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Abstract

With the increasing popularity of recommender systems in commercial services, the quality of recom-
mendations has increasingly become an important to study, much like the quality of search results from
search engines. While some users faithfully express their true opinion, many provide noisy or incorrect
ratings which can be detrimental to the quality of the generated recommendations. The presence of noise
can violate modeling assumptions and may thus result in unstable estimates or predictions. Even worse,
malicious users can deliberately insert attack profiles in an attempt to bias the recommender system to
their benefit. This is a particularly important issue, and itis necessary for systems to provide guarantees
on the robustness of recommendations to ensure continued user trust. While previous research has at-
tempted to study the robustness of various existing Collaborative Filtering (CF) approaches, the explicit
design of robust recommender systems remains a challengingproblem. Approaches such as Intelligent
Neighborhood Selection, Association Rules and Robust Matrix Factorization are generally known to
produce unsatisfactory results. In this paper, we review previous approaches to robust collaborative
filtering; we also describe promising recent approaches that exploit a Singular Value Decomposition
(SVD) and are both accurate as well as highly stable to shilling.

1 Introduction

Collaborative filtering technology is being widely used on the web as an approach to information filtering and
recommendation by commercial service providers likeAmazonandYahoo!. For multimedia data like music
and video, where pure content-based recommendations perform poorly, collaborative filtering is the most viable
and effective solution, and is heavily used by providers like YouTubeandYahoo! Launchcast. For malicious
attackers, or a group interested in popularizing their product, there is an incentive in biasing the collaborative
filtering technology to their advantage. Such attacks have been refered to asshilling attacks, and attackers as
shillers. Since user profiles of shillers looks very similar to an authetic user, it is a difficult task to correctly
identify shilling attacks. Early algorithms exploited signatures of attack profiles and were moderately accurate.
In particular, by looking at individual users and mostly ignoring the combined effect of such malicious users,
these detection algorithms suffred from low accuracy in detecting shilling profiles. Recent approaches based
on SVD (cf. [8]) have proved to be much more accurate, exploiting thegroup effect, i.e. eliminating groups
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of attackers which seem to work together. However, employing such detection approaches as a preprocessing
step are computationally expensive, and essentially not anonline process. The next logical step is to build in
detection into the recommendation algorithm itself; this work provides a survey of such robust collaborative
filtering algorithms proposed in the past and until recently.

1.1 Shilling attacks on Collaborative Filtering

Collaborative Filtering systems are essentially social systems which base their recommendation on the judgment
of a large number of people. Like other social systems, they are also vulnerable to manipulation by malicious
social elements. As an example, a loosely organized group managed to trick the Amazon recommender into
correlate the bookSix Steps to a Spiritual Life(written by the evangelist Pat Robertson) with a book for gay
men1.

A lot of web-enabled systems provide free access to users viaa simple registration process. This can be
exploited by attackers to create multiple identities for the samesystem and insert ratings in a manner that
affect the robustness of a system or algorithm, as has been studied in recent work [6].Shilling attacksadd
a few user profiles which need to be identified and protected against. Shilling attacks can be classified into two
basic categories: inserting malicious profiles which rate aparticular item highly are calledpushattacks, while
inserting malicious profiles aimed at downgrading the popularity of an item are callednukeattacks. Various
attack strategies were then invented; these include [3]:

1. Random attacks, where a subset of items is rated randomly around the overallmean vote.
2. Average attacks, where a subset of items is rated randomly around the mean vote of every item
3. Bandwagon attacks, where a subset of items is rated randomly around the overallmean, and some popular

items are rated with the maximum vote.

Random and Bandwagon attacks are low-knowledge attacks requiring information only about some popular
items and overall vote statistics. Average attacks requiremore information and have been shown to be near
optimal [7] in impact. They have also been observedly difficult to detect [15].

The strength of shilling attacks is specified using two metrics: filler sizeandattack size. Filler size is the
set of items which are voted for in the attacker profile, usually measured in %. Attack size refers to the number
of shilling profiles inserted into user data. The impact of the attacks is measured by the increase in the number
of users to whom an attacked item is recommended. Generally,average attacks are strogner than random or
bandwagon attacks.

Metrics for Collaborative Filtering and Shilling The task of evaluating predictions in collaborative filtering
is easily described as the measurement of thedeviationfrom observed values; accuracy of a CF algorithm is
measured over some held-out data from the training dataset.The effect of an attack is measured by the deviation
in predited ratings before and after attack profiles have been added.Prediction Shiftmeasures the average change
in prediction of the attacked item (before and after attack)of a CF algorithm. This metric is also sensitive to the
strength of an attack, with stronger attacks causing a larger prediction shift.

Hit Ratio measures the effect of attack profiles on top-k recommendations. Since the end effect of a rec-
ommender system is a list of items recommended to a particular user, this metric captures the fraction of users
affected by shilling attacks. LetHu,i = 1 if an item i is a top-k recommendation to useru, andHu,i = 0
otherwise. Hit ratio is a fraction between 0–1; when expressed as a percentage (%), it is defined as follows:

H =
100

N
×

∑

u

∆Hu,i, s.t.N = # users (1)

1Story athttp://news.com.com/2100-1023-976435.html.
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Finally, Precision and recallare standard IR measures which are also applicable widely; various detection
aaproaches report precision and recall for various siyes ofattacks. Clearly, high precision is an indication of an
accurate method.

2 Robust Collaborative Filtering using Intelligent Neighbor Selection

The earliest algorithms for collaborative filtering reliedon neighborhood formation based on user similarity;
these are known ask-nearest neighbor (kNN) CF algorithms. These algorithms remain extremely popular due to
their simplicity and intuitiveness. This family of algorithms use a weighted reconstruction of the votes of users
similar to the current user as a prediction for the rating fora previously unrated item. Various improvements
have been made to the basic mechanism of predicting votes using Pearson’s correlation, but they mostly comply
to the following scheme: assume the user database consists of a set of votesvi,j corresponding to the vote for
useri on itemj. The predicted vote for an active user for itemj, pa,j is a weighted sum of the votes of other
users:

pa,j = va + κ

n
∑

i=1

w(a, i)(vi,j − vi), wherew(a, i) is a similarity function (2)

As explained in Section 1.1, attacks in recommender systemscan be achieved by the addition of malicious
profiles. By special construction, these profiles can be madeto look extremely similar to influential users. The
impact is that such malicious users can be wrongly identifiedasneighborsfor normal users, thus influencing the
results of the recommendation algorithm. O’Mahony et al.[12] first discussedneighbourhood filtering, where
the key idea is to prevent suspicious users from influencing other users. The strategy for selecting useful neigh-
bors takes into account thereputationof all users participating in the recommendation process. The reputation
measurement strategy is adapted from literature and requires the computation of a reputation score for a partic-
ular user who is providing ratings on an itemyi. The first step is calculating the reputation of users who form
a neighborhood for other users that have ratedyi; the second step is to filter the neighborhood and remove any
possible malicious ratings. The observation here is that ifthere is indeed an attack, there would be a marked
difference between real users and malicious ones, thus leading to two clusters; thus clustering is performed to
detect if such a pattern is observed for a particular item. Given that an attack may be trying to promote an item,
or demote it, its essential to know thedirection of the shift for this filtering strategy to work. The approach
employed by [12] overcomes this by thresholding the difference in the mean values of the two clusters; if this
is above a threshold (evaluated empirically), an attacked is supposed to have occured. To detect which cluster
contains the attack users, the one with the lower standard deviation is chosen. The authors provide experimental
evidence that this strategy has successful outcome.

The approach suffers from some drawbacks: the detection of the wrong cluster of users can result in filtering-
out of genuine users, and thus predicting baised estimates.Further, real life attacker might employ strategies
which ensure more deviation in their votes, thus fooling thefiltering process. Also, there might be both push
and nuke attackers for the same item, which the algorithm is not designed to handle. Thirdly, the running
time of the algorithm will be much higher than what is required for large-scale systems. Fourthly, given that
neighborhood selection methods are thresholded, it is possible that the number of attackers is so high that the
selected neighbours of a user may all be malicious; thus the outlined approach might fail in the face of large and
continuous attacks.
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3 Robust Collaborative filtering using Existing Approachces: Association Rules
and PLSA

4 Robustness of Association Rules

A popular approach for frequent-pattern mining is the use ofassociation rules. This technique has been used
for market basket analysis, finding interesting patterns ofwhat users buy together, and have been found useful
as prediction models too [1]. Applying this technique to user ratings, [13] suggest how a robust method for
collaborative filtering could be devised. The application of the above approach has been demonstrated to pro-
vide significant robustness to user recommendations. As compared to kNN, k-means clustering and PLSA, the
outlined algorithm has a very lowhit-ratio, meaning that a small fraction of users are recommended an attacked
item. For attack sizes below 15%, the hit-ratio of Association rule-based CF is below 0.1, while for k-NN it
ranges from 0.8 to 1.0 (meaning all users are recommended an attacked item). For more details, we refer the
interested reader to reported numbers from [13](Fig 2).

Clearly, the hit-ratio for association rules is very low, thus implying high robustness. This however comes at
the cost of accuracy; Sandvig et al. report that the coverageof this algorithm is below 0.5, which means that the
algorithm cannot make any predictions for over half the items in the recommender system. These are typically
items which are not very frequently rated. This makes the above approach suitable only in cases where top-n
recommendations are required, rather than a complete set ofpredictions.

4.1 Robust Collaborative filtering using PLSA

Probabilistic Latent Semantic Analysis (PLSA) is a well known approach for text analysis and indexing used
to discover hidden relationships between data; it has also been extended to collaborative filtering [5]. PLSA
enables the learning of a compact probabilistic model whichcaptures the hidden dependencies amongst users
and items. While accuracy has been a well known advantage of PLSA, recent studies have also concluded that
PLSA is a very robust CF algorithm, and is highly stable in theface of shilling attacks. [11] indicates that
the prediction shift for PLSA is much lower than similarity based approaches; [7] investigated the reasons for
PLSA’s robustness over many experiments and observed the model to understand the mechanisms. The intuition
is that PLSA leads to clusters of users (and items) which are used to compute predictions, rather than directly
computing neighbors. However this intuition is challengedby experimental results using a k-means clustering
algorithm in the same work. Clearly, shilling profiles deceive clustering algorithms due to their high similarity
with normal users.

[7] also outlines a detection approach for shilling attacksexploiting the high stabilty of PLSA. The main
idea is that PLSA is a mixture model where membership to a distribution is not constrained; a data point can
belong (probabilistically) to many distributions. However some clusters maybetighter thn others: [7] shows
that using the average Mahalanobis distance to indetify tight clustes leads o the detection of attack profiles with
reasonably high accuracy.

Robust PLSA using shilling detection We suggest using the following strategy to further robustify PLSA: we
eliminate the tightest clusters, as identified by the above tightness measure. We now renormalize the probability
distribution of the remaining clusters (p(z|u)) so that they sum up to 1. One can even attempt to eliminate the
suspicious users, randomly perturb the parameters and rerun the last few steps of training. Initial results of this
version have maintained the prediction accuracy, while reducing the prediction shift in a statistically significant
manner. A more thorough investigation of this idea is under progress.
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5 Robust Collaborative Filtering using SVD

SVD stands for Singular Value Decomposition; it is a method of factorizing a matrix into two orthonormal
matrices and a diagonal matrix. SVD has become an important linear algebra procedure over the last 2 decades
due to its extensive application in Information Retrieval and Data mining. It has been used for Latent Semantic
Analysis and Collaborative Filtering with much success. Since SVD is fundamental to the algorithms discussed
in this paper, we explore SVD in detail. Further, we briefly explain the Robust Matrix Factorization algorithm
described in [9] which is also based on SVD and is robust variant of SVD. Finally, we explain our proposed
VarSelect SVD variant as a robust CF solution.

5.1 Singular Value Decomposition (SVD)

SVD is a more general form of Eigen value decomposition (EVD), applicable to rectangular matrices. SVD
factorizes a rectangularn × m matrix D asD = UΣV

T whereU,V are unitary normal matrices andΣ is
a diagonal matrix of sizerank(D) ≤ min(m,n), whererank(D) is the rank of the matrixD. Moreover, the
entries on the diagonal ofΣ are in non-increasing order such thatσi ≥ σj for all i < j. Note that we may
chose to set all singular valuesσi = 0, i > k for somek ≤ rank(D) (sayk = 10), leading to a low-rank
approximationDk of the matrixD (Dk = UkΣkV

T
k ).

SVD for Collaborative Filtering: Applications of SVD to Collaborative Filtering assume the representation
of user-item ratings by such an × m matrix D. Typically, user–item matrices are very sparse (≤ 5% non-zero
entries). Initial applications of SVD to CF (c.f. [14]) compensated for sparsity by replacing the missing values
by overall mean. This approach, though more successful thanprevious CF approaches, is highly biased towards
the used means. In addition, the lack of sparsity implies a larger computational problem to solve. In the last
decade, there has been significant research on SVD for large and sparse matrices e.g.PROPACKandSVDPACK.
However, these approaches do not treat missing values in a principled fashion, either treating them as zeros, or
doing mean imputation. A recent algorithm by Gorrell [4] proposed a new approach to computing SVD for
virtually unbounded matrices. This method is based on the Generalized Hebbian Algorithm and calculates SVD
by iterating through only observed values. The method has been found to be highly accurate for CF and scales
easily to the NetFlix dataset with 100 million votes.

5.2 Robust Matrix Factorization

Robust regression problems have been studied in a linear setting where observablesY and inputsX are known
andY is assumed to be noisy. Robust Matrix Factorization (RMF) isalgorithm which performs a robust SVD
for CF using an alternating fitting scheme [9]. The core idea is the use of bounded cost-functions, which limit
the effect of outliers. There is an entire body of work on suchbounded functions which are effective against
noise; these functions are called Maximum Likelihood estimators orM-estimators.

Armed with a robust estimator, we would like the perform the following Matrix factorization: assume we
want to find the rank–1 factorsG,H as for dataD. such that

argmin
G,H

∑

Dij 6=0

ρ(Dij − Gi · Hj) s.t. ρ(r) =

{

|r| ≤ γ 1

2γ
r2 ,

|r| > γ |r| − γ
2

whereρ is an M-estimator called the Huber M-estimator (see [9]. Theabove optimization can be solved using
Iteratively Re-weighted Least Squaresand is described by [9]. Experiments show that Robust Matrixfactor-
ization algorithm performs well in the face of moderate attacks. Clearly, the effect of shilling is low at small
attack sizes, as the majority opinion is given more importance. However, once the number of votes by shillers
are more than actual users, RMF starts treating the shillers’ view as the majority opinion. Mehta et al. also show
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that RMF is more tolerant to shilling and model deviations than SVD and pLSA: importantly, the prediction
accuracy of RMF is higher than any other method; this trend continues even in the face of attacks.However for
larger attacks, RMF is clearly inadequate at a robust CF algorithm. In the next section, we show how the RMF
and SVD frameworks can be further robustified to yield our desired robust CF algorithm.

5.3 VarSelect SVD for Collaborative Filtering

VarSelect [8] is a variable selection algorithm based on PCAfor detecting attack profiles. Shilling profiles tend to
be highly correlated, which is a result of the colluded nature of shilling attacks. It is known that for multivariate
data, highly correlated variables add very little information, and thus are eliminated by dimensionality reduction
methods. VarSelect uses Principal Component Analysis to find which users add least information, and produces
a ranking of users in order of utility. Experiments have shown that shillers are found with high precision at the
top of these rankings.

VarSelect SVD: We first describe the broad framework for our proposed algorithm. SVD and PCA are closely
related since PCA can be achieved via SVD. In essence, PCA seeks to reduce the dimensionality of the data by
finding a few orthogonal linear combinations (called thePrincipal Components) of the original variables with
the largest variance. A principal component is a linear combination of the variables and there are as many PCs
as the number of the original variables. Principally, PCA isequivalent to performing an eigen decomposition
of thecovariancematrix of the original data. Since we want to combine VarSelect with Collaborative Filtering,
SVD provides the required framework. The algorithm supports two phases: detection (followed by removal
of profiles/votes), and recommendation/model building. For efficiency, it is required that these two phases can
share computational steps. Since the detection may not be perfect, no user profiles should be completely deleted
and even suspected attackers should be able to receive recommendations. Further, the entire procedure should
be unsupervised, i.e. no further input should be required after the detection phase has been performed (e.g.
thresholding how many shillers are there in the system).

An important observation we make here is that calculating the covariance matrix is unnecessary; we can
compute the SVD ofX to get the loading matrixU (which contains the Principal components). This saves a
significant computational effort as Eigen-decomposition of large covariance matrices is very expensive. Note
that PCA requiresX to be zero-mean. This can be explioted by the VarSelect procedure which has been shown
to require only the first 3–5 Principal components suffice to detect attack profiles reliably. Thus a complete SVD
is not required: instead, partial eigen-decomposition canbe performed. Such routines are available assvdsand
eigsin MATLAB and Octave, and use the Arnoldi method.

Finding suspected Attack profiles:PCA can find a set of variables which are highly correlated, a fact ex-
ploited in the design of Varselect. Varselect essentially performs Variable Selection using a selection criteria
calledNormalized Loading Combination. There are several other selection procedures discussed inliterature
([2, 10] provides a good overview of these criteria). [10] reports that the simplest strategy of averaging loading
coefficients (LC) performs the best. We choose the following heuristic: normalize the scores so that they sum
to 1, and then choose all user with scores below1/n for n users. We observe also that 50% recall is the lowest
observed; thus we suggest that for attacks of upto 10%, flagging top-20% should suffice. These selected users
are known asflaggedusers.

Computing Recommendations The recommendation model is finally based on SVD as well. In essense, we
perform SVD on the data matrix treating flagged users in a special manner. To simplify the prediction model,
we absorb the eigenvalues into the left and right factors, asin the GHA-based SVD method. As previously, the
data matrix is factorized into a factorsG andH, such that the Frobenius norm of the remainder is minimized:

argmin
G,H

||D− GH||F , (3)
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In the context of Collaborative Filtering, note that the left matrix G is user specific, i.e. each user has a corre-
sponding row encoding their hidden preferences. Similarly, the right matrixH contains a column for each item.
The solution to the above optimization requires iterating through all user votes and performing Hebbian updates.
Every vote potential influences bothG andH during the training phase.

Our modification in presence offlaggedusers is to only update the left vectors and not the right vectors. In
other words, the contributions of suspicious users towardsthe prediction model is zero, while the model can still
predict the votes for flagged users. For normal users, we update both left and right vectors as with SVD-GHA.
This elegant s solution comes with a very small computational cost of checking if a given user is flagged as
suspicious. Note also that the model can be initialized withvalues learnt from the partial SVD performed for
PCA. We note that this results in faster convergence for the already computed dimensions. Additionally, we
use a regularization parameterκ (set to 0.01); this step has been found to provide better model fitting and faster
convergence.

One issue with the above algorithm is that coverage is low forhigh number of suspected usersr. It is possible
that some items are voted on mostly by flagged users, hence enough information may not be known. Therefore,
even interested users may not be recommended that item. To improve coverage, we ignore only the extreme
votes of the flagged users (i.e. maximum vote 5/5 and minimum 1/5); middle votes can be still used to train the
right vectors. This removal significantly weakens potential bandwagon attacks as well as average attacks, since
the largest deviations in prediction occur due to extreme votes.

6 Discussion

In the previous sections, we have described several state-of-the-art algorithms for robust collaborative filtering.
Clearly, there has been more work in the detection of shilling attackers, rather than modelling shillers as a type
of noise. In our opinion, a robust recommender algorithm should have the following characteristics:

1. Highly stable to low number of attack profiles inserted on the attacked item (i.e. low prediction shift)
2. Moderately–Very stable against medium sized attacks (< 5% attackers)
3. Low average effect on prediction accuracy (mean average error) on non-attacked items.
4. Very high stability to the addition of random noise.
5. No loss of accuracy if no attackers are present in a dataset.
6. Ability to partially trust users, i.e. to be able to generate recommendations for suspicious users.
7. Scalability to handle hundreds of thousands of users witha few thousand possible attackers.
8. Ability to handle multiple simultaneous attacks on different items.
9. Ability to generalize to attack models not encountered intraining.

10. Non-requirement for processing the entire dataset again when new profiles are added.
11. Being as parameter-free as possible: the algorithm should be able to figure out various thresholds based

on the data without requiring human intervention.

Experimental results published previously show that most algorithms surveyed by us do not conform to a
majority of the items in the above checklist. Almost all algorithms we studied have a high degree of stability
against medium sized attacks. Some of the algorithms are able to handle low attacks, and detect them reliably.
Surprisingly, most of the algorithms meet point 3 and 4 as well: random noise has low effect on both neighbor
selection based methods and model-based methods. The performance of these algorithms also does not suffer
on non attacked items; the only exception might be in methodswhere there is an explicit step for detecting an
item under attack, and this step gives false positives.

On the issue of running these algorithms on untainted data without any attack profiles, most researchers
have not reported the performance of their approaches. However, all algorithms that do some user filtering
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(e.g. removing suspicious users) do suffer from loss of accuracy. An interesting result in this context has been
reported in [9]: in this work, some part of the user ratings was removed. The removed data was a random
fraction of the extreme votes (say the lowest, and the highest numerical votes), usually to the tune of 20% of
a user’s votes; for users less than 10 votes. Various algorithms (e.g. kNN, PLSA, SVD and RMF) were run
on the remaining 80% data; the results were that all algorithms gained significantly more stability to shi;lling
attacks, to the tune of 20% reduction in prediction shift. The RMF and SVD algorithms had even higher stability;
interestingly all algorithms under test did not suffer froma large decrease in predictive accuracy. However, the
overall performance of SVD and PLSA based algorithms was much better than kNN.

With respect to partial trust, all algorithms which explicitly remove suspicious user profiles will degrade user
experience for suspected process. Since the detection of malicious users profiles is not perfect, false positives
will arise from time to time. An ideal algorithm should thus be able to accept that attackers maybe in the dataset,
and model this explicitly. The main idea is that all users should be able to receive recommendations, and possibly
the user interface should not change at all. The algorithm may internally discard some user data for training,
or some ratings and making this transparent to users. Algorithms which do this provide high stability as well:
VarSelect SVD and Association Rule mining are examples of this. Intelligent neighbor filtering can do this as
well; it has been suggested to weight the contribution of a user’s neighbors by the degree of trust (which can be
easily expressed as a fraction between 0–1) with good success.

Scalability is a general issue for good algorithm design; efficient algorithms are available for several meth-
ods used for recommendation and also for detection. With increasingly cheap hardware and cloud computing
becoming common, computational challenges are slowly fading away. However, responsiveness of systems to
sudden attacks is crucial. Several approaches seem to run inbatches, making it difficult to detect attacks online.
To a certain extent, the training part of the recommendationmodels is also offline, thus restricting the extent
of the impact. However, the overall scalability of detection is an important aspect: several approaches have
expensive detection algorithms which cannot reuse the previously trained models, or incrementally train their
models. Approaches like Varselect SVD which are online in nature are highly scalable as a result.

In the real world, several interest groups would try to boosttheir products at the same time. Thus one can
expect more than one type of attack going on at the same time. Almost all published work on detection however
consider only one type of attack at a time for their experimental. It is clearly possible that several of these
might actually be effective against multiple attacks; for example the detection approaches proposed by [3] use
supervised classification trained on generated examples ofseveral types of attacks. These classifiers are then run
on each profile, thus possibly detecting more than one types of attack at a time. Similarly, VarSelect detection
and VarSelect SVD were demonstrated to be effective againstuncoordinated attacks. While no such results have
been discussed by [13], it is likely that this approach will be stable to multiple attacks as there wont be much
co-occurrence data for the attacked items to make attack votes significant for the association rule learner (recall
that less than 50% of items are actually considered by this approach when creating recommendations.)

The continued menace of email spam shows that given enough incentive, spammers can innovate and create
new types of attack campaigns, While various attack models for shilling have been identified, it is ovbious that
there are several strategies for new attacks that spammers can come up with. Thus it is imperative for robust CF
algorothms to be able to generalize to new types of attacks. Supervised learning methods can clearly fail in this
regards; for unsupervised methods to suceed, it is important to understand the intent of the attackers. [7] showed
that if the intent is to maximize the prediction shift for a large number of users, the resulting attack model is the
average attack. [8] also discusses how thegroup effectis a result of spammers trying to maximize their impact.
When obfuscation strategies are employed to add stealth to attack profiles, the strength of attacks goes down.
Exploiting the group effect is one mechanism for general attack detection.

One practical aspect we noticed is that several algorithms have too many parameters that need to be manually
set. In a real world setting, exploring these parameters manually may not be possible or efficient. It would be
better if the algorithm can search its own parameters, either using heuristics, or some principled mechanism (like
cross-validation). VarSelect SVD is an example of such an algorithm; while the parameter search is not optimal,
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there is a broad range of stable values for the parameterr which leads to good stabilty and high maintainability.
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