Querying XML in TIMBER

Yuging Wu Stelios Paparizos H. V. Jagadish
Indiana University Microsoft Research University of Michigan
yugwu@ ndi ana. edu steliosp@r crosoft.com jag@ecs. unich. edu

Abstract

In this paper, we describe thHEIMBER XML database system implemented at University of Michigan.
TIMBER was one of the first native XML database systems, designedtifi® ground up to store and
query semi-structured data. A distinctive principleToMBER is its algebraic underpinning. Central
contributions of th& IMBER project include: (1) tree algebras that capture the struatunature of XML
queries; (2) the stack-based family of algorithms to eviausructural joins; (3) new rule-based query
optimization techniques that take care of the heteroges@ature of the intermediate results and take
the schema information into consideration; (4) cost-bagedry optimization techniques and summary
structures for result cardinality estimation; and (5) a féyrof structural indices for more efficient query
evaluation. In this paper, we describe not only the architex of TIMBER, its storage model, and
engineering choices we made, but also present in hindsigintretrospective on what went well and not
so well with our design and engineering choices.

The TIMBER system [10, 16] was developed at the University Xuery Or

Algebraic Plan

Michigan, Ann Arbor, beginning 1999. It was an early nativ®X p—y
data management system. In this retrospective, we takk sfomur i
work over the past nine years. Figure 1 provides an overviethe | —-—&— Data Parser
major system components. Secs. 1 through 4 describe thelyinge || Optimizer
algebra, query evaluation methods, query optimization iadices, | — I
respectively. Sec. 5 mentions aspects ofiHER not included in this
article. Sec. 6 concludes with a retrospective view. ooy
Evaluator

1 Alggbra L lpaaManager["

Relational algebra has been a crucial foundation for matidatabase|
systems, and has played a large role in enabling their ssicéesor- | L= ReriewiFlow
responding XML algebra for XML query processing has beenemqmgure 1: TIMBER Architecture: XML
elusive, due to the comparative complexity of XML, and itstory. documents are parsed and nodes stored in-
In the relational model, a tuple is the basic unit of operatimd dividually in the back-end store. Parsed
a relation is a set of tuples. In XML, a database is often desdr queries, from multiple supported inter-
as a forest of rooted node-labeled trees. Hence, for the baitiand faces. 9o through a query optimizer to

the query evaluator in a relatively standard
central construct of our algebra, we chosexaviL query pattern(or query ey
overall database system architecture.

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

Index
Manager

Storage
Manager

Sample matching sub-trees for the DBLP dataset

article article article article

Selection pattern tree for a simple query

$1 $1.tag = article &
$2.tag = title &
. . . . itle: hor:
c o . N title:] title: author: title: author: title: aut
pc P $2.content = “*Transaction*” & Transaction author: Overview of Sjlperschatz ~ Overview of Garcia- Transaction ~ Thompson
$3.tag = author Mng ... Silberschatz Transaction Transaction Molina Mng ...
$2 $3 Mng Mng

(a) Pattern tree for ‘Select articles with some author (b) Witness trees from the matching of the tree in Figure &(&)BLP.
and with title that contains Transaction’.

Figure 2: Pattern Tree and Witness Trees.

twig), which is represented as a rooted node-labeled tree. Ampmraof such tree, we call pattern tree

is shown in Figure 2(a). An edge in such tree represents atgtal containment relationship, between the
elements represented by the respective pattern tree ndtdescontainment relationship can be specified to be
either immediate (parent-child relationship) or of adniyr depth (ancestor-descendant relationship). Nodes in
the pattern tree usually have associated conditions onaiags or content values.

Given an XML database and a query pattern,limess treegpattern tree matchings) of the query pattern
against the database are a forest such that each witnessmissts of a vector of data nodes from the database,
each matches to one pattern tree node in the query pattedntharrelationships between the nodes in the
database satisfy the desired structural relationshipifsgeby the edges in the query pattern. The set of witness
trees obtained from a pattern tree match are all strucqurdéintical. Thus, a pattern tree match against a
variegated input can be used to generate a structurally gensmus input to an algebraic operator. Sample of
witness trees can be found in Figure 2(b).

Using this basic primitives, we developed an algebra, ddltee Algebra for XML(TAX) [12], for manip-
ulating XML data modeled as forests of labeled ordered trdédstivated both by aesthetic considerations of
intuitiveness, and by efficient computability and amerigbib optimization, we developed TAX as a natural
extension of relational algebra, with a small set of opegat@AX is complete for relational algebra extended
with aggregation, and can express most queries expressipbgular XML query languages.

Ordering and Duplicates XML itself incorporates semantics in the order in which tlagedis specified. XML
gueries have to respect that and produce results basedsodottument order XQuery takes this concept
even further and adds an extra implicit ordering requirdm&he order of the generated output is sensitive to
the order the variable binding occurred in the query, itmeling order Additionally, a FLWOR statement in
XQuery may include an explicDRDERBYclause, specifying the ordering of the output based on thes\at
some expressions — this is similar in concept to orderingérelational world and SQL.

Although XML and XQuery require ordering, many “databasges applications could not care less about
order. This leaves the query processing engine designequmaadary: should order be maintained, as required
by the semantics, irrespective of the additional cost; ararder be ignored for performance reasons. What we
would like is an engine where we pay the cost to maintain ondemn we need it, and do not incur this overhead
when it is not necessary. In algebraic terms, the questioaskeés whether we are manipulating sets, which do
not establish order among their elements, or manipulattagiences, which do.

The solution we proposed is to define a new genklybrid Collectiontype, which could be a set or a
sequence or even something else. We associate with eadctinll anOrdering Specification O-Spedbat
indicates precisely what type of order, if any, is to be neimd in this collection.

Duplicates in collections are also a topic of interest, nst for XML, but for relational data as well. The
more complex structure of XML data raises more questionshattis equality and what is a duplicate. Therefore
there is room for more options than just sets and multi-€&ts.solution is to extend thidybrid Collectiontype
with an explicitDuplicate Specification D-SpedJsing our Hybrid Collections we extended our algebra [18]

thus we were able to develop query plans that maintain &sdittler as possible during query execution, while
producing the correct query results and managing to optimiglicate elimination steps.

TreeLogical Classes(TLC) for XML XQuery semantics frequently requires that nodes be ckastesised on
the presence of specified structural relationships. Fanplathe RETURN clause requires the complete subtree
rooted at each qualifying node. A traditional pattern tresah returns a set dfat witness trees satisfying the
pattern, thus requiring a succeeding grouping step on ttenpéor root) node. Additionally, in tree algebras,
each algebraic operator typically performs its own patteza match, redoing the same selection time and time
again. Intermediate results may lose track of previouspathatching information and can no longer identify
data nodes that match to a specific pattern tree node in aeragreration. This redundant work is unavoidable
for operators that require a homogeneous set as their infudwt the means for that procedure to persist.

The loss ofStructural ClusteringtheRedundant Accessaad theRedundant Tree Matchirgrocedures are
problems caused due to the witness trees having to be simitae input pattern tree, i.e. have the same size
and structure. This requirement resulted in homogeneotrsess trees in an inherently heterogeneous XML
world with missing and repeated sub-elements, thus remuextra work to reconstruct the appropriate structure
when needed in a query plan. Our solution ugexhotated Pattern Trees (APTand Logical Classes (LCstb
overcome that limitation.

Annotated Pattern Treesccept edge matching speci
fications that can lift the restriction of the traditionalesn
to-one relationship between pattern tree node and witnfgs
tree node. These specifications can be “-” (exactly ong)
“?” (zero or one), “+” (one or more) and “*” (zero or|a,
more). Figure 3 shows the example match for an annotafe
pattern tree. Once the pattern tree match has occurred W
must have a logical method to access the matched n E b
without having to reapply a pattern tree matching or na —r -
gate to them. For example, if we would like to evaluate|d yaiching winess Trees & Log
predicate on (some attribute of) the “A’ node in Figure 3;
how can we say precisely which node we mean? The Eigure 3: Sample Match for Annotated Pattern Tree
lution to this problem is provided by our Logical Classes.

Basically, each node in an annotated pattern tree is mappeddt of matching nodes @achresulting witness
tree — such set of nodes is calledl@gical ClassFor example in Figure 3, the gray circles indicate how tHe “A
nodes form a logical class for each witness tree. Using dusrtiques we extended TAX into oliree Logical
Class(TLC) algebra [19].

>

(b) Annotated
Pattern Tree

(@
w

& Logical Class ‘A’ for each tree

2 Query Evaluation

Data Storage The unit of storage in IMBER is a node. For efficiency reasons, a node in tiheBER Data
Manageris not exactly the same as a DOM [22] node: there is a nodesmoneling to each element, with links
to nodes corresponding to the first and last sub-elemenhtt@butes of an element node are clubbed together
into a single node, which is then stored as a child node ofdaleghent node; the content of an element node, if
any, is pulled out into a separate child node, in honor oflieéeing of multiple sub-elements and text contents
of mixed-type elements. We ignored all processing insimastand comments, which can be extended easily by
creating nodes of those types.

In semi-structured data, the essential of the structurgpgties is reflected by the containment relation-
ship between an element and its sub-elements. Establiphirmmt-child (or ancestor-descendant) relationships
among nodes are the center parts of XML queries, and a seb«med at certain nodes are frequently de-
manded as query results. As such, the determination of thi@ioment relationships is at the core of XML

query processing. InIMBER, we facilitated such operation by associating a numeritovdstart, end, level)

with each data node in the database. $taet andend labels of a node are the pre-order and post-order traversal
of the node in the XML tree structure. Together, they definereesponding interval such that every descendant
node has an interval that is strictly contained in its armssintervals. Thdevel label reflects the depth of the
node in the document for establishing parent-child refetiops between nodes. Formally,

e Anoden;(S1, E1, L) is the ancestor of node;(Sa, Fa, Lo) iff S1 < So A Ey > Es.
e Anoden;(S1, F1, L) is the parent of nodey(Ss, Eo, Lo) iff S1 < So AEy > Es AN Ly = La — 1.

The (start, end, level) vector of each node is generated automatically by the sysigring the data parsing
process and stored together as attributes with each nodadditionaldoc label is associated with each node,
such that the vectodpc, start, end, level) serves as a logical identifier for each node inil®dER database.
We chose to store the nodes in the order of tistart key, e.g. in document order, such that nodes within a
sub-tree are always clustered together, hence guarafiergfaccess of all nodes in a sub-tree, given the root.

Structural Join Evaluation TIMBER includes access methods corresponding to all operatorseirmtC
algebra. TLC (and TAX) operators have two parts: patterncmébr witness tree identification followed by
the actual operator application to the matched witness Treerefore, efficient pattern matching is crucial.

Pattern matching comprises two steps: first, value indicesised to look up matches for individual nodes
in the pattern; therstructural joinsare computed amongst these matched nodes. Structuras jihie dominate
operation in XML query evaluation both in terms of the freqoye of usage and the cost. Consequently, efficient
implementation of the structural join is critical to the ei@int evaluation of XML queries in general.

Using the formulae of the containment relationship presd@tbove, each structural join is represented as
an ordinary relational join with a complex inequality joiordition. Variations of the traditional sort-merge
algorithm can be used to evaluate this join effectively, wggested in [2, 26]. We exploited the tree structure
of XML to do better. We have developed, and used imM8ER, a wholeStack-Treegamily of structural join
algorithms.

The basic idea of th&tack-Treealgorithm is to take the two input operand listsl.ist and DList, both
ordered by thestart position and merge them using a stack. It takes advantadeedétt that in a depth-first
traversal of the database tree, every ancestor-descepdardappears on a stack with the ancestor below the
descendant, and perform a limited depth-first traversgpskg over nodes that are not in either input candidate
list (AList or DList). The output is a list of matching pairs, which satisfy theigeated structural relationship, in
ascending order of thetart keyof either the ancestor or descendent participating in time jche sort order of the
output is very important for pipelined query evaluation.eBtack-Treealgorithm is a non-blocking algorithm
and can produce result as the join happens.

Small variations of the algorithms described above can bd iishe desired structural join is a parent-child
join rather than an ancestor-descendant join. Similarig can define semi-join, outer-join, and other variants.
(Semi-joins, and left outer joins, in particular, seem towdrequently in XML queries).

The algorithm requires an in-memory stack whose size is thedirby the maximum depth of the XML
document. Even for the variant which requires the outputeedrted by the ancestor node, in which results
has to be temperedly stored for each of the node in the stiidket bottom of the stack is popped. Through
careful list manipulation, we can perform this result-sgviwith limited memory buffer space and at most
one additional 1/0O for any result page. The space and timepmity of the Stack-Tree-An@lgorithm is
O(|AList| + | DList| + |Output List|). Thel/O complexity isO (24t 4 [PList] | [Qutpuilist]y |\yhere B i
the blocking factor. (These asymptotic results apply totrotdger algorithms in the Stack-Tree family as well).
Experiments show that these algorithms far outperform évigation-based join algorithms, as well as the RDB
implementation, in all cases.

Duplicate Elimination : ID(tree)

Construct @ LCc=7
o> o

Duplicate Elimination : ID(tree)

SLii(;I * Loss Cons?
Camin> G &>

©

@ @ Construct @ LC=7
Duplicate Elimination : ID(tree) Select @
Construct @ @ Project : Keep (2) @ LCﬁ&LC-G @ @ @
Sort: ID(2), ID(@), ID(S), ID(6), D) (3)] <" @ @ Duplicate Elimination : ID(tree) quantiy) Ctype D @ Select @
Project : Keep (2), (3), (4), (5), (6) @ Project : Keep (2) @ Filter : (4)>5 @ Duplicate Elimination : ID(tree) @ LC=5 * * |Lc=6
ord=empty ord=1D(2), ID(3), ID(5), ID(6), ID(4) Duplicate Elimination : ID(tree) Project : Keep (2) @ quantity @ @
Select Select Aggregate (count, (3), newlLC=4) @ Filter : (4)>5 @ Filter : (4)>5 @

Aggregate (count, (3), newLC=4) @
Select

Duplicate Elimination : ID(tree)

Select doc_root

doc_root

open_auction

LC=1 LC=1

LC=4 LC=6 o Lc=4 Lc=6 o Lc=3 @ = LCc=3 @
(@) On the right the rewritten plan having pushed the (b) Minimizing Duplicate Elimination procedures.

Sortinto the Select . . .
Figure 4: Order and Duplicate Rewrites.

3 Query Optimization

3.1 Algebraic Rewrites

In this section we demonstrate some of the advantages weygagibg algebraic primitives to produce more
efficient solutions. We discuss how we addressed groupin¢Quoery and also show some algebraic rewrites
that focus on smart placement of ordering and duplicateabiosis.

Grouping: While SQL allows for grouping operations to be specified i}, XQuery provides only im-
plicit methods to write such queries. For example considpraay that seeks to output, for eazit hor all the
titles of articl es he authored. A possible XQuery statement for this purpase KQuery use case
1.1.9.4 Q4 fromht t p: / / www. W3. or g/ TR/ xquer y- use- cases) would involve a nested FOR loop.
A direct implementation of this query as written would inv@ltwo distinct retrievals from the bibliography
database, one faut hor s and one foar t i cl es, followed by a join. Yet, one of our basic primitives of our
algebra is a GROUPBY operator, thus enabling us to produceaatsr plan than the one dictated by XQuery.
The power of the algebra allows for the transformation ofrthése join plan into a more efficient query plan
using grouping — overcoming the XQuery nuances and makisgnilar to a relational query asking for the
same information [17].

Duplicatesand Ordering: As we discussed in Section 1, smart operation placementiefioig and duplicate
elimination procedures can cause orders of magnituderelifée in evaluation performance. We show two
examples of such rewrites. Figure 4(a) shows how we optimidering. The rewrite takes advantage of our
extended operations that uSedering Specificatiorannotations to push thgor t procedure into the original
Sel ect . Thus, the rewrite provides the cost-based optimizer wi¢ghnheans to efficiently plan the pattern tree
match using the appropriate physical access methods, wtitlawing to satisfy a blockin§or t operation at the
final step of the query plan. Figure 4(b) illustrates how thplitate elimination procedures can be minimized.
First, we naively force a duplicate elimination after gveperation to produce the correct behavior. Then our
technique detects and removes all redundant procedurdseoking which operations will potentially produce
duplicates. With the last step, we took advantage of ouighaitiplicate collections and manage to remove the
duplicate elimination procedure completely. Details fottbtechniques can be found in [18].

3.2 Structural Join Order Selection

Join order selection is among the more important tasks ofasioral query optimizer. Correspondingly, in an
XML database, structural joins predominate. Every patteatch is computed as a sequence of structural joins,

and the order in which these are computed makes a subsiffeaénce to the cost of query evaluation. What's
different from the relational engine is that (1) in the comtef XML structural relationships can be as selective
as value predicates; and (2) with the help of value indicestha structural join algorithms, structural join
can be evaluated without accessing the original data. Tdrerdt is not always a good idea to push selection
predicates all the way down.

We proposed a set of algorithms for selecting the optimalgoder for computing a pattern match [25]. The
Dynamic Programming (DP) algorithm is capable of enumegatill possible evaluation plans and estimating
their costs. This guarantees that the DP algorithm cantgbkeoptimal evaluation plan. However, the number of
plans explored can be exponential in the size of the quetgnpaimaking a full dynamic programming solution
prohibitive. The Dynamic Programming with Pruning (DPR)althm explore only the most promising plans
by pruning the costly plan in the early stage of plan enurnrmrat

A less expensive solution can be developed based on thevintijcbservation: by choosing an appropriate
structural join algorithm, the results of a structural joan be output ordered by either of the two nodes involved
in the join. No extra sorting is needed, and no blocking moereated in the pipeline, if th@rderBynode in
one join is a node involved in the next join. This leads to tinelifig thatany XML pattern matching can be
evaluated with a fully-pipelined evaluation plan to produesults ordered by any node in the pattern tree

Contrary to the common wisdom in RDB query evaluation thatfadeep plan usually outperform bushy
plans, the optimal evaluation plan for XML pattern matchoan be a bushy plan. The Fully-Pipelined (FP)
algorithm explores only these index-only plans, left-deegushy, in the join order selection process. Our
experiments showed that not only can the FP algorithm saleety good (close to optimal) evaluation plan, it
is itself also much more efficient than the DP and DPP algmsth

3.3 Result Size Estimation

Query optimization techniques, as presented above, embesen subset of all the possible join plans and picks
the one with the lowest cost to execute. To estimate this easnheed an accurate estimate of the cardinality
of the final query result as well as each intermediate resuleéch query plan. Even though the attributes
participating in a join operation in RDB are often assumebidandependent, such assumption usually results
into biased cardinality estimation in the context of XML edio the fact that nodesre correlated, via parent-
child or ancestor-descendant relationships that arealdtuXML data.

The numericstart andend labels associated with each data node in the database deforeeaponding
interval between them. ignoreDescendant nodes have awahtbat is strictly included. Taking thstart
andend pair of values associated with each node that satisfy a gaeg)iwe constructed a two-dimensional
histogram [23, 24]. Each grid cell in th{gosition histogranrepresents a range efart position values and a
range ofend position values. The histogram maintains a count of the sedéisfying the predicate that have
start andend position within the specified ranges. Each data node is ntbfapa point in this 2D space. Node
A is an ancestor of node B iff node A is to the left of and abovdenB. Therefore, given the position histograms
of two node predicate, the estimate of the join result of this nodes can be computed by looping through
each grid cell in the histogram of one node predicate andtowyuthe number of nodes (in the other histogram)
which can have the desired relationship with a node in thdtagil. The estimate can be represented in forms
of a position histogram itself, which makes it possible tineate the result sizes for complex query patterns.

4 Indexing

There is a rich history of work on index structures suited gec#fic purposes, in particular, the work done
in the context of object-oriented systems, such as [4, 1#],raore resent work on structural indices such as
DataGuide [8] and A(K)-index [13]. More importantly, we drenspiration from the theoretical work that studies
the properties of the XPath language, and found that seifallices for XML should be those that (1) are based
on the partition of XML components which corresponds to thdifion induced by important sub-language of

XPath; (2) label the partition to facilitate lookup; (3) argze the partitions in a way that facilitates retrieval of
one or more such partitions; (4) support index-only plamsafeswering most XPath queries.

On the data side, seeing XML documebt as a node-labeled tree, we formally define it as a 4-tuple
(V, Ed,r,\), with V' the finite set of nodesZzd C V x V the set of edges; € V the root, and\: V' — L
a node-labeling function into the set of labéls For a given pair of nodes: andn in an XML documentD
wherem is an ancestor aof, we define its associatdabel-pathto be the unique path betweenandn, denoted
LP(m,n). Given a node: in D, and a numbek, we define theé:-label-pathof n, denotedL P(n, k), to be the
label-path of the unique downward path of lengthto » wherel = min{height(n), k}.%.

We use the notion of label-paths to defikgk|-equivalence such that two nodes Ar¢k]-equivalent if the
upward path of lengttk from them are identical. Th&/[k|-partition of an XML documentD is then defined
as the partition induced by this equivalence relation. Iniediately follows that each partition clagsin the
N k]-partition can be associated with a unique label-path, the label-fatteanodes inC', denotedL P(C).
On the other hand, &-label-pathp in an XML documentD uniquely identifies aV [k]-partition class, which
we denote asV'[k][p]. In [7] we proved that theV[k]-partition and theA[k]-partition are the same. Similarly,
we can define th@|k]-equivalentrelation between node pairs and tRg:|-partition of node pairs in an XML
document induced by the[k]-equivalentrelationship.

XPath query language has been studied by many researchbesXHath algebra, as proposed in [9], is
defined as follows:

X Pathalgebra := EW)‘ l ‘ T M‘)\‘El <>E2’E1 [Eg”El U EQ(X)’E:[N EQ‘El — Fy

Where E; and E5 are XPath algebra expressions. Tgah semanticef the algebra results into a set of node
pairs, while the node semantics produces results in the édmode set. We focused our study on a few sub-
algebras of XPath. Th® algebra consists of the expressions in the XPath algebteowutibccurrences of the
set operators, predicate})(or the? primitive. TheDl algebra consists of thE algebra plus predicates. More
importantly, we studied a localized version of these suigilages, e.gD[k] and DU [k], restricting the length
of the path tck.

The partition induced by a query languagieinder the path-semantics is defined as a partition of nods pai
whereas two pairs are —effi-equivalent to each other iff for any XML documehtand any query expression
in f € F, the node pairs are either togetherfifD), or together not irf (D) 2.

We proved in [7] that theP[k]-partition is the same as th®[k]-partition of node pairs. In addition, we
proved in [5] that everypll expression can be rewritten into sub-expressior3[itj, with the help of the inverse
(—1) operation, project operation and natural join operatmatitch the results of the sub-expressions together.
Therefore, a proper index based on g]-partition of an XML document, with a modeétvalue, having the
index entries featuring thest@art, end, level) trio, is sufficient to support index-only evaluation plaor finy
XPath queries. Based on this theoretical result, we degigmeP[k|-Trie index, which uses the reversed label
path as index key, and organizes the index entries in a tretste. This index (1) has a reasonable size with a
modestk; (2) is balanced, witlk as the upper bound for the length of the search path; and t®rtawer queries
of any length and with any arbitrary branching predicateth widex-only plan. Our experiments showed that it
outperformed thed[k]-index by orders of magnitude.

5 Other Contributions

Space constraints prevent us from describing contribstadrthe TMBER project beyond the core components
discussed above. In this section, we briefly mention somkeesfe other efforts.

XML holds out the promise of integrating unstructured texthwstructured data. The challenge lies in
developing query mechanisms that can marry the very diffdiR-style queries appropriate for text with the

*height(n) denotes the height of nodein D.
%Similarly, we can define the partition induced Byunder the node-semantics.

structured representations of logic used by databasesTKhalgebra [3] was an early effort at bringing these
two together.

Uncertainty in databases has recently become a hot toprertainty is particularly important in the context
of XML because of the nature of applications where infororatinay be obtained from sources that are less
uniformly structured, less under our control, and lessadd. The ProtDB [15] facility in TMBER provides a
natural model to represent probabilistic data in XML, anduery it efficiently.

One limitation of XML is that it requires all data to be orga@d in a strict hierarchy. Often, there isn't a
single logical hierarchical structuring of the data. Foamyples, should publications be organized by year, by
venue, or by author? Each may be more appropriate for someapmn scenarios, but XML requires that a
single choice be made.IBER supports multi-color XML [11], where multiple hierarchiean be established,
in different “color”, on the same data. This multi-color iléy is of particular value in a data warehousing
context.

In addition to the macro benchmarks such as XMark [1], in @imirg an XML database system, we felt
the need for a diagnostic benchmark. Traditional appbcatevel benchmarks included too many things in a
single number so that it was hard for us to determine why p@idioce was bad when we found it to be worse
than we expected. We created MBench [20], an engineer's Xktcbmark, for ourselves. MBench provides
pairs of queries that differ in only one parameter valuerghg providing valuable information regarding what
situations hurt performance.

6 Discussion and Conclusion

The heart of TMBER is its algebra. Having this algebra allowed us to deal witlargd subset of XQuery,
including nesting, joins, grouping, and ordering, whilgla same time enabling optimizations and set based
processing. The heterogeneity of XML makes set-orientedgssing difficult. The semantics of XQuery are
defined in terms of a tuple-at-a-time nested loops structamd this exacerbates the difficulty. ThevBER
family of algebras provide an elegant bridge across thigleiv

Unfortunately, this was not one algebra, but rather a sdgebaas. Since the algebra did not come before the
qguery language, the algebra had to be extended to keep pdamguage features and optimizations supported.
This is as if there were SQL before relational algebra. Amshttve were to devise a sequence of algebras, RA,
RA with grouping and aggregation, RA with cube and ROLAP supand so on. While this was intellectually
the right thing to do, this has kept one early algebra fronobeog *THE* standard.

Knowing that the heart of our contribution would be at theslig level, we consciously chose to focus on
the upper layers of the database system, and use a datasttine fower layers. We chose to use Shore [6],
because it was such a highly-regarded and widely used a@adgstem. This turned out to be a mistake. For one
thing, Shore was an academic project, and the code base vi@sgsw supported by the time we began to use it.
For another thing, sizes of main memory, and hence of “isterg@” databases had grown substantially between
the time Shore was implemented and the timeBER was implemented. We kept bumping up against Shore
scaling barriers. Finally, a large part of the code in a gfenamanager such as Shore is devoted to transaction
management. This was a feature we ended up never using!BeER. So we had a great deal of additional code
to carry around without using. After several years, we dwégttto BerkeleyDB, and that addressed the first two
problems above, but the third still remains.

In spite of the challenges mentioned above, Shore was aisufficrobust engine, and theMBER code on
top written well enough, that we were able to handle gigabi#e XML documents at a time when commercial
native XML companies could only do a few megabytes at bescesihen, there has been significant commercial
activity, and we believe many commercial engines, pawidylthose of relational vendors, will comfortably
handle much larger sizes than this.

TIMBER is written in a multiplicity of languages, most importantty C++ for the query evaluation engine
and in C# for the parser and rule-based query optimizer. We warly adopters of Microsoft’s Visual Studio

.Net. Its cross-language development facilities workedd®rtised for us, with only very minor glitches.
TIMBER code is written in a modular way, and source code is availiidree download at [21]. We
have had over a 1000 copies ofMBER downloaded. However, we know anecdotally of at least some wh
downloaded the source but were unable to build a workingdgabte. We believe we could have had many

more users if only we could have constructed a smaller fottpystem that was easier to build.

Neither TAX nor XQuery supported updates when we starteBER. We did build in some update facilities
later, but these continue to feel like a retrofit. The wealpsuipfor updates once again highlights that transaction
support is unnecessary.

In the document world, people are used to having thousamdtsooiments, each relatively small. When XML
is treated as a database, the entire database becomes ongedbcFor the same total size of data, obtained
as a product of these two, we could have one very large doduonenany small documents, or something in
between. TMBER consciously made an effort to support the former, knowirag this was a challenge for other
native XML systems with a document processing orientatitins allowed TMBER to shine, on the one hand,
but also made comparisons harder.

In terms of a legacy, the stack-based family of algorithnthésone with the mast significant impact among
all parts of the TMBER system. Since its introduction, the stack-based strucjmiraalgorithm has inspired a
stream of work on structural join algorithms, query optiatian techniques, indexing techniques, and result-size
estimation techniques for XML. The original paper [2] hasmeited 474 times according to Google Scholar to
date, and has had dozens of researchers devise improvements

In conclusion, TMBER was a large systems project run on a shoe-string. The codé evailable and is
still being downloaded. It includes many novel ideas, armetitainly taught us a great deal about how to build
a database system. However, th&1BER system itself would have had much greater impact and use ifasle
found a way to bring it out sooner and smaller.

References

[1] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, |. Manalgsand R. Busse. Xmark: A benchmark for
xml data management. MLDB, pages 974985, 2002.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, Div8stava, and Y. Wu. Structural joins: A
primitive for efficient XML query pattern matching. roc. ICDE Conf, Mar. 2002.

[3] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying sturetd text in an xml database. Rroc. SIGMOD
Conf, 2003.

[4] E. Bertino. An indexing technigue for object-orientedtabases. IHCDE, pages 160-170, 1991.

[5] S. Brenes, Y. Wu, D. Van Gucht, and P. Santa Cruz. Triexaddor efficient xml query evaluation. In
WebDB 2008.

[6] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, JNaughton, D. Schuh, M. Solomon, C. Tan,
O. Tsatalos, S. White, and M. Zwilling. Shoring up Persist&pplications. InProc. SIGMOD Conf.
1994.

[7] G. H. L. Fletcher, D. Van Gucht, Y. Wu, M. Gyssens, S. Brgnend J. Paredaens. A methodology for
coupling fragments of XPath with structural indexes for Xacuments. IlDBPL, pages 48-65, 2007.

[8] R. Goldman and J. Widom. Dataguides: Enabling query fdation and optimization in semistructured
databases. INLDB, pages 436—445, 1997.

[9] M. Gyssens, J. Paredaens, D. Van Gucht, and G. H. L. FBet@tructural characterizations of the seman-
tics of XPath as navigation tool on a documentPIaDS pages 318-327, 2006.

[10] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksiinan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C.YuIMBER: A native XML database.VLDB Journa)
11(4), 2002.

[11] H. V. Jagadish, L. V. S. Lakshmanan, M. Scannapieco,rbaStava, and N. Wiwatwattana. Colorful xml:
one hierarchy isn't enough. Rroc. SIGMOD Conf.2004.

[12] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, an@ihompson. TAX: A tree algebra for XML. In
Proc. DBPL Conf. Sep. 2001.

[13] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Bipmolocal similarity for indexing paths in
graph-structured data. ICDE, pages 129-140, 2002.

[14] C. Kilger and G. Moerkotte. Indexing multiple sets.\IhDB, pages 180-191, 1994.
[15] A. Nierman and H. V. Jagadish. Protdb: probabilistitada xml. InProc. VLDB Conf2002.

[16] S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadishv. S. Lakshmanan, A. Nierman, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. YUMBER: A native system for quering XML. liProc.
SIGMOD Conf, Jun. 2003.

[17] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S. EAkhanan, A. Nierman, D. Srivastava, and Y. Wu.
Grouping in XML. Lecture Notes in Computer Scien@490:128-147, 2002.

[18] S. Paparizos and H. V. Jagadish. Pattern tree algebetsor sequences? Proc. VLDB Conf. 2005.

[19] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V. Jajadlree logical classes for efficient evaluation
of XQuery. InProc. SIGMOD Conf.Jun. 2004.

[20] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, ard-Bhalifa. The michigan benchmark: towards
xml query performance diagnostidsf. Syst, 31(2):73-97, 2006.

[21] Timber Group at Univ. of Michigan. Timber systemmt t p: / / wwww. eecs. um ch. edu/ db/ t i nber .
[22] W3C DOM Working Group. Document Object Modéit t p: / / www. w3. or g/ DOV .

[23] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating anssiees for XML queries. IrProc. EDBT Conf.
Mar. 2002.

[24] Y. Wu, J. M. Patel, and H. V. Jagadish. Using histogramgdtimate answer sizes for XML queries.
Information System£002.

[25] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural joiderselection for XML query optimization. In
Proc. ICDE Conf, Mar. 2003.

[26] C.Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman sOpporting containment queries in relational
database management systemsPioc. SIGMOD Conf.2001.

10

