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Letter from the Editor-in-Chief

Changing Editors

Editors for the Data Engineering Bulletin serve two year appointments and are responsible for two issues over
that time on topics that they select with a bit of coordination from me. This means that with some regularity (on
a two year cycle) I have the task, which is actually a pleasure, of thanking outgoing editors for working hard in
producing the special issues that capture the current stateof the art in exciting areas of current interest in our
field. The outgoing editors during this cycle are Natasha Ailamaki, Jayant Haritsa, Nick Koudas, and Dan Suciu.
The success of the Bulletin depends absolutely on having great editors like these. Over this past two years, these
editors have brought you issues on data quality, data provenance, self managing systems, web scale systems,
multi-lingual systems, mobile systems, and applications in social sciences. Thank you Natasha, Jayant, Nick,
and Dan for serving the Bulletin so well during your terms as editor.

Selecting editors is the most important task that I have. I have been very lucky to have been able over the
years to find outstanding editors who have produced wonderful issues of the Bulletin. My luck seems to be
holding, and I can proudly announce the appointment of new editors for the next two years. The editors are
Sihem Amer-Yahia of Yahoo!, Beng Chin Ooi of the National University of Singapore, Jianwen Su of UC Santa
Barbara, and Vassilis Tsotras of UC Riverside. The new editors all have outstanding research reputations and
great professional visibility. I welcome them to the Bulletin and look forward to working with them over the
next two years to continue producing the fine special topic issues that make the Bulletin the unique publication
that it is.

The Current Issue

There are an increasing number of sites on the web involving social networking and user provided content. A real
challenge in this environment is to not only find the sites of interest but to gauge how useful the vast amount of
content on these sites may be. It is clearly impossible to personally review it all. Even doing a search frequently
produces an overwhelming number of ”answers”, the number being large enough to make the results at times of
limited use. Recommendation functionality is increasingly provided by these sites to improve the prospects of
users finding the information that they want or connecting toothers with similar interests, etc. Recommendation
systems is the topic of the current issue.

Sihem Amer-Yahia has succeeded in enticing authors from some of the leading vendors as well as leading
researchers in this new space to contribute articles showcasing their efforts in recommendation systems. The
current issue shows some of the diverse approaches to research, implementation and deployment of such sys-
tems. It continues what I regard as the unique character of the Bulletin in tapping both reseach and industrial
work to give a clearer and more complete picture of the field. Iwant to thank Sihem for doing a fine job on
this issue and can ”recommend” the issue to you, our readers,in what is my first contribution to the field– i.e.
recursive recommendation!

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Social systems are becoming the preferred destinations to share content (whether they are generated by the
user as in Flickr and YouTube, or by other means as in the case of del.icio.us), express opinions (in the form
of tagging, rating, and/or reviewing), and build connection with other users (whether they are real-life friends
or merely people with similar interests). Finding interesting and relevant content on those sites, however, has
become increasingly difficult due to the enormous amount of high quality content available. There are three
main channels for finding content in those sites:browsing, searching, andbeing served with recommendations.
Search requires to be revisited in a context where the opinion of other users matters. Recommendation has been
receiving growing attention lately. It is therefore not surprising that more and more sites have begun to adopt
recommendation as one of the core mechanisms with which theypresent the user with content. The ability to
understand how search and recommendation interact, in particular, in the presence of social ties, is crucial for
the survival of those user-driven sites.

This issue is a call to the database community to learn about recommender systems and incorporate social
aspects in database research. Social systems constitute a great opportunity for socially-inspired research and a
great source of data. This issue is a good start towards the understanding of social databases. It first presents two
papers which contain an overview of recommendations strategies and state-of-the-art solutions for robustness,
an important quality management issue. The third paper describes a scalable and efficient recommendation
infrastructure already in use at Yahoo! The “social” aspectbecomes more prominent with the fourth contribution
which reports on a user study of the interaction between search and recommendation, followed by an IR-inspired
approach for socially-aware search, and finally, a proposalfor a social SQL.

I would like to thank the authors who graciously volunteeredtheir time and effort in putting together this
special issue.

Sihem Amer-Yahia
Yahoo! Research

New York City, USA
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A Survey of Collaborative Recommendation and the
Robustness of Model-Based Algorithms∗

J.J. Sandvig and Bamshad Mobasher and Robin Burke
DePaul University

School of Computer Science, Telecommunications
and Information Systems

{jsandvig,mobasher,rburke}@cs.depaul.edu

Abstract

The open nature of collaborative recommender systems allows attackers who inject biased profile data
to have a significant impact on the recommendations produced. Standard memory-based collaborative
filtering algorithms, such ask-nearest neighbor, are quite vulnerable to profile injection attacks. Pre-
vious work has shown that some model-based techniques are more robust than standardk-nn. Model
abstraction can inhibit certain aspects of an attack, providing an algorithmic approach to minimizing
attack effectiveness. In this paper, we examine the robustness of several recommendation algorithms that
use different model-based techniques: user clustering, feature reduction, and association rules. In par-
ticular, we consider techniques based onk-means and probabilistic latent semantic analysis (pLSA) that
compare the profile of an active user to aggregate user clusters, rather than the original profiles. We then
consider a recommendation algorithm that uses principal component analysis (PCA) to calculate the
similarity between user profiles based on reduced dimensions. Finally, we consider a recommendation
algorithm based on the data mining technique of associationrule mining using the Apriori algorithm.
Our results show that all techniques offer large improvements in stability and robustness compared to
standardk-nearest neighbor. In particular, the Apriori algorithm performs extremely well against low-
knowledge attacks, but at a cost of reduced coverage, and thePCA algorithm performs extremely well
against focused attacks. Furthermore, our results show that all techniques can achieve comparable
recommendation accuracy to standardk-nn.

1 Introduction

A widely accepted approach to user-based collaborative filtering is thek-nearest neighbor algorithm. However,
memory-based algorithms such ask-nn do not scale well to commercial recommender systems. Model-based
algorithms are widely accepted as a way to alleviate the scaling problem presented by memory-based algorithms
in data-intensive commercial recommender systems. Building a model of the dataset allows off-line process-
ing for the most rigorous similarity calculations. In some cases, this is at the cost of lower recommendation
accuracy [1].

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by the National Science Foundation Cyber Trust program under Grant IIS-0430303.
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A positive side effect of a model-based approach is that it may provide improved robustness against attacks.
An adaptive system dependent on anonymous, unauthenticated user profiles is subject to manipulation. The
standard collaborative filtering algorithm builds a recommendation for a target user by combining the stored
preferences of peers with similar interests. If a malicioususer injects the profile database with a number of
fictitious identities, they may be considered peers to a genuine user and bias the recommendation. We call such
attacksprofile injection attacks(also known asshilling [2]).

Recent research has shown that surprisingly modest attacksare sufficient to manipulate the most common
CF algorithms [3, 2, 4, 5]. Profile injection attacks degradethe objectivity and accuracy of a recommender
system over time, causing frustration for its users and potentially leading to high user defection. However, a
model-based approach is an abstraction of detailed user profiles. We hypothesize that this abstraction minimizes
the influence of an attack, because attack profiles are not directly used in recommendation.

In our study, we have focused on the robustness of user clustering, feature reduction, and association rules.
We first consider techniques based onk-means clustering and probabilistic latent semantic analysis (pLSA) that
compare the profile of an active user to aggregate user clusters, rather than the original profiles. Probabilistic
latent semantic analysis is used infer hidden relationships among groups of users, which are then used to form
“fuzzy” clusters. Each user has a degree of association withevery cluster, allowing particularly authoritative
users to exercise greater influence on recommendation.

We then consider a recommendation algorithm that uses principal component analysis (PCA) to calculate the
similarity between user profiles based on reduced dimensions. Principal component analysis tries to extract a set
of uncorrelated factors from a given set of multicolinear variables. By keeping only those principal components
that explain the greatest amount of variance in the data, we effectively reduce the number of features that must
be used for a similarity calculation.

Finally, we consider a recommendation algorithm based on the data mining technique of association rule
mining using the Apriori algorithm. Association rule mining is a technique common in data mining that attempts
to discover patterns of products that are purchased together. These relationships can be used for myriad purposes,
including marketing, inventory management, etc. We have adapted the Apriori algorithm [6] to collaborative
filtering in an attempt to discover patterns of items that have common ratings.

The primary contribution of this paper is to demonstrate that model-based algorithms provide an algorithmic
approach to robust recommendation. Our results show that all techniques offer large improvements in stability
and robustness compared to standardk-nearest neighbor. In particular, the Apriori and PCA algorithms performs
extremely well against low-knowledge attacks, but in the case of Apriori at a cost of reduced coverage, and the
k-means and pLSA algorithms perform extremely well against focused attacks. Furthermore, our results show
that all techniques can achieve comparable recommendationaccuracy to standardk-nn.

2 Recommendation Algorithms

In general, user-based collaborative filtering algorithmsattempt to discover a neighborhood of user profiles that
are similar to a target user. A rating value is then predictedfor all missing items in the target user’s profile, based
on ratings given to the item within the neighborhood. We begin with background information on the standard
memory-basedk-nn. We then present several recommendation algorithms based on model-based techniques of
user clustering (k-means and pLSA), feature reduction (PCA), and associationrules (Apriori).
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2.1 k-Nearest Neighbor

The standardk-nearest neighbor algorithm is widely used and reasonably accurate [7]. Similarity between the
target user,u, and a neighbor,v, is computed using Pearson’s correlation coefficient:

simu,v =

∑

i∈I

(ru,i − r̄u) ∗ (rv,i − r̄v)

√

∑

i∈I

(ru,i − r̄u)2 ∗
√

∑

i∈I

(rv,i − r̄v)2
(1)

whereru,i andrv,i are the ratings of some itemi for u andv, respectively; and̄ru andr̄v are the average of the
ratings ofu andv overI, respectively.

After similarities are calculated, thek most similar users that have rated the target item are selected as the
neighborhood. This implies a target user may have a different neighborhood for each target item. It is also
common to filter neighbors with similarity below a specified threshold. This prevents predictions being based
on very distant or negative correlations. After identifying a neighborhood, we compute the prediction for a target
item i and target useru as follows:

predu,i = r̄u +

∑

v∈V

simu,v(rv,i − r̄v)

∑

v∈V

|simu,v|
(2)

whereV is the set ofk similar neighbors that have ratedi; rv,i is the rating ofi for neighborv; r̄u andr̄v are the
average ratings over all rated items foru andv, respectively; andsimu,v is the Pearson correlation betweenu
andv. The formula computes the degree of preference for all neighbors, weighted by their similarity, and then
adds this to the target user’s average rating.

2.2 k-Means Clustering

A standard model-based collaborative filtering algorithm usesk-means to cluster similar users. Given a set of
user profiles, the space can be partitioned intok groups of users that are close to each other based on a measure
of similarity. The discovered user clusters are then applied to the user-based neighborhood formation task, rather
than individual profiles.

To make a recommendation for a target useru and target itemi, we select a neighborhood of user clusters
that have a rating fori and whose aggregate profilevk is most similar tou. This neighborhood represents the
set of user segments that the target user is most likely to be amember, based on a measure of similarity. For
this task, we use Pearson’s correlation coefficient. We can now make a prediction for itemi as described in the
previous section, where the neighborhoodV is the set of user cluster aggregate profiles most similar to the target
user.

2.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (pLSA) models [8] provide a probabilistic approach for characterizing
latent or hidden semantic associations among co-occurringobjects. We have applied pLSA to the creation of
user clusters in the context of collaborative filtering [9].

Given a set ofn users,U = {u1, u2, · · · , un}, and a set ofm items,I = {i1, i2, · · · , im} the pLSA model
associates an unobserved factor variableZ = {z1, z2, · · · , zl} with observations in the rating data. For a target
useru and a target itemi, the following joint probability can be defined:

P (u, i) =
l

∑

k=1

Pr(zk) · Pr(u|zk) · Pr(i|zk) (3)
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In order to explain a set of ratings(U, I), we need to estimate the parametersPr(zk), Pr(u|zk), and
Pr(i|zk), while maximizing the likelihood of the rating dataL(U, I) =

∑

u∈U

∑

i∈I ru,i · log Pr(u, i) where
ru,i is the rating of useru for item i. The Expectation-Maximization (EM) algorithm is used to perform maxi-
mum likelihood parameter estimation, based on initial values ofPr(zk), Pr(u|zk), andPr(i|zk). Iterating the
expectation and maximization steps monotonically increases the total likelihood of the observed dataL(U, I),
until a local optimum is reached.

We now identify clusters of users that have similar underlying interests. For each latent variablezk, we create
a user clusterCk and select all users having probabilityPr(u|zk) exceeding a certain thresholdµ. If a user does
not exceed the threshold for any latent variable, it is associated with the user cluster of highest probability. Thus,
every user profile will be associated with at least one user cluster, but may be associated with multiple clusters.
This allows authoritative users to have broader influence over predictions, without adversely affecting coverage
in sparse rating data. A recommendation is made for a target useru and target itemi in a similar manner to
k-means clustering.

2.4 Principal Component Analysis

Principal component analysis is a dimensionality reduction technique that tries to extract a set of uncorrelated
factors from a given set of multicolinear variables. Each factor represents a latent pattern that is explained by the
degree of correlation to the explicit variables. Factor analysis in general assumes there is an underlying structure
to the explicit variables. In a recommendation context, thefactors may represent fine-grained groupings of items.
For example, movies may have implicit groupings such as style and genre.

PCA identifies the orthogonal axes of variance within a dataset, where the first axis represents the largest
variance in the data, the second axis represents the second largest variance, and so on. It is based on a theorem of
linear algebra stating that for any real symmetric matrixA, there exists a unitary matrixΛ such thatΣ = ΛT AΛ
andΣ is diagonal.

A solution is found using the eigenvectors ofA, where the columns ofΛ are the eigenvectors ordered in
decreasing eigenvalues. Then,Σii = λi is the ith largest eigenvalue ofA. The principal components are
calculated using the covariance matrix of the user dataU with respect to items, such thatA = 1

n−1UT U . Prior
to calculating the covariance matrix, it is important to adjust the matrixU such that each item vector is zero-
mean. For eachui in U , modify the user vector such thatu′

i = ui − m wherem = 1
n

∑n
i=0 ui is the vector of

item means.
A caveat to this approach is the potential effect of missing data. Collaborative filtering datasets are notori-

ously sparse, but PCA requires a dense covariance matrix to calculate eigenvectors. We have resolved this issue
with an elegant solution. Before adjusting for item means and calculating the covariance matrix, we subtract
each user’s mean rating from the user vector, where the mean is calculated by ignoring the missing ratings. The
idea is that different users may have different “baselines”around which their ratings are distributed. We then set
all missing values to 0 under the assumption that a user has nopreference for an item that has not been rated.

In order to reduce the number of dimensions in the feature vector Λ, we simply keep the eigenvectors with
the largest eigenvalues and discard the rest. There are several ways to choose the number of eigenvectors to keep
for PCA, but in our experiments we have found the percentage of variance criteria to yield the most accurate
results. We keep the number of eigenvectors such that the total cumulative percentage of variance surpasses
some threshold,µ.

To calculate a prediction for a target itemi and target useru, we modify the standardk-nn algorithm, such
that Equation 1 is calculated with respect to the reduced dimension vectors of useru and neighborv. Each
reduced dimension vector is calculated asu′ = Λ′T (u − m), whereΛ′ is the reduced dimension feature vector;
m is the vector of item means; andu is the target user or neighbor vector, mean adjusted according to that user’s
mean.
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2.5 Association Rule Mining

Association rule mining is a common technique for performing market basket analysis. The intent is to capture
relationships among items based on patterns of co-occurrence across transactions. We have applied association
rules to the context of collaborative filtering [10]. Considering each user profile as a transaction, it is possible to
use the Apriori algorithm [6] and generate association rules for groups of commonly liked items.

Given a set of user profilesU and a set of item setsI = {I1, I2, . . . , Ik}, thesupportof an item setIi ∈ I
is defined asσ(Ii) = |{u ∈ U : Ii ⊆ u}| / |U |. Item sets that satisfy a minimum support threshold are usedto
generate association rules. These groups of items are referred to asfrequent item sets. An association ruler is
an expression of the formX =⇒ Y (σr, αr), whereX andY are item sets,σr is the support ofX ∪ Y , and
αr is theconfidencefor the ruler given byσ(X ∪ Y )/σ(X). In addition, association rules that do not satisfy a
minimum lift threshold are pruned, where lift is defined asαr/σ(Y ).

Before performing association rule mining on a collaborative filtering dataset, it is necessary to discretize the
rating values of each user profile. We first subtract each user’s average rating from the ratings in their profile to
obtain a zero-mean profile. Next, we give a discrete categoryof “like” or “dislike” to each rated item in the profile
if it’s rating value is> or≤ zero, respectively. In classic market basket analysis, it is assumed that a customer will
not purchase an item they do not like. Hence, a transaction always contains implicit positive ratings. However,
when dealing with explicit rating data, certain items may bedisliked. A collaborative recommender must take
such preference into account or risk recommending an item that is rated often, but disliked by consensus.

To make a recommendation for a target user profileu, we create a set of candidate itemsC such that an
association ruler exists of the formX ⊆ u =⇒ i ∈ C wherei is an unrated item in the profileu. In practice,
it is not necessary to search every possible association rule givenu. It is sufficient to find all frequent item sets
X ⊆ u and base recommendations on the next larger frequent itemsets Y ⊃ X whereY contains some itemi
that is unrated inu. The candidate setC is then sorted according to confidence scores and the topN items are
returned as a recommendation.

A caveat to this approach is the possibility of conflicting recommendations in the candidate setC. For
example, one association rule may add itemi to the candidate set with a “like” label, whereas another rule may
add the same item with a “dislike” label. There is no ideal solution, but we have chosen to assume that there are
opposing forces for the recommendation of the item. In our implementation, we subtract the confidence value
of the “dislike” label from the confidence value of the “like”label.

3 Profile Injection Attacks

A collaborative recommender database consists of many userprofiles, each with assigned ratings to a number
of products that represent the user’s preferences. A malicious user may insert multiple profiles under false
identities designed to bias the recommendation of a particular item for some economic advantage. This may be
in the form of an increased number of recommendations for theattacker’s product, or fewer recommendations
for a competitor’s product.

3.1 An Example

Consider an example recommender system that identifies interesting books for a user. The representation of a
user profile is a set of product / rating pairs. A rating for a particular book can be in the range 1-5, where 5
is the highest possible rating. Alice, having built a profilefrom previous visits, returns to the system for new
recommendations. Figure 1 shows Alice’s profile along with that of seven genuine users.

An attacker, Eve, has inserted three profiles (Attack1-3) into the system to mount an attack promoting the
target item, Item6. Each attack profile gives high ratings toEve’s book, labeled Item6. If the attack profiles
are constructed such that they are similar to Alice’s profile, then Alice will be recommended Eve’s book. Even
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Figure 1: an example attack on Item6

without direct knowledge of Alice’s profile, similar attackprofiles may be constructed from average or expected
ratings across all users.

Disregarding Eve’s attack profiles for a moment, we can compute Alice’s predicted preference for Item6.
Assuming 1-nearest neighbor, Alice will not be recommendedItem6. The most highly correlated user to Alice
is User6, who clearly does not like Item6. Therefore, Alice is expected to dislike Item6.

After Eve’s attack, however, Alice receives a very different recommendation. As a result of including the
attack profiles, Alice is most highly correlated to Attack1.In this case, the system predicts Alice will like
Item6 because it is rated highly by Attack1. She is given a recommendation for Item6, although it is not the
ideal suggestion. Clearly, this can have a profound effect on the effectiveness of a recommender system. Alice
may find the suggestion inappropriate, or worse; she may takethe system’s advice, buy the book, and then be
disappointed by the delivered product.

3.2 Attack Types

A variety of attack types have been studied for their effectiveness against different recommendation algo-
rithms [4, 5]. An attack typeis an approach to constructing attack profiles, based on knowledge about the
recommender system, its rating database, its products, and/or its users. In a push attack, the target item is gen-
erally given the maximum allowed rating. The set offiller items represents a group of selected items in the
database that are assigned ratings within the attack profile. Attack types can be characterized according to the
manner in which they choose filler items, and the way that specific ratings are assigned. In this paper, we focus
on three attack types that have been shown to be very effective against standard user-based collaborative filtering
recommenders.

The random attack is a basic attack type that assigns random ratings to filler items, distributed around the
global rating mean [2, 4]. The attack is very simple to implement, but has limited effectiveness.

The average attack attempts to mimic general user preferences in the system by drawing its ratings from
the rating distribution associated with each filler item [2,4]. An average attack is much more effective than a
random attack; however, it requires greater knowledge about the system’s rating distribution. In practice, the
additional knowledge cost is minimal. An average attack canbe quite successful with a small filler item set,
whereas a random attack usually must have a rating for every item in the database in order to be effective.

An attacker may be interested primarily in a particular set of users – likely buyers of a product. A segment
attack attempts to target a specific group of users who may already be predisposed toward the target item [4].
For example, an attacker that wishes to push a fantasy book might want the product recommended to users
expressing interest inHarry PotterandLord of the Rings. A typical segment attack profile consists of a number
of selected items that are likely to be favored by the targeted user segment, in addition to the random filler items.
Selected items are expected to be highly rated within the targeted user segment and are assigned the maximum
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rating value along with the target item.

4 Experimental Evaluation

To evaluate the robustness of model-based techniques, we compare the results of push attacks using different
parameters. In each case, we report the relative improvement over thek-nearest neighbor approaches.

4.1 Dataset

In our experiments, we have used the publicly-available Movie-Lens 100K dataset1. This dataset consists of
100,000 ratings on 1682 movies by 943 users. All ratings are integer values between one and five, where one is
the lowest (disliked) and five is the highest (liked). Our data includes all users who have rated at least 20 movies.

To conduct attack experiments, the full dataset is split into training and test sets. Generally, the test set
contains a sample of 50 user profiles that mirror the overall distribution of users in terms of number of movies
seen and ratings provided. The remaining user profiles are designated as the training set. All attack profiles are
built from the training set, in isolation from the test set.

The set of attacked items consists of 50 movies whose ratingsdistribution matches the overall ratings distri-
bution of all movies. Each movie is attacked as a separate test, and the results are aggregated. In each case, a
number of attack profiles are generated and inserted into thetraining set, and any existing rating for the attacked
movie in the test set is temporarily removed.

For every profile injection attack, we trackattack sizeandfiller size. Attack size is the number of injected
attack profiles, and is measured as a percentage of the pre-attack training set. There are approximately 1000 users
in the database, so an attack size of 1% corresponds to about 10 attack profiles added to the system. Filler size is
the number of filler ratings given to a specific attack profile,and is measured as a percentage of the total number
of movies. There are approximately 1700 movies in the database, so a filler size of 10% corresponds to about
170 filler ratings in each attack profile. The results reported below represent averages over all combinations of
test users and attacked movies.

4.2 Evaluation Metrics

There has been considerable research on the accuracy and performance of recommender systems [11]. We use
the mean absolute error (MAE) accuracy metric, a statistical measure for comparing predicted values to actual
user ratings.We define coverage as the percentage of items inthe database for which an algorithm is able to make
a prediction.

However, our overall goal is to measure the effectiveness ofan attack; the “win” for the attacker. In the
experiments reported below, we measure hit ratio - the average likelihood that a topn recommender will recom-
mend a pushed item, compared to all other items.

Hit ratio measures the effectiveness of an attack on a pushed item compared to other items. LetRu be the
set of topn recommendations for useru. For each push attack on itemi, the value of a recommendation hit for
useru denoted byHui, can be evaluated as 1 ifi ∈ Ru; otherwiseHui is evaluated to 0. We define hit ratio as
the number of hits across all users in the test set divided by the number of users in the test set. The hit ratio for a
pushed itemi over all users in a set can be computed as

∑

Hui/ |U |. Average hit ratio is calculated as the sum
of the hit ratio for each push attack on itemi across all pushed items divided by the number of pushed items.

Hit ratio is useful for evaluating the pragmatic effect of a push attack on recommendation. Typically, a user
is only interested in the top 20 to 50 recommendations. An attack on an item that significantly raises the hit

1http://www.cs.umn.edu/research/GroupLens/data/
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ratio, regardless of prediction shift, can be considered effective. Indeed, an attack that causes a pushed item to
be recommended 80% of the time has achieved the desired outcome for the attacker.

4.3 Accuracy Analysis

We first compare the accuracy ofk-nn versus the model-based algorithms. To monitor accuracy, and to assist in
tuning the recommendation algorithms, we use MAE. In all cases, 10-fold cross-validation is performed on the
entire dataset and no attack profiles are injected.

In neighborhood formation, we achieved optimal results using k = 20 users for the neighborhood size of
thek-nn algorithm. For the model-based algorithms, we obtainedthe most favorable results usingk = 10 user
segments for the neighborhood size. In all cases, we filter out neighbors with a similarity score less than 0.1.
For pLSA, we observed an optimum threshold ofµ = 0.035. We obtained the best results for PCA by extracting
the factors that explain at least 60% of total variance. The average number of extracted principal components
was approximately 100.

Table 1 displays the results from one of five test runs performed. The difference in accuracy between the
standard and PCA approaches is not statistically significant. This is a very promising result, as the scalability of
model-based algorithms often come at the cost of lower recommendation accuracy [1]. For example,k-means
and pLSA show small decreases in accuracy compared to standard k-nn.

Determining a suitable evaluation metric for the Apriori recommender was challenging because it is based on
a fundamentally different approach. Thek-nn algorithm predicts a rating value for each target item and ranks all
items based on this score. The association rule algorithm produces a ranked list, such that the recommendation
score is the confidence that a target user will like the recommended item. It is not possible to make a prediction
of the rating value from the association rule recommendation list. However, the association rule recommender
does make a more general prediction; it predicts a binary “like” or “dislike” classification for a recommended
item if the confidence value is positive or negative, respectively.

For brevity, we do not include the derived metric, but a detailed description can be found in [10]. Our
results showed the difference in accuracy between the association rule recommender andk-nn to be statistically
insignificant. But because Apriori selects recommendations from only among those item sets that have met the
support threshold, it will by necessity have lower coveragethan the other model-based algorithms. There will be
some items that do not appear and about which the algorithm cannot make any predictions. This problem may
occur in ak-nn algorithm as well, since there may be no peer users who have rated a given item. However, this
is a relatively rare occurrence. The coverage of thek-nn algorithm is near 100%, while Apriori is consistently
around 47%.

The Apriori algorithm would therefore lend itself best to scenarios in which a list of top recommended items
is sought, rather than a rating prediction scenario in whichthe recommender must be able to estimate a rating
for any given item. The selectivity of the algorithm may be one reason to expect it will be relatively robust - it
will not make recommendations without evidence that meets the minimum support threshold.

4.4 Robustness Analysis

To evaluate the robustness of model-based algorithms, we compare the results of push attacks on collaborative
recommendation algorithms usingk-nearest neighbor,k-means clustering, pLSA, PCA, and Apriori techniques.

Table 1: Accuracy
k-nn k-means plsa pca

mae 0.7367 0.7586 0.7467 0.7327
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Figure 2: Average attack hit ratio at 5% filler size Figure 3: Average attack hit ratio at 2% attack size

We report the results for average and segment attacks, and exclude results for random attack, because average
attack is more effective and exhibits similar robustness trends.

4.4.1 Average Attack

Figure 2 presents hit ratio results for top 10 recommendations at different attack sizes, using a 5% filler. With the
exception ofk-means, the model-based techniques show notable improvement in stability overk-nn. Apriori
and pLSA, in particular, have superior performance at all attack sizes, and PCA performs extremely well at
small attack sizes of 5% or less. Under a 15% attack, an attacked movie is in a user’s top 10 recommended list
nearly 80% of the time fork-nn andk-means. However, the attacked movie only shows up in a user’stop 10
recommendations slightly greater than 5% of the time for Apriori or pLSA and less that 20% of the time for
PCA.

Robustness of the Apriori algorithm may be partially due to lower coverage. However, this does not account
for the flat trend of hit ratio with respect to attack size. At a5% attack, we observed only 26% coverage of the
attacked item. But at a 10% attack, we observed 50% coverage,and at 15% attack, we observed a full 100%
coverage of the attacked item.

It is precisely the manner in which an average attack choosesfiller item ratings that causes the combination
of multiple attack profiles to short-circuit the attack. Recall that filler item ratings in an average attack are
distributed around their mean rating. When an average attack profile is discretized, there is equal probability
that a filler item will be categorized as “like” or “dislike”.Therefore, multiple attack profiles will show little
more than chance probability of having common itemsets. Thelack of mutual reinforcement between filler items
prevents the support of itemsets containing the attacked item from surpassing the threshold.

To evaluate the sensitivity of filler size, we have tested a full range of filler items. The 100% filler is
included as a benchmark for the potential influence of an attack. However, it is not likely to be practical from
an attacker’s point of view. Collaborative filtering ratingdatabases are often extremely sparse, so attack profiles
that have rated every product are quite conspicuous.Of particular interest are smaller filler sizes. An attack that
performs well with few filler items is less likely to be detected. Thus, an attacker will have a better chance of
actually impacting a system’s recommendation, even if the performance of the attack is not optimal.

Figure 3 depicts hit ratio for top 10 recommendations at the full range of filler sizes with a 2% attack size.
Surprisingly, as filler size is increased, hit ratio for standardk-nn goes down. This is because an attack profile
with many filler items has greater probability of being dissimilar to the active user. On the contrary, hit ratio for
k-means and pLSA tend to rise with larger filler sizes. Eventually, both algorithms are surpassed byk-nn and
actually perform worse with respect to robustness.

However, the PCA and Apriori algorithms hold steady at largefiller sizes and are essentially unaffected. As
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Figure 4: Segment attack hit ratio at 5% filler size Figure 5: Segment attack hit ratio at 2% attack size

with attack size, the reason that filler size does not affect the robustness of Apriori is because adding more filler
items does not change the probability that multiple attack profiles will have common itemsets. The fact that
a profile’s ratings are discretized to categories of “like” and “dislike” means that an attack profile with 100%
filler size will cover exactly half of the total features usedin generating frequent itemsets. Therefore, it is very
unlikely that multiple attack profiles will result in mutualreinforcement.

4.4.2 Segment Attack

The segment attack is designed to have particular impact on likely buyers, or “in-segment” users. These users
have shown a disposition towards items with particular characteristics, such as movies within a particular genre.
For our experiments, we selected popular horror movies (Alien, Psycho, The Shining, Jaws, and The Birds)
and identified users who had rated all of them as 4 or 5. This is an ideal target market to promote other horror
movies, and so we measure the impact of the attack on recommendations made to the in-segment users.

Figure 4 depicts hit ratio for top 10 recommendations at different attack sizes, using a 5% filler. Clearly, the
attack is extremely effective against thek-nn algorithm. A meager 1% attack shows a hit ratio of nearly 80%.
By contrast, a segment attack has little effect onk-means, pLSA, and PCA.

The Apriori algorithm appears to have the same robustness asthe other model-based algorithms at small
attack sizes. However, beyond a 5% attack, Apriori performsquite poorly with respect to robustness. Hit ratio
reaches 100% at a 15% attack. The cause of such dramatic effect is precise targeting of selected items by the
attacker. This is the opposing force to the phenomena witnessed against an average attack. A segment attack
profile consists of multiple selected items, in addition to the target item, where the maximum rating is assigned.
Clearly, all such items will always be categorized as “like”. Therefore, the mutual reinforcement of common
item sets is a given, and a user that likes any permutation of the selected items receives the attacked item as a
recommendation with high confidence.

Although the performance of Apriori is not ideal against a segment attack, certain scenarios may minimize
the performance degradation in practice. In particular, a recommender system with a very large number of users
is somewhat buffered from attack. The algorithm is quite robust through a 5% attack, and is comparable to
bothk-means, pLSA, and PCA. The robustness of Apriori is not drastically reduced until attack size is 10% or
greater. Certainly it is feasible for an attacker to inject the necessary number of profiles into a recommender with
a small number of users, but it may not be economical for a commercial recommender such as Amazon.com,
with millions of users.
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5 Conclusion

The standard user-based collaborative filtering algorithmhas been shown quite vulnerable to profile injection
attacks. An attacker is able to bias recommendation by building a number of profiles associated with fictitious
identities. In this paper, we have demonstrated the relative robustness and stability of model-based algorithms
over the memory-based approach.
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Abstract

With the increasing popularity of recommender systems in commercial services, the quality of recom-
mendations has increasingly become an important to study, much like the quality of search results from
search engines. While some users faithfully express their true opinion, many provide noisy or incorrect
ratings which can be detrimental to the quality of the generated recommendations. The presence of noise
can violate modeling assumptions and may thus result in unstable estimates or predictions. Even worse,
malicious users can deliberately insert attack profiles in an attempt to bias the recommender system to
their benefit. This is a particularly important issue, and itis necessary for systems to provide guarantees
on the robustness of recommendations to ensure continued user trust. While previous research has at-
tempted to study the robustness of various existing Collaborative Filtering (CF) approaches, the explicit
design of robust recommender systems remains a challengingproblem. Approaches such as Intelligent
Neighborhood Selection, Association Rules and Robust Matrix Factorization are generally known to
produce unsatisfactory results. In this paper, we review previous approaches to robust collaborative
filtering; we also describe promising recent approaches that exploit a Singular Value Decomposition
(SVD) and are both accurate as well as highly stable to shilling.

1 Introduction

Collaborative filtering technology is being widely used on the web as an approach to information filtering and
recommendation by commercial service providers likeAmazonandYahoo!. For multimedia data like music
and video, where pure content-based recommendations perform poorly, collaborative filtering is the most viable
and effective solution, and is heavily used by providers like YouTubeandYahoo! Launchcast. For malicious
attackers, or a group interested in popularizing their product, there is an incentive in biasing the collaborative
filtering technology to their advantage. Such attacks have been refered to asshilling attacks, and attackers as
shillers. Since user profiles of shillers looks very similar to an authetic user, it is a difficult task to correctly
identify shilling attacks. Early algorithms exploited signatures of attack profiles and were moderately accurate.
In particular, by looking at individual users and mostly ignoring the combined effect of such malicious users,
these detection algorithms suffred from low accuracy in detecting shilling profiles. Recent approaches based
on SVD (cf. [8]) have proved to be much more accurate, exploiting thegroup effect, i.e. eliminating groups
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copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

14



of attackers which seem to work together. However, employing such detection approaches as a preprocessing
step are computationally expensive, and essentially not anonline process. The next logical step is to build in
detection into the recommendation algorithm itself; this work provides a survey of such robust collaborative
filtering algorithms proposed in the past and until recently.

1.1 Shilling attacks on Collaborative Filtering

Collaborative Filtering systems are essentially social systems which base their recommendation on the judgment
of a large number of people. Like other social systems, they are also vulnerable to manipulation by malicious
social elements. As an example, a loosely organized group managed to trick the Amazon recommender into
correlate the bookSix Steps to a Spiritual Life(written by the evangelist Pat Robertson) with a book for gay
men1.

A lot of web-enabled systems provide free access to users viaa simple registration process. This can be
exploited by attackers to create multiple identities for the samesystem and insert ratings in a manner that
affect the robustness of a system or algorithm, as has been studied in recent work [6].Shilling attacksadd
a few user profiles which need to be identified and protected against. Shilling attacks can be classified into two
basic categories: inserting malicious profiles which rate aparticular item highly are calledpushattacks, while
inserting malicious profiles aimed at downgrading the popularity of an item are callednukeattacks. Various
attack strategies were then invented; these include [3]:

1. Random attacks, where a subset of items is rated randomly around the overallmean vote.
2. Average attacks, where a subset of items is rated randomly around the mean vote of every item
3. Bandwagon attacks, where a subset of items is rated randomly around the overallmean, and some popular

items are rated with the maximum vote.

Random and Bandwagon attacks are low-knowledge attacks requiring information only about some popular
items and overall vote statistics. Average attacks requiremore information and have been shown to be near
optimal [7] in impact. They have also been observedly difficult to detect [15].

The strength of shilling attacks is specified using two metrics: filler sizeandattack size. Filler size is the
set of items which are voted for in the attacker profile, usually measured in %. Attack size refers to the number
of shilling profiles inserted into user data. The impact of the attacks is measured by the increase in the number
of users to whom an attacked item is recommended. Generally,average attacks are strogner than random or
bandwagon attacks.

Metrics for Collaborative Filtering and Shilling The task of evaluating predictions in collaborative filtering
is easily described as the measurement of thedeviationfrom observed values; accuracy of a CF algorithm is
measured over some held-out data from the training dataset.The effect of an attack is measured by the deviation
in predited ratings before and after attack profiles have been added.Prediction Shiftmeasures the average change
in prediction of the attacked item (before and after attack)of a CF algorithm. This metric is also sensitive to the
strength of an attack, with stronger attacks causing a larger prediction shift.

Hit Ratio measures the effect of attack profiles on top-k recommendations. Since the end effect of a rec-
ommender system is a list of items recommended to a particular user, this metric captures the fraction of users
affected by shilling attacks. LetHu,i = 1 if an item i is a top-k recommendation to useru, andHu,i = 0
otherwise. Hit ratio is a fraction between 0–1; when expressed as a percentage (%), it is defined as follows:

H =
100

N
×

∑

u

∆Hu,i, s.t.N = # users (4)

1Story athttp://news.com.com/2100-1023-976435.html.
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Finally, Precision and recallare standard IR measures which are also applicable widely; various detection
aaproaches report precision and recall for various siyes ofattacks. Clearly, high precision is an indication of an
accurate method.

2 Robust Collaborative Filtering using Intelligent Neighbor Selection

The earliest algorithms for collaborative filtering reliedon neighborhood formation based on user similarity;
these are known ask-nearest neighbor (kNN) CF algorithms. These algorithms remain extremely popular due to
their simplicity and intuitiveness. This family of algorithms use a weighted reconstruction of the votes of users
similar to the current user as a prediction for the rating fora previously unrated item. Various improvements
have been made to the basic mechanism of predicting votes using Pearson’s correlation, but they mostly comply
to the following scheme: assume the user database consists of a set of votesvi,j corresponding to the vote for
useri on itemj. The predicted vote for an active user for itemj, pa,j is a weighted sum of the votes of other
users:

pa,j = va + κ

n
∑

i=1

w(a, i)(vi,j − vi), wherew(a, i) is a similarity function (5)

As explained in Section 1.1, attacks in recommender systemscan be achieved by the addition of malicious
profiles. By special construction, these profiles can be madeto look extremely similar to influential users. The
impact is that such malicious users can be wrongly identifiedasneighborsfor normal users, thus influencing the
results of the recommendation algorithm. O’Mahony et al.[12] first discussedneighbourhood filtering, where
the key idea is to prevent suspicious users from influencing other users. The strategy for selecting useful neigh-
bors takes into account thereputationof all users participating in the recommendation process. The reputation
measurement strategy is adapted from literature and requires the computation of a reputation score for a partic-
ular user who is providing ratings on an itemyi. The first step is calculating the reputation of users who form
a neighborhood for other users that have ratedyi; the second step is to filter the neighborhood and remove any
possible malicious ratings. The observation here is that ifthere is indeed an attack, there would be a marked
difference between real users and malicious ones, thus leading to two clusters; thus clustering is performed to
detect if such a pattern is observed for a particular item. Given that an attack may be trying to promote an item,
or demote it, its essential to know thedirection of the shift for this filtering strategy to work. The approach
employed by [12] overcomes this by thresholding the difference in the mean values of the two clusters; if this
is above a threshold (evaluated empirically), an attacked is supposed to have occured. To detect which cluster
contains the attack users, the one with the lower standard deviation is chosen. The authors provide experimental
evidence that this strategy has successful outcome.

The approach suffers from some drawbacks: the detection of the wrong cluster of users can result in filtering-
out of genuine users, and thus predicting baised estimates.Further, real life attacker might employ strategies
which ensure more deviation in their votes, thus fooling thefiltering process. Also, there might be both push
and nuke attackers for the same item, which the algorithm is not designed to handle. Thirdly, the running
time of the algorithm will be much higher than what is required for large-scale systems. Fourthly, given that
neighborhood selection methods are thresholded, it is possible that the number of attackers is so high that the
selected neighbours of a user may all be malicious; thus the outlined approach might fail in the face of large and
continuous attacks.
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3 Robust Collaborative filtering using Existing Approaches: Association Rules
and PLSA

3.1 Robustness of Association Rules

A popular approach for frequent-pattern mining is the use ofassociation rules. This technique has been used
for market basket analysis, finding interesting patterns ofwhat users buy together, and have been found useful
as prediction models too [1]. Applying this technique to user ratings, [13] suggest how a robust method for
collaborative filtering could be devised. The application of the above approach has been demonstrated to pro-
vide significant robustness to user recommendations. As compared to kNN, k-means clustering and PLSA, the
outlined algorithm has a very lowhit-ratio, meaning that a small fraction of users are recommended an attacked
item. For attack sizes below 15%, the hit-ratio of Association rule-based CF is below 0.1, while for k-NN it
ranges from 0.8 to 1.0 (meaning all users are recommended an attacked item). For more details, we refer the
interested reader to reported numbers from [13](Fig 2).

Clearly, the hit-ratio for association rules is very low, thus implying high robustness. This however comes at
the cost of accuracy; Sandvig et al. report that the coverageof this algorithm is below 0.5, which means that the
algorithm cannot make any predictions for over half the items in the recommender system. These are typically
items which are not very frequently rated. This makes the above approach suitable only in cases where top-n
recommendations are required, rather than a complete set ofpredictions.

3.2 Robust Collaborative filtering using PLSA

Probabilistic Latent Semantic Analysis (PLSA) is a well known approach for text analysis and indexing used
to discover hidden relationships between data; it has also been extended to collaborative filtering [5]. PLSA
enables the learning of a compact probabilistic model whichcaptures the hidden dependencies amongst users
and items. While accuracy has been a well known advantage of PLSA, recent studies have also concluded that
PLSA is a very robust CF algorithm, and is highly stable in theface of shilling attacks. [11] indicates that
the prediction shift for PLSA is much lower than similarity based approaches; [7] investigated the reasons for
PLSA’s robustness over many experiments and observed the model to understand the mechanisms. The intuition
is that PLSA leads to clusters of users (and items) which are used to compute predictions, rather than directly
computing neighbors. However this intuition is challengedby experimental results using a k-means clustering
algorithm in the same work. Clearly, shilling profiles deceive clustering algorithms due to their high similarity
with normal users.

[7] also outlines a detection approach for shilling attacksexploiting the high stabilty of PLSA. The main
idea is that PLSA is a mixture model where membership to a distribution is not constrained; a data point can
belong (probabilistically) to many distributions. However some clusters maybetighter thn others: [7] shows
that using the average Mahalanobis distance to indetify tight clustes leads o the detection of attack profiles with
reasonably high accuracy.

Robust PLSA using shilling detection We suggest using the following strategy to further robustify PLSA: we
eliminate the tightest clusters, as identified by the above tightness measure. We now renormalize the probability
distribution of the remaining clusters (p(z|u)) so that they sum up to 1. One can even attempt to eliminate the
suspicious users, randomly perturb the parameters and rerun the last few steps of training. Initial results of this
version have maintained the prediction accuracy, while reducing the prediction shift in a statistically significant
manner. A more thorough investigation of this idea is under progress.
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4 Robust Collaborative Filtering using SVD

SVD stands for Singular Value Decomposition; it is a method of factorizing a matrix into two orthonormal
matrices and a diagonal matrix. SVD has become an important linear algebra procedure over the last 2 decades
due to its extensive application in Information Retrieval and Data mining. It has been used for Latent Semantic
Analysis and Collaborative Filtering with much success. Since SVD is fundamental to the algorithms discussed
in this paper, we explore SVD in detail. Further, we briefly explain the Robust Matrix Factorization algorithm
described in [9] which is also based on SVD and is robust variant of SVD. Finally, we explain our proposed
VarSelect SVD variant as a robust CF solution.

4.1 Singular Value Decomposition (SVD)

SVD is a more general form of Eigen value decomposition (EVD), applicable to rectangular matrices. SVD
factorizes a rectangularn × m matrix D asD = UΣV

T whereU,V are unitary normal matrices andΣ is
a diagonal matrix of sizerank(D) ≤ min(m,n), whererank(D) is the rank of the matrixD. Moreover, the
entries on the diagonal ofΣ are in non-increasing order such thatσi ≥ σj for all i < j. Note that we may
chose to set all singular valuesσi = 0, i > k for somek ≤ rank(D) (sayk = 10), leading to a low-rank
approximationDk of the matrixD (Dk = UkΣkV

T
k ).

SVD for Collaborative Filtering: Applications of SVD to Collaborative Filtering assume the representation
of user-item ratings by such an × m matrix D. Typically, user–item matrices are very sparse (≤ 5% non-zero
entries). Initial applications of SVD to CF (c.f. [14]) compensated for sparsity by replacing the missing values
by overall mean. This approach, though more successful thanprevious CF approaches, is highly biased towards
the used means. In addition, the lack of sparsity implies a larger computational problem to solve. In the last
decade, there has been significant research on SVD for large and sparse matrices e.g.PROPACKandSVDPACK.
However, these approaches do not treat missing values in a principled fashion, either treating them as zeros, or
doing mean imputation. A recent algorithm by Gorrell [4] proposed a new approach to computing SVD for
virtually unbounded matrices. This method is based on the Generalized Hebbian Algorithm and calculates SVD
by iterating through only observed values. The method has been found to be highly accurate for CF and scales
easily to the NetFlix dataset with 100 million votes.

4.2 Robust Matrix Factorization

Robust regression problems have been studied in a linear setting where observablesY and inputsX are known
andY is assumed to be noisy. Robust Matrix Factorization (RMF) isalgorithm which performs a robust SVD
for CF using an alternating fitting scheme [9]. The core idea is the use of bounded cost-functions, which limit
the effect of outliers. There is an entire body of work on suchbounded functions which are effective against
noise; these functions are called Maximum Likelihood estimators orM-estimators.

Armed with a robust estimator, we would like the perform the following Matrix factorization: assume we
want to find the rank–1 factorsG,H as for dataD. such that

argmin
G,H

∑

Dij 6=0

ρ(Dij − Gi · Hj) s.t. ρ(r) =

{

|r| ≤ γ 1
2γ

r2 ,

|r| > γ |r| − γ
2

whereρ is an M-estimator called the Huber M-estimator (see [9]. Theabove optimization can be solved using
Iteratively Re-weighted Least Squaresand is described by [9]. Experiments show that Robust Matrixfactor-
ization algorithm performs well in the face of moderate attacks. Clearly, the effect of shilling is low at small
attack sizes, as the majority opinion is given more importance. However, once the number of votes by shillers
are more than actual users, RMF starts treating the shillers’ view as the majority opinion. Mehta et al. also show
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that RMF is more tolerant to shilling and model deviations than SVD and pLSA: importantly, the prediction
accuracy of RMF is higher than any other method; this trend continues even in the face of attacks.However for
larger attacks, RMF is clearly inadequate at a robust CF algorithm. In the next section, we show how the RMF
and SVD frameworks can be further robustified to yield our desired robust CF algorithm.

4.3 VarSelect SVD for Collaborative Filtering

VarSelect [8] is a variable selection algorithm based on PCAfor detecting attack profiles. Shilling profiles tend to
be highly correlated, which is a result of the colluded nature of shilling attacks. It is known that for multivariate
data, highly correlated variables add very little information, and thus are eliminated by dimensionality reduction
methods. VarSelect uses Principal Component Analysis to find which users add least information, and produces
a ranking of users in order of utility. Experiments have shown that shillers are found with high precision at the
top of these rankings.

VarSelect SVD: We first describe the broad framework for our proposed algorithm. SVD and PCA are closely
related since PCA can be achieved via SVD. In essence, PCA seeks to reduce the dimensionality of the data by
finding a few orthogonal linear combinations (called thePrincipal Components) of the original variables with
the largest variance. A principal component is a linear combination of the variables and there are as many PCs
as the number of the original variables. Principally, PCA isequivalent to performing an eigen decomposition
of thecovariancematrix of the original data. Since we want to combine VarSelect with Collaborative Filtering,
SVD provides the required framework. The algorithm supports two phases: detection (followed by removal
of profiles/votes), and recommendation/model building. For efficiency, it is required that these two phases can
share computational steps. Since the detection may not be perfect, no user profiles should be completely deleted
and even suspected attackers should be able to receive recommendations. Further, the entire procedure should
be unsupervised, i.e. no further input should be required after the detection phase has been performed (e.g.
thresholding how many shillers are there in the system).

An important observation we make here is that calculating the covariance matrix is unnecessary; we can
compute the SVD ofX to get the loading matrixU (which contains the Principal components). This saves a
significant computational effort as Eigen-decomposition of large covariance matrices is very expensive. Note
that PCA requiresX to be zero-mean. This can be explioted by the VarSelect procedure which has been shown
to require only the first 3–5 Principal components suffice to detect attack profiles reliably. Thus a complete SVD
is not required: instead, partial eigen-decomposition canbe performed. Such routines are available assvdsand
eigsin MATLAB and Octave, and use the Arnoldi method.

Finding suspected Attack profiles:PCA can find a set of variables which are highly correlated, a fact ex-
ploited in the design of Varselect. Varselect essentially performs Variable Selection using a selection criteria
calledNormalized Loading Combination. There are several other selection procedures discussed inliterature
([2, 10] provides a good overview of these criteria). [10] reports that the simplest strategy of averaging loading
coefficients (LC) performs the best. We choose the following heuristic: normalize the scores so that they sum
to 1, and then choose all user with scores below1/n for n users. We observe also that 50% recall is the lowest
observed; thus we suggest that for attacks of upto 10%, flagging top-20% should suffice. These selected users
are known asflaggedusers.

Computing Recommendations The recommendation model is finally based on SVD as well. In essense, we
perform SVD on the data matrix treating flagged users in a special manner. To simplify the prediction model,
we absorb the eigenvalues into the left and right factors, asin the GHA-based SVD method. As previously, the
data matrix is factorized into a factorsG andH, such that the Frobenius norm of the remainder is minimized:

argmin
G,H

||D− GH||F , (6)

19



In the context of Collaborative Filtering, note that the left matrix G is user specific, i.e. each user has a corre-
sponding row encoding their hidden preferences. Similarly, the right matrixH contains a column for each item.
The solution to the above optimization requires iterating through all user votes and performing Hebbian updates.
Every vote potential influences bothG andH during the training phase.

Our modification in presence offlaggedusers is to only update the left vectors and not the right vectors. In
other words, the contributions of suspicious users towardsthe prediction model is zero, while the model can still
predict the votes for flagged users. For normal users, we update both left and right vectors as with SVD-GHA.
This elegant s solution comes with a very small computational cost of checking if a given user is flagged as
suspicious. Note also that the model can be initialized withvalues learnt from the partial SVD performed for
PCA. We note that this results in faster convergence for the already computed dimensions. Additionally, we
use a regularization parameterκ (set to 0.01); this step has been found to provide better model fitting and faster
convergence.

One issue with the above algorithm is that coverage is low forhigh number of suspected usersr. It is possible
that some items are voted on mostly by flagged users, hence enough information may not be known. Therefore,
even interested users may not be recommended that item. To improve coverage, we ignore only the extreme
votes of the flagged users (i.e. maximum vote 5/5 and minimum 1/5); middle votes can be still used to train the
right vectors. This removal significantly weakens potential bandwagon attacks as well as average attacks, since
the largest deviations in prediction occur due to extreme votes.

5 Discussion

In the previous sections, we have described several state-of-the-art algorithms for robust collaborative filtering.
Clearly, there has been more work in the detection of shilling attackers, rather than modelling shillers as a type
of noise. In our opinion, a robust recommender algorithm should have the following characteristics:

1. Highly stable to low number of attack profiles inserted on the attacked item (i.e. low prediction shift)
2. Moderately–Very stable against medium sized attacks (< 5% attackers)
3. Low average effect on prediction accuracy (mean average error) on non-attacked items.
4. Very high stability to the addition of random noise.
5. No loss of accuracy if no attackers are present in a dataset.
6. Ability to partially trust users, i.e. to be able to generate recommendations for suspicious users.
7. Scalability to handle hundreds of thousands of users witha few thousand possible attackers.
8. Ability to handle multiple simultaneous attacks on different items.
9. Ability to generalize to attack models not encountered intraining.

10. Non-requirement for processing the entire dataset again when new profiles are added.
11. Being as parameter-free as possible: the algorithm should be able to figure out various thresholds based

on the data without requiring human intervention.

Experimental results published previously show that most algorithms surveyed by us do not conform to a
majority of the items in the above checklist. Almost all algorithms we studied have a high degree of stability
against medium sized attacks. Some of the algorithms are able to handle low attacks, and detect them reliably.
Surprisingly, most of the algorithms meet point 3 and 4 as well: random noise has low effect on both neighbor
selection based methods and model-based methods. The performance of these algorithms also does not suffer
on non attacked items; the only exception might be in methodswhere there is an explicit step for detecting an
item under attack, and this step gives false positives.

On the issue of running these algorithms on untainted data without any attack profiles, most researchers
have not reported the performance of their approaches. However, all algorithms that do some user filtering
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(e.g. removing suspicious users) do suffer from loss of accuracy. An interesting result in this context has been
reported in [9]: in this work, some part of the user ratings was removed. The removed data was a random
fraction of the extreme votes (say the lowest, and the highest numerical votes), usually to the tune of 20% of
a user’s votes; for users less than 10 votes. Various algorithms (e.g. kNN, PLSA, SVD and RMF) were run
on the remaining 80% data; the results were that all algorithms gained significantly more stability to shi;lling
attacks, to the tune of 20% reduction in prediction shift. The RMF and SVD algorithms had even higher stability;
interestingly all algorithms under test did not suffer froma large decrease in predictive accuracy. However, the
overall performance of SVD and PLSA based algorithms was much better than kNN.

With respect to partial trust, all algorithms which explicitly remove suspicious user profiles will degrade user
experience for suspected process. Since the detection of malicious users profiles is not perfect, false positives
will arise from time to time. An ideal algorithm should thus be able to accept that attackers maybe in the dataset,
and model this explicitly. The main idea is that all users should be able to receive recommendations, and possibly
the user interface should not change at all. The algorithm may internally discard some user data for training,
or some ratings and making this transparent to users. Algorithms which do this provide high stability as well:
VarSelect SVD and Association Rule mining are examples of this. Intelligent neighbor filtering can do this as
well; it has been suggested to weight the contribution of a user’s neighbors by the degree of trust (which can be
easily expressed as a fraction between 0–1) with good success.

Scalability is a general issue for good algorithm design; efficient algorithms are available for several meth-
ods used for recommendation and also for detection. With increasingly cheap hardware and cloud computing
becoming common, computational challenges are slowly fading away. However, responsiveness of systems to
sudden attacks is crucial. Several approaches seem to run inbatches, making it difficult to detect attacks online.
To a certain extent, the training part of the recommendationmodels is also offline, thus restricting the extent
of the impact. However, the overall scalability of detection is an important aspect: several approaches have
expensive detection algorithms which cannot reuse the previously trained models, or incrementally train their
models. Approaches like Varselect SVD which are online in nature are highly scalable as a result.

In the real world, several interest groups would try to boosttheir products at the same time. Thus one can
expect more than one type of attack going on at the same time. Almost all published work on detection however
consider only one type of attack at a time for their experimental. It is clearly possible that several of these
might actually be effective against multiple attacks; for example the detection approaches proposed by [3] use
supervised classification trained on generated examples ofseveral types of attacks. These classifiers are then run
on each profile, thus possibly detecting more than one types of attack at a time. Similarly, VarSelect detection
and VarSelect SVD were demonstrated to be effective againstuncoordinated attacks. While no such results have
been discussed by [13], it is likely that this approach will be stable to multiple attacks as there wont be much
co-occurrence data for the attacked items to make attack votes significant for the association rule learner (recall
that less than 50% of items are actually considered by this approach when creating recommendations.)

The continued menace of email spam shows that given enough incentive, spammers can innovate and create
new types of attack campaigns, While various attack models for shilling have been identified, it is ovbious that
there are several strategies for new attacks that spammers can come up with. Thus it is imperative for robust CF
algorothms to be able to generalize to new types of attacks. Supervised learning methods can clearly fail in this
regards; for unsupervised methods to suceed, it is important to understand the intent of the attackers. [7] showed
that if the intent is to maximize the prediction shift for a large number of users, the resulting attack model is the
average attack. [8] also discusses how thegroup effectis a result of spammers trying to maximize their impact.
When obfuscation strategies are employed to add stealth to attack profiles, the strength of attacks goes down.
Exploiting the group effect is one mechanism for general attack detection.

One practical aspect we noticed is that several algorithms have too many parameters that need to be manually
set. In a real world setting, exploring these parameters manually may not be possible or efficient. It would be
better if the algorithm can search its own parameters, either using heuristics, or some principled mechanism (like
cross-validation). VarSelect SVD is an example of such an algorithm; while the parameter search is not optimal,
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there is a broad range of stable values for the parameterr which leads to good stabilty and high maintainability.
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Abstract

Recommender systems have gained a lot of popularity as effective means of drawing repeat business,
improving the navigability of web sites and generally in helping users and customers quickly locate
items that are likely to be of interest. The rich literature of recommendation algorithms presents both
opportunities and challenges. Clearly there are a wide variety of algorithmic tools available, but there
are only a few that are suited for application to a broad variety of problem domains and even fewer
that can scalably deal with very large data sets. In this paper we describe the architecture of the Vibes
platform that is used to power recommendations across a widerange of Yahoo! properties including
Shopping, Travel, Autos, Real Estate and Small Business.

The design principles of Vibes stress flexibility, re-usability, repeatability and scalability. The system
can be broadly divided into the modeling component (“the brains”), the data processing component
(“the torso”) and the serving component (“the arms”). Vibescan accommodate a number of techniques
including affinity based, attribute similarity based and collaborative filtering based models. The data
processing component enables the aggregation of data from users’ browse and purchase history logs
after any required filtering and joining with other data sources such as categorizer outputs and unitized
search terms. We are currently working on moving the modeling and data processing components to the
Hadoop grid computing platform to enable Vibes to take advantage of even larger data sets. Finally the
serving infrastructure uses REST based web services APIs toprovide quick and easy integration with
other Yahoo! properties. The whole Vibes platform is designed to make it easy to extend and deploy new
recommendation models (in most cases without having to write any custom code). We illustrate this point
by using a case study of how Vibes was used to build recommendation systems for Yahoo! Shopping.

1 Introduction

Research into recommendation systems goes back more than a decade with several important classes of algo-
rithms proposed[1]. Lately they have achieved quite a bit ofcommercial success as well[5, 4], culminating in
2007 with the award of the first Netflix prize[7]. Though recommender systems clearly add value to the commer-
cial proposition and user experience of a web site, they suffer from the drawback of being somewhat fragile and
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sensitive with regard to the matchup between the data and thealgorithms.In other words, recommender systems
usually need a fair bit of tweaking to work well in a particular application setting. Added to this are the prob-
lems in gathering enough data in a common format about user behavior, item metadata and also in presenting
the resulting recommendations in a form that can be easily integrated into target web pages.

The Vibes recommendation platform was built as a scalable and generic solution for Yahoo!’s recommenda-
tion needs. The platform has the capability of housing a variety of recommendation models along with all the
machinery needed (data collection, data processing, modelbuilding, recommendation serving and reporting) to
deploy recommendation modules for internal customers.

2 A Typical Vibes Use Case

Unlike the well-known problem of trying to construct a(user, item)→ rating function given a set of numerical
user ratings, Vibes is usually deployed in the following cases:

1. Provide an inter-item similarity or relatedness function: (item1, item2)→ similarity ∈ [0, 1]. There are a
couple of ways to do this as described in Section 4.

2. Provide a user-to-item recommendation function(user, item)→ recommended∈ {0, 1}. The output of
this function is a boolean which decides whether to suggestitem to useror not.

As an example of case 1, take a look at a product detail page in Yahoo! Shopping, for example an Apple
iPod (http://shopping.yahoo.com/p:Apple%20iPod%20touch%208GB%20MP3%20Player:
1994935518). Vibes item-to-item recommendations are shown in the section titled: Yahoo! Shoppers Who
Viewed This Item Also Viewed:. All the data we need to supply these recommendations can be obtained from
a web log of all the product pages viewed by visitors to Y! Shopping. If enough users visit a common set of
items within, say a 90-day time period, those items can be thebasis of generating recommendation rules.

Providing recommendations for case 2 is harder, primarily because of the sparsity of the data. Getting users
to explicitly rate an item can present a barrier, but we can collect implicit binary rating data either from users’
browse or buy history. It is fairly straight-forward to generate recommendations for users whohavea history
in Y! Shopping, but it is more challenging to cater to users who land-up directly from another search engine
for example. The model then has to augmented with other behavioral data from the Yahoo! network (such as
a user’s search history) if available. This of course may raise some privacy issues in case we tap into a user’s
declared age, gender or any other personally identifiably information. Vibes customers may decide on a case-by-
case basis to explicitly ask permission from users before showing recommendations that rely on their behavioral
history.

Various Vibes customers have reported substantial benefitsfrom adding a recommendation capability to their
web site. For example Yahoo! Shopping has recorded a 16% increase in revenue after deploying Vibes. Similarly
Yahoo! Small Business has measured a 30% increase in per-order revenue over manually generated cross-sell
rules. The big advantage in Yahoo! is that it is possible to leverage users’ network-wide behavior, including
terms typed into general search to segment users into clusters and further personalize the recommendations.
Currently we are in the process of developing such a model.

3 Platform Requirements

Yahoo! is in a unique position as one of the most popular destinations on the internet. Not only does Yahoo!
have one of the largest user bases, a number of Yahoo! properties (such as Autos, Games, Shopping, Sports etc.)
are ranked in the top 2 web sites of their respective categories. Yahoo! also has a major advantage in the fact that
its users spend a significant amount of time on the web site, accumulating a large number of views and clicks,
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which translate into significant user behavioral history. These User Link Tracking (ULT) data ultimately find its
way into data warehouses from which vertical-specific aggregated data can be queried. To achieve deployment
of scale of the Vibes recommendation system across a broad range of Yahoo! properties, we started with the
following set of requirements:

Loose coupling The recommender system stands apart from its customers. Changes in the recommendation
platform, its algorithms and its infrastructure should be transparent to the consumers of the recommenda-
tions. This means that Vibes would run on a different set of systems running possibly different operating
systems and language runtimes. A standard way of doing this is by using Web Services, in particular using
REST principles.

Configurability It should be possible to easily tailor recommendations for each customer in terms of model
parameters, data sources, and APIs. This could be done via a level of meta-programming where each
instance of Vibes has a set of configuration parameters in theform of XML files that specify the methods
of data generation, model building and the signatures of theRESTful web service.

Extensibility The Vibes platform should be able to easily accommodate new modeling methodologies and par-
ticular requirements for each customer deployment. The modeling block should be able to incorporate new
code (written in any programming language) while the customer interface should have logic to activate
business rules to merge, filter, compare and combine the recommendation results as required.

Easy integration The customer should have to take minimum effort both to provide data that feeds into the
modeling engine as well as to consume the recommendation outputs. The data input could happen through
standardized channels for instrumenting view and click events that flow into the warehouse. The recom-
mendation output would be served through a web service that will be easy to parse and consume.

Quick deployment The platform needs to minimize the man power and incrementaleffort required for each
new deployment. This could be done by having a standard configuration template that could be tailored
to each customer’s requirement by making localized changesfor the input data source and output data
format. No new code should have to be written in the common case, thereby alleviating the need for a
long QA test cycle. The scheduling of model refreshes shouldhappen automatically.

Quality checks We should anticipate operational issues such as missing or truncated input data, or perhaps
changes in data distribution. Models should be evaluated based on metrics such asprecision, recalland
coverage. Every time a new model is built, it should be compared with a set of historical models and
pushed into production only if the deviation is within tolerance limits.

Scalability The recommendation serving infrastructure hosting the webservice should scale horizontally. That
means that the total number of requests that can be served persecond should be linearly proportional to
the number of serving systems. In addition, 99.8% of responses need to be within 20 ms. On the model
building front, the platform also needs to exploit data parallelism and should be able to take advantage of
multi-CPU machines and grid clusters.

Reporting A recommender system is only as good as the visibility it provides into the effectiveness of its
recommendations. Instrumentation needs to be embedded into the recommendations so that we can track
the number of views and clicks made by users. The effectiveness of a recommendation module is measured
using the click-through-rate (CTR) on the recommended items.

The architecture of Vibes takes into account the above requirements and is graphically shown in Fig.1. It
is useful to think of the system as having three main components: the modeling engines, the data gathering
and processing framework and the recommendation serving infrastructure. The data processing and modeling

25



Figure 1: Vibes Platform Architecture

code runs in a central location in close proximity with the data warehouse while the model output is replicated
to various data centers where the front-end systems serve itat real-time to co-located customer web servers.
Before we delve into the details of each component it is worthnoting that the components themselves are
loosely coupled together, making it relatively easy to swapin new implementations.

4 Data Modeling

4.1 The Vibes Affinity Engine

The workhorse of Vibes data modeling is theAffinity Engine that is used to build item-to-item affinity models.
Items could be almost anything in the Yahoo! universe, such as, product pages, auto makes, real estate listings,
travel destinations, RSS feeds, computer games, search keywords and so on. User interaction with items is
discretized into groups. Agroup (also sometimes called a session, transaction or market basket) is a set of
events relating items. For example, a group could be page views by a single user, all the searches in a session,
all the RSS subscriptions for a userid, products bought in a single checkout or pretty much any association of
items. Item-to-item affinity is nothing but a set of association rules[3]. An association ruleA → B relating two
itemsA andB implies that we will recommendB when givenA as input. To qualify as a rule, the pair(A,B)
must co-occur frequently in a group i.e. they must pass certain thresholds ofsupportandconfidence. Support or
minimum pair count is the least number of co-occurences ofA andB for them to generate a rule. The choice of
the support threshold depends on the characteristics of thedata, particularly the ratio of the number of items to
the number of groups. A higher item to group ratio (i.e. sparser data) may require lowering the support threshold
to ensure sufficient number of rules (and item coverage). Typically we choose support thresholds of 9 or above
to minimize noise. In our implementation, confidence or the affinity value is not a threshold, but instead an
ordering metric. Confidence for a ruleA → B is the conditional probability:P (B|A) = P (A ∩ B)/P (A). We
generate all item pairs satisfying the support threshold and then for item A find the topn items X which have
the highestP (X|A). This gives rise ton recommendation rules (n being a config parameter for a particular
deployment).

The most computationally intensive tasks involve finding the item pairs that have at least the minimum pair-
count. At the scale of Yahoo!’s data (3 million items, 100 million groups), this is reasonably hard to do. This is
where classic algorithms like Apriori[3] fail to scale. To make the problem tractable, we only consider binary
rules, i.e., we only count itempair frequency (experiments have shown that the gain from havingrules involving
more than 2 items is not signficant). At a high level, this involves creating aggregate hash tables in memory
mapping item-pairs to current counts and then flushing thesetables to disk when memory overflows. Finally a
second pass is made to merge and sum up all the item pair counts. There are several optimizations geared toward
large data set processing in the actual implementation. Chief among these are encoding all the itemid strings to
integers (as well as all itemid pairs to integers). Processing and comparing strings is the biggest consumer of
cpu time and we have found this integer encoding method to be the biggest contributor to scalability. There are
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also optimizations involved in dropping items that fall below the occurrence threshold and dropping item pairs
which do not make the cut of the topn affinity rules.

The affinity engine uses the well-known technique of association rule mining. Though this technology is
quite mature, we have found it to be remarkably effective in real-life situations. Given enough data (i.e. a low
item to group ratio) it is remarkably effective in tracking user behavior and often beats other more sophisticated
models in predictive performance. Additionally it can consume large data sets with ease, even when used on
a single system. In the near future, we plan to signficantly enhance the data processing capability of Vibes by
deploying a version of the affinity engine that runs on a Hadoop[8] grid cluster where it would be able to utilize
hundreds of compute nodes.

4.2 The Vibes Attribute Similarity Engine

Affinity based modeling seems to have only two weaknesses. Itmay not be able to produce an accurate model
under these conditions:

• There is not enough data, i.e. the number of items to number ofgroups is high. This can happen if a
particular web store-front does not have enough visitors ortransactions. This reduces the probability of
two items co-occurring enough number of times to overcome the support threshold.

• There are new items that have not accumulated enough history(in views, buys etc.). This is also known
as thecold startproblem. In general, it is very difficult to apply a behavioral model to such items.

One particular case where these conditions occur is for Yahoo! Real Estate and Autos which have high
volume house or car listings. These listings have a finite lifetime and may not accumulate enough views within
a 30-90 day window to make affinity based recommendations. Inthese cases, we plan to leverage structured
metadata that is available with the listing. The idea is somewhat similar to the approach proposed in [6], but we
use structured metadata instead of textual descriptions. In the real estate case, these would include attributes such
as the price, zip, number of bedrooms and number of bathroomsfor a house. Using just these metadata we can
calculate a similarity score between any two listings basedon a linear combination of attribute distances. The
exact formulation of the similarity score between two itemsi andj each havingn attributes(ai1, ai2, . . . ain)
and(aj1, aj2, . . . ajn) respectively is:

Similarity(i, j) = 1 −

n
∑

k=1

wk ∗ δk(aik, ajk) (7)

whereδk is the distance function andwk is the weight applied to the kth attribute. It is possible to choose from a
wide variety of distance functions such as Euclidean, Manhattan, Hamming distance etc. The distance function
chosen is normalized to produce an output in the range[0, 1].

Now comes the problem of finding weights. Our current approach is to learn these attribute weights from the
data points where affinity model data exists. Based on user click behavior, we can model the similarity function
to approximate the affinity (or confidence) of the recommendation i → j. GivenAffinity(i, j) and the attribute
metadata for items i and j we can construct a set of linear equations of the form given in Eq.8.

Affinity(i, j) ≃ 1 −

n
∑

k=1

wk ∗ δk(aik, ajk) (8)

Sinceδk(aik, ajk) can be easily calculated, it is relatively straight-forward to do a linear regression to derive the
weightswk. A similar idea applies to constructing distance functionsfor categorical attributes. We intend to
leverage user behavior to calculate affinities between categorical attribute labels and thereby deduce the relative
distances between those attribute values.
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4.3 User-to-Item Recommendations

This is usually considered the classic collaborative filtering (CF) problem, but the primary problem here is one
of scale. Yahoo! has of the order of 500M users, and if we consider 1M items, we are faced with a 500 trillion
cell matrix. Most of the algorithms described in the literature tend to break down when faced with data sets of
this size. Furthermore, the data tend to be rather sparse, partly because of the rank of the user-item matrix and
partly also because of practical problems of cookie churn which tends to inflate the number of users presented to
the CF algorithm. The goal of the Vibes platform is to identify a small set of core algorithms that can be applied
to a wide domain of user-to-item recommendation problems. We are currently evaluating several promising
algorithms like those in [2].

In the meantime, it is possible to simplify the problem somewhat by noting that most of our use cases do
not require a numerical rating prediction. We simply need tooutput a binary prediction of whether to suggest
an item to a particular user or not. Of course we want to optimize the click response to our recommendations as
well. One simple way of doing this would be to look at the clickhistory of a user in a given vertical (say Yahoo!
Shopping), i.e. for a useru, we have a set of itemsViewed(u). Then it is possible to expand this set using affinity
based item-to-item recommendations:

Recommended(u) =
⋃

∀i∈V iewed(u)

AffinityRecos(i)

whereAffinityRecos(i)refers to the set of items recommended for itemi by an affinity based model. When faced
with new items with no behavioral data, it is possible to bring in a content dimension to the above by substituting
(or augmenting) affinity based recommendations with attribute similarity based recommendations.

5 Model Building

The power of the Vibes framework stems not from the sophistication of the modeling engines but rather the
ease and rapidity with which they can be deployed in large number of divergent use cases. The model building
framework (the Data Processing block in Fig.1) has the job ofaggregating, filtering and processing data to feed
into the modeling engine. The following are some of the main operators that have been implemented in the
Vibes Model Builder.

query Queries the data warehouse using an SQL like query language to extract user behavioral data.

mergesort Takes a set of compressed files as input, merges them and sortsthem on the grouping key.

model Encapsulates the modeling engine and is further specialized into affinity, attribute similarity etc.

script Vehicle for plugging in ad-hoc scripts or executables written in any language for data processing.

evaluate Calculates metrics such ascoverage, precision, recallfor each model generated.

compare Compares current model with a set of historical models.

dbload Loads model result into serving database.

dbreplicate Replicates the model database across data centers.

In addition to specific operator properties, each operator has a set of common attributes (derived from a
parent operator class in an inheritance hierarchy) such as name, scheduling frequency, data duration, input data
source, output file and output schema. The individual operators are orchestrated into a workflow (specified as an
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Figure 2: Vibes Data Modeling Pipeline

XML file) for each customer deployment. Fig.2 shows an example linear workflow, but in general this can be a
dependency graph in the form of a DAG.

Model refreshes happen in an automated fashion depending onthe desired refresh frequency (which in turn
depends on the velocity of the data). Checks are built into each stage of the modeling pipeline so that downstream
processing is halted in the event of any failure. For exampleif a signficant difference in the input data causes a
substantial change in the number of rules, or the precision and recall of a model, then the model comparison oper-
ator fails and stops the dbload and dbreplicate operator preventing the deployment of the (possibly) faulty model
into production. The model outputs are currently stored in aMySQL database table having the following schema:
recos: (src_item, dest_item, score). Thescore column refers to the degree of relatedness of
the source item and the destination item and can either be theaffinity or the attribute similarity score. Therecos
table is indexed on thesrc_item column, making it very easy to look up the set of recommended items using
the SQL query:select dest_item from recos where src_item=’given item’ order by
score desc.

A recommendation platform is only as good as the visibility it provides into its performance. From the outset,
Vibes has ensured that appropriate metadata is sent along with the model output so that customers can record the
number of views and clicks made by users on the recommendations. These data flow into the data warehouse
from which we can report daily performance metrics such as views, clicks, click-through-rate and the number
of unique end users targeted. This allows us to have ongoing quality checks tracking model performance.

6 Recommendation Serving

As we have mentioned before, the Vibes serving infrastructure (which is located in various data centers) is
loosely coupled with the model building apparatus that is co-located with the central data warehouse. The glue
is provided by MySQL replication. After the models are built, they are loaded into a master database that is
then replicated asynchronously to slave serving databasesin data centers across the country. The slave databases
are read-only (except for batch model updates via replication) and this allows us to use the MyISAM storage
engine optimized for batch rather than OLTP. The loose coupling betwen the data processing backend and the
model serving frontend has several advantages namely better online performance and failure isolation. The
Vibes service has to be up and serving recommendations 24 X 7 because of the nature of the traffic coming to
our customers, the Yahoo! properties. There is no downtime due to model refreshes because the replication
pushes the new model data into a staging area and then switches over in less than a second. Equally importantly,
a failure in the model building process would stop the model refresh and replication, but the Vibes frontend
would still satisfy recommendation requests using the older model data in the database. Fig.3 shows the detailed
architecture of the Vibes recommendation web service.

The Vibes front-end is designed to scale horizontally and toserve 99.8% of requests within 20 ms. This
is required to have an acceptable end-user experience. Whena user browses a product page, say:http://
shopping.yahoo.com/p:Apple%20iPod%20touch%208GB%20MP3%20Player:1994935518 a
call is made from the Y! Shopping web server to the Vibes web service in the form:http://shopping.
vibes.yahoo.com/vibes?method=shopping.recos.getVibes&itemid=1994935518. After
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Figure 3: Vibes Serving Architecture

Vibes returns the recommendations in the form of an XML document, the Y! Shopping server parses the response
and renders the HTML and graphics for the recommended items before sending them to user’s browser. The
browser has to load the complete page in 1-2s. One of the critical components in achieving this low latency
is to use a large (currently 1GB) in memory cache (Fig.3) thatcaches responses from the database. The cache
contains both positive and negative (no recommendations) results and uses technology similar to the popular
memcachedeven though it is not partitioned across machines, (and so does not incur the penalty of an extra
hop). It is possible to further optimize this process by using AJAX to make asynchronous calls to Vibes such
that the main part of the page can load first while the recommendations are rendered in the background.

In the near future, we will be deploying Vibes also on the homepages of Yahoo! properties where rec-
ommendations could be provided without an item context. In that situation we would use information about a
user’s interests as identified by the Yahoo! cookie sent by the browser. This could be used toscorethe user, i.e.
retrieve behavioral and demographic information about theuser which are then used to place the user into one or
more clusters (with certain probabilities). Finally theseuser scores are used to suggest items that are considered
to be the most popular among members of the selected clusters. This dynamic user scoring for personalized
recommendations is also going to be the responsibility of the Vibes front-end.

Vibes uses the Apache web server as the base for its web service. All the logic to parse the request, look
up the recommendations from the serving database and formulate the XML response is compiled into a shared
library that is loaded by Apache. In addition, there is the flexibility to tailor the recommendations in real-time
using a series of rules that can include or exclude items or combine the results of a number of models. For
example, in the cases where we have both affinity based and attribute similarity based models, it is possible to
make run-time decisions about which kind of recommendations to serve based on either item coverage or the
relative magnitudes of the affinity and similarity scores. In the near future we plan to implement a model testing
capability that can be configured to partition the requests among a set of available models whose performance
would then be evaluated by the Vibes reporting mechanism.

As is required for a system in production, the Vibes serving architecture has several layers of fault tolerance
built-in. We are located in several geographically distributed data centers and within each there is redundancy
in the web serving layer as well as in the database tier to enable tolerance of single system failures. Just as for
the data processing backend, the Vibes front-end meticulously preserves a series of statistics related to service
up-time, system load, number of requests coming in, number of recommendations served and the number of
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cases where there were no recommendations. These data flow into a reporting portal that graphically displays
these metrics over time as well as sends alerts to operationsteams if they deviate over tolerance bounds.

7 Future Direction and Conclusion

There are significant enhancements planned for each component of Vibes. For the modeling component, we
would like to push deeper into personalized recommendations in a way that will scale to millions of items and
hundreds of millions of users. These models are going to be extremely computationally intensive to build, so
we have started moving our backend infrastructure to a Hadoop[8] grid environment. We have already done
experiments for generating affinity rules by mining search query logs which supply this data at a scale that can
only be processed on the grid. Having larger models will alsoput greater stress on the serving infrastructure,
which probably will have to handle models that are at least 100X larger - requiring a different caching solution
and possibly a different storage architecture.

Longer term, we would like to expose the power of the Vibes recommendation platform to a wider audience.
The algorithms and infrastructure should be generic enoughto be able to tackle data from a wide variety of
domains and satisfy a large number of use cases. Moving towards a self-service capability that allows the
customers themselves to configure and deploy the recommender system by defining API parameters and pointing
the system to the data source would be a big plus. Our vision for Vibes is that it would be deployed by a simple
drag-and-drop into a web-enabled application framework. That is when taking a platform-centric approach to
building recommender systems would really pay off.
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Abstract

We studied how actual users find items of interest in today’s complex, recommender-rich information en-
vironments, what role recommenders play in it, and if recommenders increase perceived social presence.
We used applied ethnography, on-location observation and interviewing, and Amazon as the environment
to get an accurate picture of user activity. We found that users are increasingly relying on recommenders
in finding items of interest. Since they have developed strategies to combine keyword searching with rec-
ommenders for discovery, recommenders should not be developed in isolation of the whole because users
do not use them in isolation. In addition, while some users feel that recommenders add to the sense of
social presence, others feel that they are not enough to create a sense of others being present.

1 Introduction

And I think that this feature is good, this ‘those who have bought this book have also bought
that book.’ I have found some books by that. For instance, I think that when I was looking for a
book on these mercenaries, it gave me a good list. I found [by keyword searching] something that
had something to do with it, and then I could search through it, and it works very quickly, because
I can do kind of a cross-search, search for books on mercenaries. Then when I read about some of
them, some that I might be interested in, and then I take one and then I go to this ‘who bought this
also read these,’ and it shows books with similar themes.– Participant 4

Recommender systems have become omnipresent in e-commerce. As Brent Smith, Amazon’s director of
personalization, says: “Personalized recommendations are at the heart of why online shopping offers so much
promise” [10]. Already today, recommenders are affecting where we go for holidays, what newspaper articles
we read, and what movies we watch, and there seems to be no limits to how they will be used in future.

While searching is seen as a way to help us find items that we know, recommenders are seen as means to
discovery [5]. Combining the two is even touted as a “next Google” concept, and punters see in their mind’s eye
a future where such applications know more about us than we doourselves [10].

Consequently, recommender systems have been frantically researched in both academia and industry. At
the beginning, the research focused heavily on the algorithms and different accuracy metrics for them [6] while
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the user issues were not widely researched, perhaps to the detriment of the whole field [9]. Today, however,
various user-related aspects are receiving increased attention. Our study is, as far as we know, the first that takes
a detailed look on the combined use of user recommendations and searching by keywords.

One interesting user aspect is that of social presence. Research has focused on social presence as a precedent
to trust and loyalty in e-commerce [1, 3] since lack of trust is seen as one of the greatest hindrances to the growth
potential of e-commerce [3, 4]. E-loyalty, in turn, has beencalled a “competitive necessity” in e-commerce and
shown to boost sales [11].

Nevertheless, the concept of social presence has not been well defined in the literature. In a study of Kalas
[14], a social navigation system for food recipes, social presence was defined as a perception of “not being alone
in the space”, and we use this definition here. Social texture, features that indicate synchronous or asynchronous
presence of others in the environment, was seen to provide the basis for social presence [14]. Furthermore,
Kumar and Benbasat [8] showed that recommender systems, including customer reviews, increase the perception
of social presence in addition to increasing the perceptionof usefulness.

Much of the research effort still focuses on different aspects of recommenders instead of complete recom-
mender systems, and even less attention is paid to recommenders as parts of complex information environments
where different ways of finding items compete for user attention, a scarce resource to begin with. Such e-
commerce sites as Amazon offer various ways to browse the items, and recommenders are only one of many.
As it is, we know little about how users actually use such complex environments. Research that deals both with
search and social aspects has focused on social navigation (e.g., [2]), not on user recommendations. In fact, the
only research done within the researcher community on the integral wholes that we know of is that of Kalas,
“one of the most complete social navigation systems ever built” [12].

There are various reasons for this lack of research into the complex information systems as integral wholes.
First, studying complex information environments is challenging for a number of reasons independent of the
methodology used [8]. In addition, the environments need tobe used for prolonged periods by numerous users
to start to deliver the goods [14]. Even in the Kalas study, where 302 active users used the system for six
months, the recommender system never actually started to work properly due to the sparsity problem [14].
Building complex information environments is an onerous task to begin with [8], and the difficulty of finding
large numbers of motivated users is enough to discourage even the most intrepid researcher. Arranging financing
is another complicating factor in such prolonged studies. Finally, while the commercial systems tend to be
superior to the ones built by researchers, their data is not available to researchers [8].

Consequently, we have little knowledge of how users actually use complex information environments and
what role recommenders have in finding items of interest. Where Kalas provided quantitative insight into what
users did in the complex information environment in question, we were interested in seeing the actual use
unfold and peak into the motivations and perceptions behindthe actions. In addition, we wanted to see if the
environment was indeed perceived as inherently social and if the perceived social presence affected the behavior
in the environment. Thus, we used applied ethnography, in our case a combination of on-location observation
with verbal protocol and interviewing, to study how six Finns found items of interest in Amazon, the world’s
biggest online retailer.

We chose Amazon to represent complex information environments because it has consistently been an early
adopter and innovator of new e-commerce approaches [7, 8]. In particular, Amazon has used a wide array of
recommender approaches for years. Moreover, Amazon has a very rich social texture.

Although our method limited us to six participants, thus limiting us to observing trends at general level rather
than at subgroup level, our participants were genuine userswith genuine motivation, and thus enabled us to see
clear trends and interesting examples of actual user behavior in a complex information environment.

We found that while recommenders play an important role in finding items of interest and that users find
them reliable, searching by keywords is not threatened by them. Recommendations are used both opportunis-
tically and strategically. Opportunistic use refers to users using recommenders unpremeditatedly when seeing
them while strategic use refers to recommenders being used intentionally even to the point of intentionally ma-
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nipulating what gets recommended. In fact, while punters are talking of approaches combining recommenders
with searches as the next Google, users are already combining searching and recommenders by seeding recom-
mendations with searches.

On the perceived social presence, our participants dividedinto two distinct groups: Half felt that the social
texture in Amazon did result in social presence while the other half felt that it did not. Nevertheless, we did see
evidence that the actions of others made visible in the social texture affected the behavior of at least some users.

The rest of the paper is organized as follows. After discussing our method and participants, we take a
look at how items of interest were found and what role recommenders played in it. Then we look at how the
recommender use can be described as opportunistic or strategic, and the implications of this. Finally, we discuss
the perception of social presence and how it affected the use.

2 Method and participants

2.1 Participants

The participants were six Finnish males, aged between 33 and44. We refer here to Participant 1 as P1, Participant
2 as P2, etc. All were in working life, had at least polytechnic-level education, and were experienced Internet
users.

A book purchase from Amazon was required for recruitment to ascertain that all were actual users of Ama-
zon. On average, participants had purchased 10 books (between 2 and 30) from Amazon prior to the study. For
the participants, the main reason for using Amazon was the availability of books. Four participants had also
bought other items from Amazon. Participants had used Amazon for 4.5 years on average. Thus, our partici-
pants were actual users of Amazon. In contrast, many studieshave used students acting as consumers [4, 13],
which raises questions of external validity [3].

However, while our participants were all “genuine,” they were all male, and men and women are known
to have at least some differences as e-commerce customers [1]. Additionally, the number of our participants
was low, and they ended up using Amazon only for buying non-fiction books during our observation sessions.
Finally, cultural issues prevent us from generalizing the results too widely.

2.2 Method

We used applied ethnography, in this case a combination of observation with verbal protocol and interviewing
at the participants’ homes with them using their own computers, as our method to get an authentic view of real
use.

While observation gives a picture of what users do and how they do it, it does not reveal their motivations
and other reasons behind their actions. Verbal protocol, inspite of its limitations and potentially behavior-
altering influence, is still our only way to get inside the participant’s head during the action without the clouding
of reflection that interviewing introduces. Thus, verbal protocol provides on-line insight while interviewing
provides reflective insight into the actions of the participant. Combining interviewing with observation also
avoids the say-do problem, the human tendency to describe what they do differently from what they actually do.

The observation-interview sessions, one per participant,lasted 2–3 hours each. The participants were given
four tasks and asked questions before, during, and after each task. Care was taken not to direct participants’
attention with the questions: during the tasks only some clarifying questions were asked when a user stayed on
a page for a long time without visible or verbalised actions.After the tasks, a semi-structured interview was
conducted. Finally, the participants filled in an online demographic questionnaire.

The sessions were videotaped with the video camera pointed at the computer screen to provide the context
for verbal protocol. The video camera also recorded the interviews.
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The tasks were given to the participants on a web site made forthe study with each task on its own page.
However, only the first two tasks are within the scope of this paper.

Task 1: “Buy a book (or books) from Amazon. Do not buy a book that you have already decided to buy.
Instead, you should find a book that you have not decided to buybeforehand.” On average, the participants used
23 minutes on Task 1.

Each participant was given 15 euros towards purchasing the book(s) in Task 1 to make sure that they selected
a book they really wanted. This is significant because research suggests that people use “affect or other simple
heuristics to guide their decisions” when the task does not involve them, the task is trivial, or they are not
motivated, while in high-involvement situations, when people have something to lose or are simply deeply
engaged, people use “cognitive analytical processing” [13]. In our study, the users were not paidper seor given
a chance to win something by participating, which might havemotivated them to take part in the study but not
engage them any deeper in the tasks. Instead, what they received depended on how they did the task, involving
them deeper in the task itself.

The participants were instructed to use the Amazon site thatthey most typically used. Three participants
used .co.uk, two used .com, and one used both .com and .co.uk.The choice of site was given to preserve normal
conditions although there are differences between the two interfaces.

Task 2: “You have bought a good digital camera and now you would like to buy a photography guide from
Amazon. Which one of the books on the list would you buy?” The task page provided a link to the list page
that was constructed to look like a list page in Amazon.co.uk. The page included books with high star rating,
low star rating, no star rating, and one book with Search inside function available. A mock-up page was used to
make sure that all these different conditions were present.The links on the page led to actual item pages in the
.co.uk site. On average, 11 minutes were used on Task 2.

All sessions were transcribed and then contrasted for analyzing. No analysis software was used. Because
the study method produced qualitative data, the goal of the analysis was to describe the observed behavior and
to find patterns.

3 Results and discussion

3.1 The role of recommenders in finding items of interest

I don’t know where this Kerouac thing came from. It came some weird route. The system kind
of drove me to it. I kept getting closer and closer all the timeand when I eventually was about to
take the other book that was more at general level, it pushed this Kerouac’s memoirs at me [laughs]
and I couldn’t resist it or ignore it. If I were in a bookstore,how the hell would I end up with
something by Kerouac? I’d be there looking at some painting books and the link between Kerouac
and tankha-paintings would be hard to draw, it just wouldn’thappen, and in that sense I’d be there,
probably looking at some impressionistic painting guides [laughs], and think that maybe this is not
quite what I wanted.– P4

In Task 1, seven books were bought. Three were found by recommendations and four by keyword searches.
P3 used directly personalized recommendations and found his book. P2 also started with personalized recom-
mendations but he already owned the only interesting book inthem and continued with keyword search. Three
participants, P1, P4, and P5, used keyword searches directly while P6 started with categories but moved to
keyword searching after failing to locate any interesting books.

P1 found a book with keyword searches but after putting it into the shopping cart, he saw an impulse item
recommendation for another book and went to its item page. When seeing an offer to buy the book in the basket
with the new book (“Perfect Partner” recommendation), he decided to buy both for about£40 even though he
had earlier on mentioned wanting to get a book on the subject for about£10. P5 was also interested in the
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“Perfect Partner” recommendation, but he already had the recommended book. P4 found the book to buy from
“Customers who bought this item also bought” list after a fewsearches.

In practice, all participants used recommendations in the item-finding process. Table2 summarizes the rec-
ommender use in Task 1. Interestingly, all three books foundby recommendations could be characterized as
serendipitous. Participants found items that they would not have found otherwise and that were exactly what
they wanted. Thus, the recommenders were clearly providingdiscovery.

Task 1 P1 P2 P3 P4 P5 P6 Total

Bought a book offered by algorithmic recommender • • • 3
Bought a book found by keyword searching • • • • 4
Used keyword search • • • • • 5
Used categories for searching • 1
Used “Perfect Partner” • • • 3
Used personalized recommendations (at the beginning) • • 2
Used “Customers who bought/viewed this item. . . ” • • • 3
Used “Explore similar items” • 1

Table 2: Recommendation use in Task 1 by the participants.

Furthermore, two participants used personalized recommendations as the starting point and several com-
ments by participants showed that they were actively looking for recommendations. Consequently, recom-
menders have become an integral part of complex informationenvironments in users’ minds, and play a signifi-
cant role in their item-finding strategies. Consequently, our findings are in line with the studies that suggest that
recommender systems are necessary and useful in finding items in the era of information overload.

Meanwhile, keyword searching, once the standard tool for item-finding, has clearly given some ground to
recommenders. However, it is still a natural starting pointwhen the topic is known but not much more.

The major problem with searching is naturally to come up withcorrect keywords. For instance, P4 used
as keywords “phone tapping government.” That search produces 22 results in Amazon.com while a search
with “wiretapping government” produces 215 results (March18, 2008). However, P4 did not come up with
“wiretapping,” and so he concluded wrongly: “Perhaps a book with that stuff in the way that I want it has not
been written.”

Finding the right keywords can be even further complicated when the system is not in the native language
of the user, as with our participants. For instance, names—many participants used author’s name as keyword—
and concepts with foreign words caused spelling problems. Some participants had strategies to deal with such
situations. For instance, when P6 failed to remember the spelling of an author’s name, he instead searched for a
book by the author, as he knew how to spell the words in the book’s title. Finding a book by the author helped
him to access relevant recommendations.

Interestingly, some participants simply searched for a book they knew on a topic to access similar books
through recommendations, thus seeding the recommendations with searches. Thus, recommenders can comple-
ment searches and inspire new searches, just like searches can be used to seed recommendations.

In the light of our study, searching and recommenders do not compete with each other but complement each
other in many ways. However, it is Amazon’s ability to make recommendations based on just one item viewed
that makes this possible. If recommendations were simply based on previous purchases and did not react to the
item at hand, it would be impossible to integrate them into the item-finding process the way the participants did.
Thus, to allow recommenders and searches to complement eachother, recommenders have to be responsive to
the current task context.

Our findings are in line with Hangartner [5] who concludes that searching is not disappearing because of
recommenders but can be enhanced with recommenders, and that recommender industry will continue to grow
in sophistication and importance.
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3.2 Opportunistic use of recommenders versus strategic use

Oh, hey, hey, hey! Now I’ll still, yeah, now I found a really good one! I mean true enough. I was
kinda left feeling a bit vexed about Kerouac. I mean Kerouac is for me kinda like, I mean I notice
that I’m chasing after him here. This “Customers Who Bought This Item Also Bought” is throwing
at me thisWindblown World: The Journals of Jack Kerouac 1947-1954. . . . Well, this showed itself
to be useful, you know, something like this can pop up out of nowhere at you.– P4

The participants used recommendations in two ways, strategically and opportunistically. Strategic use refers
to using recommenders intentionally as a part of the currentitem-finding strategy. The strategy might be ac-
cessing personalized recommendations, as P2 and P3 did, or searching for a particular book to see “Customers
Who. . . ” recommendations, as P6 did by finding a book by an author to see what other book was recommended
on the item page of one of his books. He had no interest in buying that particular book, but he wanted to see
similar books. Intentionality shows in two ways in this strategy: in P6’s deliberate intention to go to the recom-
mender to see what was recommended and in an attempt to influence the type of books to be recommended.

Opportunistic use refers to users stumbling upon recommendations and using them there and then. It lacks
the intention that characterizes the strategic use. Opportunistic use is possible only if recommender features are
displayed at the right point of the searching process.

Recommendations that require us to access them intentionally, such as personalized recommendations (“Rec-
ommended for You”) can only be used strategically. However,recommenders that are displayed as a part of the
interface, such as “Customers Who. . . ”, can and are used strategically in addition to being used opportunistically.

The secret to helping users use recommenders opportunistically is to deliver them when users are pre-
disposed to attending to them. For instance, when P5 when wasvacillating between two books, a “Perfect
Partner” recommendation that recommended the two books together at what appeared to be a slight discount (it
was not) helped P5 to decide to take both. In the same way, delivering recommendations to P1 when he had put
one item in the cart caught him at the moment he was not about todo anything else, and so he was pre-disposed
to check the suggestions out.

“Customers Who. . . ” recommendations work in a similar manner. If the user is not sure about the book on
the item page, he or she is likely to be interested in other options available. Thus, designing recommenders for
a complex information environment includes positioning them in the process that they are supposed to support.

Both opportunistic and strategic uses of recommenders are ephemeral, and users cannot be categorized by
them. Although P3 did simply look at the personalized recommendation in Task 1 and found a book, thus using
recommenders only strategically, in any longer item-finding process users are likely to move from strategic use
to opportunistic use and back again. How smooth the transitions are depends on how well the environment is
designed to support discovery and what user strategies can emerge from that environment.

3.3 Recommenders and perceived social presence

The participants divided into two groups as far as perceivedsocial presence of the environment was concerned.
P1, P2, and P5 felt that they were alone in an online shop and that the social texture did not make the environment
any more social. P1: “It is more like a convey belt than a social environment. . . . I don’t really see it as social
environment and the reviews by anonymous people don’t help to make it any more humane.”

While P2 and P5 found no social aspects whatsoever in Amazon,P1 did relent his position a bit. He
remembered having looked at the other reviews of reviewers once or twice and having had a feeling that “he’s
interested in the same things as me.” He thought that if he bought more books, spent more time in Amazon,
and consequently looked more at other reviews by reviewers and used other similar features, he might begin to
perceive the environment as more social.

For P3, P4, and P6, on the other hand, the social texture made the environment inherently social. P3 felt
that the recommendations “enlivened” the environment and that without personalization and personalized rec-
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ommendations it would appear “dead.” Likewise, P6 felt that the presence of the community was very positive:
“ It’s like that, you know, ok, yes, others had felt the same thing about it, about this book, and oh, ok, he thought
like that, I don’t agree but it’s good to know that people can see it like that, too. It goes like that; the community
emerges out of it.”

P4 perceived the environment as even more social than the other two. He explained how the social aspect
affected his behavior when he found a review that 95 people out of 95 had found Helpful: “I felt that it wasn’t
helpful, but like I said, I won’t click the button because then I’d be a killjoy. That’s where the sociability kicks
in. Then there was one where three had read it, I mean, had evaluated it and all agreed that it was not helpful.
So I somehow thought that I’ll rebel against it and be the firstto think that it is helpful. Then I’d actually do
something positive [laughs]. That I didn’t click the [first]button or that I would have clicked the [second]
button, the motivation didn’t have anything directly to do with the book or even the review but all to do with
the social context and how I perceived that social situation. . . . the critical mass of Joe Blows, then the social
dimension kicks in and those who disagree no longer have the face to disagree [laughs] and do it [vote a review
Helpful or not] when the critical mass has been reached.”

All the participants did use social skills and social cues available to assess the needs, level of expertise,
and even personality of the Customer Reviews writers to mirror them against their own to assign relevance and
reliability to the reviews. Furthermore, decisions influenced by Customer Reviews to buy or not to buy a book,
or to look in more detail a book because it had five stars, were all actions that were influenced by the social
texture.

However, we feel that what makes an environment social or notis the perception. If a user perceives that
other users are present because of the recommendations, then the environment is social for that user, and if a
user perceives recommendations are part of the convey belt shopping environment, then the environment is not
social for that user.

Consequently, the arguably rich social texture in Amazon isnot alone enough to make a user to perceive the
environment as inherently social. How easily people perceive an environment as social is probably related to
their personality and personal definition of sociability. For instance, P5 did not even see going to a brick-and-
mortar bookstore as social activity: “I don’t go to a bookstore to be social.” Furthermore, what constitutes social
texture might differ from one user to another. Nevertheless, it seems that some people need only a slightest of
hint to perceive an environment as social while others require synchronous conversations with video image.

4 Conclusions

Recommenders are integral parts of complex information environments, and their importance is likely to con-
tinue to increase in e-commerce as well as in other information environments. While not replacements for
keyword searches, they are already an integral part of user strategies for finding items of interest.

Recommenders are used both strategically (intentionally as a part of the item-finding strategy) and oppor-
tunistically (when seen without prior intention to use or influence the recommendations). Giving users better
ways to influence recommendations and their presentation, such as the order in which Customer Reviews are
displayed, is one way to assist users in using recommenders efficiently. The better we understand the underlying
and overall process, the better we can assist users to make use of the features in the environment and tailor the
tools for actual use.

Recommenders are parts of the social texture that increasesthe perception of social presence that in turn
influences user behavior. However, the effect is not uniformas only half of the participants perceived Amazon
as a social environment and half did not. While we saw examples of the social aspects influencing user behavior,
the “social effect” cannot be generalized to all users. The behavioral effects and what constitutes social texture
to different users require further study, but based on this study, we know that such effects do take place.

While punters talk about combining searching and recommenders, users are already doing it in practice
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by seeding recommendations with searches to generate discovery. Studies that concentrate in parts need to
be accompanied with studies that study the environments as integral wholes. Otherwise, the actual use and
predicted use may not meet.
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Abstract

Social-tagging communities offer great potential for smart recommendation and “socially enhanced” search-
result ranking. Beyond traditional forms of collaborativerecommendation that are based on the item-user ma-
trix of the entire community, a specific opportunity of social communities is to reflect the different degrees of
friendships and mutual trust, in addition to the behavioralsimilarities among users. This paper presents a frame-
work for harnessing such social relations for search and recommendation. The framework is implemented in the
SENSE prototype system, and its usefulness is demonstratedin experiments with an excerpt of the librarything
community data.

1 Introduction

Social networks and online communities provide a great potential for harnessing the “wisdom of crowds”, with
social interactions of individual users and user groups taken into account. For example, bookmark-sharing ser-
vices such as del.icio.us can generate collaborative recommendations based on the quality and trust assessment
of web pages as well as users. Social-tagging platforms suchas flickr, librarything, or lastfm enable community
formation, based on common thematic interests, and thus provide ratings and rankings of photos, books, music,
etc., based on the social interactions among many users.

These settings resemble the paradigm of collaborative recommendation [5, 12, 17, 19], which applies data
mining on customer-product and similar usage data to predict items that users are likely interested in. Such
recommendations leverage user-user similarities as well as item-item similarities. For the first aspect, joint be-
haviour patterns of two users can be exploited, e.g., the number of items purchased by both users. For the second
aspect, the overlap in the interests of users in two items canbe exploited, e.g., the number of users who pur-
chased both of two items. A popular approach is to apply data-analysis methods (e.g., spectral decomposition)
to a user-item matrix.

Social wisdom for searching, ranking, and recommending items differs from such traditional recommender
systems in two important ways:

1. There are explicitfriendshipandtrust relations among users that are orthogonal to similarities of interests
and behavior, and these truly social relations can significantly affect the quality of recommendations.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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In contrast, traditional recommenders consider the user community only in its entirety, whereas social
recommenders would discriminate different users based on friendship strengths, mutual trust, etc.

2. There is often a search or discoverycontextlike sets of keywords (not necessarily corresponding to the
tags of the existing data items) or a real-life task like planning a trip or buying christmas presents, that
characterize the ideal results that the user hopes to obtain. This is in contrast to the weakly parameterized
nature of traditional recommenders where you can start witha given item to discover new items but not
with a vague description that does not match any existing item.

This paper presents a framework for exploiting social wisdom in such a setting, and discusses the ranking
of search results and recommendations. Despite the relatively young age of social-tagging communities, there
is already a sizable body of literature on a variety of socially enhanced scoring and ranking functions, e.g.,
[7, 14, 24]. However, most of the prior work has focused on very specific points, such as applying generalized
link analysis (i.e., PageRank-style notions of FolkRank, UserRank, SocialRank, etc.) to identify the most central
(influential) users or items; and some of the empirical studies have actually raised doubts about the benefit of
social tags and friendship relations for improving search [11, 13]. In contrast, this paper aims at a comprehen-
sive framework for scoring, with consideration of both social relations and semantic/statistical relations among
items and tags. To this end, we introduce a versatile and richly parameterized scoring model, and we present
experiments with librarything data and user-provided quality assessments that demonstrate significant benefits.
Throughout the paper we disregard efficiency and scalability issues; these are challenging, too, but out of scope
(refer to [4, 8, 20, 23] for efficiency issues).

The paper is organized as follows. Section 2 presents our framework for modeling social-tagging networks
and our prototype system coined SENSE (standing for “Socially ENhanced Search and Exploration”). Section
3 presents the socially enhanced scoring model for search and proactive recommendation. Section 4 discusses a
user study for experimentally evaluating our approach, based on an excerpt of the librarything community. We
conclude with lessons learned and an outlook on further research opportunities.

2 SENSE Framework

We studied a variety of social-tagging platforms, most notably, del.icio.us, flickr, librarything, and
lastfm, in order to come up with a unified set of abstractions that canmodel the user-provided data and activi-
ties in such communities. The resulting model can be cast into a relational schema of the following form (with
unique keys underlined):

Users(username, location, gender, . . .) //abbreviated: U
Friendships(user1, user2, ftype, fstrength) //abbreviated: F
Documents(docid, description, . . .) //abbreviated: D
Linkage(doc1, doc2, ltype, lweight) //abbreviated: L
Tagging(user, doc, tag, tweight) //abbreviated: T
Ontology(tag1, tag2, otype, oweight) //abbreviated: O
Rating(user, doc, assessment) //abbreviated: R

We refer to all kinds of data items asdocuments, using IR jargon. These are the items that users explicitly
upload (e.g., their own photos) or bookmark and annotate (e.g., web pages, books, songs). Items may be cross-
referenced by different types of (possibly weighted) links.

Friendshipsare user-user relations that come in different forms; this is why we allow multiple types ofF
relations captured by theftypeattribute. Social friendshipis an explicit, user-provided relation, which can be
symmetric or asymmetric; we assume that such a relation exists only if the users know each other by some
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interaction (in real life or in cyberspace).Spiritual friendshipamong “brothers in spirit”, on the other hand,
captures similar behavior such as memberships in the same groups or high overlap in tag usage; these are
symmetric relations and they do not assume that spirituallyrelated users know each other. The strength of anF
relation between two users could be derived from the users’ activities such as overlap in tagged documents or
trust measures derived from mutual comments and ratings. Wetreatfstrength as a pluggable building block;
it may also be completely absent.

Taggingis a ternary relation between users, documents, and tags. Infull generality, it cannot be decom-
posed into three binary relations (users-docs, docs-tags,users-tags) without losing information. Nevertheless,
binary-relation (or, equivalently, graph or matrix) representations for tagging are very popular in the literature on
social networks for convenience. Our approach preserves the full information and feeds it into a scoring model.
Independently of tagging activities, theR relation allows users to rate the quality of individual documents. Al-
ternatively, we could aggregate data from theT relation to derive quality measures (e.g., interest or trust in an
information source) and keep it as an attribute ofR.

Ontologyis a light-weight knowledge base that captures different types of “semantic” relations among tags
(e.g., synonymy or specialization/generalization). These relations may be provided by domain experts or im-
ported from real ontologies, or they may be built by applyingdata-mining techniques to the tagging data. The
latter case is more realistic for today’s types of social tagging communities and is often referred to as “folk-
sonomies” (folklore taxonomies); in this case, theoweight values could be based on tag-usage statistics.

Note that this model is much richer than the datasets in traditional recommender systems. In addition to the
shown relations, we can easily add various kinds of aggregation views, for example, document-tag frequencies
aggregated over all users. Also note that not all of its aspects apply to every tagging platform (e.g., only few com-
munities would show the users’ home locations, some do not facilitate any cross-references among individual
items, etc.). In fact, our experimental studies presented in Section 4 utilize only a subset of our model.

Figure 1: SENSE Screenshot
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We have implemented this model based on a relational database system, and populated it with different
instances derived from partial crawls of real-life taggingcommunities. For systematic experimentation with
user assessments, we have also built a GUI that supports interactive search and browsing with capabilities for
explicit and flexible exploitation of social relations. Figure 1 shows a screenshot of this toolkit, coined SENSE
(for “Socially ENhanced Search and Exploration”). The figure shows the ranked results for the query “sf nebula
winner” issued by a particular user on an excerpt from the librarything community. The top portion of the results
is based on the user’s own book collection; the bottom part shows the results obtained by searching other users’
collections with consideration of the query initiator’s specific friendship relations.

3 Scoring Model

Consider aqueryQ(u, q1 . . . qn), issued by a query initiatoru with a set of tagsq1 . . . qn. Result documents
should contain at least one of the query tags and be ranked according to ascore. In contrast to standard IR query
models, our scoring function can be tuned towards differentaspects of social communities. Scores areuser-
specific: they depend on the social and/or spiritual context of the query initiator, according to the configuration
of the model. The querying user can decide if her informationneed is 1) spiritual, 2) social, or 3) global, the
latter being agnostic to her social relations.

Friendship Strengths. The core of the scoring model is formed by three different quantizations for user-
user affinity orfriendship strength, corresponding to the three different search modes: spiritual, social, global.
Each type of affinity can be implemented in different ways, and our current implementation allows switching
between and combining different definitions at run-time. The spiritual friendship strengthFsp(u, u′) of two
usersu andu′, tuned towards spiritual search, is computed based on user-behavior statistics such as overlap of
tag usage, bookmarked documents, or commenting and rating activity. Thesocialfriendship strengthFso(u, u′),
applied for social search, is based on measures like the inverse distance ofu andu′ in the friendship graph (F
relation), but may additionally include other measures. AsFso considers also transitive friendships, we have
options for different weighting schemes of more distant friends: linearly descending with increasing distance,
harmonically descending, geometrically descending, or solely counting immediate friends. Theglobal affinity
Fgl(u, u′) = 1

|U | , used for global searches, gives equal weight to all users. All these measures are normalized

such that
∑

u′∈U F (u, u′) = 1 for all u.
The actual friendship strength used to evaluate a query is a linear combination of these three measures:

Fu(u′) = α · Fso(u, u′) + β · Fsp(u, u′) + (1 − α − β)
1

|U |

The parametersα andβ, 0 ≤ α, β ≤ 1, can be configured and dynamically adjusted by the user (or anagent
on behalf of the user). Extreme choices would be purely spiritual (α = 0, β = 1), purely social (α = 1, β = 0),
or purely global (α = 0, β = 0) search; other combinations are reasonable and more interesting.

Score for Tags.To compute the scoresu(d, t) of a documentd with respect to a single tagt relative to the
querying useru, we use a scoring function in the form of a simplified BM25 score [18]:

su(d, t) =
(k1 + 1) · |U | · sfu(d, t)

k1 + |U | · sfu(d, t)
· idf(t)

wherek1 is a tunable coefficient (just like in standard BM25),|U | is the total number of users,sfu(d, t) is a
user-specific tag frequency explained below, andidf(t) is the inverse document frequency of tagt, instantiated
as

idf(t) = log
|D| − df(t) + 0.5

df(t) + 0.5
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with df(t) denoting the number of documents that were tagged witht by at least one user. BM25 is a probabilistic
IR model that has been very successful and popular in text retrieval. Unlike the original BM25 formula, our
model has no notion of document lengths; the number of tags assigned to a document does not vary as much as
the length of text documents.

Thesocially-enhanced tag frequencysfu(d, t), our replacement for the standard term frequency (tf ) known
from text IR, weights tags by the friendship strength of the query initiator and the user who added the tag to
the document. More formally, denoting bytfu(d, t) the number of times useru used tagt for documentd, we
define the socially-enhanced tag frequencysfu(d, t) for a tagt and a documentd, relative to a useru, as

sfu(d, t) =
∑

u′∈U

Fu(u′) · tfu′(d, t).

For example, if Alice has four (out of her many) friends who have taggedd with t (each once, as it is the norm
in social tagging) and each of these immediate friends has weight 1/8 and only immediate friends matter, then
sfAlice(d, t) would be4 · 1/8 = 1/2.

Tag Expansion.Even though related users are likely to have tagged related documents, they may have used
different tags to describe them. It is therefore essential to allow for an expansion of query tags to “semantically”
related tags. To avoid topic drift problems, we adopt thecareful expansionapproach proposed in [22] which
considers, for the score of a document, only the best expansion of a query tag, not all of them. More formally,
we introduce thetag similarity tsim(t1, t2) (an instantiation of theoweight attribute of theO relation) for a
pair of tagst1 andt2, 0 ≤ tsim(t1, t2) ≤ 1. The final scores∗u(d, t) of a documentd with respect to a tagt and
relative to a querying useru, considering tag expansion, is then defined as

s∗u(d, t) = max
t′∈T

tsim(t, t′) · su(d, t′)

A good source for high-quality tag expansions would be human-made ontologies, however for most appli-
cations, it is unlikely that they will be available. Our implementation therefore provides several alternatives to
compute the similarity between two tags, none of which requires that an explicit ontology is available. The
currently preferred one is based on the co-occurrence of thetags in the entire document collection by estimating
conditional probabilities:

tsim(t, t′) = P [t|t′] =
df(t)

df(t ∧ t′)

wheredf(t∧ t′) is the number of documents that have been tagged by both tags (but possibly by different users).
This asymmetric measure (as opposed to symmetric similarities such as Dice or Jaccard coefficients) aims to
identify goodspecializationor instantiationtags rather than synonymy or generalization. For example, someone
searching for “snake” may be happy to see results that contain the specialized tags “Black Mamba”, “Cobra”,
etc., but is not interested in documents that feature more general tags such as “vertebrate” or “animal” as they
will probably lead to results that are too general as well. Infact, one would expect a much higher probability, in
the underlying dataset, that a document tagged “Cobra” alsohas the “snake” tag than, conversely, a document
tagged “snake” also having the tag “Cobra” (simply because Cobras are only one of many types of snakes).
Similar techniques for mining asymmetric tag relations have been used in different contexts (e.g., [2, 6, 9]).
Note that the same similarity measure cculd be applied to measure the strength of relationships in an ontology;
here, the pairs of tags under consideration would be those connected by an edge in the ontology.

The above form of tag expansion captures “semantic” associations, but disregards the social relations among
users. Forsocially-enhanced tag expansionwe compute the similarities between tags in a way that gives aco-
occurrence higher weight if the two tags were given by a closefriend of the current useru. This idea leads to
the formula:

tsimso(u, t, t′) =
∑

u′∈U

Fu(u′) ·
dfu′(t′)

dfu′(t ∧ t′)
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wheredfu′(t ∧ t′) is the number of documents tagged by the same useru′ with both t andt′. Intuitively, we
postulate that useru is interested in seeing Ferraris as a result to a query about sports cars if her friends prefer
Ferraris and show this in their tagging activities.

Score for Queries.Finally, the score for an entire query with multiple tagsq1 . . . qn is the sum of the per-tag
scores:

s∗u(d, q1 . . . qn) =
∑

q1...qn

s∗u(d, qi)

Note that this score assumes an IR-style “andish” query evaluation: not all query tags must be matched,
but more matches typically lead to higher scores. However, the model can easily be extended to conjunctive
evaluation by settings∗u(d, q1 . . . qn) = 0 when at least one of thes∗u(d, qi) = 0.

4 Experiments

4.1 Setup

To study the effectiveness of the socially-enhanced scoring model, we performed experiments with data extracted
from partial crawls of thedel.icio.us, flickr, andlibrarything sites. We concentrate on the librarything
data here, for lack of space and also because this is the most interesting of the three scenarios. We found the
social aspects in del.icio.us to be rather marginal, as mostbookmarked pages are of fairly high quality anyway;
so a user does not benefit from his friends’ recommendations more than from the overall community. Flickr
has recently grown so much that the tagging quality seems to be gradually degrading; only the owner of a
photo provides tags, and these are sometimes relatively unspecific annotations that are given to all photos of an
entire series (e.g. vacation July 2007). Librarything, on the other hand, features intensive tagging of a quality-
controlled set of items, namely, published books, and its users have built up rich social relations. Finally, book
recommendation is a matter of subjective taste, so that social relations do indeed have high potential value. You
trust your friends’ taste, not necessarily their “technical” expertise.

We extracted the following data from the librarything site:11,717 users who together own or have read
1,289,128 distinct books with a total of 14,738,646 taggingevents (including same tags for the same book by
different users), and 17,915 explicit friendships. For thelatter, we used the librarything notion of friends (where
users mutually agree on being friends) and the notion of referring to an “interesting library”. The users included
6 users from our institute who have been contributing to librarything for an extended time period and have made
various social connections. These 6 users ran recommendation queries and assessed the quality of the results in
our study. Note that such human assessment is indispensablefor this kind of experiments, and in our setting it
was crucial that a query result was assessed by the same user who posed the query. Altogether, our 6 test users
ran 49 queries, shown in Table 3.

Query results were computed for a variety of scoring models:different values ofα and β and different
strategies for tag expansion. The results from all runs for the same query were pooled; all of them together were
shown to the corresponding user in random order (in a browser-based GUI), and the user assessed the quality of
each result by assigning one of three possible ratings: 0 = irrelevant or uninteresting, 1 = relevant and interesting,
2 = super-relevant and very appealing. Results that the useralready knew, that is, books that she has in her own
library, are always discounted.

As for quality measures, we computed, for each run separately:

• theprecisionfor the top-10 results, treating both ratings of 2 and 1 as relevant,

• thenormalized discounted cumulative gain (NDCG)[15] for the top-10 cutoff point. DCG aggregates the
ratings (2, 1, or 0) of the results with geometrically decreasing weights towards lower ranks (DCG ∝
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user 1 user 2 user 3 user 4 user 5 user 6

thailand travel web learning time traveler religion god world information retrieval sf nebula winner
asia guide travel mountain climbing leonardo vinci challenge theory probability statistics fantasy politics
technology enhanced
learning knowledge
management

kali death english grammar imagination fantasy
science

database system fantasy dragaera

multimedia metadata
standards

buddha romance prague drama story novel transaction manage-
ment

sf nuclear war

knowledge manage-
ment media theory

houdini brazilian literature magic fantasy data mining fantasy malazan

social network
analysis theory

science illusion
magic

shalespeare play india philosophy software develop-
ment

multimedia social
software

mystery magic stephanie plum fantasy story

religion irony humor search engines novel family life
yakuza spanish literature science fiction future
hitman portuguese literature

harry potter
wizard

Table 3: Queries of the user study

H
H

H
H

α

β
0.0 0.2 0.5 0.8 1.0

0.0 0.666 0.698 0.688 0.682 0.680
0.2 0.661 0.678 0.686 0.690 n/a
0.5 0.637 0.657 0.663 n/a n/a
0.8 0.612 0.647 n/a n/a n/a
1.0 0.549 n/a n/a n/a n/a

Table 4: Precision[10] for all users

H
H

H
H

α

β
0.0 0.2 0.5 0.8 1.0

0.0 0.546 0.572 0.568 0.565 0.565
0.2 0.564 0.572 0.579 0.581 n/a
0.5 0.539 0.552 0.559 n/a n/a
0.8 0.515 0.546 n/a n/a n/a
1.0 0.465 n/a n/a n/a n/a

Table 5: NDCG[10] for all users

∑

rank i
2rating(i)−1
log2(1+i) ) and is then normalized into NDCG by dividing by the DCG of an ideal result (first

all results with rating 2, followed by all results with rating 1, followed by results with rating 0). NDCG is
a widely adopted standard measure in IR.

4.2 Results

Tables 4 and 5 show the precision and NDCG values for different choices of the configuration parametersα and
β, without any form of tag expansion. These are micro-averaged results over all test users. Values printed in
boldface are results that were significantly better than thebaseline case (α = β = 0) according to a statistical
t-test with test level 0.1.

The results show that both social (increasingα) and spiritual (increasingβ) processing can improve the result
quality. This holds for each of these two directions individually, and the combined effect is even better with a
typical maximum atα = 0.2 andβ = 0.8. It may seem that the improvements, for example, from an NDCG
value of 0.546 for the baseline to 0.581 for the best case, is not impressive. However, one has to keep in mind that
differences in such effectiveness measures generally tendto be small in IR experiments as opposed to efficiency
differences (e.g., response times) in the DB literature; weemphasize that the gains are statistically significant.
Moreover, it is worth pointing out that for some individual users (i.e., micro-averaging over the queries of one
user only) or for individual queries the gains are higher. Asanecdotic evidence, the query “science illusion
magic” posed by User 2 strongly benefited from the user’s social relations: with global scoring alone, many
good results were missed; with spiritual scoring alone, theresults drifted towards a big “Harry Potter” cluster
which was not what the user wanted; only the combination of social and spiritual similarity gave the excellent
results that the user appreciated (which included novels such as “Prestige”, “Labyrinths”, “Invisible Cities”).
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H
H

H
H

α

β
0.0 0.2 0.5 0.8 1.0

0.0 0.545 0.565 0.565 0.563 0.565
0.2 0.561 0.573 0.581 0.582 n/a
0.5 0.538 0.550 0.554 n/a n/a
0.8 0.506 0.540 n/a n/a n/a
1.0 0.459 n/a n/a n/a n/a

Table 6: NDCG[10] with expansion, up to
5 expansions per tag

H
H

H
H

α

β
0.0 0.2 0.5 0.8 1.0

0.0 0.537 0.560 0.558 0.556 0.556
0.2 0.535 0.550 0.567 0.564 n/a
0.5 0.515 0.536 0.545 n/a n/a
0.8 0.487 0.522 n/a n/a n/a
1.0 0.454 n/a n/a n/a n/a

Table 7: NDCG[10] with social expan-
sion, up to 5 expansions per tag

Tables 6 and 7 show the NDCG results with tag expansion enabled, aggregated over all 49 queries of the user
study. We compared the purely semantic expansion that ignores social relations against the socially-enhanced tag
expansion that prefers tags used by friends. Across the entire query mix of all users, neither of the two expansion
methods achieved significant improvements, but again, for individual users such as User 2 there were noticeable
gains. For example, the query “Yakuza” created the expansion tags “Cosa Nostra”, “Triads”, and “nightclub”
(among the top-5 expansions); the first and second expansioncould have been expected (and created also by an
ontology-based method), but the third expansion really reflected tag co-occurrences and implicitly the contents
of the kinds of novels that the user wished to discover. Social expansion, on the other hand, did not improve
results; in fact, it sometimes reduced the quality. For example, by considering the friendships of User 2, the
“Yakuza” query ended up with the expansion “Ninjas” and led to poorer query results.

5 Lessons Learned and Open Issues

In this paper, we have developed a comprehensive framework for socially enhanced search, ranking, and rec-
ommendation. Our experimental evaluation exhibits interesting results and indicates the potential of exploiting
social-tagging information for scoring and ranking. However, the results reveal mixed insights, and thus also
underline the need for further investigating this line of research.

The combination of social and spiritual scoring nicely improved the results of certain queries or users, but
also led to result degradation in other cases. On average, there is a significant gain but it is not as impressive
as one could have hoped for. It seems that categorizing queries and identifying the query types that can benefit
from social and spiritual relations is the key to a robust solution that would choose non-zero values forα andβ
only when benefits can be expected. In our user study, the queries seem to fall into the following four categories:

1. Queries with a purelyglobal information need that perform best whenα = β = 0; examples are “Hou-
dini”, “search engines”, “English grammar”, all fairly precisely characterized topics with objectively
agreeable high-quality results.

2. Queries with a subjective-taste and thussocial aspect that perform best whenα ≈ 1; an example is the
query “wizard”. This query produces a large number of results but the user may like only particular types
of novels such as “Lord of the Rings”, for which “wizard” is a relatively infrequent tag overall but was
frequent among that user’s friends.

3. Queries with a spiritual information need that perform best whenβ ≈ 1; an example is the query “Asia
travel guide” where one can harness the aggregated expertise of the entire user community without con-
sideration of social relations.

4. Queries with a mixed information need that perform best when α, β ≈ 0.5; an example is the query
“mystery magic”.
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Obviously, these lessons are still very preliminary. Our future work aims at developing a principled under-
standing of query properties and their potential for socially-enhanced recommendation. Other issues that are
worthwhile addressing include thetemporal evolutionof tagging and social relations (see, e.g., [3, 10]) and the
notion ofdiversityin query results and recommendations (see, e.g., [16]). Forinteresting and surprising discov-
eries, you want to benefit from the natural diversity of cultures and tastes in your social network. (Even computer
geeks should have some friends who are not in the IT business or in computer science.) Finally, efficiency and
scalability in indexing and query processing pose major research challenges as well, and are being addressed in
ongoing work such as [1, 20, 23].
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Abstract

Social media are constructed from the collective contributions of potentially millions of individuals and
present an increasingly common and large scale form of database. As these databases grow in social
and technical importance exploration of their structure isneeded. The social nature of much of this
data is an added opportunity and challenge, providing contributions to social science questions about
large scale social behavior while raising technical thresholds caused by the scale and complexity of the
data. The detailed records of the interactions of users of social media form a foundation for higher level
representations of the behavior of users and communities inthese systems. Social networks are a key
structure in social media databases. In the following several visualization tools are used to illustrate
social networks and other structures within these data sets. These images highlight behavioral motifs
that can be understood through social science theories about roles and social structure. The result is a
deeper understanding of the dynamics that drive the creation of user generated content in social media.
This process suggests the need for an extension for the structured query language (SQL) that explicitly
supports social queries.

1 Introduction

Social life increasingly takes place through computer mediated interaction systems, and these systems are grow-
ing in terms of affordances and social importance. Social networking and Web 2.0 services are the most recent
examples in a long line of social media. Ever since email and email lists started to accumulate, social media have
grown dramatically in volume and function. Many people’s experience of internet communication is the prod-
uct of multiple complex channels. It is now commonplace for many people to use tools like email, email lists,
newsgroups, discussion boards, web forums, blog comments,wiki document and talk pages, instant message
conversations, SMS messages, Social Networking Services,photo, audio and video sharing services and several
other mechanisms for communication and relationship management. These channels allow for the exchange of
a rich collection of digital objects among select or global populations.

When people gather and interact in computer mediated spacesthey often leave traces behind which record
who does what with whom when. Many computer mediated spaces are linked to databases that record these
traces for logging and backup purposes. These databases canbe processed to reveal patterns of association and
patterns of individual differences present in the data. These patterns tell a story about an ecosystem and its
inhabitants, a story about variation and the emergence of stable types of social spaces and the roles participants
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

50



play within them. A great opportunity exists in the river of real data coming from these systems that enables a
focus on empirical studies of large scale naturally occurring data sets composed of large interacting populations.
Letting this data tell its story is a goal shared by many who want to understand what happens when millions of
people interact through computation.

As these databases grow in social and technical importance exploration of their structure is needed. The
emergent structures that result from millions of people using these systems are opaque; the systems themselves
rarely provide tools to gain a meta-overview of the system itself. The confluence of increasing computer power
and the widespread adoption of Internet social media applications offer a particular opportunity within the larger
space of network science. Network structures are becoming the focus of a diverse range of disciplines from
physics, biology, and information science to sociology andother social sciences. Commonalities across diverse
disciplines are emerging as network structures are found within complex processes from protein biology to
international finance.

Despite the variety of social media databases in operation,they often share common core structures in the
forms of social networks, conversation and document structures, hierarchies and user profiles. Many of these
structures have corresponding time stamps. With effort these data sets can be transformed into visualizations
that illustrate higher level structures. In social media data sets these higher level structures include attributes like
social roles, cliques, communities, and their historical changes.

An integrated view of social media remains elusive, if only because of the distributed way in which such
data is stored across multiple systems, services and geographies. Today, only fragmentary images that feature
one or a few systems are available. Metaphorically, studiesof social life on the Internet remain in a state similar
to meteorology prior to satellite photography. Work to build local maps of social databases is occurring in a
number of disciplines.

The challenge of mapping even individual social databases is heightened by the absence of standard “social
queries”. Most social media database systems lack tools fordealing with higher level social structures in their
datasets. A ”Social SQL” is called for that provides higher level forms of interaction with social databases.

Geographic data is a good analogy for what a Social SQL could be. In GeoSQL, a higher level set of
relationships for database objects related to location andconnection is provided. GeoSQL offers custom support
for the geographic properties of roads and bounded regions so that developers avoid calculating these attributes
from scratch. This extension to SQL provides for ”topological relationships between two geographic objects
with seven spatial predicates. These predicates are: “EQUAL, MEET, INSIDE, CONTAIN, CROSS, OVERLAP
and DISJOINT.” [12] A similar set of operations could be applied to social media datasets. Social queries often
want to know if a person is a member of a group or if a group is a sub-group of a larger organization. Other
queries want to discover if there is an intersection betweenpeople or groups in terms of the common relationships
or interest they share. It is common to want to know if two slightly different names refer to the same physical
person.

The comparison has limits, however. Geographic space is an objective reality that is not in widespread
dispute (even if the boundaries sometimes are). In contrast, social media lie in an amorphous data space whose
internal structure remains poorly understood. While many of these geographic operators could make sense in
a social media space, there is an absence of a unified underlying terrain. Tracking the shifting memberships of
well defined organizations is a challenge as people enter andexit and move from one part of the organization to
another each day. Building such a map for more informal groupings is even more challenging. Cities and other
geographic entities only slowly move from one jurisdictionto another while informal computer mediated groups
may resemble more closely flocks of birds that merge and divide while moving from one perch to another [4].

Social media repositories are populated by multiple entities which are interconnected in complex ways.
Mapping social media databases requires the production of higher level representations of the potentially large
volumes of individual records of transactions and interactions. Each entity must be aggregated in terms of other
entities and across time. For example, individual rates of activity over time and the interaction patterns between
many individuals at some point in time are two common elements of many social database visualizations. These
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higher level elements are a form of accounting system for social interaction. The production of social accounting
metadata is a prerequisite for all the efforts to produce social database visualizations.

Maps of computer-mediated social interactions reveal the range of social variation taking place within these
systems, the variety of social roles being performed, and the different groupings, clusters and communities into
which people aggregate. Traces of conflicts or group effortsto collaboratively construct artifacts are topics of
great interest to social scientists who can use these computer-mediated social spaces to further the study of these
and other group processes. Social databases have many advantages over traditional data collection methods that
involve direct observation and manual coding of events. Data collection is often costly, necessarily limited in
scope and time period, and error prone. In contrast, social databases are high fidelity records of some elements
of social interactions. Attributes like the time of an event, the identifiers of participants and other objects are all
likely to be recorded very accurately.

The attractions of social databases are often simultaneously their greatest challenge in terms of building
maps. Before any form of Social SQL can be developed the first step is to define the terrain that it would map.
Doing that takes tools for surveying social media data sets.The following is a review of several tools that reveal
social patterns in these data sets.

2 Related Work

Visualization has frequently been used in the sciences to illustrate findings of prior quantitative analysis or
succinctly summarize those findings to non technical audiences. Visualization can also be used to reveal new
relationships, develop hypotheses, refine classification systems, or otherwise discover new insights about how
the online social world operates. Many researchers have adopted visualization as an integral strategy of discovery
and investigation in research.

Key data structures in social media are time series, hierarchy, and directed graph. For each of these structures,
researchers make use of several visualization strategies are to investigate social media spaces at various scales
and levels of detail.

2.1 Time Series

Viegas et al. [10] created “HistoryFlow,” a visualization for examining activity over time on Wikipedia pages.
Each version of a Wikipedia page is represented by a colored vertical strip, where different colors represent
different editors and the length of the strip represents thevolume of contribution in that particular version.
Pieces of text that remain the same from version to version are connected by regions of the color corresponding
to the respective editor, which allows the viewer to see parts of the page that persist over time. Insertions and
deletions manifest themselves as gaps between the connected regions. History Flow analyzes data from online
communities to give insight into the evolution of digital artifacts produced by these communities. We present
a sample History Flow diagram of the “Abortion” article on Wkipedia below. Notice the shift down and then
back up towards the right edge of the graph, which suggests a large (and controversial) section was added to the
article, then deleted as status quo was restored.
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Viegas and Smith [9] take a higher-level approach to visualizing individual activity over time. They develop
Author Lines, histograms of user activity in online spaces.These histograms are broken into two halves to
represent two contrasting types of activity (e.g. startingnewsgroup threads vs. replying to newsgroup threads).
The dividing plane is a temporal axis, usually broken down byweeks. For each week, the author line contains
zero or more circles of different size. Individual circles represent individual threads started / replied to, and the
size of the circle represents the size of the post. Author Lines allow for clear identification of certain iconic
roles, such as “Answer person” (his author line would have noactivity in the upper half-plane) or “Discussion
Person” (his author line would have a small number of large circles). The image below shows the author line for
a user with answer person tendencies.

2.2 Directed Graph

A different set of visualizations looks at the social network of interactions in online communities. Welser et al
[13] pursue the discovery of iconic roles in Usenet, employing both Author Lines and network diagrams. They
construct simple directed networks where nodes represent posters and edges represent replies to other posters.
Focusing on individual users, they show only “1.5” degree networks that show only some user, the alters he or
she replied to, and the reply edges between those alters. Theexemplary networks for an answer person (above,
left) and discussion person (above, right) underscore the contrast between these two roles, which is not always
visible from Author Lines alone.

At the community level, Adamic and Glance [2] study the network structure of political blogs. In the image
below, individual circles are blogs, and edges are URL linksbetween them. Red dots are conservative blogs, blue
dots are liberal blogs. The visualization shows not only theclear blog divide along partisan lines, but also the
interactions “across the aisle:” orange edges are links from liberal blogs to conservative ones, and purple edges
are links from conservative blogs to liberal ones. Given this visualization, a researcher can pinpoint “crossover”
blogs that tie the two halves of the online political community together and study them in more detail.
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2.3 Hierarchy

Another series of visualizations looks at the community hierarchy. Fiore and Smith [3] use a Tree Map, which
collocates all Usenet newsgroups in a rectangle. The highest-level newsgroup labels (alt, soc, comp) partition
the rectangle into regions of size proportional to the number of messages that fit under the label. Lower level
labels (e.g. soc.culture) partition the region allotted totheir parent higher level label in a recursive fashion. The
tree map provides a birds eye view of even extremely large communities, such as Usenet. Further, the regions
are color coded by the change in number of messages in the respective region since the last time period. Green
regions indicate labels with growing numbers of child messages, red regions labels with falling numbers of child
messages. The tree map below lays out the Usenet newsgroups with the “comp” label.

54



3 A Social SQL?

These examples of visualizations of key aspects of social media spaces share common data requirements. A
step towards defining and implementing a Social SQL is to enumerate the many facets of social databases.
Researchers need to make routine workflow operations on social databases. These frequently repeated operations
could be standardized so that researchers can build social accounting metadata in a consistent and simple manner.

Managing social graphs is a database chore that often overwhelms non-specialists. Better tools for storing,
indexing, searching, and extracting data from social databases would address the need for managing multiple
views of large networks that are changing rapidly.

3.1 Social Queries

Social queries range from standard database operations to those that require the creation of complex and spe-
cialized logic to generate more complex data like social networks. It is often a fairly straight forward process to
extract a time series of behaviors from social databases. But more complex events over time, like the patterns
of connections that develop among participants in social databases, are far more challenging to extract. Social
network queries often want to limit or extend the network sub-graph which results from the set of nodes returned
by the query. Below, we propose an outline of essential queries, written in natural language, to be supported by
a SQL extension for social databases. The highest level of the outline contains three fundamental queries (the
third query is an ORDER BY operation). Lower levels of the outline include more specific queries that extract
the data necessary for generating visualizations above.

• Extract activity time series for a single person

– Extract activity time series for all people in a community

– Extract statistical breakdown of activity for all people ina community by user-defined patterns

∗ Extract all activity time series in a community that fit a particular pattern (role)

• Extract the directed social network of all people in a community (user provides definition of relationship
between two people)

– Extract the directed social network of all entities in a community (user provides definition of entity
and of relationship between two entities)

– Extract the 1.5 degree network (ego, alters, ties between them) of all entities in a community

– Given a node in a social database, find all the other nodes thathave a similar network structure (e.g.
all the nodes with overlapping connection networks)

• Improve the relevance of search results based on the social network attributes of the author of the result
documents

3.2 A meta move to ecological models

As social databases are explored and better tools for studying them become available the effect should be to
shift our focus from the detail of events or even of roles to a broader focus on the ecosystem of social media
spaces. Once roles are well defined it becomes clear that multiple roles exist and play different and sometimes
complementary functions within social databases. Ecologies of interactions become the next unit of analysis as
tools lift our focus to the ways whole populations vary in structure and performance over time.
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4 Discussion

The mining of directed graphs, particularly social networks, is a topic of growing interest [1]. Visualizing
these graphs along with other key structures like hierarchies and time series, enables researchers to observe
these patterns and gain deeper insights into the dynamics ofsocial databases. As humans gain these insights,
more quantitative approaches can pick up on insights gleaned from the observation of rich visualizations. These
quantitative measures can evaluate empirical observations about user and community behavior and provide some
measure of the goodness of answers. This approach differs from the typical database research effort that is likely
to use algorithms to build and test synthetic data and only later test results on real world systems. Instead, this
approach seeks to explore naturally occurring social databases to learn about their basic structure and explore
opportunities for enhancement and augmentation.

Naturally occurring social data is the key driver and attraction for many people working around social
databases. The goal is to let the data tell its story. Initialwork derived from the peculiarities of specific datasets
drawn from newsgroups, web boards, email lists, wikis and similar repositories will, over time, compose a pic-
ture of social databases in general. Evaluating maps of social databases will become possible once enough of
these stories are told and generic structures become visible. Patterns discovered in one social database silo may
or may not be corroborated in another silo. Only the widespread collection of data across time and systems will
allow for the creation of a systematic taxonomy of social databases. These findings may even apply to other
forms of datasets that have similar structures even if not socially constructed. For example, complex networks
are present in many large biological datasets. These are a set of tools that help analyze any large collection of
data.

5 Conclusion

Picturing the complex data structures that are created whenhumans interact in and through computational media
is a challenging but potentially richly rewarding method for discovery. Information visualization techniques
have been increasingly applied to the data generated by social media on the Internet resulting in insights that
may have been far more difficult to grasp with either qualitative methods based on reading message content
or quantitative statistical methods alone. Finding ideal images for various forms of complex data remains a
challenge. Nonetheless, several examples of discoveries about the nature and dynamics of social structures
point to the value for research based on graphical representations. Data structures like hierarchies, time series,
and directed network graphs are common in most forms of computational social spaces. All of these efforts rest
on a common set of queries that, like geographic extensions to databases, should ultimately be supported as a
special domain of the structured query language (SQL).
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34th International Conference on Very Large Data Bases (VLDB 2008)  
23-28th August,  2008 
Auckland, New Zealand 
 
http://www.vldb.org/2008/ 
 
VLDB 2008 is a premier international forum for database researchers, 
vendors, practitioners, application developers, and users. The conference 
tracks discuss original results on all aspects of data management, and will 
cover the most critical issues and views on practical leading-edge database 
technology, applications, and techniques. We are looking forward to an 
exciting conference, with tutorials, demonstrations, and for the first time a 
track on experiments and analyses. VLDB 2008 also hosts a series of 
workshops that cover important aspects in the context of databases. 
 
 
Schedule:  
  Saturday and Sunday, 23 – 24th August:  Workshops 
  Monday to Thursday, 25 – 28th August:  Main Conference 
 
Information on the conference and registration is available at: 
 
http://www.vldb.org/2008/ 
 
See you in Auckland! 
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