
Bulletin of the Technical Committee on

Data
Engineering
March 2008 Vol. 31 No. 1 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .. .David Lomet 1
Letter from the Special Issue Editor .. .Jayant R. Haritsa 2

Special Issue on Testing and Tuning of Database Systems

Exploiting the Impact of Database System Configuration Parameters: A Design of Experiments Approach
. .Biplob K. Debnath, Mohamed F. Mokbel, David J. Lilja 3

Automated Workload Management for Enterprise Data Warehouses .
. .Abhay Mehta, Chetan Gupta, Song Wang, Umeshwar Dayal11

Quality of Service-enabled Management of Database Workloads .Stefan Krompass,
Andreas Scholz, Martina-Cezara Albutiu, Harumi Kuno, Janet Wiener, Umeshwar Dayal, Alfons Kemper20

Towards Automatic Test Database GenerationCarsten Binnig, Donald Kossmann, Eric Lo28
Testing SQL Server’s Query Optimizer: Challenges, Techniques and Experiences .

. .. .Leo Giakoumakis, Cesar Galindo-Legaria36
Testing Berkeley DB .. .Ashok Joshi, Charles Lamb, Carol Sandstrom44
Oracle’s SQL Performance Analyzer .. .

.Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Dias, Shantanu Joshi, Hailing Yu 51
Focused Iterative Testing: A Test Automation Case Study

. .Mechelle Gittens, Pramod Gupta, David Godwin, Hebert Pereyra, Jeff Riihimaki 59

Conference and Journal Notices
ICDE Conference .. .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
lomet@microsoft.com

Associate Editors
Anastassia Ailamaki
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Jayant Haritsa
Supercomputer Education & Research Center
Indian Institute of Science
Bangalore-560012, India

Nick Koudas
Department of Computer Science
University of Toronto
Toronto, ON, M5S 2E4 Canada

Dan Suciu
Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

The TC on Data Engineering
Membership in the TC on Data Engineering is open

to all current members of the IEEE Computer Society
who are interested in database systems. The TC on
Data Engineering web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data

Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

The Data Engineering Bulletin web site is at
http://tab.computer.org/tcde/bull_about.html.

TC Executive Committee

Chair
Paul Larson
Microsoft Research
One Microsoft Way
Redmond WA 98052, USA
palarson@microsoft.com

Vice-Chair
Calton Pu
Georgia Tech
266 Ferst Drive
Atlanta, GA 30332, USA

Secretary/Treasurer
Thomas Risse
L3S Research Center
Appelstrasse 9a
D-30167 Hannover, Germany

Past Chair
Erich Neuhold
University of Vienna
Liebiggasse 4
A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.
Sam Lightstone
IBM Toronto Lab
Markham, ON, Canada

Geographic Coordinators
Karl Aberer (Europe)
EPFL
Batiment BC, Station 14
CH-1015 Lausanne, Switzerland

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
Tokyo 106, Japan

SIGMOD Liason
Yannis Ioannidis
Department of Informatics
University Of Athens
157 84 Ilissia, Athens, Greece

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

i

Letter from the Editor-in-Chief

Bulletin Announcement

In the last issue of the Bulletin, I very proudly announced that all issue of the Bulletin are now available on
the Bulletin web site. I now want to announce changes to the web site itself. For this effort, I want to thank
Thomas Risse, who is the Secretary/Treasurer of the TC on Data Engineering. Thomas does much more than
this, including much of the administrative work for the ICDESteering Committee. With respect to the web
site, Thomas has reorganized and designed an integrated website, including information about the TC on Data
Engineering, the ICDE Conference, and the Data EngineeringBulletin. This effort brings together the database
activity of the Computer Society into one integrated web site.

The new web site is hosted by the IEEE Computer Society. All the web pages mentioned earlier are linked to-
gether. The URL for the TC on Data Engineering ishttp://tab.computer.org/tcde/index.html ;
for the Data Engineering Bulletin, it ishttp://tab.computer.org/tcde/bull_about.html . The
new Bulletin main web page links to newly designed web pages listing the issues, though these web pages do
not change their URLs, nor does the location for the issues themselves. The earlier main Bulletin web pages
will be phased out, but currently redirect browsers to the new page. Additional changes will surely come over
time, so stay tuned.

I encourage all of you to explore the new web site. Your feedback is surely welcome. And thanks again to
Thomas Risse for making this happen.

The Current Issue

Many in the database field were surprised 20 years ago when theTPC benchmarks first emerged as standards for
comparing database performance. The differences in performance of commercial database systems on TPC-A
and TPC- B, the debit/credit benchmarks, were substantial,both in terms of cost and peak performance. The
TPC benchmarks, both these early ones and the several later ones, have had a wonderful impact in improving
database products and is yet another example of our debt to Jim Gray, who played a very large role in getting
the benchmarking efforts started. The result of this is thatall commercial database systems have improved
enormously. And this is not simply that these systems rode the wave of hardware improvements. Much more
has happened. Now, all commercial database vendors have sizable benchmarking and testing groups. And these
groups have done much to improve both the quality and the performance of the database products.

The current issue explores not the performance of database systems so much as the strategies and techniques
used in efforts to enhance the ability to test correctness and improve performance. This is an issue in which the
majority of the articles come from people working for industrial vendors of database products and applications,
but leavened with research articles as well. Publication ofthis combination of industrial practice and research
on an important topic for our field is a real strength of the Data Engineering Bulletin and an important part of
what I consider to be its charter.

Jayant Haritsa has brought together this interesting collection of articles from major database, application,
and hardware vendors, with university researchers that explores how databases are tested and tuned. I think
that as you read this issue, you will be impressed by the technology, effort, and insights that have gone into
these efforts. The success of efforts like those described here is demonstrated regularly via the continuous
improvement that we see in the products offered by the database industry. I want to thank Jayant for his very
successful effort in producing this issue.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editor

Today’s industrial-strength database engines, both commercial and public-domain, are designed to provide
highly sophisticated functionalities, making them the backbone of the information society. Not surprisingly,
a fallout of this sophistication is that the internal software infrastructure has become extremely complex, mak-
ing it a technically challenging task to (a) verify the correctness of the engine components, and (b) tune the
system to meet the desired performance objectives.

This issue of the Data Engineering Bulletin describes both novel research proposals and current industrial
practices for the testing and tuning of enterprise databasesystems. Historically, these topics have received
comparatively little attention in the research literature. However, there has been growing awareness in recent
years of the rich set of problems on offer, which are simultaneously technically challenging and of immediate
practical relevance, as exemplified by the articles featured in this issue.

The first article, by Debnath, Mokbel and Lilja from U. of Minnesota, considers the problem of efficently se-
lecting, from among a dauntingly large number, the most relevant configuration parameters for tuning a database
engine. They employ an experimental design methodology that makes the computational effort linear in the num-
ber of parameters, and quantitatively demonstrate with an implementation on PostgreSQL, that this approach is
capable of successfully identifying the critical parameters.

The second article by Mehta, Gupta, Wang and Dayal of HP Labs presents a holistic machine-learning-
based approach towards workload management for enterprisedata warehouses addressing issues of admission
control, scheduling and progress monitoring. Their techniques have been evaluated on real-world warehousing
environments with promising results.

The third article by Krompass, Scholz, Albutiu and Kemper from TU Munich, and Kuno, Wiener and Dayal
from HP Labs, investigates the specification and satisfaction of quality-of-service objectives in the context of
operational data stores hosting workloads with a mix of transactional and decision support queries. They also
survey the infrastructure provided by current industrial products to support these objectives.

The fourth article by Binnig, Kossmann and Lo from SAP, ETH and Hong Kong Polytechnic U., respectively,
brings a fresh outlook to the design of test databases through the use of database techniques such as declarative
specifications and logical data independence. Specifically, they advocate the ideas of “reverse query processing”
(given a schema, a query and a result, generate a compliant database), and “symbolic query processing” (the
database consists of symbolic, rather than concrete, data), which can be used to test engine components.

We then have a series of articles on current industry practices. First, Giakoumakis and Galindo-Legaria
from Microsoft provide a guided tour through the arduous world of testing database query optimizers. They
also overview the array of techniques used in testing the SQLServer optimizer. Then, Joshi, Lamb and Sand-
strom from Oracle present the testing tools utilized for theBerkeley DB family of database engines, their task
rendered additionally difficult because users, taking advantage of the source-code availability, may either mod-
ify or port the engines to new platforms. Next, Yagoub, Belknap, Dageville, Dias, Joshi and Yu from Oracle
present the SQL performance analyzer implemented in Oracle11g to help users investigate “what-if” scenarios
by forecasting and analyzing the impact of system changes onSQL workload performance before deployment.
Finally, Gittens, Gupta, Godwin, Pereyra and Riihimaki of IBM, tackle the notoriously tricky problem of catch-
ing timing-related errors and defects in complex multi-threaded systems such as database engines. Their pro-
posed technique attempts to trigger unexpected behavior byiteratively executing system tests with a background
workload.

In closing, we thank all the article authors for their painstaking and timely efforts in developing their con-
tributions for this special issue. Our hope is that the work presented here will serve as a strong stimulus for the
academic and industrial research communities to address, with renewed vigor and resources, the development
of stable and efficient database engines.

Jayant R. Haritsa
Indian Institute of Science, Bangalore

2

Exploiting the Impact of Database System Configuration
Parameters: A Design of Experiments Approach

Biplob K. Debnath, Mohamed F. Mokbel, and David J. Lilja
University of Minnesota, Twin Cities, USA.

debna004@umn.edu, mokbel@cs.umn.edu, and lilja@ece.umn.edu

Abstract

Tuning database system configuration parameters to proper values according to the expected query
workload plays a very important role in determining DBMS performance. However, the number of
configuration parameters in a DBMS is very large. Furthermore, typical query workloads have a large
number of constituent queries, which makes tuning very timeand effort intensive. To reduce tuning time
and effort, database administrators rely on their experience and some rules of thumb to select a set of
important configuration parameters for tuning. Nonetheless, as a statistically rigorous methodology is
not used, time and effort may be wasted by tuning those parameters which may have no or marginal
effects on the DBMS performance for the given query workload. Database administrators also use
compressed query workloads to reduce tuning time. If not carefully selected, the compressed query
workload may fail to include a query which may reveal important performance bottleneck parameters.
In this article, we provide a systematic approach to help thedatabase administrators in tuning activities.
We achieve our goals through two phases. First, we estimate the effects of the configuration parameters
for each workload query. The effects are estimated through adesign of experiments-basedPLACKETT &
BURMAN design methodology where the number of experiments required is linearly proportional to the
number of input parameters. Second, we exploit the estimated effects to: 1) rank DBMS configuration
parameters for a given query workload based on their impact on the DBMS performance, and 2) select
a compressed query workload that preserves the fidelity of the original workload. Experimental results
using PostgreSQL and TPC-H query workload show that our methodologies are working correctly.

1 Introduction

Businesses are increasingly building larger databases to cope with the rapid current growth of data. Consistent
performance of the underlying database system is key to success of a business. A typical database management
system (DBMS) has hundreds of configuration parameters and the appropriate setting of these parameters plays
a critical role in performance. Database administrators (DBAs) are expected to tune the configuration param-
eters to appropriate values that get the best DBMS performance for the application of interest. The success
of tuning depends on many factors including the query workload, relational schemas, as well as the exper-
tise of the DBAs [20]. However, skilled DBAs are becoming increasingly rare and expensive [16]. A recent

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

study on information technology versus DBA costs showed that personnel cost is estimated at 47% of the total
cost of ownership [13]. As has been recenlty reported, DBAs spend nearly a quarter of their time on tuning
activities [20]. To reduce the total cost of ownership, it isof essence that DBAs focus only on tuning those con-
figuration parameters which have the most impact on system performance for a representative query workload.

Different database configuration parameters have different impact on a DBMS performance. A sound statis-
tical methodology for quantifying the impact of each configuration parameter and the interactions among these
parameters on a DBMS performance is to perform afull factorial design[17], where all possible combinations
of the input values of the configuration parameters are considered. However, the major problem in applying a
full factorial designin a DBMS is the large number of configuration parameters. Forexample, PostgreSQL [1]
has approximately 100 configuration parameters and all parameters have multiple possible values. Even if each
configuration parameter assumes only two values, then, given a query workload ofq queries, we have to perform
q ∗ 2100 experiments at least twice to apply a full factorial design,which is not feasible in terms of time and
effort. To avoid this problem, in many cases, DBAs rely on their experience and rules of thumb to select the
appropriate values for the configuration parameters. As heuristics based on experience and intuition are often
used, time and effort may be wasted to enhance the performance by tuning those parameters that may have no or
marginal effects on the overall performance of the given query workload. In general, misdirected tuning efforts
increase the total cost of ownership [6,8,12,14].

In this article, we are addressing the following problem:Given a DBMS, a set of configuration parameters,
a range of values for all parameters, and a query workload; estimate the effect of each configuration parameter
based on its impact on the DBMS performance for the query workload. In particular, we propose a methodology
based on the PLACKETT & B URMAN (P&B) design [19] to estimate the impact of database system configuration
parameters. The main idea is to conduct a linear number of experiments that provide an approximate sampling of
the entire search space. In each experiment, the values of the configuration parameters are varied systematically
over a specified range of acceptable values. Subsequent analysis of the collected experimental data is used to
estimate the effects of the configuration parameters on the DBMS performance for the given query workload.
Once we have the estimated effect of each configuration parameter for all workload queries, we can exploit
these effects for: (1) ranking the configuration parametersbased on the impact on DBMS performance for the
entire query workload, and (2) selecting a compressed queryworkload based on the similarities of performance
bottleneck parameters that preserves the fidelity of the original workload.

The rest of this article is organized as follows: Section 2 describes ourdesign of experiments-based method-
ology. The methodology to estimate the effects of the configuration parameters is described in Section 3. Rank-
ing configuration parameter and selecting a compressed workload are explained in Section 4. Experimental
results are described in Section 5. Section 6 highlights related work. Finally, Section 7 concludes the article.

2 Design of Experiments Based Methodology

The simplest design strategy to quantify the impact of all factors and interactions is to apply afull factorial
design, for example, ANOVA [17], in which system response is measured for all possible input combinations.
However, afull factorial designrequires an exponential number of experiments. To reduce the number of
experiments, we make two assumptions. First, the provoked response, such as the total execution time, is a
monotonic function of the input parameter values. This indicates that for each configuration parameter, we can
consider only two values: minimum and maximum. The intuition behind this is that stimulating the system with
inputs at their extreme values will provoke the maximum range of output responses for each input. Second,
according to thesparsity of effects principle, system response is largely dominated by a few main factors and
low-order interactions. As a consequence, we can safely ignore the effects of higher order interactions. Based
on these assumptions, we use atwo-level factorialdesign methodology named PLACKETT & B URMAN (P&B)
design [19], which requires only linear number of experiments.

4

P&B Design Matrix Execution Time
P1 P2 P3 P4 P5 P6 P7 Q1 Q2 Q3

Exp1 +1 +1 +1 -1 +1 -1 -1 34 110 10.2
Exp2 -1 +1 +1 +1 -1 +1 -1 19 72 10.1
Exp3 -1 -1 +1 +1 +1 -1 +1 111 89 10.3
Exp4 +1 -1 -1 +1 +1 +1 -1 37 41 10.3
Exp5 -1 +1 -1 -1 +1 +1 +1 61 96 10.2
Exp6 +1 -1 +1 -1 -1 +1 +1 29 57 10.2
Exp7 +1 +1 -1 +1 -1 -1 +1 79 131 10.3
Exp8 -1 -1 -1 -1 -1 -1 -1 19 47 10.1

Exp9 -1 -1 -1 +1 -1 +1 +1 135 107 10.3
Exp10 +1 -1 -1 -1 +1 -1 +1 56 74 10.3
Exp11 +1 +1 -1 -1 -1 +1 -1 112 48 10.1
Exp12 -1 +1 +1 -1 -1 -1 +1 74 91 10.1
Exp13 +1 -1 +1 +1 -1 -1 -1 55 99 10.3
Exp14 -1 +1 -1 +1 +1 -1 -1 117 123 10.1
Exp15 -1 -1 +1 -1 +1 +1 -1 51 77 10.3
Exp16 +1 +1 +1 +1 +1 +1 +1 76 81 10.2

Table 1:The P&B design matrix with foldover forN = 7. Execution time of queries Q1-Q3 are in the last three columns.

For each experiment of the P&B design, the value of each parameter is given by a prescribedP&B design
matrix. Table 1 gives an example of thedesign matrixfor the seven parametersP1, P2, P3, P4, P5, P6, and
P7 depicted by the columns 2-8. TheExpi indicates the values of the configuration parameters that will be
used in thei-th experiment. An entry in the parameter columns of the design matrix is either “+1” or “-1”, that
corresponds to a value slightly higher or lower than the normal range of values for the corresponding parameter,
respectively. The “+1” and “-1” values are not restricted toonly numeric values. For example, for the buffer
page replacement algorithm, the “-1” value can be “RANDOM” and “+1” value can be “CLOCK”. TheP&B
design matrixis constructed by cyclic repetition of a single series usinga simple methodology. It has been
verified that such a method would result in desirable statistical properties [4]. Also, it has been verified that if
the monotonic and low interactions assumptions are valid, the P&B design generates comparable results as the
full factorial design. The detailed theoretical explanation behind this behavior is explained in [19].

The dimensions of theP&B design matrixdepend on the number of configuration parameters,N . The
base design matrix hasX rows andX − 1 columns, whereX is the next multiple of four greater thanN , i.e.,
X = ⌊(N/4)+1⌋∗4. For example, ifN = 7, thenX = 8, while if N = 8, thenX = 12. If N < (X−1), then the
number of columns in theP&B design matrixis more than the number of configuration parameters. In this case,
the additional(X − N − 1) last columns of theP&B design matrixare simply ignored. The recommendations
of the “+1” and “-1” parameter value settings forX = 8, 12, 16,. . ., 96, 100 experiments are given in [19]. The
first row of theP&B design matrixis selected based on those recommendations according to thevalue ofX. The
rest(X − 1) rows of theP&B design matrixare constructed by right cyclic shifting of the immediate preceding
row. All entries of theExpX-th row of the P&B design matrix are set to “-1”. The columns 2-8 in the first eight
experiments (Exp1-Exp8) of the Table 1 indicates the baseP&B design matrixfor N=7.

An improvement of the baseP&B designmethodology is theP&B design with foldover[18]. Thefoldover
helps to quantify the two parameter interactions more accurately. However, it requiresX additional experiments.
The additional rows in theP&B design matrixare constructed by reversing the sign of the topX rows matrix
entries. The last eight rows (Exp9-Exp16) of Table 1 gives the additional design matrix entries for the foldover
for N= 7. Experiments are conducted by setting up the values of theconfiguration parameters according to the
P&B design matrixand response time is recorded to estimate the effect of each parameter.

5

P&B Effect
P1 P2 P3 P4 P5 P6 P7 COV of Execution Times

Q1 109 79 167 193 21 25 177 0.55
Q2 61 161 9 143 39 185 109 0.32
Q3 0.40 0.80 0.00 0.40 0.40 0.00 0.40 0.01

Table 2:The P&B effects for the queries Q1, Q2, and Q3.

P1 P2 P3 P4 P5 P6 P7

Q1 0.56 0.41 0.87 1.0 0.11 0.13 0.92
Q2 0.33 0.87 0.05 0.77 0.21 1.0 0.59

Table 3:The P&B normalized effects with respect to the maximum effect for the queries Q1 and Q2.

3 Effect Estimation of the Configuration Parameters

This section describes how to use theP&B designmethodology described in Section 2 to estimate the effects
of configuration parameters for each query of the given workload. The effect of each configuration parameter
is calculated by multiplying the corresponding “+1” or “-1”of that parameter in theExpi-th row of theP&B
design matrixwith the query execution time of thei-th experiment, and summing up the products across all rows
of the design matrix. The absolute value of the net effect is used in the subsequent analysis.

For illustration, suppose we estimate the P&B effects of a query workload consisting of three queries Q1, Q2,
and Q3 as listed in Table 1. We have seven configuration parameters,P1 to P7. In this example, we assume that
foldover is used, therefore we conduct 16 experiments. The specification of the parameter values that need to be
used in all16 experiments are given in columns 2-8 and rowsExp1-Exp16 of Table 1. The net effect of the first
parameterP1 for query Q1 is calculated by multiplying the entries in the second column with the entries in the
ninth column and summing up across all 16 rows (Exp1-Exp16). For query Q1, the net effect of the parameter
P1 is estimated as:EffectP1

= abs((+1∗34)+(−1∗19)+ . . .+(−1∗51)+(+1∗76)) = abs(−109) = 109.
Similarly, the net effect of the second parameterP2 for query Q1 is calculated by multiplying the entries in the
third column with the entries in the ninth column and summingacross all 16 rows (Exp1-Exp16), and so on.
Table 2 gives the net P&B effects of all seven parameters for the queries Q1, Q2, and Q3.

The last column of Table 2 gives thecoefficient of variation (COV)of the response time across all experi-
ments for queries Q1, Q2, and Q3. COV is defined as the ratio of thestandard deviationto theaverageexecution
time. A very low COV value indicates that all effects are essentially the same, i.e., the query performance will
not be affected by the change in configuration parameters settings. In general, if the COV is less than 0.05, we
can safely ignore the effects and mark the corresponding query as tuning insensitive. In the illustrative example,
query Q3 is tuning insensitive as its COV is 0.01.

4 Exploiting the Configuration Parameters Effects

Once we have the P&B effects of the configuration parameters for all workload queries, we can use these
estimated effects to: (1) rank the configuration parametersfor the entire workload based on their relative impact
on the DBMS performance, and (2) select a compressed query workload that preserves the fidelity of the original
query workload. We describe these two methodologies in detail in the following subsections. Throughout this
section, we will use the query workload in Table 1 as a runningexample.

6

P1 P2 P3 P4 P5 P6 P7

Q1 3 4 1 1 7 7 1
Q2 5 1 7 2 6 1 3

Table 4:Ranking of the configuration parameters for the queries Q1 and Q2.

4.1 Ranking the Configuration Parameters for a Query Workload

Ranking configuration parameters for a query workload consists of two steps. First, we rank the parameters
for each tuning sensitive query of the workload based on the relative magnitude of their P&B effects. Second,
rankings of individual tuning sensitive queries are combined to estimate the overall ranking of a parameter for
the workload. The queries which are insensitive to parameter tuning are not included in the workload ranking
calculation. Therefore, we do not consider query Q3.

To rank the configuration parameters for a tuning sensitive query, the estimated P&B effects are normalized
with respect to the maximum effect and the range of normalized effects are divided intoN buckets, whereN is
number of configuration parameters. A parameter is assignedto the ranki if its normalized effect falls into thei-
th bucket range. In the continuing example, we have seven parameters. Therefore the range for the first, second,
third, fourth, fifth, sixth, and seventh buckets are, [1, 0.86), [0.86, 0.71), [0.71, 0.57), [0.57, 0.43), [0.43, 0.29),
[0.29, 0.14), and [0.14, 0.0], respectively. The normalized and rounded P&B effects for the queries Q1 and Q2
are listed in Table 3. For Q1, the rank ofP1 is 3 as its normalized P&B effect 0.56 falls into the third bucket.
Similarly, the rank ofP2 is 4, and so on. The ranking of parameters for queries Q1 and Q2are listed in Table 4.
In the next step, ranks are summed across all tuning sensitive queries, averaged, and sorted in ascending order.
The most important parameters will have the lowest cumulative rank. The average rankings of the parameters
P1, P2, P3, P4, P5, P6 andP7 of queries Q1 and Q2 as listed in Table 4 are 4.0, 2.5, 4.0, 1.5,6.5, 4.0, and 2.0,
respectively. Therefore, final ranking is 4, 3, 4, 1, 7, 4, and2, respectively. Ranking indicates thatP4 is the most
important configuration parameter,P7 is the second most important configuration parameter, followed byP2,
{P1, P3, P6}, andP5, in order. A detailed description of this methodology can befound in [10].

4.2 Compressing a Query Workload

To select a compressed query, all queries of the original workload are divided into two groups: tuning sensitive
and insensitive. One query from the insensitive group is included in the compressed query workload, while the
tuning sensitive group is further divided into subgroups based on the similarities of the effects of the configu-
ration parameters. For each query, the effects are normalized to the maximum effect of the parameters for the
corresponding query. Then, the Euclidean distance of the normalized effects among the queries is calculated to
estimate a similarity score. If the Euclidean distance between the effects of the two queries is less than the user-
chosen similarity threshold, we consider them as similar queries in terms of the performance bottlenecks and
place them in the same group. Finally, one query is selected from each subgroup to include in the compressed
query workload.

In the continuing example, the tuning sensitive group consists of queries Q1 and Q2; and the insensitive
group consists of query Q3. The Euclidean distance between the normalized effects of queries Q1 and Q2 from
Table 3 is

√

(0.56 − 0.33)2 + (0.41 − 0.87)2 + . . . + (0.13 − 1.0)2 + (0.92 − 0.59)2 = 1.36. If the threshold
of similarity score is 1.50, then we can consider queries Q1 and Q2 to be similar in terms of their impact of
the performance bottleneck parameters. In the compressed query workload, we can include either query Q1 or
query Q2. If we select query Q1, then the compressed query workload consists of queries Q1 and Q3. A detailed
description of this methodology can be found in [21].

7

5 Experimental Results

All the experiments in this section are conducted in a machine with two Intel XEON 2.0 GHz w/HT CPUs, 2
GB RAM, and 74 GB 10,000 RPM disk. We use the TPC-H benchmark [2] and PostgreSQL [1] to demonstrate
our methodologies. For demonstration, we use 22 read-only TPC-H queries, Q1-Q22, and data size of 1 GB.
We consider only those PostgreSQL configuration parametersthat are relevant to the read-only queries. The
high and low values of each parameter are chosen in a range such that it will act as a monotonic parameter. A
detailed information of the values used can be found in [21].Furthermore, we have included some parameters,
for example,fsync andcheckpoint timeout , which are not relevant for the read-only queries, yet they
help in verifying that our method is working correctly. If their rankings or effects become low compared to other
parameters, then it will give an indication that our method correctly identifies the performance bottlenecks.

The P&B effects of all configuration parameters are calculated using theP&B design with foldover. In order
to identify the insensitive queries, COV of 0.05 is selectedas a threshold. Out of 22 queries, the COVs of the
queries Q4, Q6, Q7, Q10, Q11, Q12, Q14, Q15, Q17, Q18, and Q22 are found to be less than 0.05. These
11 queries formed one single group of tuning insensitive queries. The ranking of the parameters for tuning
sensitive queries is listed in Table 5. For more detailed results of the estimated and normalized P&B effects,
the readers are referred to [21]. Different parameters withthe same rank indicates that they have similar effects
on the performance. For query Q1,work memis the most important parameter, while other parameters do not
have any impact on performance. For query Q2,effective cache size andshared buffers are the
first and sixth most important parameters, respectively, while other parameters do not have significant impact
on performance. Similarly, the ranking of the parameters for other queries indicates the relative importance of
corresponding parameter in the query performance.

The ranking of the parameters for the original TPC-H query workload consisting of tuning sensitive queries
is listed in the first and second columns of Table 6. The results indicate thatwork memis the most impor-
tant configuration parameter,shared buffers andeffective cache size are second most important
parameters, followed bycpu operator cost , random page cost , and so on. The result also indicates
that fsync andcheckpoint time out do not appear in the top five most important parameters list. To
verify that our results match with the decisions made by DBAs, we compare our parameter ranking against the
PostgreSQL 8.0 Performance Checklist [5]. This checklist is a set of rules of thumb for setting up PostgreSQL
server where it suggests the settings of configuration parameters that most DBAs will want to change. Among
the parameters we are considering, according to this checklist there are six important parameters that need
to be tuned, namely,max connections , shared buffers , work mem, maintenance work mem,
effective cache size , andrandom page cost . Four of these six parameters appear in our top five
important parameters list. The differences between our result and this list are: (1) we find that the parameter
cpu operator cost is an important one to our query workload and (2) the parameter max connections
appears to be less important to our workload as we do not consider concurrently running queries. Therefore,
in general, our ranking methodology matches the general guidelines that are suggested for database tuning in
addition to adding specific tuning decisions that match the given query workload.

To select a compressed query workload, we set a threshold of 0.5 for the Euclidean distance. At this threshold
the 11 tuning sensitive queries form eight groups:{Q1, Q8, Q16}, {Q2, Q13}, {Q3}, {Q5}, {Q9}, {Q19, Q21},
and{Q20}. In the compressed workload, from each group we include the query which creates less perturbations
in the original query workload ranking. In addition, we haveto include one query from the insensitive group
in the compressed workload. We select the query which has thelargest execution time. Our compressed query
workload includes queries Q2, Q3, Q5, Q8, Q9, Q18, Q20, and Q21. The new ranking for the compressed query
workload is given in the third and fourth columns of Table 6. The result indicates that exceptshared buffers
andeffective cache size , the ranking of the rest of the parameters is identical.shared buffers is
ranked second in the original query workload, while it is ranked third in the compressed query workload. On
the other hand,effective cache size is ranked second in the original query workload, while it is ranked

8

Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21
checkpointtimeout 15 15 15 13 15 4 15 15 15 7 15
deadlocktimeout 15 15 13 15 13 4 15 15 15 7 14
fsync 15 15 15 15 15 2 15 15 15 6 15
max connections 15 15 12 13 13 11 15 15 15 6 14
sharedbuffers 15 6 15 15 15 12 7 14 1 6 1
statsstart collector 15 15 15 15 15 11 15 15 15 7 14
cpu index tuple cost 15 15 13 15 15 9 15 15 15 7 12
cpu operatorcost 15 15 10 13 15 1 15 15 15 1 15
cpu tuple cost 15 15 13 13 14 8 15 15 15 7 14
effective cachesize 15 1 11 13 15 1 1 15 15 6 13
geqo 15 15 9 13 12 10 15 15 15 7 14
maintenancework mem 15 15 11 15 11 10 15 15 15 6 12
randompagecost 15 15 13 1 13 4 15 15 15 12 15
temp buffers 15 15 11 15 15 3 15 15 15 7 15
work mem 1 15 1 13 1 9 15 1 15 7 15

Table 5:Ranking of the configuration parameters for the tuning sensitive TPC-H queries.

Rank Original Workload Rank Compressed Workload
1 work mem 1 work mem
2 effective cachesize 1 effective cachesize
2 sharedbuffers 3 sharedbuffers
4 cpu operatorcost 3 cpu operatorcost
5 randompagecost 5 randompagecost
6 geqo 6 geqo
6 maintenancework mem 6 maintenancework mem
6 deadlocktimeout 6 deadlocktimeout
6 tempbuffers 6 temp buffers
10 max connections 10 max connections
10 cpu tuple cost 10 cpu tuple cost
10 fsync 10 fsync
10 checkpointtimeout 10 checkpointtimeout
14 cpu index tuple cost 14 cpu index tuple cost
15 statsstart collector 15 statsstart collector

Table 6:Ranking of the configuration parameters estimated by the original and compressed query workloads.

first in the compressed query workload. However, as long as the list of topmost important parameters does not
change drastically, in reality it does not cause much impactin tuning activities.

6 Related Work

Major database vendors offer tools for tuning database physical design [3, 9, 22]. IBM DB2 provides a utility
namedautoconfigure for automatically selecting the initial values for the configuration parameters based
on generic workload behavior [15]. Oracle Automatic Database Diagnostic Monitor (ADDM) tool possesses a
holistic view of the database, identifies root causes of the performance bottlenecks, and estimates the benefits of
eliminating performance bottlenecks [12]. In Microsoft SQL Server, most of the parameters can be configured
either through Enterprise Manager or with the T-SQLsp configure command [11]. However, none of the
current tools rank the configuration parameters based on their impact on the DBMS performance.

Two major techniques for query workload compression are proposed in the literature. The first technique
groups SQL statements based on the accessed tables and join columns [7]. The second technique focuses on the
most complex and costly queries in the workload and ignore other queries [22]. In contrast, our proposed work-
load compression methodology selects subset workload based on similarities of the performance bottlenecks of
the configuration parameters.

9

7 Conclusion

We have proposed methodologies for ranking configuration parameters and selecting a compressed query work-
load based on the impact of configuration parameters on the DBMS performance for a given query workload.
These methodologies are quite generic and can also be applied to non-database systems. They will greatly help
DBAs of all knowledge levels to prioritize tuning activities and reduce time and effort. In the future, we are plan-
ning to perform the following extensions: 1) validating theassumptions behind calculating parameter effects,
and 2) suggesting the appropriate values of the configuration parameters using the estimated P&B effects.

8 Acknowledgements

This work was supported in part by NSF grant nos. CCF-0621462and CCF-0541162, the University of Min-
nesota Digital Technology Center Intelligent Storage Consortium, and the Minnesota Supercomputing Institute.

References
[1] PostgreSQL DBMS Documentation.http://www.postgresql.org/ .
[2] Transaction Processing Council.http://www.tpc.org/ .
[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya and M. Syamala. Database Tuning Advisor for

Microsoft SQL Server 2005. InProc. of VLDB, 2004.
[4] T. Allen. Introduction to Engineering Statistics and Six Sigma: Statistical Quality Control and Design of Experiments

and Systems. Springer, 2006.
[5] J. Berkus. Power PostgreSQL: PostgreSQL Performance Pontificated. http://www.powerpostgresql.

com/PerfList/ .
[6] D. Cappucio, B. Keyworth and W. Kirwin. The Total Cost of Ownership: The Impact of System Management Tools.

Strategic Analysis Technical Report, Gartner Group, Stamford, CT, 1996.
[7] S. Chaudhuri, A. K. Gupta and V. Narasayya. Compressing sql workloads. InProc. of SIGMOD, 2002.
[8] S. Chaudhuri and G. Weikum. Rethinking Database Architecture: Towards s Self-tuning RISC-style Database Sys-

tem. InProc. of VLDB, 2000.
[9] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait and M. Ziauddin. Automatic SQL Tuning in Oracle 10g. InProc.

of VLDB, 2004.
[10] B. Debnath, D. Lilja and M. Mokbel. SARD: A Statistical Approach for Ranking Database Tuning Parameters. In

Proc. of 3rd Intl. Workshop on Self-Managing Database Systems, 2008.
[11] S. DeLuca, M. Garcia, J. Reding and E. Whalen.Microsoft SQL Server 7.0 Performance Tuning Technical Reference.

Microsoft Press, March 2000.
[12] K. Dias, M. Ramacher, U. Shaft, V. Venkataramamani and G. Wood. Automatic Performance Diagnosis and Tuning

in Oracle. InProc. of CIDR, 2005.
[13] C. Garry. Who’s Afraid of Self-Managing Databases?http://www.eweek.com/article2/0,1895,

1833662,00.asp , June 30, 2005.
[14] Hurwitz Group. Achieving Faster Time-to-Benefit and Reduced TCO with Oracle Certified Configurations. March,

2002.
[15] E. Kwan, S. Lightstone, A. Storm and L. Wu. Automatic Configuration for IBM DB2 Universal Database. InIBM

Perfromance Technical Report, January 2002.
[16] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, A. Storm, M. Surendra and D. Zilio. Making DB2 Products

Self-Managing: Strategies and Experiences.IEEE Data Engineering Bulletin, 29(3), 2006.
[17] D. Lilja. Measuring Computer Performance A Practitioner‘s Guide. Cambridge University Press, 2000.
[18] D. Montgomery.Design and Analysis of Experiments. Wiley, 2001.
[19] R. Plackett and J. Burman. The Design of Optimum Multifactorial Experiments. InBiometrika Vol. 33 No. 4, 1946.
[20] A. Rosenberg. Improving Query Performance in Data Warehouses. http://www.tdwi.org/

Publications/BIJournal/display.aspx?ID=7891 , 2005.
[21] J. Skarie, B. Debnath, D. Lilja and M. Mokbel. SCRAP: A Statistical Approach for Creating Compact Representa-

tional Query Workload based on Performance Bottlenecks. InProc. of IISWC, 2007.
[22] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano and S. Fadden. DB2 Design Advisor:

Integrated Automated Physical Database Design. InProc. of VLDB, 2004.

10

Automated Workload Management for Enterprise Data
Warehouses

Abhay Mehta Chetan Gupta Song Wang Umeshwar Dayal

Hewlett Packard Labs
firstname.lastname@hp.com

Abstract

Modern enterprise data warehouses have complex workloads that are notoriously difficult to manage.
Additionally, RDBMSs have many “knobs” for managing workloads efficiently. These knobs affect the
performance of query workloads in complex interrelated ways and require expert manual attention to
change. It often takes a long time for a performance expert toget enough experience with a large
warehouse to be able to set the knobs optimally. Typically the warehouse and its workload change sig-
nificantly within that time. This makes the task of manually optimizing the knob settings on a warehouse
an impossible one. In this context, our goal is to create selfmanaging Enterprise Data Warehouses. In
this paper we describe some recent advances in building an automatic workload management system.
We test this system against real workloads against real enterprise data warehouses.

1 Introduction

Many organizations are creating and deploying Enterprise Data Warehouses (EDW) to serve as the single source
of corporate data for business intelligence. Not only are these enterprise data warehouses expected to scale to
enormous data volumes (hundreds of terabytes), but they arealso expected to perform well under increasingly
complex workloads, consisting of batch and incremental data loads, batch reports and complex ad hoc queries.

The problem of database workload management aimed at self-tuning database systems has been studied in
the literature (see Weikum [28] for a review of the advances in this area). We have borrowed from this work the
idea of using multiprogramming level (MPL) to model the loadon the system. However, the previous work was
done in the context of OLTP workloads, not the complex query workloads typical of Business Intelligence (BI)
data warehouses, which is the focus of our work.

In this work we deal with two important challenges towards achieving Automatic Workload Management:
Predictability andManageability. In the next few sections, for each of these challenges we present a sketch of
our solution. The detailed discussions and results can be found in [16] and [17].

Figure 1(a) depicts the architecture of an automatic workload management system. Theoptimizeroutputs an
execution plan for a query and an estimate of the query cost, which are input to thePrediction of Query Runtime
(PQR)block. In addition, aLoad Monitorextracts a load feature vector, which is also input to thePQRblock.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

11

PQR

Queue 1

Queue 2

Queue k

Optimizer

Query + Optimizer Cost

Query +
Predicted Run Time

E
X
E
C
U
T
I
O
N

Load
Monitor

System Load

System Load + Execution Cost

Exe
cu

tio
n

Cos
t

System Load + Execution Cost

Queries

Query
Workload
Manager

SLAs

PQR

Queue 1

Queue 2

Queue k

Optimizer

Query + Optimizer Cost

Query +
Predicted Run Time

E
X
E
C
U
T
I
O
N

Load
Monitor

System Load

System Load + Execution Cost

Exe
cu

tio
n

Cos
t

System Load + Execution Cost

Queries

Query
Workload
Manager

SLAs

(a)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Optimizer Cost

T
im

e
T

ak
en

(b)

Figure 1: (a) System Diagram for an Autonomic EDW (b) Relationship between Optimizer Cost and Actual
Execution Time

Whenever a new query comes in, thePQRblock estimates the execution time of the query under current load
conditions. This estimate is passed on to theWorkload Manager, which schedules the queries. Other components
in the system (not shown in the figure) keep track of the query’s progress relative to its predicted execution time,
and use this information to detect problem queries (such as runaway queries). All of this information is fed back
to theWorkload Manager, which can then apply the appropriate control actions to rectify the problems.

2 Related Work

There has been a tremendous amount of work on cost models for query optimization (see for example Graefe [9]
for a survey). However, while these cost models are useful tothe optimizer for selecting low cost execution
plans, their cost estimates are very often not good predictors of actual query execution times (See Figure 1(b)).

Analytical approaches have been used for estimating query response times [23, 27] and there are a few
commercial products that use analytical and simulation models to predict query execution times [1,14,20,21,25].
The analytical approaches depend on the creation of resource models which are notoriously complex and difficult
to create and hence the results may not be relevant in practice.

Certain machine learning techniques have been used in the context of databases. The LEO learning optimizer
uses a feedback loop of query statistics to improve the optimizer during run time [15, 26]. Raatikainen [22]
summarizes some of the early work in using clustering for workload classification. In PLASTIC [8] queries
are clustered to increase the possibility of plan reuse. Although these are interesting applications of machine
learning techniques, none of these apply machine learning to our problem at hand.

Furthermore, statistical techniques, analytical techniques, and machine learning techniques have been used
previously to predict execution times of tasks and resourceconsumption in fields other than database sys-
tems [10]. However, to the best of our knowledge there is no prior work in using machine learning techniques
to build models for predicting query execution time ranges.

The related work for throughput control falls into three areas: thrashing control in operating systems, creative
memory management in DBMSs, feedback control of workloads.

The problem of over subscription of memory, the primary cause of thrashing has been studied extensively
since the 1960s. Several heuristics have been proposed for doing admission control either by explicitly con-

12

trolling the MPL or otherwise. These include the Knee Criterion, the L=S criterion, the Page Fault Frequency
algorithm, and the 50% rule [6]. However, thrashing is stillan unsolved problem in operating systems and work
continues in this area [11].

Another area of related work is in the design of memory managers for DBMSs. Several proposals have been
made for memory managers in DBMS: [2–4]. The drawback of these methods is that the internal workings of
the database memory manager have to be changed.

One more area of related work is in the feedback control of workloads. Most of the previous work using
this approach has been targeted towards OLTP (On-line Transaction Processing) systems where thrashing due to
data contention has been the main problem. Several of these methods have been summarized in [18]. Another
good demonstration of this approach is provided by [19] thatdeals with real-time database systems, and by [24].
More recently, Web servers have employed a feedback loop approach [5,7,12,13].

To our knowledge, the most common approach used by commercial BI systems is a “static MPL” approach.
In this approach, a “typical workload” is run multiple timesthrough the system and an appropriate MPL com-
puted. The workload is then “throttled” down to this static MPL, which may be different for different times of
the day. There are several problems with this approach: it isexpensive, it results in a very approximate and
inaccurate setting and since it is static it is not suitable for heterogeneous nature of a BI workload.

3 Predictability

The execution time of BI queries that run on large EDWs can vary from microseconds for simple lookup queries
all the way to multiple hours for complex data mining queries. An effective workload management system
depends heavily on an estimate of the execution times of queries in the workload, prior to running the queries.
Estimating execution time accurately is a hard problem, especially on a loaded EDW with a complex workload.

Previous researchers have focused on predicting precise execution times. In our experience, this is extremely
difficult to do with high accuracy. Furthermore, for workload management, it is actually unnecessary to estimate
a precise value for execution time - it is sufficient to produce an estimate of the query execution times in the
form of time ranges (for instance, queries may be assigned todifferent queues based on their execution time
ranges). This allows us to reformulate the problem and bringin the machinery of machine learning to address
it. It is precisely this problem of estimating query execution time ranges that we address in this paper. We focus
on the following issues:

1. Discovering, selecting, and computing query plan features and system load features as classification at-
tributes.

2. Finding appropriate execution time ranges to be used for prediction.

3. Ensuring high prediction accuracy.

4. Efficient algorithms for model building and deployment.

Researchers and practitioners have built increasingly sophisticated cost models for query optimization. How-
ever, building an accurate analytical model is difficult especially under varying load conditions. Using an opti-
mizer’s analytical cost model to estimate the actual execution time of a query on a loaded system has met with
limited success in the field and it is common knowledge that query cost estimates produced by query optimizers
do not accurately reflect query run times. For example, in Figure 1(b), we have plotted the actual query execu-
tion time and cost estimates for a batch of queries run on a customer database. The scatter plot and the best fit
line show that the optimizer cost is not an ideal predictor for query execution time.

We take a different approach: we “learn” from the execution histories of various queries under varying
load conditions. In particular, from the execution histories, we extract query plan features provided by the

13

optimizer and system load features from the environment on which the queries were run. Discovering features
and selecting which features to use is itself a challenging problem. We then build a predictive model that can
estimate the execution time range of a query.

We found that conventional machine learning approaches to building predictive models, such as regression
and decision tree classifiers were not adequate. The challenges were several since we are interested in not only
predicting the time ranges but also in discovering them:

1. The time ranges should be sufficient in number. It would be meaningless to predict that all queries belong
to a single time range.

2. Their span should be meaningful. Very small or very large time buckets are not very useful.

3. As with all predictive models the accuracy of prediction should be high.

4. The model should be cheap to build and deploy.

To address these we came up with a novel hierarchical approach. We call the predictive models built using
this approach, PQR (Predicting Query Run-time) Trees. A PQRTree is a hierarchical classification tree such
that for every node, there is a binary classifier that decideshow best to divide the time range of the node into
two sub ranges for the two children of the node. There is also an associated accuracy for each node. Every node
and leaf of the tree corresponds to a time range. At every node, we not only find the two sub ranges for the time
range of the node but also a classifier that can predict the tworanges.

As illustrated in Figure 2(a), the prediction model is first built and trained using a set of execution histories
of various queries under varying load conditions. Then, foran incoming query in the workload, PQR Tree will
return an estimated execution time range with an associatedaccuracy. There are two overall steps:

1. Obtaining a PQR Tree based on historical data of queries run on the system: This involves three steps:

(a) From the historical data extract query plan features like optimizer cost, number of joins, join cardi-
nality, and etc.

(b) From the historical data extract the system load vector for each query. The system load vector con-
sists of the number of queries and the number of processes running while the query was executing.

(c) Build a PQR Tree with the feature vectors built above. This is done by choosing the combination of
the classifier and the time interval that gives the highest accuracy.

2. Obtaining a time range for a new query by applying the PQR Treeto a new query: This is done by
extracting a feature vector from the new query and applying the PQR Tree obtained in the previous step.

A sample PQR Tree is presented in Figure 2(b). The classifier,fu associated with the root node divides the
time range of [1, 2690] seconds into two: [1, 170) and [170, 2690] seconds with associated accuracy of 93.5%.
The rest of the nodes can be interpreted similarly.

We did two series of experiments to verify our approach. Theyconsisted of two different systems, both
running a commercial, enterprise class DBMS and two different data sets. We ran a thousand queries against
SF = 1, 50, 100, 200 TPCH databases. The queries were generated automatically and ran against all the tables.
They include joins and order-bys. Sixteen of these queries were TPCH benchmark queries. We looked at four
query MPL values: 4, 6, 8 and 10, i.e., we executed the queriesin parallel with the number of parallel streams
equal to the MPL value.

For the second set we took a set of actual BI (Business Intelligence) queries run in a day by one of HP’s
customers. They include both ad hoc queries and canned reports. There were a total of 500 queries in this data
set. The database has more than 38G rows and total size is over21TB. This experimental setup consisted of

14

Historic
Queries

Extract
Features

Plan &
Load
Vectors

P1, P2:
Construct
Tree

PQR Tree

New
Query

Extract
Features

Plan &
Load
Vectors

P3:
Apply
Tree

[Predicted
execution
time range]

Obtaining a PQR
Tree

Obtaining a time
range for a
new query

Historic
Queries

Extract
Features

Plan &
Load
Vectors

P1, P2:
Construct
Tree

PQR Tree

New
Query

Extract
Features

Plan &
Load
Vectors

P3:
Apply
Tree

[Predicted
execution
time range]

Obtaining a PQR
Tree

Obtaining a time
range for a
new query

Historic
Queries

Extract
Features

Plan &
Load
Vectors

P1, P2:
Construct
Tree

PQR TreePQR Tree

New
Query

Extract
Features

Plan &
Load
Vectors

P3:
Apply
Tree

[Predicted
execution
time range]

Obtaining a PQR
Tree

Obtaining a time
range for a
new query

(a)

��� �� � ���		
�
��

�� ����� ��� �������������� �� � ���		
�
��

�� ������ � � �! ���� �� � ���		
�
��

�� ������ � � ����!"##$ %&'()%*'+),---./0-1 -23 ,--40-2 1 -563 7898:8;< = 8<<<> ,-44. �� ? @ABB0-666 1 4CD6378998:8<<< = 8E9F> 78999:8E9F = 9EF<>
(b)

Figure 2: (a) Solution Components for Building PQR Tree (b) Sample PQR Tree where Time is in Seconds

hundred different tests. We took ten different MPLs: 8, 16, 32, 48, 64, 96, 128, 192, 224, 256 and ran each
experiment ten times. In another series of hundred different tests we used a subset of smaller queries from the
original five hundred queries.

In consultations with DBAs who manage workloads, we createda quality metric: a model that can predict
at least four “reasonable” ranges1 of query execution times with an accuracy of greater than 80%is considered
acceptable. This metric captures all the key attributes we discussed earlier. Over 90% of the PQR Tree models
were found to be acceptable. The results from various experiments were found to be extremely encouraging [16].

4 Manageability

Traditionally, the Multi Programming Level (MPL), which indicates the number of queries running concurrently
on the system, has been used to control the load on the system.To avoid system underload or overload, MPL
must be carefully set. Figure 3(a) shows the throughput curves for three different TPC-H workloads. Each
workload has a range of MPL values for which there is no overload or underload. Clearly, different workloads
require different optimal MPLs. However, a typical BI batchworkload can fluctuate rapidly between long,
resource intensive queries, and short, less intensive queries. This requirement makes it very challenging, if not
impossible for a human (or a system) to keep the workload in anoptimal region using the MPL setting.

We have created a BI Batch Manager, which is a database workload management system for running batches
of BI queries. The BI Batch Manager has the following salientpoints:

1. It employs new way of executing BI queries, Priority Gradient Multiprogramming (PGM), which auto-
matically protects against overload.

2. The scheduling algorithm, Largest Memory Priority (LMP)further enhances the stability of execution.

3. Estimated memory is used as a basis for admission control in EDWs.

1We ensure “reasonableness” by stipulating that no child node has less than 25% examples of the parent node.

15

Multiple Copies of Query X for Different SFs

0

20

40

60

80

100

120

140

0 10 20 30 40 50

Multiprogramming Level (MPL)

T
h

ro
u

g
h

p
u

t

SF 100

SF 400

SF 200

(a)
(b)

Figure 3: (a) Throughput as a Function of MPL (b) Component Design for BI Batch Manager

A common way of looking at throughput is by means of throughput curves where the throughput is plotted
against the MPL on the system. When a user first confronts a newworkload the precise shape of the throughput
curve is unknown to him/her and the user has to determine the MPL at which to execute the workload. The user
does not want to be on the left part of the curve since increasing the MPL can lead to an increase in throughput.
But as the MPL is increased there is a danger of entering the overload region where higher MPLs mean a
significantly lower throughput. At the boundary between theoptimal region and the overload region, increasing
the MPL by even one, can cause severe performance deterioration rather than a gradual decline in performance.
This is because of thrashing, a problem that is inherent in all virtual memory, multiprogramming systems.

Our focus is on addressing the problem of automatically managing BI batch workloads, so that we are in the
optimal region of the throughput curve, where there is no underload or overload. We focus on issues as follows:

1. Identify a manipulated variable whose predicted value issuitable for BI workload management.

2. Make the execution of the queries stable over a wide range of estimation errors of this variable.

3. Schedule the queries so that the system behaves without underload or overload for the admitted batch.

4. Use the manipulated variable for admission control, i.e.admit queries based on an estimated value of the
manipulated variable.

Our solution is depicted in Figure 3(b). The BI Batch Managerhas three primary components, that address
the issues highlighted above: (1)Admission Controller, (2) Schedulerand (3)Execution Manager.

We use memory as the variable of choice to manipulate. Whenever there is an over-subscription of memory,
there is a potential for serious degradation in performancedue to thrashing. A workload thrashes whenever its
cumulative peak memory requirement per CPU exceeds the available memory per CPU. Overload behavior can
be predicted more accurately with memory rather than with MPL. Thus, in contrast to MPL, memory behaves
much more predictably as a manipulated variable.

Current execution control technology centers around EqualPriority Multiprogramming (EPM), in which
every query is executed at the same process priority. EPM is robust for a reasonable range of overestimates of
the memory requirement. However, it is very unstable for underestimates, which will result in a sudden drop in
throughput as the size of the workload memory increases beyond the available memory at runtime.

16

To overcome the sensitivity to thrashing for underestimates of memory2, we introduce Priority Gradient
Multiprogramming (PGM). In PGM, queries are executed at different process priorities such that a gradient of
priorities is created. PGM requires that the operating system supports preemptive priority scheduling, which
is standard on many commercial systems, including Linux andNSK. This results in queries asking for, and
releasing resources at different rates. This solution has proven to be very effective in protecting against overload.
Ironically, PGM is an effective execution control mechanism because it uses the priority gradient to distribute
memory to queries in an unfair way. The priority gradient allows the operating system to automatically allocate
resources to queries down the gradient without any over-allocation of resources and keeps the system in an
optimal range of execution.

Since the throughput penalty for being in the overload region is much higher than being in the underload
region, we designed a scheduler that stabilizes the system for memory underestimation errors. We call our
ordering scheme: Largest Memory Priority (LMP). The query with the largest memory requirement is given the
highest priority.

For admission control we create batches whose estimated memory requirement is equal to the available
memory per CPU on the system. The whole batch is divided into these sub-batches using the standard technique
of bin packing called First Fit Decreasing(FFD). Once a batch finishes, a new batch is admitted for execution.
Here, we can have various definitions of what is meant by a batch being “done”. For example, one definition
could be that a batch is done when 90% of the queries in the batch are done or if all the memory is released.
Estimation errors are compensated for, by our PGM executioncontrol mechanism as described previously.

Our experiments have shown that the BI Batch Manager (BIBM) does not cause thrashing for memory
estimates that underestimate the memory requirement to be athird of what it actually is. Similarly, it does not
go into underload if we overestimate the memory to upto threetimes the actual memory requirement. Also,
most DBMS put bounds on the memory available to BMOs. This reduces the extent to which memory can be
underestimated. Finally, in our paper [17] we give a statistical proof that shows that errors in memory estimates
of a batch are much less than the errors in the memory estimates of the individual queries. Thus, the main
contribution of BIBM is that it makes the system tolerant of memory estimation errors. BIBM compensates upto
a factor of 3, or 300% error in the estimate for how much memorya workload is going to need. This is seen as
a sufficient margin of error for most practical workloads.

We have done a series of experiments to test various aspects of our BI Batch Manager. For the purpose
of experimentation we used a TPC-H workload with three SF values: 50, 100, 200. It was installed on a two
Segment (32 Nodes) commercial class Enterprise Data Warehouse, with 8GB physical memory per CPU. We
created forty-eight mixed workloads of random sizes by uniform random sampling (with replacement).

We compared the throughput obtained with BIBM with theEPM Throughput(throughput achieved when all
queries are running with the same priority) and theIdeal Throughput(theoretic maximum throughput achieved
when CPU utilization is 100%). Note that, in practice it is impossible to obtain the ideal throughput, since even
for a highly parallelized query there are a number of serial operations. Thus, the ideal throughput should be
viewed as a good upper bound, but not necessarily achievable.

In our experiment result shown in Figure 4, BI Batch Manager generally achieved a system throughput of
greater than 80% of ideal throughput. There was approximately 4 GB of memory available per CPU during the
experimental runs. The workloads were created by first choosing a memory number between 1.33GB and 12GB
(approximately 1/3 to 3 times of memory per CPU). Then queries were randomly chosen from TPC-H queries
(with replacement) until the memory boundary was reached. More experiment results are available in [17].

2If memory is under-estimated, a batch that requires larger amount of memory might be submitted causing thrashing.

17

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 2 4 6 8 10 12 14

Workload Peak Memory Consumption (GB/CPU)

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

(%
 o

f
Id

ea
l)

Ideal BIBatchManager Default (EPM)

Figure 4: Throughput Results for Workloads from TPC-H SF200

5 Conclusion

In this work we have dealt with predictability and manageability in an effective way. Our results have been
validated on real life commercial class EDWs. As a next step we plan to extend manageability to a continuous
stream of queries and detect problem queries.

References

[1] BEZ Systems Inc. BEZPlus for NCR Teradata and Oracle environments on MPP machines. http://
www.bez.com/software.htm, 1999.

[2] K. P. Brown, M. J. Carey and M. Livny. Managing Memory to Meet Multiclass Workload Response Time Goals. In
VLDB, pages 328–341, 1993.

[3] K. P. Brown, M. Mehta, M. J. Carey and M. Livny. Towards Automated Performance Tuning for Complex Workloads.
In VLDB, pages 72–84, 1994.

[4] M. J. Carey, R. Jauhari and M. Livny. Priority in DBMS resource scheduling. InVLDB, pages 397–410, 1989.

[5] X. Chen, P. Mohapatra and H. Chen. An admission control scheme for predictable server response time for web
accesses. InWWW, pages 545–554, 2001.

[6] P. J. Denning, K. C. Kahn, J. Leroudier, D. Potier and R. Suri. Optimal Multiprogramming.Acta Inf., 7:197–216,
1976.

[7] S. Elnikety, E. M. Nahum, J. M. Tracey and W. Zwaenepoel. Amethod for transparent admission control and request
scheduling in e-commerce web sites. InWWW, pages 276–286, 2004.

[8] A. Ghosh, J. Parikh, V. S. Sengar and J. R. Haritsa. Plan Selection Based on Query Clustering. InVLDB, pages
179–190, 2002.

[9] G. Graefe. Query Evaluation Techniques for Large Databases.ACM Comput. Surv., 25(2):73–170, 1993.

[10] M. A. Iverson, F.Özgüner and G. J. Follen. Run-Time Statistical Estimationof Task Execution Times for Heteroge-
neous Distributed Computing. InHPDC, pages 263–270, 1996.

[11] S. Jiang and X. Zhang. TPF: a dynamic system thrashing protection facility. Softw., Pract. Exper., 32(3):295–318,
2002.

18

[12] A. Kamra, V. Misra and E. M. Nahum. Yaksha: a self-tuningcontroller for managing the performance of 3-tiered
Web sites. InIWQoS, pages 47–56, 2004.

[13] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein and S. S. Parekh. Online Response Time Optimization of
Apache Web Server. InIWQoS, pages 461–478, 2003.

[14] M. Garth. Modelling parallel architectures. http://www.metron.co.uk/papers.htm, 1996. Metron Technology white
paper.

[15] V. Markl, G. M. Lohman and V. Raman. LEO: An autonomic query optimizer for DB2. IBM Systems Journal,
42(1):98–106, 2003.

[16] A. Mehta, C. Gupta and U. Dayal. How to Predict the Running Time of Business Intelligence Queries on an Enterprise
Data Warehouse. Technical Report HPL-2007-165, HP Labs, October 2007.

[17] A. Mehta, C. Gupta and U. Dayal. BI Batch Manager: A System for Managing Batch Workloads on Enterprise Data
Warehouses. InEDBT (To appear), 2008.

[18] A. Mönkeberg and G. Weikum. Performance Evaluation ofan Adaptive and Robust Load Control Method for the
Avoidance of Data-Contention Thrashing. InVLDB, pages 432–443, 1992.

[19] H. Pang, M. J. Carey and M. Livny. Managing Memory for Real-Time Queries. InSIGMOD, pages 221–232, 1994.

[20] Platinum Technology. Proactive performance engineering. http://www.softool.com/products/ppewhite.htm, 1999.
Platinum Technology White paper.

[21] R. Eberhard. DB2 Estimator for Windows. http://www.software.ibm.com/data/db2/os390/estimate, 1999. IBM Corp.

[22] K. E. E. Raatikainen. Cluster Analysis and Workload Classification.SIGMETRICS Performance Evaluation Review,
20(4):24–30, 1993.

[23] S. Salza and M. Renzetti. Performance Modeling of Paralled Database System.Informatica (Slovenia), 22(2), 1998.

[24] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. M. Nahum and A. Wierman. How to Determine a Good Multi-
Programming Level for External Scheduling. InICDE, page 60, 2006.

[25] SES Inc. Solutions for information systems performance. http://www.ses.com/Solution/IS.html, 1999.

[26] M. Stillger, G. M. Lohman, V. Markl and M. Kandil. LEO - DB2’s LEarning Optimizer. InVLDB, pages 19–28,
2001.

[27] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H. Taylor, P. J. B. King and P. Broughton. Analytical response
time estimation in parallel relational database systems.Parallel Computing, 30(2):249–283, 2004.

[28] G. Weikum, A. Mönkeberg, C. Hasse and P. Zabback. Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. InVLDB, pages 20–31, 2002.

19

Quality of Service-Enabled Management of Database Workloads

Stefan Krompass‡ Andreas Scholz‡ Martina-Cezara Albutiu‡

Harumi Kuno§ Janet Wiener§ Umeshwar Dayal§ Alfons Kemper‡

‡Technische Universität München, Munich, Germany
{albutiu,kemper,krompass,scholza }@in.tum.de

§Hewlett-Packard Laboratories, Palo Alto, CA, USA
{firstname.lastname }@hp.com

Abstract

Database administrators struggle when managing workloadsthat have widely different performance
requirements. For example, the same database may support short-running OLTP queries and batch jobs
containing multitudes of queries with varying complexity.Different workloads may have different perfor-
mance requirements, expressed in terms of service level objectives (SLOs) that must be fulfilled in order
to keep the issuing database users satisfied. In this paper, we identify basic query classes and describe
the challenges they pose for SLO-aware workload management. Additionally, we propose a generic ar-
chitecture for an SLO-aware DBMS. We give an overview of workload management techniques already
implemented in today’s DBMS and outline future research directions for as yet unsupported concepts.

1 Introduction

Imagine you are a database system administrator for a large company. Your job is to administer a variety of
workloads running on the database. These workloads are submitted by different customers who have unique re-
quirements. The company’s Web front end produces an OLTP-style workload with short-running parameterized
queries that must be processed quickly in order to provide immediate feedback to the customers. Depending
on the customer, the queries have varying importance and performance requirements. While processing the
OLTP queries, your database must also handle business intelligence (BI) workloads. For example, sales man-
agers submit analytic batch workloads to prepare financial reports for a meeting with your company’s CEO.
These workloads have a hard deadline and partial results areworthless. To complicate matters, members of the
marketing team simultaneously need to execute complex custom queries in order to craft their new campaign.

In today’s databases, OLTP and BI workloads are usually keptseparate: OLTP workloads are submitted to
and processed by operational databases, and BI workloads bydata warehouses. For the management of each
individual workload, you as the database administrator must address a variety of problems: First, you need
concrete metrics that describe the customers’ expectations in a way you can measure. For example, you cannot
measure whether or not you meet the customer’s vague expectation of a “short response time”, but you can
measure the elapsed time needed to respond to a query. Second, you need policies to manage incoming queries.
For example, you must decide whether or not to admit a new query when you expect the query to have a negative
impact on concurrent queries. Third, you need workload management policies that consider the characteristics
of the workloads as a whole. In particular, you need workloadmanagement techniques to address questions like:

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

20

• What is the number of concurrent queries in the database system that optimizes throughput for a particular
workload? What if multiple workloads are running simultaneously?

• Can the queries be scheduled according to their priorities?How should the priorities be determined?

• How long should you wait before killing an unexpectedly long-running query that hogs resources? How
can you tell that the query hogs resources? What if this queryis business-critical and must be completed?

Increasingly, we are seeing trends towards “operational data stores” or “operational BI”, where mixed work-
loads run on the same database. The parallel execution of workloads with different requirements on the same
database poses new challenges and requires an integrated approach for workload management. As a preparatory
work, this paper focuses on workload management techniquesfor separate execution of the different workload
types. Workload management for operational data stores is ongoing work in our research collaboration.

The rest of this paper is organized as follows: Section 2 characterizes the workloads we focus on in this paper.
Section 3 defines service level objectives for different workload classes. Section 4 describes how workload
management is used to meet service level objectives. Section 5 summarizes prior art in industry and academia.
Our proposed solution for managing OLTP workloads is presented in Section 6. Section 7 describes challenges
in workload management for BI workloads. Finally, Section 8summarizes the contents of the paper.

2 Characterization of Workloads

interactive batch

canned OLTP/BI BI
ad hoc BI BI

Table 1: Characterization of
workloads

Table 1 characterizes business intelligence (BI) and OLTP workloads. The ver-
tical axis describes how queries are generated. The structure of cannedqueries
is fixed; the only variety stems from the parameterization ofconstants. This
kind of query is typically issued by software clients, oftenby using prepared
statements. In contrast, the structure ofad hocqueries is not known in advance,
and may vary widely. Ad hoc queries may cause performance issues because
they are often only executed once and thus may not be as thoroughly optimized
as canned queries.

The horizontal axis indicates whether queries are issuedinteractivelyor as part ofbatch jobs. In the case
of interactive invocation, the user is waiting for the results of each query before submitting the next one. A
subsequent query may depend on the result of its predecessor, so even long-term monitoring of query patterns
will not necessarily yield a good prediction model for querysequences. The opposite is true for batch workloads,
where all queries are known in advance.

OLTP workloads are interactive, canned workloads that typically consist of a large number of small uniform-
ly-sized queries. Results must be returned quickly for the sake of a good user experience. BI workloads, on the
other hand, may contain queries from all quadrants of Table 1: interactive OLTP-like queries may be interleaved
with long-running canned batch workloads that create business reports or statistics. BI workloads additionally
include ad hoc queries, e. g., if a business analyst interactively performs drill-down analysis or requests a custom
report to be run as an overnight batch job.

3 Service Level Objectives

From a user’s point of view, a database system performs well if the performance requirements the user cares
about are met. A first prerequisite is to translate user-defined performance requirements into a common set of
metrics that can be obtained through monitoring. Examples of such metrics includeexecution time(the elapsed
wall clock time between the start and completion of a query),throughput(number of successfully executed
queries in a given time span), andCPU time(time the CPU is available for a specific query).

21

500

1000

1500

SLO conformance

2000

P
en

al
ty

 0.3 0.4 0.5 0.6 0.7 0.8 0.90.2 10

s3Service level
SLO penalty

Marginal gains

Opportunity costs

s
1

Service level

s2Service level

0.1

Figure 1: Visualization of SLO constraintd

A service level objective (SLO) is formed by a combination ofone or more performance goals and an asso-
ciated priority, which typically depends on the penalties incurred if the goals are not met. Often, these objectives
do not apply to all queries, but instead must be satisfied for acertain percentage. SuchSLO conformancemetrics
are defined as ratio of the number of queries that meet an SLO goal to the total number of queries.

The SLOs for the workload categories described in Section 2 differ in the way performance is measured -
either in terms of individual queries or in terms of groups ofqueries. Users are explicitly aware of the individual
response times of interactively submitted queries, but theresponse time for batch jobs is measured for a set of
queries as a whole. Similarly, performance for canned queries (e. g., a canned report or OLTP query) tends to be
measured and reported in terms of the query class as a whole, whereas ad hoc queries are measured individually.

An example for an SLO in the OLTP context is the so-calledstep-wise SLOthat consists of one or moreper-
centile constraints. Since users typically expect fast responses for OLTP queries, percentile constraints require
n% of all service requests to be processed withinx seconds. Otherwise, a penaltyp for everym percentage
points under fulfillment is due. A percentile constraint implicitly defines an SLO penalty function withn steps
(service levels). The penalty function for a constraintd (90% in < 5s; p = $900 per 20 percentage points,
maximum penalty$1800) is shown in Figure 1 (black solid lines).

In contrast, batch workloads are typically deadline-driven and may incur penalties if work is not completed
before a given deadline. This translates directly into an execution time constraint. Another common SLO for
batch workloads specifies a lower-bound for the throughput,i. e., the batch workload does not have a fixed
deadline, but should be assigned a specific portion of the available system resources.

4 Workload Management

DBMS

DBMS coreWorkload Manager

Admission
Controller

Query
Scheduler

Execution
Controller

Resource
Manager

Execution
Engine

Performance
MonitorClientClient

Job (Queries)Job (Requests)

Service Level
Objective

Figure 2: Generic workload management architecture

The goal of workload management for database sys-
tems is to increase user satisfaction by meeting SLOs.
Note that in general, neither the customer nor the
provider benefits from over-fulfilled SLOs, because
there is no advantage to providing results before
a given deadline, and the execution time require-
ments already ensure a responsive interaction with the
DBMS. Over-fulfilling an SLO will not excuse a future
SLO violation and moreover could raise unreasonable
performance expectations.

Figure 2 sketches a generic workload management
architecture. The DBMS core offers the following components: theExecution Engine, which manages the
processing of queries, theResource Manager, which provides priority based allocation of resources to queries,
and thePerformance Monitorfor monitoring the execution of queries. Modern DBMS offer several knobs
for tuning workload performance at all points in the workload life cycle. Workload management begins with
the opportunity to prevent a new query from being placed on anexecution queue, continues with queuing and

22

scheduling decisions, and includes the ability to control the execution of a running query. These mechanisms
are implemented by theAdmission Controller, theQuery Scheduler, and theExecution Controller, respectively.
The latter contains a rule base for identifying unexpected overload situations and deciding which workload
management action should be performed for which queries. The workload management decisions are driven by
the SLOs that are annotated to each batch job and interactivequery of every client. The objectives must be made
available for the DBMS prior to the execution of the job.

Admission control can prevent potential problem queries from being started in the first place. Query schedul-
ing optimizes the order of execution and the number of concurrently running queries by deciding when to admit
which query. Admission control and scheduling operate atopof the database layer, and can be implemented
without modifying the database core engine. If the DBMS offers interfaces to control already running queries,
then finer grained control of request execution is possible.The presence of execution control mechanisms that
can, e. g., kill or suspend and resume queries at run-time canfurther improve performance. For example, killing
a query that hogs system resources for an unexpectedly long time can limit the negative impact on the overall
execution performance. Similarly, if the DBMS offers prioritization mechanisms for allocating resources like
memory, CPU, and locks, then complex queries can be adjustedto lower priorities when necessary, leaving
enough resources for newly arriving interactive queries with higher priorities.

5 Related Work

Workload Management Techniques Regarding work on workload management techniques for resource allo-
cation, we share a focus with researchers such as [1,6,15,21], who consider how to govern resource allocation for
queries with widely varying resource requirements. For example, Davison and Graefe [6] present a framework
for resource allocation based on concepts from microeconomics. Their framework aims at reducing response
time of queries in a multi-user environment. The central component is a resource broker that assigns operators
the share of the resource they are willing to pay for. Weikum et al. [24] discuss what metrics are appropriate
for identifying the root causes of performance problems in an OLTP workload (e. g., overload caused by exces-
sive lock conflicts). They focus on tuning decisions at different stages such as system configuration, database
configuration, and application tuning.

Query progress indicators (e. g., [3, 14]) attempt to estimate a running query’s degree of completion. Re-
search in this area is complementary to our goals, and potentially offers a means to identify long-running queries
at early stages – before the workload has been negatively impacted.

Recently, research has been done on query suspension and resumption, e. g., [2, 4]. When a query is sus-
pended, the DBMS releases all resources held by the query. Ata later point in time, the query can be resumed,
ideally without wasting a large amount of work that has been done prior to the suspension. We believe that
database products will implement these techniques in the near future.

Workload Management Implementations Some workload management techniques for admission control,
scheduling, and execution management policies are alreadyimplemented in products such as those by HP (e. g.,
Workload Manager for Neoview [8]), IBM (e. g., Query Patroller for DB2 [17], Optimization Service Center [9],
zSeries [13]), Microsoft (SQL Server [16]), Oracle (Discoverer [19], Resource Manager [20]), and Teradata
(Workload Manager [23]). We only present a short overview, amore detailed description can be found in [12].

Admission control uses thresholds to prevent overly-expensive queries from running in the system. Database
vendors provide different metrics like optimizer costs or processing time estimates. Queries for which the values
of the metrics exceed administrator-defined thresholds areeither rejected or put on hold. The latter case requires
the administrator to decide whether to submit the query to the database or to reject it.

Some databases allow the administrator to limit the level ofconcurrency on the database system and to
schedule the delayed queries. There are three approaches for limiting the concurrency: limit the maximum
resource utilization, restrict access to database objectslike tables, indexes, and views, and limit the number of

23

simultaneous queries in the database system. Delayed queries are typically managed in three different types
of scheduling queues: FIFO, size-based, and priority-based. Size-based queues prevent short-running queries
from getting stuck behind long-running queries, thus enforcing a consistent elapsed time for short queries in the
presence of long-running queries. Priority-based queues enforce the preferred execution of high-priority queries
compared to their lower-priority counterparts. It is the task of the database administrator to define priorities for
the users in order to balance the performance of the system. Queries are then ordered in the queue according to
the priority of the submitting user.

Execution control is usually implemented by using rules where a condition triggers an execution manage-
ment action. The different vendors support a variety of metrics to be used in the conditions, e. g., cardinality,
CPU time, number of I/Os, and elapsed wall clock time. Almostall database vendors implement some notifica-
tion mechanism to inform the administrator about exceptional situations, e. g., when the elapsed time of a query
exceeds a specified threshold. It is then the task of the administrator to analyze and tackle workload management
problems. If the administrator does not take action, the query runs to completion. In addition to that, HP’s and
Teradata’s Workload Manager can be configured to automatically kill a query.

6 Workload Management for OLTP Workloads

This section focuses on OLTP-style workloads that consist of a multitude of a priori unknown short-running
transactions that may be started by clients at any time. Eachtransaction consists of a set of interactively submit-
ted queries for which the user expects short response times.Therefore, users often negotiate SLOs similar to the
step-wise SLOs introduced in Section 3, which limit the response time for a percentage of transactions. From the
workload management perspective, the main challenge is to apply a query scheduling policy that meets the SLO
requirements for as many users as possible. A common approach in such settings is to provide priority-based
queues to manage pending queries. Typically, the priority of queries is defined externally, e. g., by a database
administrator and usually depends on the priority of the respective user. If only a percentage of all queries must
meet the performance requirements, static prioritizationtends to over-fulfill SLOs of high-priority users because
their queries are almost always processed in time at the expense of their lower-priority counterparts.

Therefore, our approach derives an adaptive penalty based on an economic model and annotates the queries
with the penalty information. These penalties are used to optimize the execution order of the pending queries. We
define the penalty of a query as the maximum of two economic cost functions.Opportunity costs(monotonically
decreasing parts of the parabolas in Figure 1) model the danger of falling to the next lower service level. If
the current SLO conformance converges to the next lower service level, the penalty for processing the service
too late increases because delaying an additional query increases the likelihood of an ultimate SLO violation.
Marginal gains(monotonically increasing parts of the parabolas in Figure1) model the chance that a service
class re-achieves a higher service level. If this appears tobe “within reach”, individual queries are increasingly
penalized until eventually the higher level is reached.

The computation of penalties, scheduling algorithms for pending queries, and a performance analysis are
described in [7,10]. The experimental results show the effectiveness of our novel adaptive penalization approach,
which provides a higher overall SLO conformance by reducingthe over-fulfillment for high-priority clients.

7 Workload Management for BI Workloads

BI workloads contain a wide variety of requests, from batch jobs to short-running interactive queries to ad hoc
queries of varying complexity. For the batch jobs we focus here on deadline-driven SLOs. The optimization goal
for these jobs is to minimize the time needed to complete the workload. Interactively submitted queries, on the
other hand, require short response times, because users easily become dissatisfied if they must wait for responses
too long. SLOs for interactive queries therefore require anexecution time below a given threshold. If a batch

24

and an interactive job are running simultaneously on the database, the challenge is to optimize the execution of
all jobs subject to their SLOs. Additionally, a workload management system must be capable of dealing with ad
hoc designed queries that may have unknown execution characteristics or may cause performance problems.

Admission Control One approach for optimizing the performance of BI workloadsis to reject overly-expen-
sive queries that may hog system resources and thus prevent concurrently running queries from making progress.
The administrator may choose to run these queries in a controlled manner, e. g., in isolation, to minimize the
impact of these problem queries on others. The challenges tobe addressed are twofold: First, a threshold for
identifying overly-expensive queries must be found. If thevalue is set too low, many queries will be rejected. A
threshold that is too high may admit too many expensive queries, resulting in exceptional situations at run-time.
Second, admission control requires accurate optimizer estimates and knowledge about how a query impacts
concurrent queries. Query optimizers do a good job estimating the costs of queries when requirements like
uniformity of data, independence of attributes, and up-to-date statistics are met. However, in the BI context,
data may be heavily skewed and statistics cannot be kept up-to-date for update-intensive workloads. Therefore,
the optimizer might return estimates that are off by orders of magnitude from the actual processing costs, making
the estimates unusable for admission control.

Query Scheduling The task of the query scheduling component is to decide when to admit which query.
Scheduling must obey inter-query dependencies, i. e., somerequests cannot be reordered arbitrarily because they
depend on the results of other requests. Another challenge is to determine the optimal number of concurrently
running queries in the database that would maximize the usage of all system resources. The optimal number of
queries in the system depends on parameters like the database configuration, the underlying hardware, and the
requests themselves, and might even vary during the execution of the workload. In practice, finding an optimal
solution to the scheduling problem itself is not feasible because of the high complexity and the large instance
sizes containing hundreds of requests. Therefore good heuristics must be found. Additionally, a reasonable
reordering of workload requests needs to consider the impact requests have on one another. Some requests are
potentially working well together while others interfere with each other.

0.70

-

- 0.92

0.85

1.10

R1 R2 R3

R2

R3

R4

Figure 3: Synergy matrix

A prerequisite for scheduling is a concise representation of benefits and detri-
ments of concurrent request execution. This information can be subsumed in a
“synergy matrix” as exemplified in Figure 3. Each entry(Ri, Rj) in the two-
dimensional matrix is a numerical value denoting the relative impact of the parallel
execution of requestsRi andRj . There exist several metrics for quantifying the
(dis)advantages, like consumed CPU cycles, disk accesses,or execution time. In
this work, we focus on the ratio of the elapsed times measuredfor parallel and
sequential execution of requests. A value less than 1 indicates that the parallel exe-
cution is faster than the sequential execution. For example, the synergy value0.70
for R1 andR2 (light gray) denotes that executing the two requests concurrently
takes70% of the time it takes to execute them sequentially. In contrast, the parallel
execution ofR3 andR4 takes longer than running them in sequence (dark gray). An empty entry (“—”) in the
matrix indicates that a synergy value is not yet available.

In order to increase the quality of the scheduling results, the matrix must be populated with as many values
as possible. This can be accomplished through either analysis or monitoring. The former approach applies
a white box technique and is based on an analysis of the workload’s requests in order to determine potential
synergies before the actual execution. Sources of such synergies stem from caching behavior and multi-query
optimization (MQO). In the context of MQO, extensive research has been done on identification of common
sub-expressions [5, 22] and cooperative scans [25]. Drawbacks of the white box approach are that some of the
required information may not be available prior to the execution of a request and that predictions errors in the
analysis phase may result in incorrect assumptions about individual requests and, thus, potential synergies.

25

The monitoring approach treats jobs as black boxes, i. e., makes no assumptions about their characteris-
tics. It monitors request execution and iteratively derives information about potential synergies. For example,
O’Gorman et al. [18] use this approach by running all pairs ofTPC-H requests both concurrently and sequen-
tially and then comparing the number of disk accesses. A substantial drawback of the black box approach is that
the synergy matrix is only populated during workload execution. Another difficulty is to infer (dis)advantages
for pairs of queries if monitored data is only available for aset of concurrently executing queries.

Analysis and monitoring are complementary approaches and can be combined for better results. Prior to
the execution of the batch, analysis can be used to provide aninitial population of the matrix, while monitoring
during run-time can be used to refine inaccurate results fromthe analysis and provide values for requests that
cannot be analyzed or that interfere with each other unexpectedly.

Execution Control There are two major challenges for run-time execution control of queries. First, execution
control needs to detect exceptional situations based on themetrics that can be monitored at run-time. Identifying
a problem could be as easy as comparing the actual elapsed time of a query to a threshold provided by, e. g., the
user or the administrator. More sophisticated conditions for triggering an execution control action could include
additional metrics like CPU time and number of disk I/Os. Although a greater number of metrics provides a
higher flexibility, monitoring the metrics may cause overhead at run-time, thus slowing down the processing of
the requests. Even if a set of metrics has been identified, thechallenge is to set thresholds. Practitioners with
experience in workload management can attest not only the importance of good thresholds but also the difficulty
of finding these values. Second, the execution management needs to choose from a set of corrective actions
like killing or suspending a query. If a query is killed, the execution control needs to decide when, if at all,
to resubmit it. Similarly, an appropriate policy for resuming a suspended query must be found. Of course, the
execution control must obey the service level objectives, e. g., high-priority queries with tight deadlines might
not be killed, even if they hog the system resources for a longtime.

Experimental Framework for Workload Management To provide a more application-oriented approach
for workload management, we have developed an experimentalframework, introduced in [11] for evaluating the
effectiveness of workload management techniques. The architecture of the framework is illustrated in Figure 2.
Admission Controller, Query Scheduler, and Execution Controller represent knobs that can be adjusted to select
from a variety of workload management policies and algorithms. Our framework is not limited to workload
management policies already implemented by existing database systems and tools, but allows us to experiment
with new workload management concepts. Furthermore, we implemented a simulator for the execution engine,
which mimics the execution of a workload in a database system. We model a workload as one or more jobs. Each
job consists of an ordered set of typed queries and is associated with a performance objective. Each query type
maps to a tree of operators, and each operator maps in turn to its resource costs. Our current implementation
associates the cost of each operator with the dominant resource associated with that particular operator type
(e. g., disk or memory). We describe the life cycle of the datathat drives the experimental runs in [11].

8 Summary

In this paper, we have characterized OLTP and BI workloads and identified factors in workload generation and
submission that impact their service level objectives (SLOs). We outlined SLOs in the database context and
the current state of the art in workload management techniques for enforcing these objectives. We summarized
our contributions for managing OLTP workloads by adaptively penalizing individual queries. We looked at BI
workload management where we sketched at which points in a workload’s life cycle management is applicable,
and presented a synergy matrix that characterizes the impact of running particular batch queries concurrently.
Finally, we overviewed our experimental framework for testing the impact of the various workload management
techniques on the execution of workloads. For more details about this work, we refer readers to [7,10–12].

26

References

[1] M. J. Carey, M. Livny, and H. Lu. Dynamic Task Allocation In A Distributed Database System. InProc. of the5th

Intl. Conf. on Distributed Computing Systems (ICDCS), pages 282–291, 1985.
[2] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query Suspend And Resume. InProc. of the ACM SIGMOD

Intl. Conf. on Management of Data, 2007.
[3] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can We Trust Progress Estimators For SQL Queries? InProc.

of the ACM SIGMOD Intl. Conf. on Management of Data, pages 575–586, 2005.
[4] S. Chaudhuri, R. Kaushik, R. Ramamurthy, and A. Pol. Stop-and-Restart Style Execution for Long Running Decision

Support Queries. InProc. of the 33rd Intl. Conf. on Very Large Data Bases (VLDB), 2007.
[5] S. R. Choenni, M. L. Kersten, and J. F. P. van den Akker. A Framework for Multi-query Optimization. InProc. of

the Intl. Conf. on Management of Data (COMAD), 1997.
[6] D. L. Davison and G. Graefe. Dynamic Resource Brokering for Multi-User Query Execution. InProc. of the ACM

SIGMOD Intl. Conf. on Management of Data, pages 281–292, 1995.
[7] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper. Adaptive Quality of Service Management for

Enterprise Services.Accepted for publication in ACM Transactions on the Web (TWEB), 1, 2008.
[8] HP NeoView Workload Management Services Guide, August 2007.
[9] IBM Optimization Service Center for DB2 for z/OS.http://www-306.ibm.com/software/data/db2/

zos/downloads/osc.html .
[10] S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and A. Kemper. Quality of Service Enabled Database Applications.

In Proc. of the 4th Intl. Conf. on Service-Oriented Computing (ICSOC), pages 215–226, 2006.
[11] S. Krompass, H. Kuno, U. Dayal, and A. Kemper. Dynamic Workload Management for Very Large Data Warehouses:

Juggling Feathers and Bowling Balls. InProc. of the 33rd Intl. Conf. on Very Large Databases (VLDB), pages 1105–
1115, 2007.

[12] S. Krompass, H. Kuno, J. Wiener, U. Dayal, and A. Kemper.Managing Long-Running BI Queries: To Kill Or Not
To Kill, That Is The Question, 2008. Submitted for publication; please contact authors for full version of paper.

[13] N. Lei. Workload Management for DB2 Data Warehouse.http://www.redbooks.ibm.com/redpapers/
pdfs/redp3927.pdf .

[14] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL Progress Indicators. In10th Intl. Conf. on Extending Database
Technology (EDBT), pages 921–941, 2006.

[15] M. Mehta and D. J. DeWitt. Dynamic Memory Allocation forMultiple-Query Workload. InProc. of the Nineteenth
Intl. Conf. on Very Large Data Bases, 1993.

[16] Microsoft SQL Server 2005 Books Online. http://msdn2.microsoft.com/en-us/library/
ms190419.aspx , September 2007.

[17] B. Niu, P. Martin, W. Powley, R. Horman, and P. Bird. Workload Adaptation In Autonomic DBMSs. InCASCON
’06: Proc. of the 2006 Conf. of the Center for Advanced Studies on Collaborative Research, 2006.

[18] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple Query Optimization by Cache-aware Middleware Using
Query Teamwork.Softw. Pract. Exper., 35(4):361–391, 2005.

[19] Oracle Discoverer Administrator Administration Guide 10g (9.0.4).http://download.oracle.com/docs/
html/B10270_01/adpqta01.htm .

[20] A. Rhee, S. Chatterjee, and T. Lahiri. The Oracle Database Resource Manager: Scheduling CPU Resources at the
Application Level.http://research.microsoft.com/ ˜ jamesrh/hpts2001/submissions/ , 2001.

[21] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. M. Nahum. Achieving Class-Based QoS for Transactional
Workloads. InProc. of the 22nd Intl. Conf. on Data Engineering (ICDE), page 153, 2006.

[22] S. N. Subramanian and S. Venkataraman. Cost-based Optimization of Decision Support Queries Using Transient-
views. InProc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 319–330, 1998.

[23] Teradata. Teradata Dynamic Workload Manager User Guide, September 2006.
[24] G. Weikum, C. Hasse, A. Mönkeberg, and P. Zabback. The COMFORT Automatic Tuning Project.Information

Systems, 19(5):381–432, 1994.
[25] M. Zukowski, S. Heman, N. Nes, and P. Boncz. CooperativeScans: Dynamic Bandwidth Sharing in a DBMS. In

Proc. of the 33rd Intl. Conf. on Very Large Databases (VLDB), pages 723–734, 2007.

27

Towards Automatic Test Database Generation

Carsten Binnig
SAP AG

Donald Kossmann
ETH Zürich

Eric Lo
The Hong Kong Polytechnic University

Abstract

Testing is one of the most expensive and time consuming activities in the software development cycle.
In order to reduce the cost and the time to market, many approaches to automate certain testing tasks
have been devised. Nevertheless, a great deal of testing is still carried out manually. This paper gives
an overview of different testing scenarios and shows how database techniques (e.g., declarative specifi-
cations and logical data independence) can help to optimizethe generation of test databases.

1 Introduction

Everybody loves writing new code; nobody likes to test it. Unfortunately, however, testing is a crucial phase
of the software life cycle. It is not unusual that testing is responsible for 50 percent of the cost of a software
project. Furthermore, testing can significantly impact thetime to market because the bulk of testing must be
carried out after the development of the code has been completed. Even with huge efforts in testing, a report of
the NIST [16] estimated the cost for the economy of the UnitesStates of America caused by software errors in
the year 2000 to range from$22.2 to $59.5 billion (or about 0.6 percent of the gross domestic product).

In the early days of software engineering, most of the testing was carried out manually. One of the big trends
of modern software engineering is to automate testing activities as much as possible. Obviously, machines are
cheaper, faster, and less error-prone than humans. The key idea of test automation is that tests become programs.
Writing such test programs is not as much fun as writing new application code, but it is more fun than manually
executing the tests [3]. Automating testing is particularly attractive for the maintenance of existing software
products. With every new release of a product, the implementation of a change request, or a change in the
configuration of a deployment, a series of similar tests needto be carried out in order to make sure that the core
functionality of the system remains intact. In fact, most software vendors carry out nightly so-called regression
tests in order to track changes in the behavior of their software products on a daily basis.

In a nutshell, test automation involves writing and maintaining code and it is just as difficult as writing and
maintaining application code. In fact, as will be argued, writing and maintaining test code is more difficult
because it has additional dependencies. One such dependency which is of particular interest to this work is the
test databasewhich needs to be built and maintained together with the testcode as part of a test infrastructure.

In order to deal with the complexity of managing test code, the software engineering community has devel-
oped a number of methods and tools. The main hypothesis of this paper is that testing is (to a large extent) a
database problemand that many testing activities can be addressed best usingdatabase technology. It is argued
that test code should be declarative. In particular, the specification of a test database should be declarative, rather

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

28

than a bunch of, say, Perl scripts. Given such a declarative specification (actually, we propose the use of SQL for
this purpose), testing can be optimized in various ways; e.g., higher coverage of test cases, less storage overhead,
higher priority for the execution of critical test cases, etc. Another important argument in favor of a declarative
specification of test code is the maintainability and evolution of the test code. Again, the belief is that logical
data independence helps with the evolution of test code and test databases in similar ways as with the evolution
of application or system code. Finally, testing actually does involve the management of large amounts of data
(test runs and test databases).

Of course, all software quality problems could be solved with formal methods of program verification, if
they would work. Unfortunately, they do not work yet for large-scale systems and breakthroughs in this field are
not foreseeable in the near future. Fortunately, test automation can benefit nicely from the results of the formal
methods community, as will be shown in Section 3.

The remainder of this paper is organized as follows. Section2 defines the many different aspects of test-
ing. Section 3 gives an overview on how database technology can be used in order to generate test databases.
Section 4 describes some research problems that we believe can be addressed by the database community.

2 The Big Picture

There has been a great deal of work in the area of software quality assurance. Obviously, one reason is the
commercial importance of the topic. Another reason is that testing involves many different activities. This
section gives a brief overview.

First of all, testing requires atest infrastructure. Such a test infrastructure is composed of four parts:

1. An installation of thesystem under test (SUT), possibly on different hardware and software platforms (e.g.,
operating systems, application servers). The SUT can be a whole application with its customizations (e.g.,
an SAP R/3 installation at a particular SAP customer), a specific component, or a whole sub-system. One
specific sub-system that we are particularly interested in is the testing of a database management system
as needs to be carried out by all DBMS vendors (e.g., IBM, Microsoft, MySQL, Oracle, Sybase).

2. A series oftest runs. A test run is a program that involves calls to the SUT with different parameter settings
[13]. Depending on the kind of test (see below), the test run can specify preconditions, postconditions,
and expected results for each call to the SUT. Test runs are often implemented using a scripting language
(e.g., Perl), the same programming language as the SUT (e.g., ABAP, Java, or VisualBasic), or some
declarative format (e.g., Canoo’s WebTest [1] and HTTrace [12]). In practice, it is not unusual to have
tens of thousands of test runs.

3. Test Database:The behavior of the SUT strongly depends on itsstate, which is ideally captured in a
database. In order to test a sales function of a CRM system, for instance, the database of the CRM system
must contain customers. When testing a DBMS, it does not makemuch sense to issue SQL queries to
an empty database instance (at least not always). In complexapplications, the state of the SUT might
be distributed across a set of databases, queues, files in thefile system (e.g., configuration files), and
even encapsulated into external Web Services which are outside of the control of the test infrastructure.
Obviously, for testing purposes, it is advantageous if the state is centralized as much as possible into a
single test database instance and if that test database instance is as small as possible. For certain kinds
of tests (e.g., scalability tests), however, it is important to have large test database instances. In order to
deal with external Web Services (e.g., testing an online store which involves credit card transactions), a
common technique is to make use of mock objects [4].

4. Test Manager:The test manager executes test runs according to a certain schedule. Again, schedules can
be specified manually or computed automatically [13]. During the execution of a test run, the test manager

29

records differences between the actual and expected results (possibly response times for performance tests)
and compiles all differences into a test report. Furthermore, the test manager controls the state of the test
database if test runs have side effects.

Establishing such a test infrastructure is a significant investment. In practice, test infrastructures are often built
using a mix of proprietary code from vendors of components ofthe SUT, from home-grown developments of
test engineers, and dedicated testing tools (e.g., from Mercury or as part of IBM’s Rationale Rose suite). Often,
a great deal of testing needs to be carried out manually, thereby making the test team the fifth component of the
test infrastructure. To the best of our knowledge, there is no silver bullet solution on how to best build a test
infrastructure; likewise, there is no silver bullet solution to evolve a test infrastructure when the SUT evolves.
The situation becomes even worse when considering the otherdimensions of testing such as the granularity
of testing (component test vs. integration test vs. system test), kinds of test (functional specification vs. non-
functional requirements such as scalability, security, and concurrency), and the time at which tests are carried
out (before or after deployment).

Obviously, we have no coherent solution to address all thesetest scenarios. Nevertheless, we believe that
declarative specifications help in most cases. As an exampleshow case, the next section shows how declarative
specifications can be used in order to automate one particular activity that is important for software quality
assurance: the generation of test databases.

3 Generating Test Databases

This section presents several related techniques in order to generate test databases. Both the generation of test
databases in order to test application systems such as ERP and CRM systems and the generation of test databases
specifically for the testing of DBMS are studied. The novel feature of these techniques is that the generation of
the test databases isqueryand/orapplication-aware. This way it is possible to generaterelevanttest databases
that take characteristics of the SUT and test case into account. Traditionally, generic tools to generate test
databases (e.g., IBM DB2 Test Database Generator [2], [9], [8], or [14]) generate a test database based on the
schema only (and possibly some constants and scaling factors). As a result, many test databases in practice
are either manually constructed (possibly using the resultof a generic database generator as a starting point) or
constructed using scripts that must be programmed by the developer of the SUT for that particular purpose.

Query-awareand/orApplication-awaregeneration of test databases has two advantages. First, thegeneration
of test databases is simplified; only high-level declarative specifications are needed in order to generate a test
database: the programming of scripts or manual adjustmentsare typically not needed. Second, the evolution of
the system is easy. When the SUT changes and additional test data is needed, only the high-level declarative
description needs to be adjusted. As shown in Section 3.2, often it is only necessary to provide an additional
(SQL) query in order to specify the missing part that needs tobe generated for the evolved SUT.

3.1 Reverse Query Processing

Traditional query processing takes a database and a (SQL) query as input and returns the result of that query for
that specific database. The key idea of reverse query processing (RQP, for short) is to turn that process around.
The input of RQP is a query, a query result and a database schema (including integrity constraints); the result
is one possible database which has the property that if the query is applied to that database, the specified query
result is produced. Furthermore, the generated database meets all constraints specified in the database schema.

The most obvious application of RQP is the generation of testdatabases. In an OLAP application, for
example, RQP can be used to compute test databases from the definition of a data cube and an example report.
In OLTP applications, typically, several queries are needed in order to specify a meaningful test database (Section

30

���������	�
���������
������������������� �� ! " #�$%&�' $ (�)��#� ����� *+ ,-�����.
�/01���2���������3,,4! !�5 ����� *+ ,�
���6�����7����� 89! :':;�5����� *+ ,
���<������/��=��>4,#! � :,! # � ! ?��.@�A�B���C���������(�#�+! (* � '�! ��D +��#

� ! " #�E,#! ,%� �
Reverse
Query

Processor

Figure 1: RQP Architecture

3.2). However, in general RQP has many more applications; e.g., security and the maintenance of materialized
views.

In principle, there are many different database instances which can be generated for a given query and a
result of that query. Depending on the usage of the test database, some of these instances might be better than
others. For functional testing of a database application, RQP should generate a small database which satisfies
the correctness criteria mentioned above, so that the running time for executing the tests is reduced. Thus,
our prototype implementation tries to generate a minimal test database for a given query and a result of that
query. However, other implementations are conceivable that satisfy different properties. The details of our
implementation are described in [5].

Figure 1 shows the architecture of our implementation. In many ways, it resembles the architecture of a
traditional (forward) query processor: A query is parsed, analyzed, optimized, and executed. Some of the key
differences are that SQL queries are parsed into areverse relational algebra, the optimizations are very different
than in traditional query processing, and that the run time algorithms are quite different.

The reverse relational algebra can be seen as the reverse variant of the traditional relational algebra and its
extensions for group-by and aggregation [10]. Consequently, executing reverse relational algebra operators at
runtime involves generating data. For example, the reverseprojection operator generates columns while the
forward projection operator deletes columns. In order to generate data that satisfies the constraints of the query
(e.g., a selection predicate) and the database schema, a decision procedure of a model checker is called by some
reverse relational algebra operators. This is one example in which test automation benefits from results of the
formal methods community.

In theory, reverse query processing is not decidable; that is, it is not always possible to determine whether
a database exists that meets the schema and the RQP correctness condition. In practice, however, RQP is
effective. For instance, RQP can be applied to all queries ofthe TPC-H benchmark and to all queries that we
have encountered so far. For complex queries with aggregation, RQP is not trivial and involves quite complex
computations. In our experiments with queries of the TPC-H benchmark, the bandwidth to generate test data
on a Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varied from 600GB per hour in the best
cases to around 100MB per hour in the worst cases.

31

3.2 Multi Reverse Query Processing

In contrast to OLAP applications which implement reports that read a huge amount of correlated data from the
database, OLTP applications usually implement use cases that execute a sequence of actions wherein each action
reads or updates only a small set of tuples in the database. Asan example, think of an online library application.
One potential use case of such an application is that a user wants to borrow a book. The sequence of actions
which is implemented by that use case could be as follows:

1. The user enters the ISBN of the book (where the ISBN is unique for each book of the library).

2. The system shows the details of that book.

• Exception 1: The book is borrowed by another user. The systemdenies the request.

• Exception 2: The book belongs to the closed stack of the library. The system denies the request.

3. The user enters personal data (username, password) and confirms that she wants to borrow the book.

4. The system checks the user data and updates the database.

• Exception 3: The user has entered an incorrect username or password. The system denies the request.

• Exception 4: There are charges on the user account that exceed a certain limit. The system denies the request.

Functional testing the implementation of such a use case means that we have to check the conformance of
the implementation with the specification of the functionality [4] (i.e., the use case). Consequently, we need to
create a set of test cases to test the correctness of the different execution paths of a use case. In order to execute
all the test cases of an OLTP application, one or more test databases need to be created. For example, in order
to test the use case above, a test database needs to be createdwhich comprises the different types of books (i.e.,
books which are already borrowed by another user or not, and books which belong to the closed stack and other
books which do not) and different user accounts (i.e., user accounts with and without charges which exceed a
certain limit).

In order to specify a test database for the test cases of an OLTP application, one SQLSELECTquery and
one expected result are usually not sufficient. The reason isthat most test cases of an OLTP applicationread
or updatedifferent tuples in the database that are not necessarily correlated. Therefore, in order to specify the
relevant values of the tuples that are read or updated by a particular test case, we suggest that a tester uses SQL
as a database specification language; i.e., the tester specifies the test database for one test case bymanually
creating a set of SQLSELECTqueries and their expected results (called test database specification). A test
database which returns these expected results for all the given SQLSELECTqueries enables the execution of a
particular test case of an OLTP application. Compared to RQPwhere the queries are derived from the definition
of a data cube, in MRQP the queries for the test database specification are not extracted directly from the code
of the OLTP application. Consequently, the queries in the test database specification are independent from the
SQL statements implemented by the OLTP application (i.e., the SELECT, INSERT, UPDATE, andDELETE
statements).

For example, in order to execute a test case for the use case discussed before where the user borrows a book
successfully (i.e., no exception occurs), the test database needs to comprise a book with a particular ISBN which
does not belong to the closed stack and is not borrowed by another user (i.e., the attributeb closedstack must
have the valuefalse and the value of the attributeb uid must beNULL) as well as a user whose charges do
not exceed a certain limit (e.g., $20). The desirable database state, can be specified by multiple queries and the
corresponding expected query results (Figure 2a) and the database schema of the application (Figure 2b). By
doing so, the tester can focus on the data that is relevant (e.g., the values forb isbn andb closedstack specified
by Q1 andR1) and she does not have to take care of the irrelevant data (e.g., the values forb title).

RQP is not capable to support multiple queries and the corresponding expected results as input. Thus, in [6]
we studied the problem of Multi-RQP (or MRQP for short). Unlike RQP, MRQP gets aset of SQLSELECT

32

Q1: SELECT b_closedstack, b_uid
FROM book
WHERE b_isbn= '12345'

R1: {<false, NULL>}

Q2: SELECT u_password, u_charges
FROM user
WHERE u_name='test'

R2: {<test, 0.0>}

CREATE TABLE user (
u_id INTEGER PRIMARY KEY,
u_name VARCHAR(20) UNIQUE,
u_password VARCHAR(20),
u_charges FLOAT NOT NULL

CHECK(u_charges>=0));

CREATE TABLE book (
b_id INTEGER PRIMARY KEY,
b_title VARCHAR (20) NOT NULL,
b_closedstack BOOLEAN NOT NULL,
b_isbn VARCHAR(20) UNIQUE,
b_uid INTEGER FOREIGN KEY

REFERENCES user(u_id));

12345

b_isbn

NULLfalseTitleA1

b_uidb_closed

stack

b_titleb_id

0.0testtest1

u_chargesu_passwordu_nameu_id

user

book

(a) Test database specification (b) Database schemaS (c) Test databaseD

Figure 2: MRQP Example for OLTP testing

queries, thecorresponding expected query resultsand a database schema as input and tries to generate one test
database that returns the expected results for all the givenqueries. A test database which could be generated
for the example above is shown in Figure 2c. In [6] we showed that MRQP is undecidable for arbitrary SQL
SELECTqueries. Consequently, we defined a database specification language called MSQL based on SQL
for which the MRQP problem becomes decidable. Moreover, based on MSQL we suggested a solution for
MRQP which utilizes the RQP engine discussed in Section 3.1.

3.3 Symbolic Query Processing

Symbolic query processing (SQP), which first appeared in [7], is a fusion of traditional query processing and
a formal verification technique called symbolic execution [15]. In symbolic query processing, the data in a
database is represented by symbols and a database query manipulates symbolic data rather than concrete data.
One predominant application of SQP is to test components of DBMSs.

In the database industry, when a component or a technique is going to be integrated into a DBMS, it is
necessary to validate the system correctness and evaluate the relative system improvements under a wide range
of test cases and workloads. Consider that there is a new joinalgorithm available and a company which offers
a commercial DBMS product wants to evaluate the performanceof that algorithm in their DBMS product. For
example, the company wants to know how much memory would be taken by such algorithm during the execution
of a simple query like the one in Figure 3a. Usually, given thetest queryQ like the one in the figure, different
test casescan be constructed by varying the results of the query (operators). In DBMS component testing, a test
caseT is a parametric queryQ with a set of constraints (e.g., output cardinality)C annotated on the operators of
the query. Figure 3b shows an example test caseT1 that is based on the given queryQ in Figure 3a. Test caseT1

enforces that if the test queryQ is executed on a test databaseD with two tablesR andS (whereR andS have
2000 and 4000 tuples respectively), then the intermediate selectionσR.a<:p1

(a is an attribute in tableR and :p1

is a parameter) and the final join result are expected to have exactly 10 and 40 tuples respectively. Test caseT1 is
helpful to test how much memory the join algorithm would takewhen its two inputs have large size differences
and the final result is small. As another example, test caseT2 in Figure 3c can test the memory consumption of
the join algorithm when its two inputs have large size differences but the final result is big (3800 tuples).

Currently, testing the components of a DBMS is a manual process and thus very time consuming. It is a
manual process because no tools are able to generate test databases that can fulfill the cardinality requirements
of a test case. For example, in order to execute test caseT1 in Figure 3b, a tester first needs to use a normal
database generator (e.g., IBM DB2 Test Database Generator,[9], [8], or [14]) to generate a test databaseD with

33

R
size=5000

ffffffffff

size=1000

S
R.a <:p1

R.b = S.c

σ

⋊⋉

R
size=2000

size=40

size=10

ffffffffff

S size=4000σ
R.a <:p1

R.b = S.c⋊⋉

R
size=2000

size=3800

size=10

ffffffffff

S size=4000σ
R.a <:p1

R.b = S.c⋊⋉

(a) The test queryQ (b) Test caseT1 (c) Test caseT2

Figure 3: Examples for DBMS component testing

two tablesR andS, and thenmanuallyadjust the content inR andS in order to ensure that the execution ofQ
can obtain the desired (intermediate) query results (e.g.,10 tuples should be returned by the selectionσR.a<:p1

).
SQP can be used to build a database generator to automate thistesting process. In fact, a test database

generator called QAGen has been developed by us using SQP [7]. QAGen is a “Query-Aware” test database
GENerator which generates a query-aware test database for aparticular test case. It takes as input a database
schemaM and a test caseT , and directly generates a databaseD and query parameter valuesP such thatD
satisfiesM andQP (D) satisfiesC (whereQP (D) means the execution of queryQ with parameter valuesP on
databaseD, and,C are the constraints defined inT). For the example test caseT1 in Figure 3b, QAGen first
instantiates the two tablesR andS. In particular, tableR consists of 2000symbolic tuples(a symbolic tuple is a
tuple containing symbols rather than concrete values; see [7] for details) and tableS consists of 4000 symbolic
tuples. Afterwards, the input query is evaluated by asymbolic query enginein QAGen. The symbolic query
engine follows the paradigm of traditional query processing; i.e., each operator is implemented as an iterator, and
the data flows from the base tables up to the root of the query tree [11]. In addition, the operators in the symbolic
query engine manipulate input data (which are symbolic tuples) according to (1) the operator’s semantics and
(2) the test-case-defined constraints. On the one hand, (1) and (2) are transformed into a set of propositional
constraints and the set of constraints is imposed on a subsetof input tuples (and returned to the parent operator).
On the other hand, the same set of constraints is directly imposed on a subset of tuples in the base tables. For
the example in Figure 3b, the selection operator would impose the constraintR.a <: p1 on ten of its input tuples
(as well asR.a ≥: p1 on all other input tuples) and return the ten tuples which pass the selection operator to the
join operator. At the same time, the selection operator would impose the same constraint on the corresponding
symbolic tuples in tableR as well. At the end of symbolic query processing, the tuples in the base tables would
capture all the requirements (constraints) defined in the input test case but without concrete data. Finally, QAGen
uses a constraint solver to instantiate the constrained tuples in the base tables to obtain the final test database.

By using SQP, it could be shown that QAGen is able to generate test databases for a variety of complicated
test cases. In our experiments with queries of the TPC-H benchmark, the bandwidth to generate test data on a
Linux AMD Opteron 2.2 GHz Server with 4 GB of main memory varied from 230MB per hour in the best cases
to 6MB per hour in the worst case [7].

4 Outlook

Test automation is an important technique in order to reducethe cost and time to market of software projects.
Since there are many different test scenarios with different facets, a large number of alternative tools have been
developed in order to support automated testing. Most of these tools are ad-hoc and support only one particular
testing activity (e.g., the generation of test reports for alarge number of test runs.)

This work made the hypothesis that test automation is adatabase problem. It was shown how test databases
for OLAP and OLTP applications and DBMSs can be specified using SQL queries. The ultimate goal is to

34

support test engineers even further and to have more stable specifications of test activities.
The whole area of test automation is still in its infancy. There are still a number of open questions. We

believe that in particular the following questions can be addressed using database techniques and plan to study
these topics as part of future research:

• Optimize the generation of test databases; that is, generated databases with certain additional properties
(e.g., the smallest possible test databases that meet the requirements or the fewest possible set of test
databases).

• The evolution of test databases and test runs is a pressing issue for most software vendors who need to
re-program a great deal of their test infrastructure with every major release.

• Testing distributed systems with virtualization is still alargely unexplored area; in such systems, the SUT
is not known prior to deployment and changes dynamically.

• Testing the concurrency and scalability properties of a system is also largely unexplored.

References

[1] Canoo webtest. http://webtest.canoo.com.

[2] IBM DB2 Test Database Generator. http://www-306.ibm.com/software/data/db2imstools/db2tools/db2tdbg/.

[3] K. Beck and E. Gamma. Programmers love writing tests., 1998. http://members.pingnet.ch/gamma/junit.htm.

[4] R. V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[5] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. InProc. of ICDE, pages 506–515, 2007.

[6] C. Binnig, D. Kossmann, and E. Lo. Multi RQP Generating Test Databases for the Functional Testing of OLTP
Applications. Technical report, ETH Zurich, 2008.

[7] C. Binnig, D. Kossmann, E. Lo, and M. T.̈Ozsu. QAGen: generating query-aware test databases. InProc. of
SIGMOD, pages 341–352, 2007.

[8] N. Bruno and S. Chaudhuri. Flexible database generators. In Proc. of VLDB, pages 1097–1107, 2005.

[9] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker. An AGENDA for testing relational database
applications.Softw. Test., Verif. Reliab., 14(1):17–44, 2004.

[10] H. Garcia-Molina, J. D. Ullman, and J. Widom.Database Systems: The Complete Book. Prentice Hall PTR, 2001.

[11] G. Graefe. Query evaluation techniques for large databases.ACM Comput. Surv., 25(2):73–170, 1993.

[12] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient regression tests for database applications. InProc. of CIDR,
pages 95–106, 2005.

[13] F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient regression tests on database applications.The
VLDB Journal (Best of VLDB 2005), 16:145–164, 2007.

[14] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data generation. InProc. of VLDB, pages 1243–1246, 2006.

[15] J. C. King. Symbolic execution and program testing.Commun. ACM, 19(7):385–394, 1976.

[16] RTI. The economic impacts of inadequate infrastructure for software testing. May 2002. www.nist.gov/director/prog-
ofc/report02-3.pdf.

35

Testing SQL Server’s Query Optimizer: Challenges, Techniques
and Experiences

Leo Giakoumakis, Cesar Galindo-Legaria
Microsoft SQL Server

{leogia,cesarg}@microsoft.com

Abstract

Query optimization is an inherently complex problem, and validating the correctness and effectiveness of
a query optimizer can be a task of comparable complexity. Theoverall process of measuring query opti-
mization quality becomes increasingly challenging as modern query optimizers provide more advanced
optimization strategies and adaptive techniques. In this paper we present a practitioner’s account of
query optimization testing. We discuss some of the unique issues in testing a query optimizer, and we
provide a high-level overview of the testing techniques used to validate the query optimizer of Microsoft’s
SQL Server. We offer our experiences and discuss a few ongoing challenges, which we hope can inspire
additional research in the area of query optimization and DBMS testing.

1 Introduction

Today’s query optimizers provide highly sophisticated functionality that is designed to serve a large variety of
workloads, data sizes and usage patterns. They are the result of many years of research and development, which
has come at the cost of increased engineering complexity, specifically in validating correctness and measuring
quality. There are several unique characteristics that make query optimizers exceptionally complex systems to
validate, more so than most other software systems.

Query optimizers handle a practically infinite input space of declarative data queries (e.g. SQL, XQuery),
logical/physical schema and data. A simple enumeration of all possible input combinations is unfeasible and it is
hard to predict or extrapolate expected behavior by grouping similar elements of the input space into equivalence
classes. The query optimization process itself is of high algorithmic complexity, and relies on inexact cost
estimation models. Moreover, query optimizers ought to satisfy workloads and usage scenarios with a variety of
different requirements and expectations, e.g. to optimizefor throughout or for response time.

Over time, the number of existing customers that need to be supported increases, a fact that introduces con-
straints in advancing query optimization technology without disturbing existing customer expectations. While
new optimizations may improve query performance by orders of magnitude for some workloads, the same opti-
mizations may cause performance regressions (or unnecessary overhead) to other workloads. For those reasons,
a large part of the validation process of the query optimizeris meant to provide an understanding of the different
tradeoffs and design choices in respect to their impact across different customer scenarios. At the same time,

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

36

the validation process needs to provide an assessment of regression risk for code changes that may have a large
impact across a large number of workload and query types.

2 Key Challenges

The goal of query optimization is to produce efficient execution strategies for declarative queries. This involves
the selection of an optimal execution plan out of a space of alternatives, while operating within a set of resource
constraints. Depending on the optimization goals, the best-performing strategy could be optimized for response
time, throughput, I/O, memory, or a combination of such goals. The different attributes of the query optimization
process and the constraints within which it has to function make the tuning of the optimization choices and
tradeoffs a challenging problem.

Large input space and multiple paths: The expressive power of query languages results in a practically
infinite space of inputs to the query optimizer. For each query the query optimizer considers a large number of
execution plans, which are code paths that need to be exercised and validated. The unbounded input space of
possible queries along with the large number of alternativeexecution paths, generate a combinatorial explosion
that makes exhaustive testing impossible. The selection ofa representative set of test cases in order to achieve
appropriate coverage of the input space can be a rather difficult task.

Optimization time: The problem of finding the optimal join order in query optimization is NP-hard [4, 8].
Thus, in many cases the query optimizer has to cut its path aggressively through the search space and settle
for a plan that is hopefully near to the theoretical optimum.The infeasibility of exhaustive search introduces a
tradeoff between optimization time and plan performance. The finding of the ”sweet spot” between optimization
time/resources and plan performance along with the tuning of the different heuristics is a challenging engineering
problem. New optimizations typically introduce new alternatives and extend the search space, often making
necessary the tuning of such tradeoff decisions.

Cardinality estimation: A factor that complicates the validation of execution plan optimality is the reliance
of the query optimizer on cardinality estimation. Query optimizers mainly rely on statistical information to
make cardinality estimates, which is inherently inexact and it has known limitations as data and query patterns
become more complex [9]. Moreover, there are query constructs and data patterns that are not covered by the
mathematical model used to estimate cardinalities. In suchcases, query optimizers make crude estimations or
resort to simple heuristics [12]. While in the early days of SQL Server the majority of workloads consisted of
prepared, single query-block statements, at this time query generator interfaces are very common, producing
complex ad-hoc queries with characteristics that make cardinality estimation very challenging. Inevitably, test-
ing the plan selection functionality of the query optimizerdepends on the accuracy of the cardinality estimation.
Improvements in the estimation model, such as increasing the amount of detail captured by statistics and en-
hancing the cardinality estimation algorithms, increase the quality of the plan selection process. However, such
enhancements typically come with additional CPU cost and increased memory consumption.

Cost estimation: Cost models used by query optimizers, similarly to cardinality estimation models are also
inexact and incomplete. Not all hardware characteristics,runtime conditions, and physical data layouts are
modeled by the query optimizer. Although such design choices can obviously lead to reliability problems, there
are often reasonable compromises chosen in order to avoid highly complex designs or to satisfy optimization
time and memory constraints.

37

Figure 1: An illustration of the database application space

”Two wrongs can make a right” and Overfitting: Occasionally, the query optimizer can produce nearly-
optimal plans, even in presence of large estimation errors and estimation guesses. They can be the result of
”lucky” combinations of two or more inaccuracies cancelingeach other. Additionally, applications may be
built in a way that they rely on specific limitations of the optimizer’s model. Suchoverfittingof the applica-
tion’s behavior around the limitations of the optimizer’s model can happen intentionally, when a developer has
knowledge of specific system idiosyncrasies and develops their application in a way that depends on those id-
iosyncrasies. It can also happen unintentionally, when thedeveloper continuously tries different ways to develop
their application until the desired performance is achieved (because a specific combination of events was hit).
Of course there are no guarantees that system idiosyncrasies and lucky combinations of events would remain
constant between product releases or over changes during the application lifecycle. Therefore, applications (and
any tests based on such applications) that rely on overfitting may experience unpredictable regressions when the
conditions on which they depend change.

Adaptive optimization and self-tuning techniques: The use of self-tuning techniques to simplify the tasks
of system administration and to mitigate the effect of estimation errors, themselves generate tuning and valida-
tion challenges. For example, SQL Server’s policy for automatically updating statistics [10], can be too eager
for certain customer scenarios, resulting in unnecessary CPU and I/O consumption and for others it can be too
lazy, resulting in inaccurate cost estimations. Advanced techniques used to mitigate the cost model inaccu-
racies and limitations, for example the use of execution feedback to correct cardinality estimates [14], or the
implementation of corrective actions during execution time, introduce similar tradeoffs and tuning problems.

Optimization quality is a problem of statistical nature: SQL Server’s customer base includes a variety of
workload types with varying performance requirements. Figure 1 illustrates the space of different workloads.
Workloads on the left-bottom area of the space are typical Online Transaction Processing (OLTP) workloads,
which include simple, often parameterized queries. Such workloads require short optimization times and they
benefit from plan reuse. Workloads on the right side of the space may include Decision Support System (DSS)
or data warehousing applications, which usually consist ofcomplex queries over large data sets. DSS workloads
have higher tolerance for longer optimization times and thus more advanced optimization techniques can be used
for those. They typically contain ad-hoc queries, generated by query-generator tools/interfaces. The middle area
of the application space contains a larger variety of applications that cannot be characterized as simply as the
ones above. Those applications can contain a mixture of simple and more complex queries, which can be either
short or long running. Changes in the optimization process affect queries from different parts of the application

38

Figure 2: Performance impact of new optimizations

space in different ways, either because of shifts in existing tradeoffs and policies, or because of issues related to
overfitting. Inevitably, that makes the measurement of optimization quality a problem of statistical nature. As
an example, Figure 2 illustrates the results of experimentswith new query optimizer features on a realistic query
workload. In most cases the new features provide significantperformance gains (especially for long-running
queries), but they cause regressions for some parts of the workload (all points below 1 in Figure 2). Some
short-running queries were affected by increases in compilation time, while a few others regressed because of a
suboptimal plan choice or lack of tuning for the specific hardware used in the experiment. While in this example
the benefits of the new functionality outweigh the performance regressions, there have been other cases where
it was more difficult to make a judgment about the advantages vs. the disadvantages of introducing a particular
new feature.

3 Query Optimization Testing Techniques

The practices of validating a software system can be typically divided in two categories: a) those that aim to
simulate usage scenarios and verify that the end result of a system operation satisfies the customer’s requirements
and b) those that aim to exercise specific subcomponents and code paths to ensure that they function according
to system design. Test cases typically aim to validate the correctness of query results, measure query and
optimization performance, or verify that specific optimization functionality works as expected. We provide
some examples of testing techniques from these two categories, used to validate SQL Server’s query optimizer.

Correctness testing: The query optimization process should produce execution plans which are ”correct”, i.e.
plans that will produce correct results when executed.Correctnesscan be validated up to some extent logically,
by verifying that the various query tree transformations result in semantically correct alternatives. Additionally,
it can be validated by executing various alternative execution plans using plan enumeration techniques [15] and
then comparing their results with each other and/or with a reference implementation (that is typically a previous
product release or a different database product). Another common practice is to runplaybacks. Playbacks are
SQL traces [1] collected from customers also used to verify correctness against a reference implementation.

Large-scale stochastic testing: Typical steps in test engineering are to identify the space of different inputs
to the system under test, to recognize the equivalence classes within the input space, and then to define test
scenarios that exercise the system using instances selected from these equivalence classes. As mentioned earlier,
the input space for a query optimizer is multidimensional and very large. Different server configurations and

39

query execution settings introduce additional dimensionsto the input space. An effective testing technique for
tackling large input spaces is to use test/query generatorsthat can generate massive sets of test cases. The
generation process can be random or can be guided towards covering specific areas of the input space or certain
areas of the product. Such techniques have been very effective in testing SQL Server [7,13,15].

Performance baselines: The task of validating changes in the query optimizer’s planchoice logic in presence
of the various engineering tradeoffs can become rather difficult. A typical approach is to evaluate changes by
measuring query performance against a known baseline. Industry-standard benchmarks, like TPCH [3] cover
only a small part of SQL Server’s functionality and contain very well-behaved data distributions. Therefore,
our testing process includes a wider set of benchmarks that cover a larger variety of scenarios and product
features. Normally, those benchmarks consist of test casesbased on real customer scenarios. They are used for
performance comparisons with a previous product release orwith an alternative implementation.

Optimization quality scorecards: Although optimization time and query performance are good measures
of plan choice effectiveness, they are not sufficient for an in-depth understanding of the impact of changes
to the optimization process. Improvements in the optimizer’s model will not always result in improvements
in plan choice (for the queries included in a benchmark), butthis should not necessarily mean that they have
no value overall. On the other hand, new exploration rules may expand the search space with valuable new
alternatives but at the cost of increased memory consumption, which may cause performance bottlenecks on a
loaded server. In order to gain as much insight as possible into the impact of changes, our process includes a
variety of metrics in addition to query and optimization performance. Examples of such metrics are: the amount
of optimization memory, cardinality estimation errors, execution plan size, search space size, and others. These
metrics can be collected across the whole set of queries included in our various benchmarks, across an individual
benchmark and across segments of the application taxonomy,providing a number of differentoptimization
quality scorecards.

4 Experiences and Lessons Learned

The testing techniques mentioned in this article target different classes of defects. We briefly discuss a few
representative classes here, and how they correspond to thevarious testing techniques. We then continue with a
summary of some of the lessons learned during our efforts.

Large scale stochastic testing has been effective in extending the coverage provided by regular tests. Specif-
ically, it has contributed in eliminatingMEMO cyclesand incorrect results. MEMO cycles can occur when
defects in the implementation of a set of transformation rules allow cycles to be generated in the recursive group
structures. We refer the reader to [15] for an explanation ofSQL Server’s MEMO structure. SQL Server’s
code contains self-verification mechanisms to detect cycles and other inconsistencies in the MEMO structure.
Therefore, the discovery of such a defect is an exercise of generating the appropriate test case. Query generators
can be driven towards exploring the space of queries and query plans much further than what can be achieved by
other types of testing. The combination of stochastic testing with self-checking mechanisms in the code has been
very effective in detecting irregularities in internal data structures that would result to incorrect query results.

In past releases of SQL Server, the performance tuning of thedatabase engine was done towards the final
phases of product development and hence regressions in optimization time were detected late. The establishment
and regular monitoring of the query optimization scorecardduring the development cycle has allowed us to be
proactive in identifying regressions as compared to the past. Early detection allows more time to tune the
optimization heuristics towards an appropriate balance between plan efficiency and optimization time.

The combination of stochastic testing techniques and benchmarks based on realistic customer workloads has
been very helpful for the development of some features of SQLServer. A case in point is the USE PLAN query

40

hint [2], which allows forcing the optimizer to use a particular query plan that is provided by the user. While
the initial prototyping and testing using real customer queries didn’t indicate major issues, testing with complex
queries generated by query generators showed that our technique required a lot more memory than what was
anticipated. That discovery led to a number of generic improvements to the original algorithm.

The importance of a reliable benchmark: Given the statistical nature of optimization quality, it isessential
that the benchmark used for making quality measurements is reliable and balanced. During the SQL Server
2000 release, our testing practice was to add a new test case every time each of our customers and partners
would experience a performance regression. Adding regression tests in order to prevent future reoccurrences of
code defects is a standard practice in test engineering. After following this practice for some time, the net of
regression tests becomes increasingly denser and eventually provides complete coverage of areas that may have
been missed in the original test plan. The regular application of the above process introduced a large number of
regressions tests in our benchmark. A significant number of the regression tests corresponded to queries with
large estimation errors, and included areas of query optimization with known limitations, i.e. areas where the
cost model was inaccurate. During the development cycle, there were times when our benchmark was heavily
affected by the performance of those tests. In some cases, legitimate improvements in the cost model would
cause performance regressions. The performance of those regression tests was often unpredictable, and it could
drop enough to overshadow the performance gains in other tests. At that point, it became evident to us that
the practice of continuously extending our benchmark with various regression tests was problematic. While the
regression tests represented areas in which customers had reported problems, they led to a benchmark that could
produce inconclusive results and skew the coverage of scenarios in ways that were not well-understood. Today,
we try to develop benchmarks that are more complete and balanced in terms of application type but also in terms
of their conformance to the optimizer’s model. If there is a specific application with which we had issues in the
past and we want to track its performance, we will add a subsetof that application workload into the benchmark.
That helps us understand the impact of a code change on multiple queries from that application. We also try to
characterize each query in the benchmark and understand itsdegree of conformance to the optimizer’s model.
That is helping us determine when a regression is caused due to a defect, a shift in optimization tradeoffs or due
to side-effects of overfitting.

You improve on what you measure: The blend of application scenarios and their correspondingqueries in-
cluded in the benchmark influences the decisions made for thedifferent engineering tradeoffs and eventually
the tuning of the query optimizer. Initially, our testing process included a larger set of OLTP scenarios and a
much smaller set of DSS-like application scenarios. OLTP customer databases were more easily accessible at
the time and since they are typically smaller in size it was easier to adopt them in our test labs. Consequently,
increases in compilation time during the development cyclehad a significant impact across a large part of the
overall benchmark, while the effect of more advanced optimizations only appeared in smaller areas. The hard-
ware configuration used for executing the benchmark can affect the making of tuning decisions in similar ways.
For this reason, the different scenarios and hardware configurations need to be defined and maintained in a way
that represents the product’s goals as rigorously as possible.

Test each component in isolation: The use of end-to-end query performance as the sole metric ofplan choice
quality has often been ineffective. First, changes made to components downstream from the optimizer in the
Query Execution and Storage layers could result in end-to-end performance changes. Although the source of
the regression could be pinpointed to the right component bysimply checking for changes in the execution
plan, there were times during the development cycle when both the execution plan and the implementation of
the downstream components would change at the same time. In such cases, it was difficult to determine which
component contained the root cause of the regression. Also,assumptions made by the query optimizer (such

41

as the CPU cost for a certain operator) would change causing regressions across our benchmark. This problem
was mitigated by putting in place a parallel development process, which allows development in isolated code
branches. Thus, changes could be tested in isolation, and ifneeded, component assumptions and expectations
could be adjusted before the final code integration. The concept of testing in isolation extends to testing the
internal subcomponents of the query optimizer as well. In addition to evaluating the optimizer using end-to-end
query performance metrics, it is valuable to be able to test each layer of the cost model independently, so that
the root cause of defects can be identified quickly within thefaulty subcomponent. Additionally, validating the
subcomponents located lower in the optimization stack in isolation (e.g. the Statistics subcomponent) guarantees
that the subcomponent located higher in the stack (e.g. the Cardinality Estimation subcomponent) operates with
valid inputs and assumptions when being validated itself.

Clarify the model: It is essential that the contracts between the different components and any assumptions
made in the design are crisply defined in order to validate subcomponents in isolation. For example, the cardi-
nality estimation component operates over histograms under the assumptions of independence and uniformity.
Inputs that violate those assumptions will surely result inestimation errors and possibly in suboptimal plans.
Creating inputs that provide the ideal conditions expectedby the cardinality estimation component allows the
development of highly deterministic tests, which return accurate results. While some assumptions and contracts
are fundamental and well-understood, query optimization logic can be very fine-grained. Over time, the original
rationale for certain parts of that logic can fade unless it is well-documented and ensured by tests.

Agree on when a regression is a defect: As discussed earlier, it is likely that legitimate code changes can
result in slower execution for some queries. It is very important that the engineering team agrees on a well-
defined process on how to treat such issues, both internally as well as externally when communicating with
customers. Fixing regressions in ways that do not conform with the optimizer’s model and assumptions, results
in code health issues and architectural debt. Supporting special cases creates instant legacy on which new
applications may rely on. For this reason it is very important to have a clear definition of the optimizer’s
model. At the same time, every decision needs to take into account the expected impact on customer experience.
Customers need to be given the appropriate tools to work around plan choice issues, and guidance through tools
and documentation so that they can correct and avoid bad practices.

Design for testability. During the past four to five years of product development we went back several times
to add testability features into the query optimizer in order to expose internal run-time information and add
control-flow mechanisms for white-box testing. Designing new features with testability in mind is a task much
easier that retrofitting testability later on. This helps inclarifying the interfaces and contracts between different
subcomponents and the resulting test cases ensure that theyremain valid during future development.

5 Future Challenges and Conclusions

Query optimization has a very big impact on the performance of a DBMS and it continuously evolves with new,
more sophisticated optimization strategies. We describe two more challenges, which we expect will play a larger
role in the future.

The transformation-based optimizer architecture of Volcano [6] and Cascades [5] provides an elegant frame-
work, which makes the addition of new optimization rules easy. While it is straightforward to test each rule in
isolation using simple use cases, it is harder to test the possible combinations and interactions between rules and
ensure plan correctness. Also, with every addition of a new exploration rule, the search space expands and the
number of possible plan choices increases accordingly. There is a need of advanced metrics and tools that help
the analysis of the impact of such changes in the plan space. As query optimizers advance, the opportunities

42

for optimizations that provide value across most scenariosdecrease, hence optimization logic becomes more
granular. There has been research that indicates that queryoptimizers are already making very fine-grained
choices [11], perhaps unnecessarily so, given the presenceof cardinality estimation errors.

Although we described query optimization testing with focus on correctness and optimality, another inter-
esting dimension of the query optimization quality is the concept of performance predictability. For a certain
segment of mission-critical applications we see the need for predictable performance to be as important as the
need for optimal performance. More work is needed on defining, measuring and validating predictability for
different classes of applications.

Clearly, not all the challenges that we presented in this paper have been fully tackled. The validation process
and testing techniques will continue to evolve along with the evolution of the optimization technology and
product goals. The techniques described in this paper allowbasic validation and also provide insight regarding
the impact of code changes in the optimization process. As query optimizers become more sophisticated and
supplemented with more self -tuning techniques, additional challenges will continue to surface.

References

[1] SQL Server 2005 Books Online, Introducing SQL Trace. http://technet.microsoft.com/en-us/library/ms191006.aspx.

[2] SQL Server 2005 Books Online, Understanding plan forcing. http://msdn2.microsoft.com/en-
us/library/ms186343.aspx.

[3] Tpc benchmark h. decision support. http://www.tpc.org.

[4] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-deep processing trees with cross products.
In ICDT ’95: Proc. of the 5th Intl. Conf. on Database Theory, pages 54–67, London, UK, 1995. Springer-Verlag.

[5] G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19–29, 1995.

[6] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility and efficient search. InICDE ’93:
Proc. of the 9th Intl. Conf. on Data Engineering, pages 209–218, 1993.

[7] S. Herbert H. Bati, L. Giakoumakis and A. Surna. A geneticapproach for random testing of database systems. In
VLDB ’07: Proc. of the 33rd Intl. Conf. on Very Large Data Bases, pages 1243–1251. VLDB Endowment, 2007.

[8] T. Ibaraki and T. Kameda. On the optimal nesting order forcomputing n-relational joins.ACM Trans. Database Syst.,
9(3):482–502, 1984.

[9] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join results. InSIGMOD ’91: Proc.
of the 1991 ACM SIGMOD Intl. Conf. on Management of Data, pages 268–277, New York, NY, USA, 1991.

[10] L. Kollar. SQL Server 2000 Technical Articles, Books Online, statistics used by the query optimizer in microsoft
SQL Server 2000. http://msdn2.microsoft.com/en-us/library/aa902688(SQL.80).aspx.

[11] N. Reddy and J. R. Haritsa. Analyzing plan diagrams of database query optimizers. InVLDB ’05: Proc. of the 31st
Intl. Conf. on Very Large Data Bases, pages 1228–1239. VLDB Endowment, 2005.

[12] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational
database management system. InSIGMOD ’79: Proc. of the 1979 ACM SIGMOD Intl. Conf. on Management of
Data, pages 23–34, New York, NY, USA, 1979. ACM.

[13] D. R. Slutz. Massive stochastic testing of SQL. InVLDB ’98: Proc. of the 24rd Intl. Conf. on Very Large Data Bases,
pages 618–622, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[14] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning Optimizer. InVLDB ’01: Proc. of the
27th Intl. Conf. on Very Large Data Bases, pages 19–28, San Francisco, CA, USA, 2001.

[15] F. Waas and C. Galindo-Legaria. Counting, enumerating, and sampling of execution plans in a cost-based query
optimizer. InSIGMOD ’00: Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 499–509,
New York, NY, USA, 2000. ACM.

43

Testing Berkeley DB

Ashok Joshi, Charles Lamb, Carol Sandstrom
Oracle Corporation

{ashok.joshi,charles.lamb,carol.sandstrom}@oracle.com

Abstract

Oracle Berkeley DB is a family of database engines that provide high performance, transactional
data management on a wide variety of platforms. Berkeley DB products are available under a dual
license: an open source license and a commercial license. Wediscuss some of the standard testing and
tuning techniques used for ensuring the quality and reliability of the Berkeley DB library, emphasizing
some of the interesting testing challenges arising due to multi-platform support. Since Berkeley DB is
available in source code form, it can be adapted/modified by users in the field. It is necessary to test
and validate the modified version of Berkeley DB before it canbe deployed in production. We discuss
some testing tools and techniques provided with the Berkeley DB distribution that simplify the process
of user-testing and certifying Berkeley DB ports to new platforms.

1 Introduction

Database software is complex along many dimensions: large number of features and APIs, concurrent read and
write activity, fault-tolerance and recovery, performance, scalability, and reliability. In a wide variety of situa-
tions, database applications manage mission critical data, and there is an implicit assumption that the underlying
data management services are well tested, reliable and correct. This article discusses some of the testing and tun-
ing methodologies and practices used to ensure high qualityfor Berkeley DB, a family of embeddable database
engines.

Oracle Berkeley DB [1] is a family of database engines that provide robust data management services in
a wide variety of usage scenarios ranging from enterprise-class applications to applications running on mobile
devices such as cell phones. Berkeley DB products are distributed under a dual license - the open source GPL-
like license for open source applications, and a commerciallicense for closed source applications.

It is important to highlight some of the differences betweenan open source product such as Berkeley DB,
and proprietary, closed source products. Note that Berkeley DB is not anopen development project; Berkeley
DB products are developed by a dedicated group of software engineers. Berkeley DB products are distributed in
source code form, complete with a comprehensive test suite.Source code distribution adds an interesting set of
development and testing challenges, since the user is free to choose from a variety of compilers and development
environments to build Berkeley DB and the application. Further, a small number of users can and do modify the
Berkeley DB sources, primarily for porting to new platforms; the Berkeley DB distribution includes a test suite
that can be run by end users in order to validate their changes.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

44

The rest of this paper is organized as follows. We begin with adescription of each of the products. This is
followed by a discussion of some of thestatic testingtools that we use internally to verify the correctness of the
code. This is followed by a section on testing - this includesunit testing, stress testing, performance testing and
analysis as well as ad-hoc, use-case-specific testing. Next, we discuss the Berkeley DB approach to portability,
platform support and testing. Portability is particularlyinteresting in the Berkeley DB context because we allow
and encourage our users to port Berkeley DB to the platform oftheir choice. The Berkeley DB distribution
includes a platform test suite designed to exercise the platform-specific aspects of the port.

Oracle Berkeley DB has benefited tremendously from a large and active community of users who test the
products, review the code, report problems and suggest enhancements and features. The involvement of the user
community has been critical to the success of the Berkeley DBproducts.

2 Berkeley DB product family overview

The Berkeley DB product family consists of three products: Berkeley DB, Berkeley DB Java Edition and Berke-
ley DB XML. Berkeley DB products are available as libraries with simple, proprietary APIs for data access and
manipulation as well as database administration. BerkeleyDB does not support SQL, though it has been used
as the storage engine for SQL database products. A typical Berkeley DB application makes API calls to start
and end transactions, store and retrieve data as well as to perform administrative functions such as checkpoints
and backups. Thus, a Berkeley DB application is completely ”self-contained” with respect to all data manage-
ment activities; this enables azero manual administrationapproach to application development. This capability
is critical in a large number of applications including embedded applications, where manual administration is
impossible.

Berkeley DB Java Edition is a 100% pure Java implementation whereas Berkeley DB is implemented in
C; both products have similar APIs and capabilities for datamanagement. Berkeley DB XML (implemented
in C++) is an XML database engine with XQuery and XPath capabilities; Berkeley DB XML layers on top of
Berkeley DB and uses it for storage, indexing, transactionsand other database capabilities.

Although Berkeley DB and Berkeley DB Java Edition are very similar with respect to the features and
functionality they provide, architecturally, they are quite different. From a testing point of view, porting is not as
big an issue for Berkeley DB Java Edition, since the JVM is inherently portable. Both products provide indexed
access to data; Berkeley DB supports B-trees as well as hash indexing whereas Berkeley DB Java Edition only
supports B-tree indices. Both products support concurrentaccess to data. Berkeley DB permits concurrent
threads, or concurrent processes or both, whereas BerkeleyDB Java Edition typically supports multiple threads
within a process and more limited multi-process access. Both products support transactions, including support
for the various ANSI isolation levels. A row is simply an opaque key:valuepair; Berkeley DB does not have
the notion of data types, but the Direct Persistence Layer ofBerkeley DB Java Edition does provide an optional
schema-like capability. Interpreting the opaque contentsof the row is left entirely up to the application. APIs
for administrative operations like database checkpoints and backups are provided by all three products.

Architecturally, Berkeley DB is similar to the ”update-in-place” architecture of most other traditional
database systems. Berkeley DB Java Edition, on the other hand, uses log-structured storage for managing
on-disk data. Every change results in a new entry in the log. Aseparate garbage collector thread that runs in
the background reclaims space occupied by obsolete data. Thus, though there are commonalities between the
test suites for Berkeley DB and Berkeley DB Java Edition withrespect to testing API behavior, the Berkeley DB
Java Edition test suite also contains specific tests for exercising the log cleaner, ”out of disk space” scenarios,
log archiving and other aspects specific to the log structured architecture of Berkeley DB Java Edition.

Berkeley DB XML, on the other hand, manages XML documents. Documents can either be stored as whole
documents, or as individual nodes. Berkeley DB XML creates indices on various attributes to improve access
performance. Since Berkeley DB XML is layered on the Berkeley DB database engine, it can leverage the test

45

suite of the underlying storage engine, including the replication and high availability features. Berkeley DB
XML also leverages the XML standards specifications in orderto test the correctness of XML processing.

2.1 Feature sets

Early on in the history of Berkeley DB development, we made the decision to provide a variety of feature sets for
the Berkeley DB products. Applications that use Berkeley DBhave varying data management needs; rather than
a ”one size fits all” approach, Berkeley DB products offer theuser a choice of which features to use. Further,
an application using the simpler feature sets can build a small footprint Berkeley DB library; this is particularly
important for applications running on resource-constrained devices such as mobile devices.

The simplest feature set is calledData Store(available in Berkeley DB and Berkeley DB XML). This allows
either a single writer or concurrent readers. The data storeoption is ideal for simple applications that need high
performance indexed access to data without the need for read-write concurrency or transactions.

The Concurrent Data Storefeature set allows concurrent readers and one writer, but without transactions
and recovery. This is most suitable for situations where simplicity, footprint and performance of the application
are more important than data consistency or integrity. In most of these situations, the data managed by Berkeley
DB is either transient data, or the data can be retrieved fromanother (perhaps transactionally managed) data
source in case of data loss.

TheTransactional Data Storefeature set provides the full set of features including concurrency, transactions,
logging and recovery. This is the option of choice for applications that have stringent data consistency and
integrity requirements. As mentioned earlier, Berkeley DBalso provides APIs (and standalone utilities) for
administrative functions such as backups, checkpoints andrecovery, further simplifying the task of building
zero manual administration applications.

Finally, Berkeley DB provides theHigh Availability (HA) option for applications that need multi-node scal-
ability and extremely high availability. Berkeley DB HA supports a single read-write master and multiple reader
configuration implemented via log shipping. If the master fails, a new master is elected and processing continues
uninterrupted. Berkeley DB HA also supports a variety of options for improving transaction performance; for
example, it is possible to commit a transaction either by writing the commit log record to the master’s local
disk (commit to disk), or by sending reliable commit messages to a majority of the secondaries(commit to the
network).

The Berkeley DB design philosophy has always been to providemechanisms, not policy. This provides
tremendous flexibility to the application developer with respect to choosing the features to use as well as con-
figuring memory, IO, network traffic, disk usage and other system resources. This level of flexibility implies
multiple permutations of choices and configurations duringtesting and tuning.

3 Ensuring product quality

In general, we follow theextreme programmingmethodology for unit testing - implement the test first, then
implement the code. This methodology results in much bettercode quality in the minimum amount of time.
We’ll discuss unit test development in more detail below.

We use a combination of code reviews and software tools in order to ensure the correctness of the new im-
plementation. A good code review is highly effective in ensuring better code quality. Tools such aslint can de-
tect potential problems such as uninitialized variables, type-incompatible assignments and incorrect arguments.
Tools such asPurify [3] check for memory leaks and potential out-of-bounds references. Our development
methodology requires that code is peer-reviewed and checked for memory leaks, adherence to language and
portability standards and standard coding conventions. All lint inconsistencies are fixed before the code changes

46

are approved. Since Berkeley DB products are distributed insource form, we periodically compile and build the
product using a wide variety of compilers and address compiler issues and warnings.

3.1 Static testing

The termstatic testingrefers to various tools for measuring code coverage, memorycorruption and memory leak
checkers such asPurify, and programs such aslint that are used to identify problems in the code and/or tests.

Code coverage is a very useful technique for determining theeffectiveness of the test suite. In a code
coverage run, the code is instrumented to monitor coverage,and then the entire test suite is run to determine
which code blocks are executed, and which code blocks are notexercised. Code coverage testing is done
periodically since analyzing the results and adding new tests can be a significant amount of work.

A code coverage run will highlight the lines of code that are not exercised. Rather than a ”brute force”
approach to achieving very high code coverage, we focus on developing tests that target the important code
paths. Code coverage results need to be interpreted carefully since they do not indicate whether every possible
codepath was exercised. For example, if there are multiple ways of reaching a particular code block, a code
coverage run will identify that code block as covered even ifthe test only exercises one of the ways of reaching
that code block. It may be necessary to use other techniques such as logging and/or using a debugger to ensure
that tests exercise specific code paths. This certainly improves the quality of the tests, but may not result in
increasing code coverage.

We run Purify periodically to identify and eliminate memory leaks. We re-compile, build and run tests
periodically on many different families of systems including Linux, Windows, Solaris, HP-UX, AIX, and others.
Testing starts with the compiler native to a system, but we also test non-native compilers in situations where they
are commonly used, e.g.gcc. We also make a point of testing different versions of the same compiler. Build
failures are fixed when possible and silenced when necessaryto avoid the possibility of real failures vanishing
in the noise of unimportant warnings. All engineers receivee-mail from automatedlint runs daily and are
responsible for fixing errors found in their code.

3.2 Regression Testing

Test execution is automated. Under normal circumstances, the test suite is run on two or three different platforms
concurrently. Builds are verified at least daily. Tests generate detailed logs of the execution, and the scripts
supporting the tests automatically report build and test failures by email. The QA group analyzes the results of
each test run; test failures are fixed by the QA group, whereasprogrammatic errors are reported to the relevant
developer. Code changes are logged in CVS with tracking numbers so it is usually possible for a QA engineer
to pinpoint the piece of code that changed and inform the appropriate development engineer in order to address
the issue expeditiously.

3.3 Unit testing

We follow the extreme programming principle of ”test first, code later” in developing unit tests. We first im-
plement a set of tests that are designed to verify the correctness of the change. Depending on the scope of the
change, developing unit tests can be a significant effort. The developer responsible for a certain feature usually
develops the required unit tests, with input from other teammembers. The QA group expands and standardizes
tests from development. Having the unit tests ready before the feature is developed has several benefits including
potential improvement of the design and eliminating the possibility that the feature will go untested.

The complete unit test suite is included with each Berkeley DB distribution and can be run by the end user
who needs to verify their specific Berkeley DB application implementation and deployment.

47

3.4 Instrumenting the code for testing

Sometimes, it is necessary to add special code to simulate certain conditions for testing (e.g. IO failure). In such
cases, we instrument the code with assertions and hooks. Forexample, we use Javaassertions; assertions are
enabled only during debugging and testing. We also haveassertstatements that allow us to forceIOExceptions
to be thrown at specific points in the code and these points canbe specified by the test program. These simulated
write failures ensure that the error handling code is correct.

3.5 System and Stress testing

System and stress testing is designed to test the end-to-endbehavior of the software. We use a parameterized
driver program; this enables us to easily tailor a particular test run to exercise specific aspects, features and
configurations. For example, it is possible to select the number of threads, the ratio of writes to reads, memory
size and various configuration parameters.

The driver is normally run in randomized mode to force the testing of new combinations, and is routinely run
on multi-processor machines (even slow multi-processors)to increase contention. The driver program runs for
extended periods of time and exercises the various BerkeleyDB APIs with the objective of finding a problem.
Since the driver program is well parameterized, it is possible to use the same program not only to stress test
specific aspects of the software but also to measure performance of basic operations.

Running system and stress tests is an on-going activity. Problems identified by unit tests are usually re-
producible and hence relatively easy to analyze. On the other hand, diagnosing and fixing problems found by
system and stress tests is harder since it is not easy to reproduce the problem. Stress tests run for extended
periods of time, making it difficult to reproduce the exact state of the system at the time of the failure. Berkeley
DBs extensive logging capabilities are extremely helpful in analyzing system test failures.

Testing Berkeley DB HA requires a test harness that can exercise a distributed application running on mul-
tiple nodes. We are in the process of developing a test harness based onErlang [2].

Developing comprehensive system and stress tests is alwaysa challenging task, and an on-going process.
Recently, we encountered a customer issue which highlighted a limitation in one of our stress tests that exercises
themulti-version concurrency controlfeature in Berkeley DB. Multi-version concurrency controlrequires addi-
tional memory in the buffer pool in order to store previous versions (snapshots) of database pages; when there is
no more room in the buffer pool, Berkeley DB temporarily overflows the snapshots to disk. Though overflow to
disk for snapshots is supported, the expectation is that theuser will configure the buffer pool so that overflowing
to disk is rare. In this particular customer situation, a combination of a long-running writer transaction, multiple
reader transactions and a small buffer pool resulted in a large number of snapshots being written to disk. Further,
there was a bug in the ”read snapshot from disk” code, which resulted in the incorrect version being returned to
the transaction.

It took a significant amount of investigation to recreate thescenario and diagnose the problem, since the
problem was not easy to reproduce. Fortunately, once the problem was identified, the fix was very easy (just a
few lines of changed code). Needless to say, we have added stress tests to exercise the ”overflow snapshot to
disk” scenario.

3.6 Performance testing and analysis

Performance testing and analysis is an on-going activity. As mentioned earlier, the system test driver program is
parameterized; this enables us to use it to measure the performance of various operations.

We maintain performance data history for all releases in order to detect regressions. This is particularly help-
ful during the development of new features and functionality, since we can quickly identify and fix performance
problems that are introduced by the new code. Our experiencesuggests that measuring the performance of basic
operations is sufficient to identify performance regressions in most situations; a complex test is not required.

48

We often get requests for performance data for certain, customer-specific workloads. The customer workload
usually has specific requirements for record size, number ofrecords in the database, throughput and response
time constraints and so on. Having a simple, parameterized driver program is tremendously helpful in being able
to respond quickly to such requests. In most cases, it is possible to easily modify the driver program in order to
approximate the specific workload and generate performancedata.

3.7 Release testing

In addition to the continual testing during the developmentphase, we run an additional set of tests after a release
is code-complete, in order to verify some of the uncommon platform configurations and to ensure that add-on
modules (likePerl - http://perl.com) are tested and ready for release.

Berkeley DB has been in widespread use for more than a decade and use of historical versions is quite
common. Release testing also includes upgrade tests, to verify that databases from earlier versions can be
seamlessly upgraded to the new version.

3.8 Platform porting and testing

Berkeley DB products are different from most commercially available database systems because Berkeley DB
is shipped in source code form (along with the source code forthe tests). This makes it convenient for our users
to port Berkeley DB to the platform of their choice. We often work jointly with our customers on such porting
efforts.

Portability is not an issue for Berkeley DB Java Edition; therest of this discussion applies mainly to Berkeley
DB and Berkeley DB XML. By design, Berkeley DB products adhere strictly to programming language stan-
dards and have minimal dependence on platform primitives. As is the case with other portable software products,
Berkeley DB isolates the operating system dependent code toa small set of code modules. This ensures that
port-specific differences are localized.

Berkeley DB supports a long list of popular platforms. Each new version is released simultaneously on all
supported platforms. This is achieved by continuous and frequent testing on a wide variety of platforms in a
round-robin manner. Though it is not very common to find platform-specific problems, the advantage of this
approach is that such problems are identified early in the development stage.

Occasionally, a customer requires Berkeley DB on a platformthat is not already supported. In order to assist
our users in porting Berkeley DB, we have developed a portingguide and a platform-specific test suite in C.
Though not as comprehensive as the full test suite, this compact, but complete test suite is designed to thoroughly
exercise the various operating system primitives that Berkeley DB uses. The tests can also be modified to suit
the requirements of the underlying platform. This is especially critical when testing on resource-constrained
devices such as mobile phones.

A typical customer-porting scenario is as follows. The customer will download and build the source code on
the target platform. This can be an iterative edit-and-build process. After Berkeley DB is built successfully, the
user can run either the full test suite (if the platform is capable) or just the platform-specific test suite. When all
tests execute successfully, the user can be confident that Berkeley DB will run on the target platform.

If the user had to make changes to the code, build scripts or tests, we request them to send us the changes so
that we can incorporate them into future releases.

We recently had a very positive experience where a customer worked with one of our field engineers in Japan
to demonstrate that Berkeley DB could be ported to a new platform easily and painlessly. They used the porting
guide and tools provided with the Berkeley DB distribution in order to compile, build and validate Berkeley
DB on the new platform in less than two months. Typically, a port to a new platform of a commercial database
products takes many person-months of work, so this is a remarkable achievement.

49

4 Tuning

The Berkeley DB philosophy is to provide mechanisms, not policy. Berkeley DB (like other DBMSs) provides
a large number of ”knobs” to influence the run-time behavior and performance of the system. The user can
control system parameters such as amount of memory, threads, synchronous vs. buffered IO etc. The user can
also choose to enable or disable features such as transactions, locking and multi-version concurrency control.

Choosing the various parameters appropriately requires a good understanding of the system; this is further
complicated because some choices have dependencies on other choices and settings.

Berkeley DB has a comprehensive statistics and logging facility that provides useful data to aid tuning.
Berkeley DB documentation provides detailed information on the various parameters and settings available to
the user. Further, there are several source code sample programs included with the distribution that illustrate
how certain parameters may be used. The Berkeley DB discussion forums are an excellent source for getting
advice and feedback on tuning Berkeley DB. In specific situations, we provide customer-specific consulting
for performance analysis and tuning. Finally, having access to the Berkeley DB source code can be helpful in
understanding and tuning the software. On a number of occasions, users have been able to achieve significant
(ten-fold or more) improvements in performance by modifying just a few Berkeley DB parameters.

We are planning to develop a utility that will interpret the statistics and make recommendations. We are
also considering integration with other comprehensive monitoring and tuning utilities such as Oracle Enterprise
Manager.

5 Conclusions

Exhaustive testing is fundamental to the quality and success of the Berkeley DB family of products. We pay
attention to testing, code quality and performance throughout the development cycle. In terms of lines of code,
the test suite is about 40% of the lines of code in the productsand it continues to evolve along with the products.

Acknowledgements

We work closely with our user community in order to improve the products as well as to port to specific platforms. Berkeley
DB products have benefited tremendously from user feedback and help. A large portion of the credit goes to the excellent
development team; their expertise and painstaking attention to quality, performance and overall maintainability of the code
continues to be instrumental in delivering world-class products.

References

[1] Berkeley DB Documentation: http://www.oracle.com/technology/documentation/
berkeley-db/db/

[2] Erlang: www.erlang.org

[3] Purify: www.ibm.com/software/awdtools/purify

50

Oracle’s SQL Performance Analyzer

Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Dias, Shantanu Joshi, and Hailing Yu
Oracle USA

{khaled.yagoub, pete.belknap, benoit.dageville, karl.dias, shantanu.joshi, hailing.yu}@oracle.com

Abstract

We present the SQL Performance Analyzer, a novel approach inOracle Database 11g to testing database
changes, such as upgrades, parameter changes, schema changes, and gathering optimizer statistics. The
SQL Performance Analyzer offers a comprehensive solution to enable users to forecast and analyze how
a system change will impact SQL query plans and run time performance, so they can tune their system
before they make the change in production. The SQL Performance Analyzer identifies potential problems
that may occur and makes suggestions for avoiding any SQL performance degradation. It provides
quantitative estimates of the system’s performance in the new environment with high confidence and
performs a comparative analysis of the response time of the SQL workload thus allowing for an easy
assessment of the change. In this paper we describe the architecture of the SQL Performance Analyzer,
its usage model, and its integration points with other Oracle database components to form an end-to-end
change management solution.

1 Introduction

The past decade has witnessed significant advances in self-managing database technology. The major emphasis
of these works [1, 5, 7] has been monitoring a currently running database system for performance regressions,
diagnosing any existing performance problems, and suggesting solutions to improve such regressions. While this
provides a very effective and complete solution to automatically manage database systems, there is an important
aspect of query performance regressions that has been largely overlooked in the database literature:testing the
performance impact of a planned change.In other words, how well do database systems help administrators
prepare for and cope with changes?

System changes could range from simple ones like a new value for a database parameter or the addition
of a new index structure to more complex changes like migrating to a newer version of the database or up-
grading hardware. Since such changes are inevitable and even the smallest change to the system could have
an adverse effect on the performance of certain queries, this is an extremely important problem. Since SQL
performance issues are inherently unpredictable, a statement-centric solution makes sense. Users administering
critical database systems need a solution to predict the negative effects of a change and take measures to avoid
them. Problems left to be discovered on a live system cost theenterprise precious time and resources.

In this paper, we describe the Oracle SQL Performance Analyzer (SPA), which is our solution to the problem
of controlling the impact of system changes on query performance. SPA completely automates the manual and

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

51

time-consuming process of testing the impact of change on potentially large SQL workloads. SPA provides a
granular view of the impact of changes on SQL execution plansby executing the SQL statements in isolation
before and after a change. Then it compares the SQL executionresult before and after the change, and generates
a report highlighting the improved and regressed SQL statements and giving precise measurements of their
performance impact. Regressed statements are presented with recommendations to remedy their performance.

There have also been some efforts in the industry to address the problem of measuring performance impact
caused by system changes. The Quest Plan Change Analyzer [6]relies on the Oracle explain plan command
for retrieving the query plans of a set of SQL statements before and after making the desired change and then
compares them. While the query plan is often a fair indicatorof the actual execution cost of a SQL statement,
it may not be very accurate in several situations when there is really no substitute to actually executing the
SQL statement to determine its cost. Moreover, unlike SPA, the Quest Plan Change Analyzer does not consider
the frequency of execution of SQL statements in a workload while computing performance impact, leading to
inaccurate estimates. SPA executes each SQL before and after a change and presents SQL statements ordered
by the magnitude of their change on the overall workload performance. For very large workloads, users may not
have time to examine each change one by one, so separating themeaningful changes from the rest is very useful.

Hewlett Packard’s LoadRunner [8] and Oracle’s Database Replay [2] are two more examples of products
for evaluating the impact of change on a system. However, these two differ from SPA by providing a complete
system workload with timing and concurrency characteristics to a test system. In contrast, SPA computes the
performance impact of a change, at the granularity of an individual SQL statement. In this context, SPA is
analogous to unit-testing tools while LoadRunner and Database Replay are similar to stress-testing tools.

2 Common Usage Scenarios

SPA can be used to analyze the performance impact of a varietyof system changes that can affect the perfor-
mance of SQL statements. Examples of common system changes include:

• Database upgrades including patch deployments: Usually, database administrators (DBAs) are reluc-
tant to upgrade to a new release of the database despite the promising new capabilities the new release
offers. This is mainly because they know from past experience that any major release involves significant
changes in the database’s internal components, which may directly affect SQL performance.

• Database initialization parameter changes: The value of a specific parameter can be changed to improve
performance, but it may produce unexpected results becausethe system constraints may change.

• Schema changes: Changes such as creating new indexes are intended to improve SQL performance, but
they may have adverse effects on certain SQL statements.

• Optimizer statistics refresh: Gathering new statistics for database objects whose statistics are stale or
missing can cause the optimizer to generate new execution plans. In this case, DBAs can use SPA to assess
the benefit of gathering statistics.

• Implementation of tuning recommendations: Accepting tuning recommendations from an advisor such
as Oracle’s SQL Tuning Advisor [5], may require users to testthe effect of the recommendations before
implementing them.

• Changes to operating systems and hardware: Changes, such as installing a new operating system,
adding more CPUs, or moving to Oracle Real Application Clusters may also have a significant effect on
SQL performance.

52

3 SQL Performance Analyzer Architecture

Reporting

PerformanceExecute
Test Compare

SQL Tuning Set

Advisor
SQL TuningSQL Plan

Management

Figure 1: SPA Architecture

Figure 1 illustrates the high level components of the SPA andtheir interac-
tions with each other.

SPA takes a SQL workload as an input in the format of a SQL tuning
set (see Sec. 3.1), executes every statement in the tuning set before and after
making the planned change, compares the results of the two executions, and
then produces a rich graphical report highlighting the impact of the change at
both the SQL workload and individual SQL statement level. SPA is integrated
with the optimizer’s SQL Plan Management facility and the SQL Tuning Ad-
visor (see Sec. 3.6 and 3.7) to provide support for fixing any regressions that
might be caused by the change.

3.1 SQL Tuning Set

The SQL tuning set is a database object that provides a complete facility for DBAs to easily manage SQL
workload information. A SQL tuning set can be used to captureand persistently store user or application-issued
SQL statements along with their execution context, including the text of the SQL, parsing schema under which
the SQL statement can be compiled, real bind values used to execute the SQL statement, as well as its execution
plans and execution statistics, such as the number of times the SQL statement was executed.

A SQL tuning set can be populated from different SQL sources,including the cursor cache, Automatic
Workload Repository (AWR) [5], existing SQL tuning sets, orcustom SQL statements provided by the user.
SQL tuning sets are transportable across databases and can be exported from one system to another, allowing
for the transfer of SQL workloads between databases for remote performance diagnostics and tuning.

3.2 Test-execute

We believe the best way to assess the impact of a change on the performance of a SQL statement is to execute
the statement before and after the change and then check if its execution time has regressed or improved. SPA
test-executes SQL statements in a SQL tuning set, collects their associated execution statistics and compares
them with a previous run of the same statements.

SPA employs an internal SQL service called test-execute to run SQL statements. Test-execute takes as input
the text of the SQL statement to execute, actual bind values used on the production system, and a schema name
to use to compile the SQL. It then performs a mock execution ofthe SQL statement with the goal of gathering
the SQL execution plan and runtime statistics required for performance comparison. Runtime statistics include
elapsed time, CPU time, I/O time, buffer gets, disk reads, disk writes, and row count. During test-execute, the
SQL is executed and the produced rows are fetched until the last row in the result set, but never returned to the
caller. All rows will be blocked to avoid any side effect, particularly when testing DML and DDL statements. In
order to avoid updating the database state, test-execute runs only the query parts of DML and DDL statements,
testing the portion of the SQL that is the most vulnerable to change.

SPA executes SQL statements once, one at a time, and in isolation from each other without regard to their
initial order of execution and concurrency. This ensures that SPA performs a repeatable experiment whose re-
sults can accurately be presented on a per-SQL basis, greatly simplifying the task of interpreting the results.

Explain Plan Option: This option can be used to retrieve only the execution plans for the SQL statements
before and after a change and then determine the impact of thechange on the structure of the plans. This option
is far cheaper than actually executing the statements.

53

Note that SPA still uses test-execute, but stops it after compilation of the statement to return its execution
plan, which is exactly the same execution plan the optimizerwould choose, had the SQL been executed with
user specified bind values.

Remote Test-execute:SPA also provides the ability to perform test-execute on a remote database using database
links. For example, assume that the user is upgrading from Oracle 10.2 to Oracle 11.1 and already has an 11.1
test system set up. She can use SPA on the 11.1 system to first remotely test-execute all SQL statements on the
10.2 system. Next, she can perform another test-execute, but on the local system and then compare the two sets
of execution plans and runtime statistics.

To perform a remote test-execute, SPA automatically establishes a connection to the remote database using a
database link specified by the user, executes the SQL statements on that database, collects the execution statistics
and plan for each statement, and then stores them back in the local database for analysis and comparison.

Time Limit: To control the time spent while processing a SQL tuning set, SPA allows users to specify two
time limits for test-execute: 1) A global time limit which represents the maximum duration for processing a
SQL tuning set. This time limit is important, particularly,when using a large SQL workload. 2) A per-SQL
time limit which is the maximum duration for the processing of a single SQL. The per-SQL time limit is used to
control runaway queries. When set by the user, the same time limit applies to every SQL in the SQL tuning set.

3.3 Compare Performance

This SPA module is responsible for comparing the performance of the SQL workload before and after a change,
and calculating the impact of the change on the SQL workload.

SQL Trial: The output of test-executing a SQL tuning set, i.e., the resulting execution plans and runtime statis-
tics, are stored in the database in a container called a SQL trial. A SQL trial represents a particular experiment
or scenario when testing a given change. It encapsulates theperformance of a SQL workload under particular
conditions of the system.

SQL

SQL Trial
post−changepre−change

SQL Trial

SQL
Tuning Set

...SQL Trial
pre−change

SQL Trial
post−change 1

SQL Trial
post−change N

Implement change

Tuning Set

test−executetest−execute test−execute test−execute test−execute

Figure 2: SPA with (a) Two SQL Trials, (b) Multiple SQL Trials

As the above diagram shows, the user can create any number of SQL trials, where each trial corresponds to
the SQL workload performance data under a different change,and compare any two trials. All trials will reside
in the database, thus forming a history of all testing experiments conducted by the user for a SQL workload. This
is a very useful feature of SPA as it allows users to keep trackof changes and perform historical performance
analysis. SPA’s iterative usage model is a recognition to the fact that the nature of system testing is one of one
change leading to another, with each being tested in isolation until a steady state is reached.

Performance Comparison: Once performance data has been gathered under each SQL trial, the performance
comparison module analyzes the differences between two trials and unmasks the SQL statements that are im-
pacted by the tested change. The compare module measures theimpact of the change on both the overall

54

performance of the SQL workload as well as on each individualSQL statement. By default, SPA uses the
elapsed time as a metric for comparison. The user can also choose from a variety of available SQL runtime
statistics, including SQL CPU time, I/O time, buffer gets, disk reads, disk writes, or any combination of them
as an expression (e.g., cputime + 10*buffer gets). The module also compares the execution plans’ structural
changes of SQL between the two trials.

Change Impact Calculation: Change impact is a measure of how a system change affects the performance
of a SQL statement. SPA calculates the change impact based onthe difference in resource consumption across
two trials of the SQL workload as follows:

ciw =

∑

i ebifi −
∑

i eaifi
∑

i ebifi

cisi =
ebi − eai

ebi

ciswi =
fi(ebi − eai)

∑

i ebifi

(1)

ciw: change impact on the overall performance of the workload.
cisi: change impact on individual SQL in the workload.
ciswi: impact of a SQL performance change on the overall performance of the workload.
fi: execution frequency, i.e., number of executions, of a given SQL captured in SQL tuning set.
ebi: execution metric of a SQL single test-execution from the before change SQL trial.
eai: execution metric of a SQL single test-execution from the after change SQL trial.

These measurements are presented to the user through the SPAreport. As a general rule, negative values
indicate regressions, while positive values indicate improvements in performance.

The SQL execution frequency is used by SPA to weight the importance of each SQL statement in the work-
load. This allows users to correctly determine the impact onlong running SQL statements that are executed only
a few times as well as statements which are very fast, but repetitively executed.

3.4 Reporting

When the performance comparison and analysis are complete,all resulting data are written into the database.
The end user can then review the analysis findings produced bySPA by either directly querying the exposed
schema or simply requesting the analysis report from SPA.

 Overall Impact: 41.04 %

Improvement Impact: 43.82 %
 Regression Impact: −2.78 %

Plan Structure Changed
Plan Structure Unchanged

0

2M

6M

4M

before
change

after
changeP

ro
je

ct
ed

 w
or

kl
oa

d
bu

ffe
r

ge
ts

0

10

20

30

40

50

60

S
Q

L
st

at
em

en
t c

ou
nt

regressed
unchangedimproved

Figure 3: Example of a Partial SPA Report

The SPA report is divided into two main sections: Analysis
Summary and Analysis Details. The summary section gives statis-
tics about the overall change in performance of the SQL work-
load and points out the SQL statements that are impacted by the
change. The detail section has an entry for every SQL statement
in the SQL workload with detailed information about the SQL as
well as a side-by-side comparison of the SQL runtime statistics
and execution plans from the trials used in the comparison. In the
report SQL statements are ordered by their change impact on the
SQL workload performance.

As depicted in Figure 3, the report shows graphically the over-
all value of anbuffer getsbefore and after making the system

change, along with a second graph for the count of SQL statements whose performance improves, regresses
or remains unchanged as a result of the change. Both these graphs have drill-down capabilities to view details at
individual SQL statement level. The example above indicates that overall, the workload performance improved
by 41.04% even though it experienced some regressions as shown by the impact of -2.78%.

55

3.5 SQL Plan Management

If the comparison of two SQL trials shows some SQL statementswith regressed performance, SPA will recom-
mend creation of plan baselines1 [3] for the subset of regressed SQL using execution plans from thefirst SQL
trial. This ensures that the optimizer will always use thoseplans for future executions of this subset of SQL
statements preserving their performance, regardless of changes occurring in the system.

3.6 SQL Tuning Advisor

SPA will also recommend SQL tuning advisor [4] to fix performance problems. The SQL tuning advisor an-
alyzes each regressed SQL statement with the goal of finding aSQL profile that will counteract the negative
impact of the change. SQL profiling attempts to discover the root cause of a SQL performance problem by
understanding the complex relationships in the data relevant to the execution of the SQL statement.

For statements whose performance could not be improved by the tuning advisor, the user can create plan
baselines with SPA to ensure that their performance will be no worse than what it used to be before the change.

4 Usage Model

Oracle Enterprise Manager provides a graphical interface that guides a user through each of the steps mentioned
in this section. We assume that a test system is available andthat it resembles the production system as closely
as possible. However, users can run SPA directly on the production system if, for example, they cannot afford a
test system or if they have a sufficient time window to test their changes on production.2

4.1 Basic Testing Workflow

As Figure 4 illustrates, the testing process using SPA has the following steps:

SQL Workload
Test−Execute

SQL Workload

Regressed SQL

SQL Tuning Set
Workload in
Capture SQL

Performance
Workload

Compare SQL

Changes
Make

Fix and Tune

Test−Execute

Production System Test System

Figure 4: SPA Basic Testing Workflow

1. Capture SQL Workload: Before running SPA, users have to capture on the production system a set of SQL
statements that represent the SQL workload they intend to analyze. The higher the number of SQL statements
captured in the workload, the more accurate the prediction of performance changes will be. The set of SQL
statements is captured and stored in a SQL tuning set. SQL tuning set provides an incremental SQL workload
capture facility that enables the capture of the entire system SQL workload with minimal performance overhead.
Incremental capture works by repeatedly polling the cache of currently executing SQL statements over a period
of time.

1A plan baseline is an optimizer feature that guarantees stable performance in the face of runtime changes by maintaininga history
of past execution plans for repeatable statements.

2Using a test system is not mandatory, but recommended since SPA test executes SQL before and after the change and this could be
very resource-intensive depending on the complexity and size of the workload.

56

2. Transport SQL Tuning Set: After creating the SQL tuning set with the appropriate SQL workload, it is
exported from the production system and imported into a testsystem where the system change under considera-
tion will be tested. This can be achieved by using SQL tuning set export/import capabilities.

3. Test-execute SQL Before Change:After the SQL workload is captured and the SQL tuning set trans-
ported to the test system, SPA can be used to build thepre-changeSQL Trial. SPA test-executes the SQL tuning
set and produces execution plans and runtime statistics foreach statement in the tuning set. SPA can also be run
to generate SQL execution plans only, i.e., without collecting execution statistics. This technique reduces the
time of SPA execution, but the results of the comparison analysis are not as complete because, without executing
the SQL, it is impossible to make accurate predictions aboutits impact on system resource statistics.

4. Perform Change: After the pre-change trial is built, the system change to test can be implemented on
the test system. This change can be any kind of change that might impact the performance of SQL statements
such as a database upgrade, new index creation, initialization parameter changes, optimizer statistics refresh, etc.

5. Test-execute SQL After Change:After implementing the planned change, SPA can be invoked again to
re-execute the SQL statements and produce execution plans and execution statistics for each SQL statement, a
second time. This execution result represents thepost-changetrial that SPA uses to compare against thepre-
changeSQL trial. The user can also combine the explain plan option with test-execute to speed up the testing
process. For example, she can start by running SPA using the explain option to retrieve the plans for all SQL
in the workload and then execute only the subset of SQL whose plans changed to verify whether those plans
improved or regressed.

6. Compare Performance: SPA uses the metric specified by the user and compares the performance data
of SQL statements in the pre-change SQL trial to the post-change SQL trial. Finally, it produces a report identi-
fying any changes in execution plan structures or performance of the SQL statements. The SPA analysis report
explains how the tested change impacts the performance of a SQL workload and what actions can remedy the
uncovered regressions.

It is important to note that neither the before nor the after SQL trial gains an undue advantage from certain
system conditions such as cached data. In this case, the usercan perform a dummy test execute trial to guaran-
tee consistent caching of data across the two trials or simply use a comparison metric that is not dependent on
caching such as, CPU time or buffer gets.

7. Re-iterate: If the performance comparison reveals regressed SQL statements, then the user can make further
changes to fix the problematic SQL by creating SQL plan baselines or SQL profiles. The testing process can
be repeated until the user has a clear understanding of the impact of the change and the corrective actions to
improve the potential performance regressions. The user can then be confident to permanently make the change
on production and implement the tuning actions even before the performance degradations occur.

4.2 Parameter Change Workflow

In addition to the basic testing workflow, SPA provides a predefined workflow to test database parameter alter-
ations. This workflow enables the user to test the performance effect on a SQL tuning set when varying the value
of an environment initialization parameter. Given a SQL tuning set and a comparison metric, SPA automatically
creates two SQL trials and compares them. The first trial captures SQL performance with the initialization
parameter set to the original value, whereas the second trial uses the new value of the parameter.

57

5 Conclusion

Database changes happen all the time and affect SQL performance. Therefore, one of the most important tasks
for DBAs is to assess the potential impact of any changes to the database environment on SQL performance. This
is a very challenging task because it is almost impossible topredict the impact of changes on SQL performance
before actually implementing them in the production system. Building a thorough test bed with the ability
to make reliable predictions about the impact of such changes has historically been beyond the reach of most
system administrators.

In this paper, we have described SQL Performance Analyzer, which was introduced in Oracle 11g. SPA
gives users the ability to measure the impact of system changes on the performance of SQL statements and
fix any potential regressions before they happen in production. SPA helps DBAs build and compare different
versions of SQL execution plans and runtime statistics, andthen suggests tuning recommendations to overcome
potential performance problems.

We have discussed the primary end user of SPA as a production DBA, but it can also be used by other types
of users, such as QA testers and application developers. With SPA, DBAs have the necessary information to
determine what performance changes may occur in a SQL workload and what corrective actions to undertake
to fix regressions. At the same time, QA teams can use it to identify, investigate, and solve performance issues
before they occur during a new application deployment. Likewise, application developers can use SPA to mea-
sure and control the risk of performance changes throughouttheir application’s life cycle. All of these users can
benefit from a comprehensive product with the ability to measure the performance impact of a change to a real
SQL workload. As long as enterprises continue to expand and adapt to new environments, change will be a con-
stant in database systems. By forecasting the impact of changes before they are implemented in production, we
believe that tools like SPA eanble DBAs to clearly understand the performance ramifications of system changes
and take corrective actions to avoid any potential degradations.

References

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. Narasayya. Autoadmin: Self-tuning Database Systems Tech-
nology. IEEE Data Eng. Bull., 29(3):7–15, 2006.

[2] J. Athreya and M. Minhas. Oracle Database 11g Real Application Testing Overview. Technical report,
Oracle, USA, http://www.oracle.com, 2007.

[3] M. Colgan. SQL Plan Management in Oracle Database 11g. Technical report, Oracle, USA,
http://www.oracle.com, 2007.

[4] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin. Automatic SQL Tuning in Oracle 10g.
In VLDB, pages 1098–1109, 2004.

[5] B. Dageville and K. Dias. Oracle’s Self-Tuning Architecture and Solutions.IEEE Data Eng. Bull., 29(3):24–
31, 2006.

[6] C. Fernandez and J. Leslie. Predicting and Preventing Performance Bottlenecks in Oracle 10g. Technical
report, Quest Software, http://www.quest.com, 2005.

[7] S. Lightstone, G. Lohman, P. Haas, V. Markl, J. Rao, A. Storm, M. Surendra, and D. Zilio. Making DB2
Products Self-Managing: Strategies and Experiences.IEEE Data Eng. Bull., 29(3):16–23, 2006.

[8] H. Packard. LoadRunner. Technical report, http://www.hp.com, 2007.

58

Focused Iterative Testing: A Test Automation Case Study

Mechelle Gittens, Pramod Gupta, David Godwin, Hebert Pereyra, Jeff Riihimaki
IBM Corp.

Abstract

Timing-related defects are among the most difficult types ofdefects to catch while testing software. They
are by definition difficult to reproduce and hence they are difficult to debug. Not all components of a
software system have timing-related defects. For example,either a parser can analyze an input or it
cannot. However, systems that have concurrent threads suchas database systems are prone to timing-
related defects. As a result, software developers must tailor testing to exploit vulnerabilities that occur
because of threading. This paper presents the Focused Iterative Testing (FIT) approach, which uses
a repetitive and iterative approach to find timing-related defects and target product areas with multi-
threaded characteristics by executing system tests with a multi-user test suite. Keywords: software
testing, database management systems, multi-threaded applications

1 Introduction

IBM R© DB2 R© for Linux R©, UNIX R©, and WindowsR© (DB2 software) is a complex distributed, multi-process,
and multi-threaded system. It consisting of several million lines of source code. Execution optimization is
crucial for DB2 software, and overhead from instrumentation and monitoring must be minimized.

Atomicity, Consistency, Isolation, Durability (ACID) requirements must be maintained regardless of system
failures that are due to unexpected events such as power outages. After an outage, when the operating system
and database restarts, the database has to replay logs of theprevious database activity, so that there are no partial
transactions and so that other ACID requirements are met to keep the database in a consistent state. However,
in a multi-threaded, multi-process system, small timing holes1 often exist and elusive point-in-time defects can
occur. The point-in-time defects are elusive because when such an unexpected event occurs, the logs must
capture concurrent events and interleave them in the mannerin which they occurred so that states are repeated
as they occurred previously and together.

Within this context, the DB2 software quality assurance team varied the test approaches in several ways to
trigger point-in-time (timing-related) problems. These methods attempted to simulate the unexpected external
issues common to databases and included: (1) Varying the processor load by running an external program
to consume most of the CPU cycles available to the database server; (2) Instrumenting code to selectively
slow down execution with logging overhead; (3) Changing priorities of processes; and (4) Iteratively executing
commands or programs with a background workload.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1A timing hole is an unexpected point in the state space of execution for the software, where multiple threads or processesinterleave
in such a way as to create an incorrect logic sequence that maycause the program to hang, crash or behave incorrectly.

59

The main contribution of the work presented here is therefore a testing methodology with automation for
complex multi-threaded database software that iteratively executes commands or programs with a background
workload, since that was the most successful approach. The first three methods found defects by burdening the
system resources with the various kinds of overhead mentioned in methods 1, 2 and 3. These methods how-
ever, still executed events limited sequences of events against the database, and though the additional overhead
deprived the events of resources, the large set of executionpossibilities (the state space) could not be represen-
tatively sampled. The iterative approach, though straightforward, randomly samples every combination of the
sequences of possible events, triggering timing-related defects (TRDs) that are possible in a user environment.

The paper continues as follows. Section 2 reviews work related to testing TRDs in multi-threaded database
applications. Section 3 introduces the aspects of three facilities of DB2 software that make those functions -
monitoring, fast communication manager and crash recovery- suitable for testing with this method. The paper
then presents the methodology for focussed iterative testing in Section 4. This section includes a description
of the tool support. Section 5 summarizes the results of using the approach. Section 6 provides a summary of
conclusions and potential directions for future work.

2 Related Work

Testing for database systems is normally done under the conventional and general testing approaches. These
include unit, functional and system testing [6]. All of these methods have been applied successfully to database
applications and there have been a plethora of discussions and work in the more general applications. However,
as databases grow larger and more distributed, the context of the timing hole has become an issue unadrressed by
most of the more general methods. Point-in-time interleaving of states on the stack causes transient problems.
In order to encounter these problems in the various combinations and permutations of states, some testing with
a statistical focus must be performed.

Random testing has proven itself cost effective and more powerful than would be thought a priori [2]. In his
text also called Random Testing [3], Hamlet discusses the perception of random testing as haphazard testing,
done hastily and poorly. He consequently explains that the correct meaning of random testing is one where test
cases are chosen with no relationship between them. This gives statistical independence to the test points that
endows statistical significance to the testing results and prediction of the expected quality of the software.

The literature covering the random testing of database systems falls into the category of randomly generating
inputs for the database tests, such as the evolutionary development of queries in recent work by Bati et al. [1],
where the researchers create new queries by mutating and synthesizing queries, and determining whether those
queries can be used to generate further queries. Although a useful approach yielding new defects, the approach
omits the issue of testing for the elusive timing hole.

Outside of the database domain other approaches to testing that handle multi-threading have existed for sev-
eral years. These methods use model-checking approaches tohandle the interleaving of concurrent processes
and the unexpected interactions. However, the issue here isstate explosion, especially with the multiplicity of
states possible in the database system with tens of millionsof lines of code with several interacting compo-
nents. The same point-in-time timing defects are still experienced because the full population of states is still
underrepresented.

Sen [5] has very recently investigated, partial-order random testing approaches that choose thread schedules
at random. This approach, though yielding more defects thana nonspecific random set of tests, and demon-
strating that it is useful to detect the exceptions faster than the nonspecific set of tests, was only demonstrated
for three small multi-threaded programs from the Java PathFinder [8] distribution. These do not compare to
complex interleaving of a large DBMS such as DB2. We cannot however say, that extrapolation and repetition
of the runs would not simulate a similar execution to DB2, butsince this work is recent this question will have to
be explored as future work. In addition, these methods such as the one by Sen [5] did not exist when we sought

60

to meet the TRD challenges.
In addition to the partial order methods, model-checking algorithms exist to limit the state space that must

be searched to test a multi-threaded application [7]. Modelcheckers use the context switches that occur when
a thread temporarily stops execution and a different threadstarts, and systematically or iteratively suspends
or binds execution of the thread at some random or arbitrary point to allow other more interesting threads to
continue. One of the benefits is that the total number of executions in a program is polynomial in the number of
steps taken by each thread and makes it theoretically feasible to scale systematic exploration to large programs
without sacrificing the ability to go deep into the state space. This method shows potential but once again, the
experimental space is preliminary with the tested programsranging from 84 lines of code to just over 16,000
lines of code.

Having reviewed the existing work at the time and today, we found no methods to handle TRDs in a complex
multi-threaded database application; however, we noted from the existing work that random testing was most
suitable. We therefore created the approach presented here.

3 The Software under Study and the Components of Interest

FIT works because of the way in which functionalities such ascrash recovery and monitoring are implemented
in a multi-threaded system such as a DBMS. Here we explore thealgorithms behind DB2 monitoring, fast com-
munication manager, and crash recovery components and we will see why this iterative approach is particularly
productive.

3.1 Monitoring

The database system monitor stores information it collectsin entities called monitor elements. Each monitor
element stores information regarding one specific aspect ofthe state of the database system. Monitor elements
collect data for one or more logical data groups. A logical data group is a collection of monitor elements that
gather database system monitoring information for a specific scope of database activity. Monitor elements are
sorted in logical data groups based on the levels of information they provide. For this discussion, two levels are
considered: database and application.

Monitor elements collect data for one or more logical data groups. These groups are collections of monitor
elements that gather database system monitoring information for a specific scope of database activity. Monitor
elements are sorted in logical data groups based on the levels of information they provide. The database and
application levels are discussed here.

Snapshot monitor is one way that DB2 software makes element values available. Snapshots provide a point-
in-time picture of the database state. During snapshot processing all relevant levels are read to complete the
snapshot. As a result, for a database snapshot, the following events occur:

1. Read element values from the application-level structure. This will contain values for all terminated
applications since the database activated.

2. Iterate through each application currently connected tothe database. For each of these: (a) Read the
element values from the application level structure. This structure contains values for all agents that have
disassociated from this application. (b) Iterate through agents currently associated with the application.
For each of these read the element values from the agent-level structure.

In the snapshot output, the rowsread element will contain the total from all these levels.
Event monitors are a second facility with which DB2 softwaremakes element values available. Event mon-

itors provide a real-time trigger-based monitoring capability. The event monitor infrastructure buffers records,
using two internal buffers, before writing them to disk.

61

Figure 1: Generating event records for a STATEMENT event monitor

Figure 1 illustrates how event records are generated for a STATEMENT event monitor. Three applications
are connected to the database, each having a single agent working on its behalf. As each application executes
SQL statements, their agents generate new statement event monitor records and insert them into the active buffer,
which is Buffer 1. When Buffer1 has filled up, a message is sentto the event monitor writer instructing it to
process all records in Buffer 1. During this period, the “active” buffer is switched from Buffer 1 to Buffer 2 and
the three applications will begin filling up Buffer 2. The Fast Communication Manager (FCM) event monitor
writer, having received the message, processes Buffer 1 andinserts the data into files, if the event monitor is a
FILE event monitor; or a named pipe, if the event monitor is a PIPE event monitor; or SQL tables, if the event
monitor is a TABLE event monitor.

3.1.1 Opportunities for FIT

One of the challenges facing monitor processing comes from the transient nature of the memory it needs to read.
Busy systems can find applications constantly starting up orterminating. This results in application memory
being allocated and freed. Moreover, during the processingof a snapshot, agents may be in the process of either
associating with applications or disassociating from applications. At the start of snapshot processing, an agent
may be working on behalf of one application but by the end of the snapshot processing, it may be working on
some other application.

To protect the ACID properties of a monitor operation and in particular the consistency and isolation of
the monitor action, monitor processing must lock resources. Resources are locked before that resource can be
accessed, and the lock protects the integrity of the monitordata and ensures that memory does not “disappear”
while being read (resulting in crashes). Locking of a resource involves acquiring a “latch”, which is an internal
mechanism for controlling concurrent events and the use of shared system resources. The protocol surrounding
the locking of resources is strict, and resources must be locked and unlocked in a certain order and monitor
processing must adhere to such protocols. If resource locking protocols are broken, the system can “hang”, so
extra care must be taken to ensure that protocols are followed.

This requirement for ordering of events and the strict requirements of the protocols means that timing prob-
lems are more probable. It also results in a requirement to test these protocols by concurrently to increase the
probability of performing locking and unlocking events outof sequence. The FIT method, which samples sev-
eral event combinations and introduces resource constraints just as in a locking situation iterates through such
probabilistic populations of events.

Multi-partition instances in the Data Partition Feature (DPF) environment present monitor processing with

62

other challenges. The activating or deactivating of event monitors requires the coordination of activity across all
partitions. This involves sending messages to all partitions, waiting for all the partitions to perform the activation
or deactivation and respond with success or failure, and coordinating the replies. In addition, global snapshot
processing requires similar coordination. Messages must be sent to all partitions, snapshots executed locally on
each partition with output sent in replies to the messages, and then replies merged into a single snapshot output
stream. This processing must prove resilient to partitionsactivating and deactivating and dropped messages.
Additionally, extra care must be taken to ensure that resources are not locked on one partition while messages
are sent to other partitions. Failure to ensure the coordination of the deactivation and activation, as well as
locking and messaging transmission, may result in severe software defects. In a threaded environment, the
iterative approach in FIT creates a sample of situations where such interleaving and order can be disturbed.

3.2 Fast Communication Manager (FCM)

In order to achieve high performance and scalability, DB2 software provides two operating modes for parallel
execution of activities. (Both rely on the availability of multiple CPUs for processing.) One of these configura-
tion types is intra-query parallelism or SMP (Symmetric Multi-Processor configuration).

SMP works by generating SQL execution plans whereby portions of an SQL statement are divided into
individual sections, which can be executed concurrently and independently by multiple processes/threads. The
second type of configuration is Data Partitioning Feature (DPF). This configuration allows for the partitioning of
data across multiple DB2 nodes. Each DB2 node is responsiblefor managing one data partition. The architec-
ture where each DB2 node and its associated data partition are independent from other partitions is commonly
referred to as “shared nothing”. It permits function shipping whereby SQL and non-SQL operations are directed
to those nodes where the target data is held for local operation. Where multiple data partitions are involved,
parallel processing occurs (with each DB2 node only workingwith its subset of data). SMP and DPF can also be
combined within the same instance of DB2 software. Both these configurations require fast and efficient internal
communication facilities.

A user may configure a DB2 instance with multiple nodes residing on the same host machine. Such configu-
rations are described as Multiple Logical Nodes (MLNs). In such configurations, communication between DB2
nodes residing on the same host occurs through shared memory.

3.2.1 Fast Communication Manager Design

The fast communication manager component includes FCM resources, FCM receiver and sender conduits, con-
nection management and node failure support.FCM resourcesare allocated from a separate shared memory
segment that is allocated at start-up time by DB2. The two main FCM resources are buffers – which store com-
munication data - and channels - which are the terminal points in communications. Each node on a DPF instance
will have at least oneFCM receiver conduit for incoming messages and oneFCM sender conduit for outgo-
ing messages. Connections are established on demand withconnection management. The first indication of
user activity on a node drives FCM to initiate communicationwith every other node configured in the instance.
This ensures optimal performance and security of inter-node communication.Node failure support involves
interrupting applications with dependencies on nodes thathave lost their connection to the system and cannot be
contacted. The FCM node failure-recovery facility allows applications to process node failures asynchronously
from each other.

3.2.2 Opportunities for FIT

There are aspects of shared memory, failure recovery, connection management and conduit management that
may create opportunities for challenges due to unusual circumstances such as frequent system interruptions,

63

frequent reconnections and unusual resource deprivation.An example of this is monitor running with FCM. With
FCM, the single shared resource pool is created on each host on the MLNs to facilitate communication between
logical nodes. In a multi-process environment, the interleaving of events may compete for memory. FCM, with
the conduits establishing their own connections and resulting connection management, is designed to handle
this interleaving adequately. In the case of node failure, and other unexpected events however, the probabilities
of unexpected and sometimes incorrect interleaving may be increased. In this case, FIT can deprive resources
and increase the samples of code failure events with memory management and connection management choices
made by FCM. This will increase the probability of finding TRDs in FCM.

3.3 Crash Recovery

The third important feature of DB2 software that has been found suitable for testing with the FIT approach is
the crash recovery feature [4].

Since units of work on a database can be interrupted unexpectedly, if an interruption occurs before all of the
transactions in the unit of work are completed and committed, the database is left in an unusable state. Crash
recovery moves the database back to a consistent and usable state by rolling back incomplete transactions and
completing committed transactions still in memory.

Transaction failures result from conditions that cause thedatabase or the database manager to end abnor-
mally. Partially completed units of work that have not been flushed to disk at the time of failure, leave the
database in an inconsistent state. Following a transactionfailure, the database must be recovered. Conditions
that may result in transaction failure include a power failure on the machine, causing the database manager and
the database partitions on it to end abnormally; a hardware failure such as memory corruption, or disk, CPU, or
network failure; or a serious operating system error that causes the DB2 application to end abnormally.

3.3.1 Opportunities for FIT

The conditions mentioned above that lead to transaction failure can create vulnerabilities and timing issues that
should be found in testing. Order dependency is important because logs of the events that ran earlier must be
replayed either to roll back partial transactions or complete uncommitted transactions in memory. The same
issues arise because of parallelism and the need to replay logs in correct sequence. FIT is able to exploit the
sequencing vulnerabilities by sampling from a large numberof execution sequence possibilities.

In addition, transactions are logged while they occur, whether or not the transactions are committed. Trans-
actions go from the log buffer to log files (transactional logging) before any data is written from the buffer pools
to the database structures. Challenges can occur again in a multi-threaded environment because of the interleav-
ing of events and the need to separate a given sequence when a problem occurs. This is a standard protocol, but
problems can only be revealed with mass repetition of such logging of parallel processes. FIT tools facilitate
execution of a large number of iterations of runtime and recovery scenarios and hence increase the probability
of finding defects that occur during a particular sequence ofevents.

4 Methodology

The FIT approach hinges on repetition and resource deprivation, and as a result, automation is vital. The method-
ology presented is useful to those with large multi-process, multi-threaded software testing concerns, with vast
combinations of possible executions and resource constraints are likely to trigger problems.

The approach is run as a number of controlled iterations on any machine and operating system combination.
The iterations proceed with the following steps.
Step 1: Run random concurrent database test suites in the background to stress the supporting hardware, oper-
ating system and database, while varying the configuration parameters of the database, the size of the database,

64

the operating system, and the nature of the test suite being monitored (for example with a workload that tests
monitoring functionality such as snapshot, crash recoveryfunctions, or the fast communication manager). Since
the configuration parameters control features crucial to monitoring, FCM and crash recovery (such as memory
distribution (including sorting and locking), parallelism, I/O optimization (asynchronous page readers and writ-
ers), many aspects of logging (file size, buffer size), and recovery), it creates circumstances that are well-suited
for uncovering potential software errors.
Step 2: Deliberately crash the database server by issuing a kill signal to the operating system.
Step 3: Restart the database server and the database
Step 4: Check for data integrity problems, database crashes (traps), and database hangs.
Step 5: If any problem is found, then exit and notify the tester via electronic mail alert. Else repeat from Step 1.

Supporting tooling was created to run several parallel processes and vary parameters. The tools execute the
algorithm for the approach above and stress the monitor heavily by using the command line processor interface
in one tool and the DB2 application-programming interface (API) in another tool to invoke the snapshot and
the event monitor functions. The tool allows the user to control the number of iterations and is available for the
UNIX and Windows platforms.

Another supporting tool runs the algorithm with the crash recovery procedure. The crash recovery tool runs
the algorithm with several thousand crash recovery iterations by crashing the DB2 instance on all partitions and
then restarting the database. This tool allows the tester tospecify the number of crashes and is written for both
the UNIX and Windows platforms.

5 Results

After applying the FIT method, defect detection improved significantly, and therefore increased tester productiv-
ity. Automation was key to the approach since the FIT tools were executed in scenarios with multiple databases
with concurrent test suites running for extended periods (for example overnight).

Figure 2: Defects for timing-dependent compo-
nents found in system testing and by customers
as an example of the defect discovery occurring
between the introduction of FIT in version B and
beyond

Figure 3: All defects for components most af-
fected by timing issues as ratios between customer
defects and test defects

65

Figure 2 shows the general trend for the three components in the DB2 product where FIT was used. The
areas indicated by the solid circles (versus the dotted circles) show the increase in severity 1 and severity 2
defects found in system test versus by the customer after FITin version B. Severity 1 defects cause the system
to become unavailable, and severity 2 defects cause problems that hinder work but may be worked around. In
addition, the ratio of customer defects versus system test defects decreases. That is, after FIT, testers find more
defects and customers find fewer. Figure 3 shows the ratio between defects found in testing in the components
before (version A) and after (version B and on) FIT; and the defects found by customers.

Since the tool repeats the same steps nondeterministicallywith each iteration, the tool increases the proba-
bility of hitting the same defect over time. Previously where TRDs occurred, the causes were difficult to record.
This iterative method, using the same non-deterministic workload, increased the probability of hitting defects,
therefore making it easier to reproduce the defects for debugging.

Additionally, the number of successful iterations before detecting a defect provided management with a
quantitative and objective measure of the quality of the software. The number of iterations is independent of
CPU speed. As a result, the number of successful iterations differs from the execution time for a workload,
which depends on the CPU speed. This led to the formal requirement of a minimum number of successful
iterations before the product could be shipped.

The approach was first applied to monitoring, and because of its success it was extended to crash recovery
and fast communication manager. It is suitable to any areas of DB2 software where timing-related concerns
may exist. These are areas involving communications between different nodes, data transfer between nodes and
monitoring of nodes.

5.1 FIT Overhead

The mean number of iterations required to find a defect varieswith time. The number is small at the beginning
of the test cycle and grows towards the end. The value of the number depends on the component under test.
The ideal value is infinity, where no defects are found and every iteration is successful. However, in reality, the
principle of “good enough” reliability discussed in software reliability engineering is used, and test management
decides on a particular target value for exiting the test cycle. The higher this target value, the higher the reliability
of the component is deemed.

There are two types of overhead for this technique: (a) extratooling effort in automating the FIT approach
by making a FIT tool and (b) extra computational effort of running a FIT tool. For (a), the extra effort is mostly
a one-time effort at the beginning of the test cycle. However, this tooling effort is small compared to the effort
spent on the entire test cycle. For (b), the extra effort is negligible since most of the time of the FIT tool is spent
running the test and only a small amount is spent preparing for each new iteration.

6 Conclusions

The FIT approach has many benefits. They included an increasein the number of timing-related defectTRDs
found in system testing as opposed to such discoveries by customers and a new objective measurement for the
quality of the DB2 timing-affected components that is independent of the platform on which the software runs.

One of the side effects of the quantitative measure of quality is the ability to determine the mean number of
iterations to failure for components tested with the FIT approach. For crash recovery functionality, for example,
this number has improved over tenfold since this method was employed and the measurement taken.

The first major lesson is that the automation created to support FIT is crucial because the large state space
has meant that the ease in executing the algorithm has had many unexpected but welcome effects. For example,
FIT has been able to identify stability regression defects in real time during the development cycle, that is, whilst
testing for build-to-build regressions. More specifically, during continuous crash recovery testing, when testing

66

from one build to the next, there are sometimes regressions in both runtime and crash recovery testing. These
are all rooted in recently integrated code that is intended to correct a defect or add new functionality. Because of
the existing automation and the ease of implementing the method, these build-to-build regressions were easily
discovered.

There was also a significant return on the initial investmentto create the tools, since with the tools several
workloads could be run simultaneously and easily, and left to sample the execution state space for crash recovery,
monitoring, and fast communication manager. The tools would easily find new defects while running over many
days. Instead of requiring the previous tester time to explore the state space, the tools are left fishing for defects
on their own. This is inexpensive.

“Build it and they will come” – this quote does not apply to testing tools. Complicated tools, however
useful, are left to gather dust. One of the other important points for FIT beyond automation was the ease of use
of its automation. If setup of tooling is complicated and running the tool is complicated, then it will likely be
used sparsely in testing. The FIT tools were carefully crafted to avoid such difficulty and have been intensely
employed to validate the product. This has meant that many more defects have been found. The tooling has also
been built so that one tester can easily set it running on manymachines. Moreover, the tool alerts the tester when
a defect is found; hence the tester does not have to monitor the test systems continuously

The underpinning factor has been the feasibility of this approach to test automation. This has resulted in
returns that far exceed the investment. The future work withthis approach will be in extending it to additional
areas of the DB2 product.

References

[1] H. Bati and L. Giakoumakis and S. Herbert and A. Surna. A genetic approach for random testing of database systems.
In Proceedings of the 33rd International Conference on Very Large Data Bases,pages 1243-1241,Vienna Austria,
September 2007. VLDB Endowment

[2] J. W. Duran and S. C. Ntafos. An Evaluation of Random Testing. IEEE Transactions on Software Engineering,SE-1-
(10):438-443. July 1984.

[3] R. Hamlet.Random Testing. Wiley. 1994.
[4] DB2 for Linux, UNIX, and Windows . http://publib.boulder.ibm.com/infocenter/db2luw/v9. IBM Press, Current

February 2008.
[5] Sen K. Effective random testing of concurrent programs.In Proceedings of the 22nd IEEE/ACM international Con-

ference on Automated Software Engineering, pages 323-332, Atlanta, Georgia, USA, November 2007. ACM New
York

[6] E. Kit. Software Testing in the Real World. Addison-Wesley Professional. 1995
[7] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multi-threaded programs. InPro-

ceedings Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’07), pages 446 - 455. San Diego, California, USA, June 2007. ACM,New York, NY.

[8] W. Visser and K. Havelund and G. Brat and S. Park. Model checking programs. InProceedings of the 15th Interna-
tional Conference on Automated Software Engineering. IEEE Computer Science Press. September 2000.

Trademarks

IBM and DB2 are trademarks or registered trademarks of International Business Machines Corporation in the United
States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the UnitedStates and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

67

68

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

