Fixed
= | OLTP | Reports
+ = " {
i Datavolume (per query) =
simiall large

Figure 1: An illustration of the database application space

"Two wrongs can make a right” and Overfitting: Occasionally, the query optimizer can produce nearly-
optimal plans, even in presence of large estimation ernodsestimation guesses. They can be the result of
"lucky” combinations of two or more inaccuracies canceliegch other. Additionally, applications may be
built in a way that they rely on specific limitations of the iopizer's model. Sucloverfitting of the applica-
tion’s behavior around the limitations of the optimizersdel can happen intentionally, when a developer has
knowledge of specific system idiosyncrasies and develagis dipplication in a way that depends on those id-
iosyncrasies. It can also happen unintentionally, whewléveloper continuously tries different ways to develop
their application until the desired performance is achiel®cause a specific combination of events was hit).
Of course there are no guarantees that system idiosyrerasilucky combinations of events would remain
constant between product releases or over changes duermghication lifecycle. Therefore, applications (and
any tests based on such applications) that rely on ovetfittiay experience unpredictable regressions when the
conditions on which they depend change.

Adaptive optimization and self-tuning techniques: The use of self-tuning techniques to simplify the tasks
of system administration and to mitigate the effect of eation errors, themselves generate tuning and valida-
tion challenges. For example, SQL Server’s policy for awtboally updating statistics [10], can be too eager

for certain customer scenarios, resulting in unnecessity &nd I/O consumption and for others it can be too
lazy, resulting in inaccurate cost estimations. Advanamhiiques used to mitigate the cost model inaccu-
racies and limitations, for example the use of executioultfeek to correct cardinality estimates [14], or the

implementation of corrective actions during executiongtjnmtroduce similar tradeoffs and tuning problems.

Optimization quality is a problem of statistical nature: SQL Server’s customer base includes a variety of
workload types with varying performance requirements.ufédl illustrates the space of different workloads.
Workloads on the left-bottom area of the space are typicdin®@iransaction Processing (OLTP) workloads,
which include simple, often parameterized queries. Suctklwads require short optimization times and they
benefit from plan reuse. Workloads on the right side of thespaay include Decision Support System (DSS)
or data warehousing applications, which usually consisbaiplex queries over large data sets. DSS workloads
have higher tolerance for longer optimization times and thore advanced optimization techniques can be used
for those. They typically contain ad-hoc queries, genérbtequery-generator tools/interfaces. The middle area
of the application space contains a larger variety of apptias that cannot be characterized as simply as the
ones above. Those applications can contain a mixture ofisiemu more complex queries, which can be either
short or long running. Changes in the optimization procéfestagueries from different parts of the application

38

16

L
3
6

M B 0O

* &

&
R 3 PO td;;n u‘l'ﬁ'm

0,25 —& .
0,125 +
0,1 1 10 100 1000

(=

+

Perf ormance improvement
ratio (log scale)
=
(¥,

Baseline query execution time (minutes)

Figure 2: Performance impact of new optimizations

space in different ways, either because of shifts in exgdtiadeoffs and policies, or because of issues related to
overfitting. Inevitably, that makes the measurement ofroiatation quality a problem of statistical nature. As
an example, Figure 2 illustrates the results of experimeiitsnew query optimizer features on a realistic query
workload. In most cases the new features provide signifiparformance gains (especially for long-running
queries), but they cause regressions for some parts of thidoad (all points below 1 in Figure 2). Some
short-running queries were affected by increases in catigil time, while a few others regressed because of a
suboptimal plan choice or lack of tuning for the specific kaarck used in the experiment. While in this example
the benefits of the new functionality outweigh the perforoeregressions, there have been other cases where
it was more difficult to make a judgment about the advantageshe disadvantages of introducing a particular
new feature.

3 Query Optimization Testing Techniques

The practices of validating a software system can be tylgiciided in two categories: a) those that aim to
simulate usage scenarios and verify that the end resultystars operation satisfies the customer’s requirements
and b) those that aim to exercise specific subcomponentsoatedpaths to ensure that they function according
to system design. Test cases typically aim to validate theectmess of query results, measure query and
optimization performance, or verify that specific optintiaa functionality works as expected. We provide
some examples of testing techniques from these two cagsgarsed to validate SQL Server’s query optimizer.

Correctness testing: The query optimization process should produce executiansplvhich are "correct”, i.e
plans that will produce correct results when execu@akrectnessan be validated up to some extent logically,
by verifying that the various query tree transformatiorsutein semantically correct alternatives. Additionally,
it can be validated by executing various alternative exenytlans using plan enumeration techniques [15] and
then comparing their results with each other and/or witHeremce implementation (that is typically a previous
product release or a different database product). Anothimnmon practice is to ruplaybacks Playbacks are
SQL traces [1] collected from customers also used to vedfyectness against a reference implementation.

Large-scale stochastic testing: Typical steps in test engineering are to identify the spdadfferent inputs

to the system under test, to recognize the equivalenceeslagghin the input space, and then to define test
scenarios that exercise the system using instances skfemtethese equivalence classes. As mentioned earlier,
the input space for a query optimizer is multidimensional aary large. Different server configurations and

39

query execution settings introduce additional dimenstorthie input space. An effective testing technique for
tackling large input spaces is to use test/query gener#tatscan generate massive sets of test cases. The
generation process can be random or can be guided towaresrgpgpecific areas of the input space or certain
areas of the product. Such techniques have been very effeéatiesting SQL Server [7,13, 15].

Performance baselines: The task of validating changes in the query optimizer’s glaoice logic in presence

of the various engineering tradeoffs can become rathecudlifi A typical approach is to evaluate changes by
measuring query performance against a known baseline stiydstandard benchmarks, like TPCH [3] cover
only a small part of SQL Server’s functionality and contaarwwell-behaved data distributions. Therefore,
our testing process includes a wider set of benchmarks thadr@ larger variety of scenarios and product
features. Normally, those benchmarks consist of test dzesed on real customer scenarios. They are used for
performance comparisons with a previous product releasatioran alternative implementation.

Optimization quality scorecards: Although optimization time and query performance are goahsures

of plan choice effectiveness, they are not sufficient for raaépth understanding of the impact of changes
to the optimization process. Improvements in the optinszerodel will not always result in improvements
in plan choice (for the queries included in a benchmark),thist should not necessarily mean that they have
no value overall. On the other hand, new exploration ruleg exgand the search space with valuable new
alternatives but at the cost of increased memory consumptibich may cause performance bottlenecks on a
loaded server. In order to gain as much insight as possibietire impact of changes, our process includes a
variety of metrics in addition to query and optimizationfpemance. Examples of such metrics are: the amount
of optimization memory, cardinality estimation errorseeution plan size, search space size, and others. These
metrics can be collected across the whole set of queriasdadlin our various benchmarks, across an individual
benchmark and across segments of the application taxonprayiding a number of differenbptimization
quality scorecards

4 Experiences and Lessons Learned

The testing techniques mentioned in this article targdegint classes of defects. We briefly discuss a few
representative classes here, and how they correspond taribes testing techniques. We then continue with a
summary of some of the lessons learned during our efforts.

Large scale stochastic testing has been effective in eixtgride coverage provided by regular tests. Specif-
ically, it has contributed in eliminatinlEMO cyclesand incorrect results. MEMO cycles can occur when
defects in the implementation of a set of transformatioegalllow cycles to be generated in the recursive group
structures. We refer the reader to [15] for an explanatio®@QL Server's MEMO structure. SQL Server's
code contains self-verification mechanisms to detect syatel other inconsistencies in the MEMO structure.
Therefore, the discovery of such a defect is an exerciserwdrgéing the appropriate test case. Query generators
can be driven towards exploring the space of queries ang gleans much further than what can be achieved by
other types of testing. The combination of stochasticrigstiith self-checking mechanisms in the code has been
very effective in detecting irregularities in internal datructures that would result to incorrect query results.

In past releases of SQL Server, the performance tuning ofidtebase engine was done towards the final
phases of product development and hence regressions imipgiiion time were detected late. The establishment
and regular monitoring of the query optimization scoreaudng the development cycle has allowed us to be
proactive in identifying regressions as compared to thé. p&srly detection allows more time to tune the
optimization heuristics towards an appropriate balantedsen plan efficiency and optimization time.

The combination of stochastic testing techniques and beadts based on realistic customer workloads has
been very helpful for the development of some features of S@iver. A case in point is the USE PLAN query

40

hint [2], which allows forcing the optimizer to use a partenuquery plan that is provided by the user. While
the initial prototyping and testing using real customerragggedidn’t indicate major issues, testing with complex
queries generated by query generators showed that ourigeehrequired a lot more memory than what was
anticipated. That discovery led to a number of generic imgmoents to the original algorithm.

The importance of a reliable benchmark: Given the statistical nature of optimization quality, iEissential
that the benchmark used for making quality measuremenwligble and balanced. During the SQL Server
2000 release, our testing practice was to add a new test vasgtene each of our customers and partners
would experience a performance regression. Adding reigresssts in order to prevent future reoccurrences of
code defects is a standard practice in test engineeringer Adtlowing this practice for some time, the net of
regression tests becomes increasingly denser and evgmit@lides complete coverage of areas that may have
been missed in the original test plan. The regular apptinaif the above process introduced a large number of
regressions tests in our benchmark. A significant numbenefégression tests corresponded to queries with
large estimation errors, and included areas of query opétion with known limitations, i.e. areas where the
cost model was inaccurate. During the development cycieettvere times when our benchmark was heavily
affected by the performance of those tests. In some caggsimiate improvements in the cost model would
cause performance regressions. The performance of thpesseon tests was often unpredictable, and it could
drop enough to overshadow the performance gains in othes. té¢ that point, it became evident to us that
the practice of continuously extending our benchmark wathous regression tests was problematic. While the
regression tests represented areas in which customergpaded problems, they led to a benchmark that could
produce inconclusive results and skew the coverage of osria ways that were not well-understood. Today,
we try to develop benchmarks that are more complete anddzdan terms of application type but also in terms
of their conformance to the optimizer's model. If there igpadfic application with which we had issues in the
past and we want to track its performance, we will add a sulfdbat application workload into the benchmark.
That helps us understand the impact of a code change on fautieries from that application. We also try to
characterize each query in the benchmark and understaddgtee of conformance to the optimizer's model.
That is helping us determine when a regression is causedauddfect, a shift in optimization tradeoffs or due
to side-effects of overfitting.

You improve on what you measure: The blend of application scenarios and their correspondirgyies in-
cluded in the benchmark influences the decisions made fodiffegent engineering tradeoffs and eventually
the tuning of the query optimizer. Initially, our testingopess included a larger set of OLTP scenarios and a
much smaller set of DSS-like application scenarios. OLT&amer databases were more easily accessible at
the time and since they are typically smaller in size it wasezao adopt them in our test labs. Consequently,
increases in compilation time during the development chelé a significant impact across a large part of the
overall benchmark, while the effect of more advanced opt@tions only appeared in smaller areas. The hard-
ware configuration used for executing the benchmark cauwtéfie making of tuning decisions in similar ways.
For this reason, the different scenarios and hardware agafigns need to be defined and maintained in a way
that represents the product’s goals as rigorously as pgessib

Test each component in isolation: The use of end-to-end query performance as the sole mepiathoice
quality has often been ineffective. First, changes madetoponents downstream from the optimizer in the
Query Execution and Storage layers could result in enditbgeerformance changes. Although the source of
the regression could be pinpointed to the right componernsiimply checking for changes in the execution
plan, there were times during the development cycle wheh that execution plan and the implementation of
the downstream components would change at the same timachncases, it was difficult to determine which
component contained the root cause of the regression. Assmymptions made by the query optimizer (such

41

as the CPU cost for a certain operator) would change cauegrgssions across our benchmark. This problem
was mitigated by putting in place a parallel developmentess, which allows development in isolated code
branches. Thus, changes could be tested in isolation, arebded, component assumptions and expectations
could be adjusted before the final code integration. The einaf testing in isolation extends to testing the
internal subcomponents of the query optimizer as well. bitawh to evaluating the optimizer using end-to-end
guery performance metrics, it is valuable to be able to tashdayer of the cost model independently, so that
the root cause of defects can be identified quickly withinféwgty subcomponent. Additionally, validating the
subcomponents located lower in the optimization stackdlation (e.g. the Statistics subcomponent) guarantees
that the subcomponent located higher in the stack (e.g. éneiitality Estimation subcomponent) operates with
valid inputs and assumptions when being validated itself.

Clarify the model: It is essential that the contracts between the differentpmrants and any assumptions
made in the design are crisply defined in order to validate@uponents in isolation. For example, the cardi-
nality estimation component operates over histogramsruih@eassumptions of independence and uniformity.
Inputs that violate those assumptions will surely resukestimation errors and possibly in suboptimal plans.
Creating inputs that provide the ideal conditions expetigthe cardinality estimation component allows the
development of highly deterministic tests, which returowuaate results. While some assumptions and contracts
are fundamental and well-understood, query optimizatigiclcan be very fine-grained. Over time, the original
rationale for certain parts of that logic can fade unless téll-documented and ensured by tests.

Agree on when a regression is a defect: As discussed earlier, it is likely that legitimate code apesican
result in slower execution for some queries. It is very int@ot that the engineering team agrees on a well-
defined process on how to treat such issues, both internallyefl as externally when communicating with
customers. Fixing regressions in ways that do not conforth thie optimizer's model and assumptions, results
in code health issues and architectural debt. Supportiegiapcases creates instant legacy on which new
applications may rely on. For this reason it is very impadrtenhave a clear definition of the optimizer’s
model. At the same time, every decision needs to take intouetthe expected impact on customer experience.
Customers need to be given the appropriate tools to workndrplan choice issues, and guidance through tools
and documentation so that they can correct and avoid batqasc

Design for testability. During the past four to five years of product development wetweack several times
to add testability features into the query optimizer in ortteexpose internal run-time information and add
control-flow mechanisms for white-box testing. Designimgvrfeatures with testability in mind is a task much
easier that retrofitting testability later on. This help€larifying the interfaces and contracts between different
subcomponents and the resulting test cases ensure thaethain valid during future development.

5 Future Challenges and Conclusions

Query optimization has a very big impact on the performari@ge@BMS and it continuously evolves with new,
more sophisticated optimization strategies. We descwibeartore challenges, which we expect will play a larger
role in the future.

The transformation-based optimizer architecture of Moicgp] and Cascades [5] provides an elegant frame-
work, which makes the addition of new optimization rulesyed&hile it is straightforward to test each rule in
isolation using simple use cases, it is harder to test theillescombinations and interactions between rules and
ensure plan correctness. Also, with every addition of a ngvloeation rule, the search space expands and the
number of possible plan choices increases accordinglyrelibex need of advanced metrics and tools that help
the analysis of the impact of such changes in the plan spasequéry optimizers advance, the opportunities

42

for optimizations that provide value across most scenat@sease, hence optimization logic becomes more
granular. There has been research that indicates that gpéizers are already making very fine-grained
choices [11], perhaps unnecessarily so, given the presgruagdinality estimation errors.

Although we described query optimization testing with fe@n correctness and optimality, another inter-
esting dimension of the query optimization quality is theaept of performance predictability. For a certain
segment of mission-critical applications we see the neegredictable performance to be as important as the
need for optimal performance. More work is needed on definimgasuring and validating predictability for
different classes of applications.

Clearly, not all the challenges that we presented in thiepbhpve been fully tackled. The validation process
and testing techniques will continue to evolve along with #gvolution of the optimization technology and
product goals. The techniques described in this paper dbmsic validation and also provide insight regarding
the impact of code changes in the optimization process. A&sygoptimizers become more sophisticated and
supplemented with more self -tuning techniques, additiohallenges will continue to surface.

References

[1] SQL Server 2005 Books Online, Introducing SQL Tracepiitechnet.microsoft.com/en-us/library/ms191006xas

[2] SQL Server 2005 Books Online, Understanding plan facin http://msdn2.microsoft.com/en-
us/library/ms186343.aspx.

[3] Tpc benchmark h. decision support. http://www.tpc.org

[4] S. Cluet and G. Moerkotte. On the complexity of geneigtiptimal left-deep processing trees with cross products.
In ICDT '95: Proc. of the 5th Intl. Conf. on Database Thegpages 54—67, London, UK, 1995. Springer-Verlag.

[5] G. Graefe. The cascades framework for query optimizatiBEE Data Eng. Bull.18(3):19-29, 1995.

[6] G. Graefe and W. J. McKenna. The volcano optimizer getoerd&xtensibility and efficient search. I€DE '93:
Proc. of the 9th Intl. Conf. on Data Engineeriqaages 209-218, 1993.

[7]1 S. Herbert H. Bati, L. Giakoumakis and A. Surna. A genefiproach for random testing of database systems. In
VLDB '07: Proc. of the 33rd Intl. Conf. on Very Large Data Bageages 1243—-1251. VLDB Endowment, 2007.

[8] T.lbarakiand T. Kameda. On the optimal nesting ordecfamputing n-relational joinsACM Trans. Database Syst.
9(3):482-502, 1984.

[9] V. E. loannidis and S. Christodoulakis. On the propawatf errors in the size of join results. 5IGMOD '91: Proc.
of the 1991 ACM SIGMOD Intl. Conf. on Management of Datges 268—277, New York, NY, USA, 1991.

[10] L. Kollar. SQL Server 2000 Technical Articles, Books e, statistics used by the query optimizer in microsoft
SQL Server 2000. http://msdn2.microsoft.com/en-uslipiaa902688(SQL.80).aspx.

[11] N. Reddy and J. R. Haritsa. Analyzing plan diagrams débase query optimizers. WLDB '05: Proc. of the 31st
Intl. Conf. on Very Large Data Basgsages 1228-1239. VLDB Endowment, 2005.

[12] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. Arieg and T. G. Price. Access path selection in a relational
database management system.SIGMOD '79: Proc. of the 1979 ACM SIGMOD Intl. Conf. on Managmt of
Data, pages 23—-34, New York, NY, USA, 1979. ACM.

[13] D.R. Slutz. Massive stochastic testing of SQLMIODB '98: Proc. of the 24rd Intl. Conf. on Very Large Data Base
pages 618—-622, San Francisco, CA, USA, 1998. Morgan KaufrRablishers Inc.

[14] M. stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - B2’s LEarning Optimizer. I'VLDB '01: Proc. of the
27th Intl. Conf. on Very Large Data Basgmges 19-28, San Francisco, CA, USA, 2001.

[15] F. Waas and C. Galindo-Legaria. Counting, enumeratimgl sampling of execution plans in a cost-based query
optimizer. InSIGMOD ’'00: Proc. of the 2000 ACM SIGMOD Intl. Conf. on Managmt of Datapages 499-509,
New York, NY, USA, 2000. ACM.

43

Testing Berkeley DB

Ashok Joshi, Charles Lamb, Carol Sandstrom
Oracle Corporation
{ashok.joshi,charles.lamb,carol.sandstf@moracle.com

Abstract

Oracle Berkeley DB is a family of database engines that peviigh performance, transactional
data management on a wide variety of platforms. Berkeley DEyzts are available under a dual
license: an open source license and a commercial licensedi$fass some of the standard testing and
tuning techniques used for ensuring the quality and relighof the Berkeley DB library, emphasizing
some of the interesting testing challenges arising due ti4platform support. Since Berkeley DB is
available in source code form, it can be adapted/modified dBrauin the field. It is necessary to test
and validate the modified version of Berkeley DB before it lsameployed in production. We discuss
some testing tools and techniques provided with the Berk@R:distribution that simplify the process
of user-testing and certifying Berkeley DB ports to newfplans.

1 Introduction

Database software is complex along many dimensions: largear of features and APIs, concurrent read and
write activity, fault-tolerance and recovery, performanscalability, and reliability. In a wide variety of situa-
tions, database applications manage mission critical daththere is an implicit assumption that the underlying
data management services are well tested, reliable anebtofithis article discusses some of the testing and tun-
ing methodologies and practices used to ensure high gdati§erkeley DB, a family of embeddable database
engines.

Oracle Berkeley DB [1] is a family of database engines thavidle robust data management services in
a wide variety of usage scenarios ranging from enterpiegscapplications to applications running on mobile
devices such as cell phones. Berkeley DB products areligdéd under a dual license - the open source GPL-
like license for open source applications, and a commelicetise for closed source applications.

It is important to highlight some of the differences betwa@nopen source product such as Berkeley DB,
and proprietary, closed source products. Note that BeykeR is not anopen development projedBerkeley
DB products are developed by a dedicated group of softwagimeers. Berkeley DB products are distributed in
source code form, complete with a comprehensive test shdarce code distribution adds an interesting set of
development and testing challenges, since the user isdfid®bse from a variety of compilers and development
environments to build Berkeley DB and the application. Rerta small number of users can and do modify the
Berkeley DB sources, primarily for porting to new platfornise Berkeley DB distribution includes a test suite
that can be run by end users in order to validate their changes

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

44

The rest of this paper is organized as follows. We begin witlescription of each of the products. This is
followed by a discussion of some of thtatic testingools that we use internally to verify the correctness of the
code. This is followed by a section on testing - this includes testing, stress testing, performance testing and
analysis as well as ad-hoc, use-case-specific testing., Wexdiscuss the Berkeley DB approach to portability,
platform support and testing. Portability is particularyeresting in the Berkeley DB context because we allow
and encourage our users to port Berkeley DB to the platformiaif choice. The Berkeley DB distribution
includes a platform test suite designed to exercise théoptatspecific aspects of the port.

Oracle Berkeley DB has benefited tremendously from a largeaative community of users who test the
products, review the code, report problems and suggesheaheents and features. The involvement of the user
community has been critical to the success of the BerkeleypBucts.

2 Berkeley DB product family overview

The Berkeley DB product family consists of three producterkley DB, Berkeley DB Java Edition and Berke-
ley DB XML. Berkeley DB products are available as librarieshasimple, proprietary APIs for data access and
manipulation as well as database administration. BerkeByoes not support SQL, though it has been used
as the storage engine for SQL database products. A typiakkeRy DB application makes API calls to start
and end transactions, store and retrieve data as well asfwrmpeadministrative functions such as checkpoints
and backups. Thus, a Berkeley DB application is completsglf“‘contained” with respect to all data manage-
ment activities; this enableszaro manual administratioapproach to application development. This capability
is critical in a large number of applications including ermted applications, where manual administration is
impossible.

Berkeley DB Java Edition is a 100% pure Java implementatibereas Berkeley DB is implemented in
C; both products have similar APIs and capabilities for datmagement. Berkeley DB XML (implemented
in C++) is an XML database engine with XQuery and XPath cdjiisi Berkeley DB XML layers on top of
Berkeley DB and uses it for storage, indexing, transactamsother database capabilities.

Although Berkeley DB and Berkeley DB Java Edition are vemyikr with respect to the features and
functionality they provide, architecturally, they are tguilifferent. From a testing point of view, porting is not as
big an issue for Berkeley DB Java Edition, since the JVM ieneaintly portable. Both products provide indexed
access to data; Berkeley DB supports B-trees as well as hdeking whereas Berkeley DB Java Edition only
supports B-tree indices. Both products support concuraeness to data. Berkeley DB permits concurrent
threads, or concurrent processes or both, whereas BelR&8elava Edition typically supports multiple threads
within a process and more limited multi-process accessh Baiducts support transactions, including support
for the various ANSI isolation levels. A row is simply an opadey:valuepair; Berkeley DB does not have
the notion of data types, but the Direct Persistence LayBeokeley DB Java Edition does provide an optional
schema-like capability. Interpreting the opaque contehtse row is left entirely up to the application. APIs
for administrative operations like database checkpointstemckups are provided by all three products.

Architecturally, Berkeley DB is similar to the "update-otace” architecture of most other traditional
database systems. Berkeley DB Java Edition, on the othet, haes log-structured storage for managing
on-disk data. Every change results in a new entry in the logeparate garbage collector thread that runs in
the background reclaims space occupied by obsolete datss, Though there are commonalities between the
test suites for Berkeley DB and Berkeley DB Java Edition wé&ispect to testing APl behavior, the Berkeley DB
Java Edition test suite also contains specific tests forcestag the log cleaner, "out of disk space” scenarios,
log archiving and other aspects specific to the log strudtarehitecture of Berkeley DB Java Edition.

Berkeley DB XML, on the other hand, manages XML documentscubaents can either be stored as whole
documents, or as individual nodes. Berkeley DB XML creatglices on various attributes to improve access
performance. Since Berkeley DB XML is layered on the Bernké&d database engine, it can leverage the test

45

suite of the underlying storage engine, including the ogpion and high availability features. Berkeley DB
XML also leverages the XML standards specifications in otdeest the correctness of XML processing.

2.1 Feature sets

Early on in the history of Berkeley DB development, we madedéacision to provide a variety of feature sets for
the Berkeley DB products. Applications that use BerkeleyHa®Be varying data management needs; rather than
a "one size fits all” approach, Berkeley DB products offer tiser a choice of which features to use. Further,
an application using the simpler feature sets can build dl $owdprint Berkeley DB library; this is particularly
important for applications running on resource-consgdidevices such as mobile devices.

The simplest feature set is callBéita Store(available in Berkeley DB and Berkeley DB XML). This allows
either a single writer or concurrent readers. The data siatien is ideal for simple applications that need high
performance indexed access to data without the need foiwasglconcurrency or transactions.

The Concurrent Data Stordeature set allows concurrent readers and one writer, kilbowi transactions
and recovery. This is most suitable for situations where#8aity, footprint and performance of the application
are more important than data consistency or integrity. Istrobthese situations, the data managed by Berkeley
DB is either transient data, or the data can be retrieved froother (perhaps transactionally managed) data
source in case of data loss.

TheTransactional Data Storeature set provides the full set of features including corency, transactions,
logging and recovery. This is the option of choice for apgtiiens that have stringent data consistency and
integrity requirements. As mentioned earlier, Berkeley &80 provides APIs (and standalone utilities) for
administrative functions such as backups, checkpointsracavery, further simplifying the task of building
zero manual administration applications.

Finally, Berkeley DB provides theligh Availability (HA) option for applications that need multi-node scal-
ability and extremely high availability. Berkeley DB HA sugrts a single read-write master and multiple reader
configuration implemented via log shipping. If the mastdsfa new master is elected and processing continues
uninterrupted. Berkeley DB HA also supports a variety ofiam for improving transaction performance; for
example, it is possible to commit a transaction either bytimgithe commit log record to the master’s local
disk (commit to disk)or by sending reliable commit messages to a majority of dw®msdariegcommit to the
network)

The Berkeley DB design philosophy has always been to prowidehanisms, not policy. This provides
tremendous flexibility to the application developer witsgect to choosing the features to use as well as con-
figuring memory, 10, network traffic, disk usage and othetesysresources. This level of flexibility implies
multiple permutations of choices and configurations dut@sging and tuning.

3 Ensuring product quality

In general, we follow theextreme programmingnethodology for unit testing - implement the test first, then
implement the code. This methodology results in much betele quality in the minimum amount of time.
We'll discuss unit test development in more detail below.

We use a combination of code reviews and software tools iardalensure the correctness of the new im-
plementation. A good code review is highly effective in eirsy better code quality. Tools such las can de-
tect potential problems such as uninitialized variablgsetincompatible assignments and incorrect arguments.
Tools such agurify [3] check for memory leaks and potential out-of-bounds nexfees. Our development
methodology requires that code is peer-reviewed and cheidtememory leaks, adherence to language and
portability standards and standard coding conventionklidilinconsistencies are fixed before the code changes

46

are approved. Since Berkeley DB products are distributesthimce form, we periodically compile and build the
product using a wide variety of compilers and address canEsues and warnings.

3.1 Static testing

The termstatic testingefers to various tools for measuring code coverage, meaaryption and memory leak
checkers such &urify, and programs such &at that are used to identify problems in the code and/or tests.

Code coverage is a very useful technique for determiningeffectiveness of the test suite. In a code
coverage run, the code is instrumented to monitor coverage then the entire test suite is run to determine
which code blocks are executed, and which code blocks arexestised. Code coverage testing is done
periodically since analyzing the results and adding netg temn be a significant amount of work.

A code coverage run will highlight the lines of code that aot exercised. Rather than a "brute force”
approach to achieving very high code coverage, we focus wvelagng tests that target the important code
paths. Code coverage results need to be interpreted dgrefute they do not indicate whether every possible
codepath was exercised. For example, if there are multiple ways ofhieg a particular code block, a code
coverage run will identify that code block as covered eveheftest only exercises one of the ways of reaching
that code block. It may be necessary to use other technigudsas logging and/or using a debugger to ensure
that tests exercise specific code paths. This certainlydugs the quality of the tests, but may not result in
increasing code coverage.

We run Purify periodically to identify and eliminate memory leaks. Wecmwpile, build and run tests
periodically on many different families of systems inclugliLinux, Windows, Solaris, HP-UX, AlX, and others.
Testing starts with the compiler native to a system, but \we tdst non-native compilers in situations where they
are commonly used, e.ggcc. We also make a point of testing different versions of theesaompiler. Build
failures are fixed when possible and silenced when necetsamoid the possibility of real failures vanishing
in the noise of unimportant warnings. All engineers recavmail from automatedint runs daily and are
responsible for fixing errors found in their code.

3.2 Regression Testing

Test execution is automated. Under normal circumstanicegest suite is run on two or three different platforms
concurrently. Builds are verified at least daily. Tests gateedetailed logs of the execution, and the scripts
supporting the tests automatically report build and takiries by email. The QA group analyzes the results of
each test run; test failures are fixed by the QA group, wheseagrammatic errors are reported to the relevant
developer. Code changes are logged in CVS with tracking eusndo it is usually possible for a QA engineer
to pinpoint the piece of code that changed and inform theapjate development engineer in order to address
the issue expeditiously.

3.3 Unit testing

We follow the extreme programming principle of "test firsbde later” in developing unit tests. We first im-
plement a set of tests that are designed to verify the cosstof the change. Depending on the scope of the
change, developing unit tests can be a significant efforé déveloper responsible for a certain feature usually
develops the required unit tests, with input from other tea@mbers. The QA group expands and standardizes
tests from development. Having the unit tests ready befarésature is developed has several benefits including
potential improvement of the design and eliminating thesfimity that the feature will go untested.

The complete unit test suite is included with each Berkel8ydstribution and can be run by the end user
who needs to verify their specific Berkeley DB applicatiorplementation and deployment.

a7

3.4 Instrumenting the code for testing

Sometimes, it is necessary to add special code to simulgtgrceonditions for testing (e.g. 10 failure). In such
cases, we instrument the code with assertions and hookexgample, we use Jawassertions assertions are
enabled only during debugging and testing. We also laagertstatements that allow us to ford®Exceptions

to be thrown at specific points in the code and these pointbeapecified by the test program. These simulated
write failures ensure that the error handling code is correc

3.5 System and Stress testing

System and stress testing is designed to test the end-tbedravior of the software. We use a parameterized
driver program; this enables us to easily tailor a partictést run to exercise specific aspects, features and
configurations. For example, it is possible to select thelemof threads, the ratio of writes to reads, memory
size and various configuration parameters.

The driver is normally run in randomized mode to force thérngsof new combinations, and is routinely run
on multi-processor machines (even slow multi-procesdorg)crease contention. The driver program runs for
extended periods of time and exercises the various Berk&B\PIs with the objective of finding a problem.
Since the driver program is well parameterized, it is pdesib use the same program not only to stress test
specific aspects of the software but also to measure penfmenaf basic operations.

Running system and stress tests is an on-going activitybl&res identified by unit tests are usually re-
producible and hence relatively easy to analyze. On the ditiied, diagnosing and fixing problems found by
system and stress tests is harder since it is not easy todiegrdhe problem. Stress tests run for extended
periods of time, making it difficult to reproduce the exaettstof the system at the time of the failure. Berkeley
DBs extensive logging capabilities are extremely helpfidmalyzing system test failures.

Testing Berkeley DB HA requires a test harness that can isesacdistributed application running on mul-
tiple nodes. We are in the process of developing a test rebssed otrlang [2].

Developing comprehensive system and stress tests is akvelyallenging task, and an on-going process.
Recently, we encountered a customer issue which hightightanitation in one of our stress tests that exercises
themulti-version concurrency contrééature in Berkeley DB. Multi-version concurrency contrejuires addi-
tional memory in the buffer pool in order to store previoussi@ns (snapshots) of database pages; when there is
no more room in the buffer pool, Berkeley DB temporarily dl@ws the snapshots to disk. Though overflow to
disk for snapshots is supported, the expectation is thatsbewill configure the buffer pool so that overflowing
to disk is rare. In this particular customer situation, a boration of a long-running writer transaction, multiple
reader transactions and a small buffer pool resulted irga lanmber of snapshots being written to disk. Further,
there was a bug in the "read snapshot from disk” code, whistlted in the incorrect version being returned to
the transaction.

It took a significant amount of investigation to recreate sbenario and diagnose the problem, since the
problem was not easy to reproduce. Fortunately, once tHa#gmmowas identified, the fix was very easy (just a
few lines of changed code). Needless to say, we have addess s&sts to exercise the "overflow snapshot to
disk” scenario.

3.6 Performance testing and analysis

Performance testing and analysis is an on-going activisym&ntioned earlier, the system test driver program is
parameterized; this enables us to use it to measure theparice of various operations.

We maintain performance data history for all releases iemtaldetect regressions. This is particularly help-
ful during the development of new features and functiopadiince we can quickly identify and fix performance
problems that are introduced by the new code. Our expersimggests that measuring the performance of basic
operations is sufficient to identify performance regrassim most situations; a complex test is not required.

48

We often get requests for performance data for certainpmest-specific workloads. The customer workload
usually has specific requirements for record size, numbeeatfrds in the database, throughput and response
time constraints and so on. Having a simple, parameterigeergrogram is tremendously helpful in being able
to respond quickly to such requests. In most cases, it iskgeds easily modify the driver program in order to
approximate the specific workload and generate performdaize

3.7 Release testing

In addition to the continual testing during the developnmrdse, we run an additional set of tests after a release
is code-complete, in order to verify some of the uncommotfgila configurations and to ensure that add-on
modules (likePerl - http://perl.com are tested and ready for release.

Berkeley DB has been in widespread use for more than a decatleise of historical versions is quite
common. Release testing also includes upgrade tests, ify teait databases from earlier versions can be
seamlessly upgraded to the new version.

3.8 Platform porting and testing

Berkeley DB products are different from most commerciallgikable database systems because Berkeley DB
is shipped in source code form (along with the source codthéotests). This makes it convenient for our users
to port Berkeley DB to the platform of their choice. We oftennw jointly with our customers on such porting
efforts.

Portability is not an issue for Berkeley DB Java Edition; tbst of this discussion applies mainly to Berkeley
DB and Berkeley DB XML. By design, Berkeley DB products adhstrictly to programming language stan-
dards and have minimal dependence on platform primitiveds ghe case with other portable software products,
Berkeley DB isolates the operating system dependent codestoall set of code modules. This ensures that
port-specific differences are localized.

Berkeley DB supports a long list of popular platforms. Eaelwiversion is released simultaneously on all
supported platforms. This is achieved by continuous angufat testing on a wide variety of platforms in a
round-robin manner. Though it is not very common to find platf-specific problems, the advantage of this
approach is that such problems are identified early in theldpment stage.

Occasionally, a customer requires Berkeley DB on a platfiiahis not already supported. In order to assist
our users in porting Berkeley DB, we have developed a poduidge and a platform-specific test suite in C.
Though not as comprehensive as the full test suite, this aotnput complete test suite is designed to thoroughly
exercise the various operating system primitives that &@eykDB uses. The tests can also be modified to suit
the requirements of the underlying platform. This is esggcicritical when testing on resource-constrained
devices such as mobile phones.

A typical customer-porting scenario is as follows. The cowr will download and build the source code on
the target platform. This can be an iterative edit-andebpilocess. After Berkeley DB is built successfully, the
user can run either the full test suite (if the platform isadalp) or just the platform-specific test suite. When all
tests execute successfully, the user can be confident thieglBy DB will run on the target platform.

If the user had to make changes to the code, build scriptsts, t@e request them to send us the changes so
that we can incorporate them into future releases.

We recently had a very positive experience where a custorokked with one of our field engineers in Japan
to demonstrate that Berkeley DB could be ported to a newglateasily and painlessly. They used the porting
guide and tools provided with the Berkeley DB distributionarder to compile, build and validate Berkeley
DB on the new platform in less than two months. Typically, & po a new platform of a commercial database
products takes many person-months of work, so this is a keahbkr achievement.

49

4 Tuning

The Berkeley DB philosophy is to provide mechanisms, noicgoBerkeley DB (like other DBMSSs) provides

a large number of "knobs” to influence the run-time behaviod performance of the system. The user can
control system parameters such as amount of memory, thregushronous vs. buffered 10 etc. The user can
also choose to enable or disable features such as tramsadtioking and multi-version concurrency control.

Choosing the various parameters appropriately requiresd gnderstanding of the system; this is further
complicated because some choices have dependencies ogluiies and settings.

Berkeley DB has a comprehensive statistics and logginditfatihat provides useful data to aid tuning.
Berkeley DB documentation provides detailed informationtive various parameters and settings available to
the user. Further, there are several source code samplepredgncluded with the distribution that illustrate
how certain parameters may be used. The Berkeley DB dispu$siums are an excellent source for getting
advice and feedback on tuning Berkeley DB. In specific sitmat we provide customer-specific consulting
for performance analysis and tuning. Finally, having asdeshe Berkeley DB source code can be helpful in
understanding and tuning the software. On a number of amtssusers have been able to achieve significant
(ten-fold or more) improvements in performance by modifyjust a few Berkeley DB parameters.

We are planning to develop a utility that will interpret thiatsstics and make recommendations. We are
also considering integration with other comprehensiveitodng and tuning utilities such as Oracle Enterprise
Manager.

5 Conclusions

Exhaustive testing is fundamental to the quality and siscoéshe Berkeley DB family of products. We pay
attention to testing, code quality and performance througthe development cycle. In terms of lines of code,
the test suite is about 40% of the lines of code in the prodamdisit continues to evolve along with the products.

Acknowledgements

We work closely with our user community in order to improve giroducts as well as to port to specific platforms. Berkeley
DB products have benefited tremendously from user feedbatkelp. A large portion of the credit goes to the excellent
development team; their expertise and painstaking atteii quality, performance and overall maintainabilitylo tode
continues to be instrumental in delivering world-classjuats.

References

[1] Berkeley DB Documentation: http://www.oracle.com/technology/documentation/
berkeley-db/db/

[2] Erlang: www.erlang.org

[3] Purify: www.ibm.com/software/awdtools/purify

50

Oracle’s SQL Performance Analyzer

Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Didsai@anu Joshi, and Hailing Yu
Oracle USA
{khaled.yagoub, pete.belknap, benoit.dageville, kas,d8hantanu.joshi, hailing.y@oracle.com

Abstract

We present the SQL Performance Analyzer, a novel approghaicle Database 119 to testing database
changes, such as upgrades, parameter changes, schemashand gathering optimizer statistics. The
SQL Performance Analyzer offers a comprehensive solutiendble users to forecast and analyze how
a system change will impact SQL query plans and run time paence, so they can tune their system
before they make the change in production. The SQL Perfaren@nalyzer identifies potential problems
that may occur and makes suggestions for avoiding any SQlorpeaince degradation. It provides
guantitative estimates of the system’s performance in @ve environment with high confidence and
performs a comparative analysis of the response time of @le Borkload thus allowing for an easy
assessment of the change. In this paper we describe theentthie of the SQL Performance Analyzer,
its usage model, and its integration points with other Ogatthtabase components to form an end-to-end
change management solution.

1 Introduction

The past decade has witnessed significant advances in aeHgimg database technology. The major emphasis
of these works [1, 5, 7] has been monitoring a currently mgriatabase system for performance regressions,
diagnosing any existing performance problems, and suiggestlutions to improve such regressions. While this
provides a very effective and complete solution to autoradyi manage database systems, there is an important
aspect of query performance regressions that has beetylakgglooked in the database literatutesting the
performance impact of a planned chande. other words, how well do database systems help admitossra
prepare for and cope with changes?

System changes could range from simple ones like a new valug flatabase parameter or the addition
of a new index structure to more complex changes like miggato a newer version of the database or up-
grading hardware. Since such changes are inevitable amdtegesmallest change to the system could have
an adverse effect on the performance of certain queries,igtan extremely important problem. Since SQL
performance issues are inherently unpredictable, a statiecentric solution makes sense. Users administering
critical database systems need a solution to predict thatiwegeffects of a change and take measures to avoid
them. Problems left to be discovered on a live system costriterprise precious time and resources.

In this paper, we describe the Oracle SQL Performance AaaliaPA), which is our solution to the problem
of controlling the impact of system changes on query peréote. SPA completely automates the manual and

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

51

time-consuming process of testing the impact of change tenpally large SQL workloads. SPA provides a
granular view of the impact of changes on SQL execution planexecuting the SQL statements in isolation
before and after a change. Then it compares the SQL exeaesait before and after the change, and generates
a report highlighting the improved and regressed SQL statésnand giving precise measurements of their
performance impact. Regressed statements are preseitect@ammendations to remedy their performance.
There have also been some efforts in the industry to addnegzroblem of measuring performance impact
caused by system changes. The Quest Plan Change Analyzefi¢s] on the Oracle explain plan command
for retrieving the query plans of a set of SQL statementsreedmd after making the desired change and then
compares them. While the query plan is often a fair indicatdhe actual execution cost of a SQL statement,
it may not be very accurate in several situations when thereally no substitute to actually executing the
SQL statement to determine its cost. Moreover, unlike SPAQuest Plan Change Analyzer does not consider
the frequency of execution of SQL statements in a workloadendomputing performance impact, leading to
inaccurate estimates. SPA executes each SQL before andaft@ange and presents SQL statements ordered
by the magnitude of their change on the overall workloadgreréince. For very large workloads, users may not
have time to examine each change one by one, so separatimg#rengful changes from the rest is very useful.
Hewlett Packard’s LoadRunner [8] and Oracle’s Databasddyd@] are two more examples of products
for evaluating the impact of change on a system. Howevesgethgo differ from SPA by providing a complete
system workload with timing and concurrency charactessto a test system. In contrast, SPA computes the
performance impact of a change, at the granularity of arviddal SQL statement. In this context, SPA is
analogous to unit-testing tools while LoadRunner and DegaliReplay are similar to stress-testing tools.

2 Common Usage Scenarios

SPA can be used to analyze the performance impact of a varfietystem changes that can affect the perfor-
mance of SQL statements. Examples of common system chamdjeda:

e Database upgrades including patch deploymentdUsually, database administrators (DBAS) are reluc-
tant to upgrade to a new release of the database despitedimésprg new capabilities the new release
offers. This is mainly because they know from past expegghat any major release involves significant
changes in the database’s internal components, which mestlgi affect SQL performance.

e Database initialization parameter changesThe value of a specific parameter can be changed to improve
performance, but it may produce unexpected results bethesystem constraints may change.

e Schema changesChanges such as creating new indexes are intended to i@l performance, but
they may have adverse effects on certain SQL statements.

e Optimizer statistics refresh: Gathering new statistics for database objects whosestitatiare stale or
missing can cause the optimizer to generate new executms pln this case, DBAs can use SPA to assess
the benefit of gathering statistics.

e Implementation of tuning recommendations Accepting tuning recommendations from an advisor such
as Oracle’s SQL Tuning Advisor [5], may require users to testeffect of the recommendations before
implementing them.

e Changes to operating systems and hardwareChanges, such as installing a new operating system,
adding more CPUs, or moving to Oracle Real Application @sstay also have a significant effect on
SQL performance.

52

3 SQL Performance Analyzer Architecture

Figure 1 illustrates the high level components of the SPAthei interac-

tions with each other. L SQL Plan j E SQL Tuning }
SPA takes a SQL workload as an input in the format of a SQL tunin aragement Advisor

set (see Sec. 3.1), executes every statement in the turtibgfeee and after | Reporting ? |

making the planned change, compares the results of the tasutans, and

then produces a rich graphical report highlighting the iotpé the change at rest o ompare

both the SQL workload and individual SQL statement levelA Bfntegrated

with the optimizer's SQL Plan Management facility and theL.SKoning Ad- | oL Tining - |

visor (see Sec. 3.6 and 3.7) to provide support for fixing &gyassions that

might be caused by the change. Figure 1: SPA Architecture

3.1 SQL Tuning Set

The SQL tuning set is a database object that provides a ctenfaleility for DBAs to easily manage SQL
workload information. A SQL tuning set can be used to capamet persistently store user or application-issued
SQL statements along with their execution context, incigahe text of the SQL, parsing schema under which
the SQL statement can be compiled, real bind values usectutxthe SQL statement, as well as its execution
plans and execution statistics, such as the number of tineeSQL statement was executed.

A SQL tuning set can be populated from different SQL sourasduding the cursor cache, Automatic
Workload Repository (AWR) [5], existing SQL tuning sets, caustom SQL statements provided by the user.
SQL tuning sets are transportable across databases an@& expdrted from one system to another, allowing
for the transfer of SQL workloads between databases for teperformance diagnostics and tuning.

3.2 Test-execute

We believe the best way to assess the impact of a change oetioerpance of a SQL statement is to execute
the statement before and after the change and then chesleifétution time has regressed or improved. SPA
test-executes SQL statements in a SQL tuning set, colleets dssociated execution statistics and compares
them with a previous run of the same statements.

SPA employs an internal SQL service called test-executen®QL statements. Test-execute takes as input
the text of the SQL statement to execute, actual bind valsed an the production system, and a schema name
to use to compile the SQL. It then performs a mock executiom®fSQL statement with the goal of gathering
the SQL execution plan and runtime statistics required &fgpmance comparison. Runtime statistics include
elapsed time, CPU time, I/O time, buffer gets, disk readsk dirites, and row count. During test-execute, the
SQL is executed and the produced rows are fetched until ghedw in the result set, but never returned to the
caller. All rows will be blocked to avoid any side effect, pamlarly when testing DML and DDL statements. In
order to avoid updating the database state, test-exeawseonly the query parts of DML and DDL statements,
testing the portion of the SQL that is the most vulnerableh@nge.

SPA executes SQL statements once, one at a time, and inasofaim each other without regard to their
initial order of execution and concurrency. This ensure$ 8PA performs a repeatable experiment whose re-
sults can accurately be presented on a per-SQL basis,\gs@athlifying the task of interpreting the results.

Explain Plan Option: This option can be used to retrieve only the execution planghie SQL statements

before and after a change and then determine the impact oh#regye on the structure of the plans. This option
is far cheaper than actually executing the statements.

53

Note that SPA still uses test-execute, but stops it afterptiation of the statement to return its execution
plan, which is exactly the same execution plan the optimizauld choose, had the SQL been executed with
user specified bind values.

Remote Test-executeSPA also provides the ability to perform test-execute omeote database using database
links. For example, assume that the user is upgrading froacl®10.2 to Oracle 11.1 and already has an 11.1
test system set up. She can use SPA on the 11.1 system torficttelg test-execute all SQL statements on the
10.2 system. Next, she can perform another test-executentihe local system and then compare the two sets
of execution plans and runtime statistics.

To perform a remote test-execute, SPA automatically déstes a connection to the remote database using a
database link specified by the user, executes the SQL stateomethat database, collects the execution statistics
and plan for each statement, and then stores them back indhledatabase for analysis and comparison.

Time Limit: To control the time spent while processing a SQL tuning sBA 8llows users to specify two
time limits for test-execute: 1) A global time limit whichpesents the maximum duration for processing a
SQL tuning set. This time limit is important, particularkghen using a large SQL workload. 2) A per-SQL
time limit which is the maximum duration for the processiri@@ingle SQL. The per-SQL time limit is used to
control runaway queries. When set by the user, the same itimteapplies to every SQL in the SQL tuning set.

3.3 Compare Performance

This SPA module is responsible for comparing the perforraari¢che SQL workload before and after a change,
and calculating the impact of the change on the SQL workload.

SQL Trial: The output of test-executing a SQL tuning set, i.e., theltieguexecution plans and runtime statis-
tics, are stored in the database in a container called a S&LArSQL trial represents a particular experiment
or scenario when testing a given change. It encapsulatggetiiermance of a SQL workload under particular

conditions of the system.
SQL SQL
Tuning Set Tuning Set
test-execute, test-execute test-execute test;é'xecute
N

SQL Trial SQL Trial SQL Trial
pre—change post-change pre—change
|

Implement change
Figure 2: SPA with (a) Two SQL Trials, (b) Multiple SQL Trials

test-execute

SQL Trial
post-change 1

SQL Trial
post—-change N

As the above diagram shows, the user can create any numb@ldfridls, where each trial corresponds to
the SQL workload performance data under a different chaauge compare any two trials. All trials will reside
in the database, thus forming a history of all testing expenits conducted by the user for a SQL workload. This
is a very useful feature of SPA as it allows users to keep todiahanges and perform historical performance
analysis. SPA’s iterative usage model is a recognition eédfdict that the nature of system testing is one of one
change leading to another, with each being tested in isolaitil a steady state is reached.

Performance Comparison: Once performance data has been gathered under each SQtheigkerformance

comparison module analyzes the differences between tais tind unmasks the SQL statements that are im-
pacted by the tested change. The compare module measurgsphet of the change on both the overall

54

performance of the SQL workload as well as on each indivik@L statement. By default, SPA uses the
elapsed time as a metric for comparison. The user can alsuseHoom a variety of available SQL runtime
statistics, including SQL CPU time, 1/O time, buffer getskdreads, disk writes, or any combination of them
as an expression (e.g., cpime + 10*buffergets). The module also compares the execution plans’ staict
changes of SQL between the two trials.

Change Impact Calculation: Change impact is a measure of how a system change affectetfoenpance
of a SQL statement. SPA calculates the change impact bastw alifference in resource consumption across
two trials of the SQL workload as follows:

doievifi— > €aifi cis, — Cbi Cai cisw; = fi(ev — €ai)
Yoievifi €bi > oievifi

ciw: change impact on the overall performance of the workload.

cis;: change impact on individual SQL in the workload.

cisw;: impact of a SQL performance change on the overall perfocmaf the workload.

fi: execution frequency, i.e., number of executions, of arg®®L captured in SQL tuning set.

epi. execution metric of a SQL single test-execution from thimleechange SQL trial.

eqi. execution metric of a SQL single test-execution from therathange SQL trial.

(1)

clw =

These measurements are presented to the user through thee|8®A As a general rule, negative values
indicate regressions, while positive values indicate mapments in performance.

The SQL execution frequency is used by SPA to weight the itapoe of each SQL statement in the work-
load. This allows users to correctly determine the impadbog running SQL statements that are executed only
a few times as well as statements which are very fast, butitigply executed.

3.4 Reporting

When the performance comparison and analysis are complétesulting data are written into the database.
The end user can then review the analysis findings producesPyby either directly querying the exposed
schema or simply requesting the analysis report from SPA.

The SPA report is divided into two main sections: Analysis
Summary and Analysis Details. The summary section giveissta
tics about the overall change in performance of the SQL work-
load and points out the SQL statements that are impactedeby th
change. The detail section has an entry for every SQL stateme
] in the SQL workload with detailed information about the SGQL a
change change mproved ressea”™" % well as a side-by-side comparison of the SQL runtime stegist
Improvement Impact: 4382 % M Plan Stucture Changed — @nd execution plans from the trials used in the comparisorthe

egression Impact: -2.78 % [pjan Structure Unchanged . .

Overall Impact: 41.04 % report SQL statements are ordered by their change impadieon t

SQL workload performance.
Figure 3: Example of a Partial SPA Report As depicted in Figure 3, the report shows graphically the-ove
all value of anbuffer getsbefore and after making the system
change, along with a second graph for the count of SQL statenvehose performance improves, regresses
or remains unchanged as a result of the change. Both thgsesgnave drill-down capabilities to view details at
individual SQL statement level. The example above indg#tat overall, the workload performance improved
by 41.04% even though it experienced some regressions as $hyothe impact of -2.78%.

=)}
<
=3
S

b
<

"

888

N
<

SQL statement count
N
5

o B

0

Projected workload buffer gets

55

3.5 SQL Plan Management

If the comparison of two SQL trials shows some SQL statemwittsregressed performance, SPA will recom-
mend creation of plan baselifef8] for the subset of regressed SQL using execution plama flefirst SQL
trial. This ensures that the optimizer will always use thpkes for future executions of this subset of SQL
statements preserving their performance, regardlessaniges occurring in the system.

3.6 SQL Tuning Advisor

SPA will also recommend SQL tuning advisor [4] to fix performa problems. The SQL tuning advisor an-
alyzes each regressed SQL statement with the goal of findB@laprofile that will counteract the negative
impact of the change. SQL profiling attempts to discover thw cause of a SQL performance problem by
understanding the complex relationships in the data reteeathe execution of the SQL statement.

For statements whose performance could not be improvedebjutiing advisor, the user can create plan
baselines with SPA to ensure that their performance willd®earse than what it used to be before the change.

4 Usage Model

Oracle Enterprise Manager provides a graphical interfaaeduides a user through each of the steps mentioned
in this section. We assume that a test system is availabléhahd resembles the production system as closely
as possible. However, users can run SPA directly on the ptimatusystem if, for example, they cannot afford a
test system or if they have a sufficient time window to tesirtbieanges on productich.

4.1 Basic Testing Workflow
As Figure 4 illustrates, the testing process using SPA rafollowing steps:

Production System Test System

|
|
|
|
|
Capture SQL |
Workload in I 5| Test-Execute » Make Test-Execute
SQL Tuning Set : SQL Workload Changes SQL Workload
|
! 1
|
|
|
|
|
|
|

Workload
Performance

Compare SQL

i
I S i
i
|

Fixand Tune |
Regressed SQL \

Figure 4: SPA Basic Testing Workflow

1. Capture SQL Workload: Before running SPA, users have to capture on the producyisters a set of SQL
statements that represent the SQL workload they intendatyzs The higher the number of SQL statements
captured in the workload, the more accurate the predictigmedormance changes will be. The set of SQL
statements is captured and stored in a SQL tuning set. SQhgtget provides an incremental SQL workload
capture facility that enables the capture of the entireesgs$QL workload with minimal performance overhead.
Incremental capture works by repeatedly polling the cadloeioently executing SQL statements over a period
of time.

A plan baseline is an optimizer feature that guaranteesestetiformance in the face of runtime changes by maintaiaihigstory
of past execution plans for repeatable statements.

2Using a test system is not mandatory, but recommended siPeeSt executes SQL before and after the change and thig beul
very resource-intensive depending on the complexity arelafi the workload.

56

2. Transport SQL Tuning Set: After creating the SQL tuning set with the appropriate SQLlrkhamd, it is
exported from the production system and imported into asiestem where the system change under considera-
tion will be tested. This can be achieved by using SQL tunatgegport/import capabilities.

3. Test-execute SQL Before ChangeAfter the SQL workload is captured and the SQL tuning setstran
ported to the test system, SPA can be used to builpteehangeSQL Trial. SPA test-executes the SQL tuning
set and produces execution plans and runtime statistieafdr statement in the tuning set. SPA can also be run
to generate SQL execution plans only, i.e., without colfgcexecution statistics. This technique reduces the
time of SPA execution, but the results of the comparisonyasigmhre not as complete because, without executing
the SQL, it is impossible to make accurate predictions alteutpact on system resource statistics.

4. Perform Change: After the pre-change trial is built, the system change tb ¢es be implemented on
the test system. This change can be any kind of change th&t imgact the performance of SQL statements
such as a database upgrade, new index creation, initializaarameter changes, optimizer statistics refresh, etc.

5. Test-execute SQL After Change:After implementing the planned change, SPA can be invokedinag
re-execute the SQL statements and produce execution pidnsxacution statistics for each SQL statement, a
second time. This execution result representspib&t-changerial that SPA uses to compare against fine-
changeSQL trial. The user can also combine the explain plan optidh test-execute to speed up the testing
process. For example, she can start by running SPA usingfiiei® option to retrieve the plans for all SQL
in the workload and then execute only the subset of SQL whtzses ghanged to verify whether those plans
improved or regressed.

6. Compare Performance: SPA uses the metric specified by the user and compares tharparice data

of SQL statements in the pre-change SQL trial to the postgh&QL trial. Finally, it produces a report identi-
fying any changes in execution plan structures or perfoomari the SQL statements. The SPA analysis report
explains how the tested change impacts the performance QlLas®rkload and what actions can remedy the
uncovered regressions.

It is important to note that neither the before nor the afiet. $rial gains an undue advantage from certain
system conditions such as cached data. In this case, thearseerform a dummy test execute trial to guaran-
tee consistent caching of data across the two trials or ging®# a comparison metric that is not dependent on
caching such as, CPU time or buffer gets.

7. Re-iterate: If the performance comparison reveals regressed SQL statsnthen the user can make further
changes to fix the problematic SQL by creating SQL plan basglor SQL profiles. The testing process can
be repeated until the user has a clear understanding of {h&cinof the change and the corrective actions to
improve the potential performance regressions. The usethem be confident to permanently make the change
on production and implement the tuning actions even bef@eerformance degradations occur.

4.2 Parameter Change Workflow

In addition to the basic testing workflow, SPA provides a pfeted workflow to test database parameter alter-
ations. This workflow enables the user to test the performaifect on a SQL tuning set when varying the value
of an environment initialization parameter. Given a SQLirigrset and a comparison metric, SPA automatically
creates two SQL trials and compares them. The first trialucaptSQL performance with the initialization
parameter set to the original value, whereas the secondi$esa the new value of the parameter.

57

5 Conclusion

Database changes happen all the time and affect SQL perioendherefore, one of the most important tasks
for DBAs is to assess the potential impact of any changestddtabase environment on SQL performance. This
is a very challenging task because it is almost impossibfgddict the impact of changes on SQL performance
before actually implementing them in the production systdBuilding a thorough test bed with the ability
to make reliable predictions about the impact of such chauges historically been beyond the reach of most
system administrators.

In this paper, we have described SQL Performance AnalyZeichawas introduced in Oracle 11g. SPA
gives users the ability to measure the impact of system @sang the performance of SQL statements and
fix any potential regressions before they happen in prooinctSPA helps DBAs build and compare different
versions of SQL execution plans and runtime statistics,thed suggests tuning recommendations to overcome
potential performance problems.

We have discussed the primary end user of SPA as a producBeén It it can also be used by other types
of users, such as QA testers and application developerdh S®RA, DBAs have the necessary information to
determine what performance changes may occur in a SQL vaitidmd what corrective actions to undertake
to fix regressions. At the same time, QA teams can use it tdifglemvestigate, and solve performance issues
before they occur during a new application deployment. Wwike, application developers can use SPA to mea-
sure and control the risk of performance changes througheutapplication’s life cycle. All of these users can
benefit from a comprehensive product with the ability to mieashe performance impact of a change to a real
SQL workload. As long as enterprises continue to expand daptdao new environments, change will be a con-
stant in database systems. By forecasting the impact ofesamefore they are implemented in production, we
believe that tools like SPA eanble DBAs to clearly understdre performance ramifications of system changes
and take corrective actions to avoid any potential degiast

References

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. Narasayya. oadimin: Self-tuning Database Systems Tech-
nology. IEEE Data Eng. Bull.29(3):7-15, 2006.

[2] J. Athreya and M. Minhas. Oracle Database 11g Real Apptia Testing Overview. Technical report,
Oracle, USA, http://www.oracle.com, 2007.

[3] M. Colgan. SQL Plan Management in Oracle Database 11g.chriieal report, Oracle, USA,
http://www.oracle.com, 2007.

[4] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M.a&iddin. Automatic SQL Tuning in Oracle 10g.
In VLDB, pages 1098-1109, 2004.

[5] B. Dageville and K. Dias. Oracle’s Self-Tuning Architace and SolutiondEEE Data Eng. Bull.29(3):24—
31, 2006.

[6] C. Fernandez and J. Leslie. Predicting and PreventimipfP@ance Bottlenecks in Oracle 10g. Technical
report, Quest Software, http://www.quest.com, 2005.

[7] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, Ar@toM. Surendra, and D. Zilio. Making DB2
Products Self-Managing: Strategies and Experienid&SE Data Eng. Bull.29(3):16—23, 2006.

[8] H. Packard. LoadRunner. Technical report, http://wiagvcom, 2007.

58

Focused lterative Testing: A Test Automation Case Study

Mechelle Gittens, Pramod Gupta, David Godwin, Hebert Rareleff Riihimaki
IBM Corp.

Abstract

Timing-related defects are among the most difficult typeketdcts to catch while testing software. They
are by definition difficult to reproduce and hence they aréatift to debug. Not all components of a
software system have timing-related defects. For exanaitleer a parser can analyze an input or it
cannot. However, systems that have concurrent threads asiclatabase systems are prone to timing-
related defects. As a result, software developers musirtekting to exploit vulnerabilities that occur
because of threading. This paper presents the Focusedilterdesting (FIT) approach, which uses
a repetitive and iterative approach to find timing-relateefetts and target product areas with multi-
threaded characteristics by executing system tests withuli-oser test suite. Keywords: software
testing, database management systems, multi-threadeidajmms

1 Introduction

IBM® DB2® for Linux®, UNIX®), and Window&) (DB2 software) is a complex distributed, multi-process,
and multi-threaded system. It consisting of several nmillimes of source code. Execution optimization is
crucial for DB2 software, and overhead from instrumentaiad monitoring must be minimized.

Atomicity, Consistency, Isolation, Durability (ACID) reqements must be maintained regardless of system
failures that are due to unexpected events such as powegesutédfter an outage, when the operating system
and database restarts, the database has to replay loggoétieus database activity, so that there are no partial
transactions and so that other ACID requirements are metdp khe database in a consistent state. However,
in a multi-threaded, multi-process system, small timinteHooften exist and elusive point-in-time defects can
occur. The point-in-time defects are elusive because wheh an unexpected event occurs, the logs must
capture concurrent events and interleave them in the mammerich they occurred so that states are repeated
as they occurred previously and together.

Within this context, the DB2 software quality assurancertearied the test approaches in several ways to
trigger point-in-time (timing-related) problems. Thesethods attempted to simulate the unexpected external
issues common to databases and included: (1) Varying theegsor load by running an external program
to consume most of the CPU cycles available to the databasers€2) Instrumenting code to selectively
slow down execution with logging overhead; (3) Changingiities of processes; and (4) Iteratively executing
commands or programs with a background workload.

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

1A timing hole is an unexpected point in the state space ofugi@tfor the software, where multiple threads or processtesleave
in such a way as to create an incorrect logic sequence thatewse the program to hang, crash or behave incorrectly.

59

The main contribution of the work presented here is theesfotesting methodology with automation for
complex multi-threaded database software that itergtiggbcutes commands or programs with a background
workload, since that was the most successful approach. fehiee methods found defects by burdening the
system resources with the various kinds of overhead mesdigm methods 1, 2 and 3. These methods how-
ever, still executed events limited sequences of evenigstghe database, and though the additional overhead
deprived the events of resources, the large set of execpdissibilities (the state space) could not be represen-
tatively sampled. The iterative approach, though stréagiird, randomly samples every combination of the
sequences of possible events, triggering timing-relaefdatis (TRDS) that are possible in a user environment.

The paper continues as follows. Section 2 reviews workedl&d testing TRDs in multi-threaded database
applications. Section 3 introduces the aspects of thralititzss of DB2 software that make those functions -
monitoring, fast communication manager and crash recoveunjtable for testing with this method. The paper
then presents the methodology for focussed iterativenggsti Section 4. This section includes a description
of the tool support. Section 5 summarizes the results ofgusia approach. Section 6 provides a summary of
conclusions and potential directions for future work.

2 Related Work

Testing for database systems is normally done under theesotional and general testing approaches. These
include unit, functional and system testing [6]. All of teamethods have been applied successfully to database
applications and there have been a plethora of discussimh@/ark in the more general applications. However,
as databases grow larger and more distributed, the corftdrd timing hole has become an issue unadrressed by
most of the more general methods. Point-in-time interlegqaf states on the stack causes transient problems.
In order to encounter these problems in the various combimaand permutations of states, some testing with
a statistical focus must be performed.

Random testing has proven itself cost effective and moreepgoithan would be thought a priori [2]. In his
text also called Random Testing [3], Hamlet discusses theepéon of random testing as haphazard testing,
done hastily and poorly. He consequently explains that éineect meaning of random testing is one where test
cases are chosen with no relationship between them. Thés ghatistical independence to the test points that
endows statistical significance to the testing results aedigtion of the expected quality of the software.

The literature covering the random testing of databasesysfalls into the category of randomly generating
inputs for the database tests, such as the evolutionaryapement of queries in recent work by Bati et al. [1],
where the researchers create new queries by mutating atitesizing queries, and determining whether those
gueries can be used to generate further queries. Althougkfallapproach yielding new defects, the approach
omits the issue of testing for the elusive timing hole.

Outside of the database domain other approaches to telsihgandle multi-threading have existed for sev-
eral years. These methods use model-checking approachesdte the interleaving of concurrent processes
and the unexpected interactions. However, the issue hetatis explosion, especially with the multiplicity of
states possible in the database system with tens of milbdrhises of code with several interacting compo-
nents. The same point-in-time timing defects are still eigpeed because the full population of states is still
underrepresented.

Sen [5] has very recently investigated, partial-order camdesting approaches that choose thread schedules
at random. This approach, though yielding more defects ¢haanspecific random set of tests, and demon-
strating that it is useful to detect the exceptions fastan e nonspecific set of tests, was only demonstrated
for three small multi-threaded programs from the Java Ratl@f [8] distribution. These do not compare to
complex interleaving of a large DBMS such as DB2. We cannetdwer say, that extrapolation and repetition
of the runs would not simulate a similar execution to DB2,dinte this work is recent this question will have to
be explored as future work. In addition, these methods ssitheaone by Sen [5] did not exist when we sought

60

to meet the TRD challenges.

In addition to the partial order methods, model-checkirgpathms exist to limit the state space that must
be searched to test a multi-threaded application [7]. Matleckers use the context switches that occur when
a thread temporarily stops execution and a different thetads, and systematically or iteratively suspends
or binds execution of the thread at some random or arbitranyt po allow other more interesting threads to
continue. One of the benefits is that the total number of di@tsiin a program is polynomial in the number of
steps taken by each thread and makes it theoretically fedsilscale systematic exploration to large programs
without sacrificing the ability to go deep into the state spathis method shows potential but once again, the
experimental space is preliminary with the tested progreamging from 84 lines of code to just over 16,000
lines of code.

Having reviewed the existing work at the time and today, wmtbno methods to handle TRDs in a complex
multi-threaded database application; however, we notaa the existing work that random testing was most
suitable. We therefore created the approach presented here

3 The Software under Study and the Components of Interest

FIT works because of the way in which functionalities suclerash recovery and monitoring are implemented
in a multi-threaded system such as a DBMS. Here we exploraltfueithms behind DB2 monitoring, fast com-
munication manager, and crash recovery components andlsewiwhy this iterative approach is particularly
productive.

3.1 Monitoring

The database system monitor stores information it collecentities called monitor elements. Each monitor
element stores information regarding one specific aspetieo$tate of the database system. Monitor elements
collect data for one or more logical data groups. A logicahdgroup is a collection of monitor elements that
gather database system monitoring information for a spestfope of database activity. Monitor elements are
sorted in logical data groups based on the levels of infdomahey provide. For this discussion, two levels are
considered: database and application.

Monitor elements collect data for one or more logical dataugs. These groups are collections of monitor
elements that gather database system monitoring infasmé&tr a specific scope of database activity. Monitor
elements are sorted in logical data groups based on theslef@formation they provide. The database and
application levels are discussed here.

Snapshot monitor is one way that DB2 software makes elenam¢s available. Snapshots provide a point-
in-time picture of the database state. During snapshotegsiieg all relevant levels are read to complete the
snapshot. As a result, for a database snapshot, the fojosvients occur:

1. Read element values from the application-level strectufhis will contain values for all terminated
applications since the database activated.

2. lterate through each application currently connectethéodatabase. For each of these: (a) Read the
element values from the application level structure. Thiscsure contains values for all agents that have
disassociated from this application. (b) Iterate througeras currently associated with the application.
For each of these read the element values from the agenisteveture.

In the snapshot output, the rowsad element will contain the total from all these levels.

Event monitors are a second facility with which DB2 softwarakes element values available. Event mon-
itors provide a real-time trigger-based monitoring caligbiThe event monitor infrastructure buffers records,
using two internal buffers, before writing them to disk.

61

TABLE

Figure 1: Generating event records for a STATEMENT eventitoon

Figure 1 illustrates how event records are generated forAABEMENT event monitor. Three applications
are connected to the database, each having a single agedahgvon its behalf. As each application executes
SQL statements, their agents generate new statement egaitbnrecords and insert them into the active buffer,
which is Buffer 1. When Bufferl has filled up, a message is seihe event monitor writer instructing it to
process all records in Buffer 1. During this period, the Ragtbuffer is switched from Buffer 1 to Buffer 2 and
the three applications will begin filling up Buffer 2. The E&mmunication Manager (FCM) event monitor
writer, having received the message, processes Buffer Inaeds the data into files, if the event monitor is a
FILE event monitor; or a named pipe, if the event monitor idREPevent monitor; or SQL tables, if the event
monitor is a TABLE event monitor.

3.1.1 Opportunities for FIT

One of the challenges facing monitor processing comes fnenrénsient nature of the memory it needs to read.
Busy systems can find applications constantly starting uggmninating. This results in application memory
being allocated and freed. Moreover, during the processirgsnapshot, agents may be in the process of either
associating with applications or disassociating from igptibns. At the start of snapshot processing, an agent
may be working on behalf of one application but by the end efghapshot processing, it may be working on
some other application.

To protect the ACID properties of a monitor operation and amtigular the consistency and isolation of
the monitor action, monitor processing must lock resouré&ssources are locked before that resource can be
accessed, and the lock protects the integrity of the modata and ensures that memory does not “disappear”
while being read (resulting in crashes). Locking of a resetnvolves acquiring a “latch”, which is an internal
mechanism for controlling concurrent events and the usbaresl system resources. The protocol surrounding
the locking of resources is strict, and resources must Hdeestband unlocked in a certain order and monitor
processing must adhere to such protocols. If resourceriggiiotocols are broken, the system can “hang”, so
extra care must be taken to ensure that protocols are fallowe

This requirement for ordering of events and the strict neunents of the protocols means that timing prob-
lems are more probable. It also results in a requirementstaliese protocols by concurrently to increase the
probability of performing locking and unlocking events afitsequence. The FIT method, which samples sev-
eral event combinations and introduces resource contsrgist as in a locking situation iterates through such
probabilistic populations of events.

Multi-partition instances in the Data Partition Featurd”f) environment present monitor processing with

62

other challenges. The activating or deactivating of evemitors requires the coordination of activity across all
partitions. This involves sending messages to all panstievaiting for all the partitions to perform the activation
or deactivation and respond with success or failure, anddowating the replies. In addition, global snapshot
processing requires similar coordination. Messages neisebt to all partitions, snapshots executed locally on
each partition with output sent in replies to the messagesiteen replies merged into a single snapshot output
stream. This processing must prove resilient to partitactd/ating and deactivating and dropped messages.
Additionally, extra care must be taken to ensure that ressuare not locked on one partition while messages
are sent to other partitions. Failure to ensure the codtidimaf the deactivation and activation, as well as
locking and messaging transmission, may result in sevdiea® defects. In a threaded environment, the
iterative approach in FIT creates a sample of situationg@bech interleaving and order can be disturbed.

3.2 Fast Communication Manager (FCM)

In order to achieve high performance and scalability, DBf2wsre provides two operating modes for parallel
execution of activities. (Both rely on the availability ofuftiple CPUs for processing.) One of these configura-
tion types is intra-query parallelism or SMP (Symmetric M&rocessor configuration).

SMP works by generating SQL execution plans whereby patmihan SQL statement are divided into
individual sections, which can be executed concurrently iadependently by multiple processes/threads. The
second type of configuration is Data Partitioning Featu@KP This configuration allows for the partitioning of
data across multiple DB2 nodes. Each DB2 node is resporfsibleanaging one data partition. The architec-
ture where each DB2 node and its associated data partitoim@dependent from other partitions is commonly
referred to as “shared nothing”. It permits function shifgpivhereby SQL and non-SQL operations are directed
to those nodes where the target data is held for local opetatiVvhere multiple data partitions are involved,
parallel processing occurs (with each DB2 node only workiity its subset of data). SMP and DPF can also be
combined within the same instance of DB2 software. Bothdlwesfigurations require fast and efficient internal
communication facilities.

A user may configure a DB2 instance with multiple nodes ragidin the same host machine. Such configu-
rations are described as Multiple Logical Nodes (MLNSs). untsconfigurations, communication between DB2
nodes residing on the same host occurs through shared memory

3.2.1 Fast Communication Manager Design

The fast communication manager component includes FCMiress, FCM receiver and sender conduits, con-
nection management and node failure suppB@M resourcesare allocated from a separate shared memory
segment that is allocated at start-up time by DB2. The twarR&M resources are buffers — which store com-
munication data - and channels - which are the terminal paintommunications. Each node on a DPF instance
will have at least on&CM receiver conduit for incoming messages and oREM sender conduitfor outgo-

ing messages. Connections are established on demandanitiection management The first indication of
user activity on a node drives FCM to initiate communicatigth every other node configured in the instance.
This ensures optimal performance and security of inteenmmmmunication.Node failure support involves
interrupting applications with dependencies on nodesttae lost their connection to the system and cannot be
contacted. The FCM node failure-recovery facility allovpplcations to process node failures asynchronously
from each other.

3.2.2 Opportunities for FIT

There are aspects of shared memory, failure recovery, ctionemanagement and conduit management that
may create opportunities for challenges due to unusualiistances such as frequent system interruptions,

63

frequent reconnections and unusual resource deprivaioexample of this is monitor running with FCM. With
FCM, the single shared resource pool is created on each htsedviLNs to facilitate communication between
logical nodes. In a multi-process environment, the intfiley of events may compete for memory. FCM, with
the conduits establishing their own connections and lieguttonnection management, is designed to handle
this interleaving adequately. In the case of node failund, @her unexpected events however, the probabilities
of unexpected and sometimes incorrect interleaving mayteased. In this case, FIT can deprive resources
and increase the samples of code failure events with memanagement and connection management choices
made by FCM. This will increase the probability of finding TR FCM.

3.3 Crash Recovery

The third important feature of DB2 software that has beemdosuitable for testing with the FIT approach is
the crash recovery feature [4].

Since units of work on a database can be interrupted uneegiigcif an interruption occurs before all of the
transactions in the unit of work are completed and committieel database is left in an unusable state. Crash
recovery moves the database back to a consistent and usaeldg rolling back incomplete transactions and
completing committed transactions still in memory.

Transaction failures result from conditions that causedéiabase or the database manager to end abnor-
mally. Partially completed units of work that have not beesslied to disk at the time of failure, leave the
database in an inconsistent state. Following a transafdibme, the database must be recovered. Conditions
that may result in transaction failure include a power failan the machine, causing the database manager and
the database partitions on it to end abnormally; a hardvedieé such as memory corruption, or disk, CPU, or
network failure; or a serious operating system error thasea the DB2 application to end abnormally.

3.3.1 Opportunities for FIT

The conditions mentioned above that lead to transactiduréacan create vulnerabilities and timing issues that
should be found in testing. Order dependency is importacalme logs of the events that ran earlier must be
replayed either to roll back partial transactions or congplencommitted transactions in memory. The same
issues arise because of parallelism and the need to regayiriccorrect sequence. FIT is able to exploit the
sequencing vulnerabilities by sampling from a large nunab@xecution sequence possibilities.

In addition, transactions are logged while they occur, Wwlebr not the transactions are committed. Trans-
actions go from the log buffer to log files (transactionalgigy) before any data is written from the buffer pools
to the database structures. Challenges can occur againuttigimeaded environment because of the interleav-
ing of events and the need to separate a given sequence whellenp occurs. This is a standard protocol, but
problems can only be revealed with mass repetition of suggitg of parallel processes. FIT tools facilitate
execution of a large number of iterations of runtime and veppscenarios and hence increase the probability
of finding defects that occur during a particular sequencavents.

4 Methodology

The FIT approach hinges on repetition and resource degivand as a result, automation is vital. The method-
ology presented is useful to those with large multi-procesndti-threaded software testing concerns, with vast
combinations of possible executions and resource contgrare likely to trigger problems.

The approach is run as a number of controlled iterations gmreachine and operating system combination.
The iterations proceed with the following steps.
Step 1: Run random concurrent database test suites in the bacldjtowgtress the supporting hardware, oper-
ating system and database, while varying the configuratwarpeters of the database, the size of the database,

64

the operating system, and the nature of the test suite beamitoned (for example with a workload that tests
monitoring functionality such as snapshot, crash recoftergtions, or the fast communication manager). Since
the configuration parameters control features crucial taitnong, FCM and crash recovery (such as memory
distribution (including sorting and locking), paralletis I/O optimization (asynchronous page readers and writ-
ers), many aspects of logging (file size, buffer size), acdvery), it creates circumstances that are well-suited
for uncovering potential software errors.

Step 2: Deliberately crash the database server by issuing a kite$ip the operating system.

Step 3: Restart the database server and the database

Step 4: Check for data integrity problems, database crashes J{raps database hangs.

Step 5: If any problem is found, then exit and notify the tester viectlonic mail alert. Else repeat from Step 1.

Supporting tooling was created to run several parallelgsses and vary parameters. The tools execute the
algorithm for the approach above and stress the monitorillgdayvusing the command line processor interface
in one tool and the DB2 application-programming interfad®Ij in another tool to invoke the snapshot and
the event monitor functions. The tool allows the user to @rihe number of iterations and is available for the
UNIX and Windows platforms.

Another supporting tool runs the algorithm with the crastoxery procedure. The crash recovery tool runs
the algorithm with several thousand crash recovery it@natby crashing the DB2 instance on all partitions and
then restarting the database. This tool allows the testgpeoify the number of crashes and is written for both
the UNIX and Windows platforms.

5 Results

After applying the FIT method, defect detection improveghgficantly, and therefore increased tester productiv-
ity. Automation was key to the approach since the FIT toolsevexecuted in scenarios with multiple databases
with concurrent test suites running for extended periodsdkample overnight).

monitaring, fast communications manager and
crash recovery defects before FIT (version A)

and after FIT{version B - version D)
monitoring, crash recovery, fast

- communications manager defects together
g \'l in ratios of customer defects to system test
= defects

G

P

=]

E

=

-

ratio of custormer
defects to test
defects

systern |
test
customer
system
test
custarmer

versionA | versionB |versionC |versionD

versionc versionD
versions Versions

| O severity 1 W severity 2 |

| O severity 1 W severity 2 |

Figure 2: Defects for timing-dependent compo- Figure 3: All defects for components most af-
nents found in system testing and by customers fected by timing issues as ratios between customer
as an example of the defect discovery occurring defects and test defects

between the introduction of FIT in version B and

beyond

65

Figure 2 shows the general trend for the three componentiB2 product where FIT was used. The
areas indicated by the solid circles (versus the dottedeslyshow the increase in severity 1 and severity 2
defects found in system test versus by the customer afteinRl€rsion B. Severity 1 defects cause the system
to become unavailable, and severity 2 defects cause prehiteam hinder work but may be worked around. In
addition, the ratio of customer defects versus system tdetts decreases. That is, after FIT, testers find more
defects and customers find fewer. Figure 3 shows the ratiodeet defects found in testing in the components
before (version A) and after (version B and on) FIT; and thecs found by customers.

Since the tool repeats the same steps nondeterministiwdhyeach iteration, the tool increases the proba-
bility of hitting the same defect over time. Previously wia@RDs occurred, the causes were difficult to record.
This iterative method, using the same non-deterministickisad, increased the probability of hitting defects,
therefore making it easier to reproduce the defects for gigihg.

Additionally, the number of successful iterations befostedting a defect provided management with a
guantitative and objective measure of the quality of thévemfe. The number of iterations is independent of
CPU speed. As a result, the number of successful iterativfessdfrom the execution time for a workload,
which depends on the CPU speed. This led to the formal rageiné of a minimum number of successful
iterations before the product could be shipped.

The approach was first applied to monitoring, and becausts sficcess it was extended to crash recovery
and fast communication manager. It is suitable to any aré&B@ software where timing-related concerns
may exist. These are areas involving communications betwiferent nodes, data transfer between nodes and
monitoring of nodes.

5.1 FIT Overhead

The mean number of iterations required to find a defect vavigstime. The number is small at the beginning
of the test cycle and grows towards the end. The value of thebeu depends on the component under test.
The ideal value is infinity, where no defects are found andyeiteration is successful. However, in reality, the
principle of “good enough” reliability discussed in softeaeliability engineering is used, and test management
decides on a particular target value for exiting the testecythe higher this target value, the higher the reliability
of the component is deemed.

There are two types of overhead for this technique: (a) d¢atshng effort in automating the FIT approach
by making a FIT tool and (b) extra computational effort ofmimg a FIT tool. For (a), the extra effort is mostly
a one-time effort at the beginning of the test cycle. Howgtles tooling effort is small compared to the effort
spent on the entire test cycle. For (b), the extra effort gdigible since most of the time of the FIT tool is spent
running the test and only a small amount is spent preparingeoch new iteration.

6 Conclusions

The FIT approach has many benefits. They included an incieabe number of timing-related defectTRDs
found in system testing as opposed to such discoveries ligroass and a new objective measurement for the
quality of the DB2 timing-affected components that is inelegeent of the platform on which the software runs.

One of the side effects of the quantitative measure of quialithe ability to determine the mean number of
iterations to failure for components tested with the FITrapph. For crash recovery functionality, for example,
this number has improved over tenfold since this method wad@/ed and the measurement taken.

The first major lesson is that the automation created to st is crucial because the large state space
has meant that the ease in executing the algorithm has hagumarpected but welcome effects. For example,
FIT has been able to identify stability regression defatteal time during the development cycle, that is, whilst
testing for build-to-build regressions. More specificatlyring continuous crash recovery testing, when testing

66

from one build to the next, there are sometimes regressiohsth runtime and crash recovery testing. These
are all rooted in recently integrated code that is intendexbtrect a defect or add new functionality. Because of
the existing automation and the ease of implementing théadethese build-to-build regressions were easily
discovered.

There was also a significant return on the initial investnerdreate the tools, since with the tools several
workloads could be run simultaneously and easily, anddeftimple the execution state space for crash recovery,
monitoring, and fast communication manager. The tools @eakily find new defects while running over many
days. Instead of requiring the previous tester time to eeploe state space, the tools are left fishing for defects
on their own. This is inexpensive.

“Build it and they will come” — this quote does not apply totteg tools. Complicated tools, however
useful, are left to gather dust. One of the other importairitpdor FIT beyond automation was the ease of use
of its automation. If setup of tooling is complicated andmung the tool is complicated, then it will likely be
used sparsely in testing. The FIT tools were carefully echfo avoid such difficulty and have been intensely
employed to validate the product. This has meant that mamg aefects have been found. The tooling has also
been built so that one tester can easily set it running on meathines. Moreover, the tool alerts the tester when
a defect is found; hence the tester does not have to monédegh systems continuously

The underpinning factor has been the feasibility of thisrapph to test automation. This has resulted in
returns that far exceed the investment. The future work thith approach will be in extending it to additional
areas of the DB2 product.

References

[1] H.Batiand L. Giakoumakis and S. Herbert and A. Surna. Agjie approach for random testing of database systems.
In Proceedings of the 33rd International Conference on Vemgédata Basepages 1243-1241,Vienna Austria,
September 2007. VLDB Endowment

[2] J. W. Duran and S. C. Ntafos. An Evaluation of Random TesiEEE Transactions on Software Engineerj8g-1-
(10):438-443. July 1984.

[3] R. Hamlet.Random Testing/iley. 1994.

[4] DB2 for Linux, UNIX, and Windows . http://publib.bouldém.com/infocenter/db2luw/v9. IBM Press, Current
February 2008.

[5] Sen K. Effective random testing of concurrent program$2roceedings of the 22nd IEEE/ACM international Con-
ference on Automated Software Engineeripgges 323-332, Atlanta, Georgia, USA, November 2007. AGMW/ N
York

[6] E. Kit. Software Testing in the Real Worldlddison-Wesley Professional. 1995

[71 M. Musuvathi and S. Qadeer. Iterative context boundimgslystematic testing of multi-threaded programsPto-
ceedings Proceedings of the 2007 ACM SIGPLAN Conferenceagmdming Language Design and Implementa-
tion (PLDI '07), pages 446 - 455. San Diego, California, USA, June 2007. A&y York, NY.

[8] W. Visser and K. Havelund and G. Brat and S. Park. Modetkhey programs. IfProceedings of the 15th Interna-
tional Conference on Automated Software EngineetiB§E Computer Science Press. September 2000.

Trademarks

IBM and DB2 are trademarks or registered trademarks of mat@nal Business Machines Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks are trademarks of SuwslyBtems, Inc. in the United States, other countries, tir.bo
Windows is a trademark of Microsoft Corporation in the Udit&tates, other countries, or both.

UNIX is a registered trademark of The Open Group in the Un8&xtes and other countries.

Linux is a registered trademark of Linus Torvalds in the BdiStates, other countries, or both.

Other company, product, or service names may be trademasies\ace marks of others.

67

68

24th IEEE International Conference on Data Engineering

@ April 7-12, 2008, Canctn, México
CALL FOR PARTICIPATION

[@\

m Data Engineering deals with the use of engineering techniques and methodologies in the design, development and assessment of

information systems for different computing platforms and application environments.

The 24th IEEE International Conference on Data Engineering will provide a forum for:
sharing research solutions to problems of today's information society

exposing practitioners to the latest research, tools, and practices

raising awareness in the research community of the problems and challenges of practical applications of data engineering

promoting the exchange of data engineering technologies and experience among researchers and practitioners

identifying newissues and directions for future research and development work

H the exchange and discussion of new ideas and for interacting/networking with peers

* o o o o o

HIGHLIGHTS

¢+ 3 Keynotes

+ 6 Advanced Technology Seminars

+ 75 Research papers with full presentations, and
44 Research papers with short presentations, out of over
600 submissions

KEYNOTES

Hector Garcia-Molina (Stanford University, USA), on PhotoSpread: A Spreadsheet for Managing Photos
Martin Kersten (CWI, The Netherlands), on The Database Architecture Jigsaw Puzzle
Luis von Ahn (Carnegie Mellon University, USA), on Human Computation

10 Workshops in conjunction with the main conference
3 Panels

75 Posters out of 650 submissions

13 Industrial papers, out of over 50 submissions

23 Demos, out of over 60 submissions

* o o o o

> o

-

WORKSHOPS
¢+ Self-Managing Database Systems (SMDB) ¢+ Secure Semantic Web (SSW)
¢+ Mining Multimedia Streams in Large-Scale ¢+ Data and Services Management in Mobile
Distributed Environments (MMSDE) Environments (DS2ME)
* RFID Data Management (RFDM) + Networking Meets Databases (NetDB)
¢+ Ranking in Databases (DBRank) + Data Engineering for Blogs, Social Media, and
+ Methodologies, Architectures and Systems for Web 2.0
Information Integration (IIMAS) + Similarity Search and Applications (SISAP)

ADVANCED TECHNOLOGY SEMINARS

¢+ Mobile and Embedded Database Systems and Technology

Anil Nori (Microsoft Corp.)

¢+ Data and Metadata Alignment: Concepts and Techniques

Lise Getoor (University of Maryland) and Renee Miller (University of Toronto)

+ Exploring the Power of Links in Scalable Data Analysis

Jawei Han (University of Illinois, Urbana-Champaign), Xiaoxin Yin (Google) and Philip Yu (IBM T.J. Watson)
¢+ Stream Processing: Going Beyond Database Management Systems

Sharma Chakravarthy (University of Texas, Arlington)

+ TheJava Persistence API (JPA): Technology, Standards, and Implementations
Patrick Linskey (BEA Systems, Inc.)

¢+ Performance Evaluationin Database Research: Principles and Experience
Toana Manolescu (INRIA Futurs) and Stefan Manegold (CWT)

Venue: CANCUN

ICDE 2008 will take place at Canctin, a truly unique spot nestled in the heart of the Mexican Caribbean. Canctn's Hotel Zone is
a 14 mile long island shaped like a "7" and connected to the mainland by bridges at either end. Some 25% of this area’s natural
surroundings are protected in ecologlcal reserves and holds the second largest reef system in the world. Part of its cultural
heritage can be seen in dozens of remains of ancient Mayan cities—some more than 2,600 years old—encompassing more than
5,000 buildings or temple mounds.

The conference hotel, Presidente InterContinental Cancin Resort, is all you could ever want in a tropical retreat: five-star
luxury, premium restaurants and the best, picture-perfect beach in the peninsula. Central shops and nightlife are 10 minutes
away, Isla Mujeres is just across the water, and there’s a golf course next door.

For more information, visit WWW . 1cde2008.or g

CSEﬁ/ITER ‘ [E E E (b] Micresoft ﬁ E

SOCIETY invent ' ®

Non-profit Org.

U.S. Postage
_ PAID
IEEE Computer Society Silver Spring, MD
1730 Massachusetts Ave, NW Permit 13é8

Washington, D.C. 20036-1903

