
Querying XML in TIMBER

Yuqing Wu
Indiana University

yuqwu@indiana.edu

Stelios Paparizos
Microsoft Research

steliosp@microsoft.com

H. V. Jagadish
University of Michigan

jag@eecs.umich.edu

Abstract

In this paper, we describe theTIMBER XML database system implemented at University of Michigan.
TIMBER was one of the first native XML database systems, designed from the ground up to store and
query semi-structured data. A distinctive principle ofTIMBER is its algebraic underpinning. Central
contributions of theTIMBER project include: (1) tree algebras that capture the structural nature of XML
queries; (2) the stack-based family of algorithms to evaluate structural joins; (3) new rule-based query
optimization techniques that take care of the heterogeneous nature of the intermediate results and take
the schema information into consideration; (4) cost-basedquery optimization techniques and summary
structures for result cardinality estimation; and (5) a family of structural indices for more efficient query
evaluation. In this paper, we describe not only the architecture of TIMBER, its storage model, and
engineering choices we made, but also present in hindsight,our retrospective on what went well and not
so well with our design and engineering choices.

Figure 1: TIMBER Architecture: XML
documents are parsed and nodes stored in-
dividually in the back-end store. Parsed
queries, from multiple supported inter-
faces, go through a query optimizer to
the query evaluator in a relatively standard
overall database system architecture.

The TIMBER system [10, 16] was developed at the University of
Michigan, Ann Arbor, beginning 1999. It was an early native XML
data management system. In this retrospective, we take stock of our
work over the past nine years. Figure 1 provides an overview of the
major system components. Secs. 1 through 4 describe the underlying
algebra, query evaluation methods, query optimization, and indices,
respectively. Sec. 5 mentions aspects of TIMBER not included in this
article. Sec. 6 concludes with a retrospective view.

1 Algebra
Relational algebra has been a crucial foundation for relational database
systems, and has played a large role in enabling their success. A cor-
responding XML algebra for XML query processing has been more
elusive, due to the comparative complexity of XML, and its history.

In the relational model, a tuple is the basic unit of operation and
a relation is a set of tuples. In XML, a database is often described
as a forest of rooted node-labeled trees. Hence, for the basic unit and
central construct of our algebra, we chose anXML query pattern(or

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

$1

$2
 $3

pc
 pc

$1.tag = article &

$2.tag = title &

$2.content = “*Transaction*” &

$3.tag = author

Selection pattern tree for a simple query

(a) Pattern tree for ‘Select articles with some author
and with title that contains Transaction’.

Sample matching sub-trees for the DBLP dataset

article

title:

Transaction

Mng ...

author:

Silberschatz

article

title:

Overview of

Transaction

Mng

author:

Silberschatz

author:

Garcia-

Molina

author:

Thompson

article

title:

Overview of

Transaction

Mng

article

title:

Transaction

Mng ...

(b) Witness trees from the matching of the tree in Figure 2(a)to DBLP.

Figure 2: Pattern Tree and Witness Trees.

twig), which is represented as a rooted node-labeled tree. An example of such tree, we call itpattern tree,
is shown in Figure 2(a). An edge in such tree represents a structural containment relationship, between the
elements represented by the respective pattern tree nodes.The containment relationship can be specified to be
either immediate (parent-child relationship) or of arbitrary depth (ancestor-descendant relationship). Nodes in
the pattern tree usually have associated conditions on tag names or content values.

Given an XML database and a query pattern, thewitness trees(pattern tree matchings) of the query pattern
against the database are a forest such that each witness treeconsists of a vector of data nodes from the database,
each matches to one pattern tree node in the query pattern, and the relationships between the nodes in the
database satisfy the desired structural relationship specified by the edges in the query pattern. The set of witness
trees obtained from a pattern tree match are all structurally identical. Thus, a pattern tree match against a
variegated input can be used to generate a structurally homogeneous input to an algebraic operator. Sample of
witness trees can be found in Figure 2(b).

Using this basic primitives, we developed an algebra, called Tree Algebra for XML(TAX) [12], for manip-
ulating XML data modeled as forests of labeled ordered trees. Motivated both by aesthetic considerations of
intuitiveness, and by efficient computability and amenability to optimization, we developed TAX as a natural
extension of relational algebra, with a small set of operators. TAX is complete for relational algebra extended
with aggregation, and can express most queries expressiblein popular XML query languages.

Ordering and Duplicates XML itself incorporates semantics in the order in which the data is specified. XML
queries have to respect that and produce results based on this document order. XQuery takes this concept
even further and adds an extra implicit ordering requirement. The order of the generated output is sensitive to
the order the variable binding occurred in the query, thebinding order. Additionally, a FLWOR statement in
XQuery may include an explicitORDERBYclause, specifying the ordering of the output based on the value of
some expressions – this is similar in concept to ordering in the relational world and SQL.

Although XML and XQuery require ordering, many “database-style” applications could not care less about
order. This leaves the query processing engine designer in aquandary: should order be maintained, as required
by the semantics, irrespective of the additional cost; or can order be ignored for performance reasons. What we
would like is an engine where we pay the cost to maintain orderwhen we need it, and do not incur this overhead
when it is not necessary. In algebraic terms, the question weask is whether we are manipulating sets, which do
not establish order among their elements, or manipulating sequences, which do.

The solution we proposed is to define a new genericHybrid Collection type, which could be a set or a
sequence or even something else. We associate with each collection anOrdering Specification O-Specthat
indicates precisely what type of order, if any, is to be maintained in this collection.

Duplicates in collections are also a topic of interest, not just for XML, but for relational data as well. The
more complex structure of XML data raises more questions of what is equality and what is a duplicate. Therefore
there is room for more options than just sets and multi-sets.Our solution is to extend theHybrid Collectiontype
with an explicitDuplicate Specification D-Spec. Using our Hybrid Collections we extended our algebra [18]

2

thus we were able to develop query plans that maintain as little order as possible during query execution, while
producing the correct query results and managing to optimize duplicate elimination steps.

Tree Logical Classes (TLC) for XML XQuery semantics frequently requires that nodes be clustered based on
the presence of specified structural relationships. For example the RETURN clause requires the complete subtree
rooted at each qualifying node. A traditional pattern tree match returns a set offlat witness trees satisfying the
pattern, thus requiring a succeeding grouping step on the parent (or root) node. Additionally, in tree algebras,
each algebraic operator typically performs its own patterntree match, redoing the same selection time and time
again. Intermediate results may lose track of previous pattern matching information and can no longer identify
data nodes that match to a specific pattern tree node in an earlier operation. This redundant work is unavoidable
for operators that require a homogeneous set as their input without the means for that procedure to persist.

The loss ofStructural Clustering, theRedundant Accessesand theRedundant Tree Matchingprocedures are
problems caused due to the witness trees having to be similarto the input pattern tree, i.e. have the same size
and structure. This requirement resulted in homogeneous witness trees in an inherently heterogeneous XML
world with missing and repeated sub-elements, thus requiring extra work to reconstruct the appropriate structure
when needed in a query plan. Our solution usedAnnotated Pattern Trees (APTs)andLogical Classes (LCs)to
overcome that limitation.

(a)

A
1

E
1

A
2

B
1

C

1

D
1
 D
2

A
3

B
2

C

3

E
3
 C
2

Input Trees

E
2

D
 C

B

Annotated

Pattern Tree

(b)

?

A

E

+

*

Matching Witness Trees & Logical Class ‘A’ for each tree
(c)

A
1

E
1

A
2

B
1

C
1

D
1

A
1

E
1

A
2

B
1

C
1

D
2

A
3

B
2

C
3
E
3
E
2

-

Figure 3: Sample Match for Annotated Pattern Tree

Annotated Pattern Treesaccept edge matching speci-
fications that can lift the restriction of the traditional one-
to-one relationship between pattern tree node and witness
tree node. These specifications can be “-” (exactly one),
“?” (zero or one), “+” (one or more) and “*” (zero or
more). Figure 3 shows the example match for an annotated
pattern tree. Once the pattern tree match has occurred we
must have a logical method to access the matched nodes
without having to reapply a pattern tree matching or navi-
gate to them. For example, if we would like to evaluate a
predicate on (some attribute of) the “A” node in Figure 3,
how can we say precisely which node we mean? The so-
lution to this problem is provided by our Logical Classes.
Basically, each node in an annotated pattern tree is mapped to a set of matching nodes ineachresulting witness
tree – such set of nodes is called aLogical Class. For example in Figure 3, the gray circles indicate how the “A”
nodes form a logical class for each witness tree. Using this techniques we extended TAX into ourTree Logical
Class(TLC) algebra [19].

2 Query Evaluation
Data Storage The unit of storage in TIMBER is a node. For efficiency reasons, a node in the TIMBER Data
Manageris not exactly the same as a DOM [22] node: there is a node corresponding to each element, with links
to nodes corresponding to the first and last sub-elements; all attributes of an element node are clubbed together
into a single node, which is then stored as a child node of thatelement node; the content of an element node, if
any, is pulled out into a separate child node, in honor of interleaving of multiple sub-elements and text contents
of mixed-type elements. We ignored all processing instructions and comments, which can be extended easily by
creating nodes of those types.

In semi-structured data, the essential of the structural properties is reflected by the containment relation-
ship between an element and its sub-elements. Establishingparent-child (or ancestor-descendant) relationships
among nodes are the center parts of XML queries, and a sub-tree rooted at certain nodes are frequently de-
manded as query results. As such, the determination of the containment relationships is at the core of XML

3

query processing. In TIMBER, we facilitated such operation by associating a numeric vector (start, end, level)
with each data node in the database. Thestart andend labels of a node are the pre-order and post-order traversal
of the node in the XML tree structure. Together, they define a corresponding interval such that every descendant
node has an interval that is strictly contained in its ancestors’ intervals. Thelevel label reflects the depth of the
node in the document for establishing parent-child relationships between nodes. Formally,

• A noden1(S1, E1, L1) is the ancestor of noden2(S2, E2, L2) iff S1 < S2 ∧ E1 > E2.

• A noden1(S1, E1, L1) is the parent of noden2(S2, E2, L2) iff S1 < S2 ∧ E1 > E2 ∧ L1 = L2 − 1.

The (start, end, level) vector of each node is generated automatically by the system during the data parsing
process and stored together as attributes with each node. Anadditionaldoc label is associated with each node,
such that the vector (doc, start, end, level) serves as a logical identifier for each node in a TIMBER database.
We chose to store the nodes in the order of theirstart key, e.g. in document order, such that nodes within a
sub-tree are always clustered together, hence guarantee efficient access of all nodes in a sub-tree, given the root.

Structural Join Evaluation TIMBER includes access methods corresponding to all operators in the TLC
algebra. TLC (and TAX) operators have two parts: pattern match for witness tree identification followed by
the actual operator application to the matched witness tree. Therefore, efficient pattern matching is crucial.

Pattern matching comprises two steps: first, value indices are used to look up matches for individual nodes
in the pattern; then,structural joinsare computed amongst these matched nodes. Structural join is the dominate
operation in XML query evaluation both in terms of the frequency of usage and the cost. Consequently, efficient
implementation of the structural join is critical to the efficient evaluation of XML queries in general.

Using the formulae of the containment relationship presented above, each structural join is represented as
an ordinary relational join with a complex inequality join condition. Variations of the traditional sort-merge
algorithm can be used to evaluate this join effectively, as suggested in [2, 26]. We exploited the tree structure
of XML to do better. We have developed, and used in TIMBER, a wholeStack-Treefamily of structural join
algorithms.

The basic idea of theStack-Treealgorithm is to take the two input operand lists,AList and DList, both
ordered by thestart position and merge them using a stack. It takes advantage of the fact that in a depth-first
traversal of the database tree, every ancestor-descendantpair appears on a stack with the ancestor below the
descendant, and perform a limited depth-first traversal, skipping over nodes that are not in either input candidate
list (AList or DList). The output is a list of matching pairs, which satisfy the designated structural relationship, in
ascending order of thestart keyof either the ancestor or descendent participating in the join. The sort order of the
output is very important for pipelined query evaluation. The Stack-Treealgorithm is a non-blocking algorithm
and can produce result as the join happens.

Small variations of the algorithms described above can be used if the desired structural join is a parent-child
join rather than an ancestor-descendant join. Similarly, one can define semi-join, outer-join, and other variants.
(Semi-joins, and left outer joins, in particular, seem to occur frequently in XML queries).

The algorithm requires an in-memory stack whose size is bounded by the maximum depth of the XML
document. Even for the variant which requires the output to be sorted by the ancestor node, in which results
has to be temperedly stored for each of the node in the stack, till the bottom of the stack is popped. Through
careful list manipulation, we can perform this result-saving with limited memory buffer space and at most
one additional I/O for any result page. The space and time complexity of the Stack-Tree-Ancalgorithm is
O(|AList|+ |DList|+ |OutputList|). TheI/O complexity isO(|AList|

B
+ |DList|

B
+ |OutputList|

B
), where B is

the blocking factor. (These asymptotic results apply to most other algorithms in the Stack-Tree family as well).
Experiments show that these algorithms far outperform the navigation-based join algorithms, as well as the RDB
implementation, in all cases.

4

Project
 : Keep (2), (3), (4), (5), (6)

LC=1
doc_root

LC=2

book

LC=3
 LC=5

editor
author

Select

1
interest
 hobby

LC=4
 LC=6

2

(2)
Construct
 4

Sort
: ID(2), ID(3), ID(5), ID(6), ID(4)
 3

ord=empty

Project
 : Keep (2)

LC=1
doc_root

LC=2

book

LC=3
 LC=5

editor
author

Select

1
interest
 hobby

LC=4
 LC=6

2

(2)
Construct
 3

ord=
ID(2), ID(3), ID(5), ID(6), ID(4)

(a) On the right the rewritten plan having pushed the
Sort into theSelect.

Aggregate
 (count, (3),
 newLC=4)

Filter
 : (4) > 5

Project
 : Keep (2)

*

*

Select

1

LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

4

(2)
Select

LC=5

quantity
 5

LC=7

(6)
(5)

<result>
Construct

6

type

*
 LC=6

Aggregate
 (count, (3),
 newLC=4)

Filter
 : (4) > 5

Project
 : Keep (2)

*

*

Select

1

LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

4

(2)
Select

LC=5

quantity
 6

LC=7

(6)
(5)

<result>
Construct

7

type

*
 LC=6

Duplicate Elimination
 : ID(tree)
 5

Aggregate
 (count, (3),
 newLC=4)

Filter
 : (4) > 5

*

*

Select

1

LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

(2)
Select

LC=5

quantity
 4

LC=7

(6)
(5)

<result>
Construct

5

type

*
 LC=6

Duplicate Elimination
 : ID(tree)

Duplicate Elimination
 : ID(tree)

Duplicate Elimination
 : ID(tree)

Duplicate Elimination
 : ID(tree)

Duplicate Elimination
 : ID(tree)

Duplicate Elimination
 : ID(tree)

(b) Minimizing Duplicate Elimination procedures.

Figure 4: Order and Duplicate Rewrites.

3 Query Optimization

3.1 Algebraic Rewrites
In this section we demonstrate some of the advantages we got by using algebraic primitives to produce more
efficient solutions. We discuss how we addressed grouping inXQuery and also show some algebraic rewrites
that focus on smart placement of ordering and duplicate operations.

Grouping: While SQL allows for grouping operations to be specified explicitly, XQuery provides only im-
plicit methods to write such queries. For example consider aquery that seeks to output, for eachauthor all the
titles of articles he authored. A possible XQuery statement for this purpose (i.e. XQuery use case
1.1.9.4 Q4 fromhttp://www.w3.org/TR/xquery-use-cases) would involve a nested FOR loop.
A direct implementation of this query as written would involve two distinct retrievals from the bibliography
database, one forauthors and one forarticles, followed by a join. Yet, one of our basic primitives of our
algebra is a GROUPBY operator, thus enabling us to produce a smarter plan than the one dictated by XQuery.
The power of the algebra allows for the transformation of thenaı̈ve join plan into a more efficient query plan
using grouping – overcoming the XQuery nuances and making itsimilar to a relational query asking for the
same information [17].

Duplicates and Ordering: As we discussed in Section 1, smart operation placement of ordering and duplicate
elimination procedures can cause orders of magnitude difference in evaluation performance. We show two
examples of such rewrites. Figure 4(a) shows how we optimizeordering. The rewrite takes advantage of our
extended operations that useOrdering Specificationannotations to push theSort procedure into the original
Select. Thus, the rewrite provides the cost-based optimizer with the means to efficiently plan the pattern tree
match using the appropriate physical access methods, without having to satisfy a blockingSort operation at the
final step of the query plan. Figure 4(b) illustrates how the duplicate elimination procedures can be minimized.
First, we naı̈vely force a duplicate elimination after every operation to produce the correct behavior. Then our
technique detects and removes all redundant procedures by checking which operations will potentially produce
duplicates. With the last step, we took advantage of our partial duplicate collections and manage to remove the
duplicate elimination procedure completely. Details for both techniques can be found in [18].

3.2 Structural Join Order Selection
Join order selection is among the more important tasks of a relational query optimizer. Correspondingly, in an
XML database, structural joins predominate. Every patternmatch is computed as a sequence of structural joins,

5

and the order in which these are computed makes a substantialdifference to the cost of query evaluation. What’s
different from the relational engine is that (1) in the context of XML structural relationships can be as selective
as value predicates; and (2) with the help of value indices and the structural join algorithms, structural join
can be evaluated without accessing the original data. Therefore, it is not always a good idea to push selection
predicates all the way down.

We proposed a set of algorithms for selecting the optimal join order for computing a pattern match [25]. The
Dynamic Programming (DP) algorithm is capable of enumerating all possible evaluation plans and estimating
their costs. This guarantees that the DP algorithm can select the optimal evaluation plan. However, the number of
plans explored can be exponential in the size of the query pattern, making a full dynamic programming solution
prohibitive. The Dynamic Programming with Pruning (DPP) algorithm explore only the most promising plans
by pruning the costly plan in the early stage of plan enumeration.

A less expensive solution can be developed based on the following observation: by choosing an appropriate
structural join algorithm, the results of a structural joincan be output ordered by either of the two nodes involved
in the join. No extra sorting is needed, and no blocking points created in the pipeline, if theOrderBynode in
one join is a node involved in the next join. This leads to the finding thatany XML pattern matching can be
evaluated with a fully-pipelined evaluation plan to produce results ordered by any node in the pattern tree.

Contrary to the common wisdom in RDB query evaluation that a left-deep plan usually outperform bushy
plans, the optimal evaluation plan for XML pattern matchingcan be a bushy plan. The Fully-Pipelined (FP)
algorithm explores only these index-only plans, left-deepor bushy, in the join order selection process. Our
experiments showed that not only can the FP algorithm selecta very good (close to optimal) evaluation plan, it
is itself also much more efficient than the DP and DPP algorithms.

3.3 Result Size Estimation
Query optimization techniques, as presented above, enumerates a subset of all the possible join plans and picks
the one with the lowest cost to execute. To estimate this cost, we need an accurate estimate of the cardinality
of the final query result as well as each intermediate result for each query plan. Even though the attributes
participating in a join operation in RDB are often assumed tobe independent, such assumption usually results
into biased cardinality estimation in the context of XML, due to the fact that nodesare correlated, via parent-
child or ancestor-descendant relationships that are natural to XML data.

The numericstart andend labels associated with each data node in the database define acorresponding
interval between them. ignoreDescendant nodes have an interval that is strictly included. Taking thestart
andend pair of values associated with each node that satisfy a predicate, we constructed a two-dimensional
histogram [23, 24]. Each grid cell in thisposition histogramrepresents a range ofstart position values and a
range ofend position values. The histogram maintains a count of the nodes satisfying the predicate that have
start andend position within the specified ranges. Each data node is mapped to a point in this 2D space. Node
A is an ancestor of node B iff node A is to the left of and above node B. Therefore, given the position histograms
of two node predicate, the estimate of the join result of thistwo nodes can be computed by looping through
each grid cell in the histogram of one node predicate and counting the number of nodes (in the other histogram)
which can have the desired relationship with a node in that grid cell. The estimate can be represented in forms
of a position histogram itself, which makes it possible to estimate the result sizes for complex query patterns.

4 Indexing
There is a rich history of work on index structures suited to specific purposes, in particular, the work done
in the context of object-oriented systems, such as [4, 14], and more resent work on structural indices such as
DataGuide [8] and A(k)-index [13]. More importantly, we drew inspiration from the theoretical work that studies
the properties of the XPath language, and found that suitable indices for XML should be those that (1) are based
on the partition of XML components which corresponds to the partition induced by important sub-language of

6

XPath; (2) label the partition to facilitate lookup; (3) organize the partitions in a way that facilitates retrieval of
one or more such partitions; (4) support index-only plans for answering most XPath queries.

On the data side, seeing XML documentD as a node-labeled tree, we formally define it as a 4-tuple
(V,Ed, r, λ), with V the finite set of nodes,Ed ⊆ V x V the set of edges,r ∈ V the root, andλ : V → L
a node-labeling function into the set of labelsL. For a given pair of nodesm andn in an XML documentD
wherem is an ancestor ofn, we define its associatedlabel-pathto be the unique path betweenm andn, denoted
LP (m,n). Given a noden in D, and a numberk, we define thek-label-pathof n, denotedLP (n, k), to be the
label-path of the unique downward path of lengthl into n wherel = min{height(n), k}.1.

We use the notion of label-paths to defineN [k]-equivalence such that two nodes areN [k]-equivalent if the
upward path of lengthk from them are identical. TheN [k]-partition of an XML documentD is then defined
as the partition induced by this equivalence relation. It immediately follows that each partition classC in the
N [k]-partition can be associated with a unique label-path, the label-path of the nodes inC, denotedLP (C).
On the other hand, ak-label-pathp in an XML documentD uniquely identifies anN [k]-partition class, which
we denote asN [k][p]. In [7] we proved that theN [k]-partition and theA[k]-partition are the same. Similarly,
we can define theP[k]-equivalentrelation between node pairs and theP[k]-partition of node pairs in an XML
document induced by theP[k]-equivalentrelationship.

XPath query language has been studied by many researchers. The XPath algebra, as proposed in [9], is
defined as follows:

XPath algebra := ε|∅| ↓ | ↑ |ℓ|λ|E1 ⋄ E2|E1[E2]|E1 ∪ E2(X)|E1 ∩ E2|E1 − E2

WhereE1 andE2 are XPath algebra expressions. Thepath semanticsof the algebra results into a set of node
pairs, while the node semantics produces results in the formof node set. We focused our study on a few sub-
algebras of XPath. TheD algebra consists of the expressions in the XPath algebra without occurrences of the
set operators, predicates ([]), or the↑ primitive. TheD[] algebra consists of theD algebra plus predicates. More
importantly, we studied a localized version of these sub-languages, e.g.D[k] andD[][k], restricting the length
of the path tok.

The partition induced by a query languageF under the path-semantics is defined as a partition of node pairs
whereas two pairs are —emF-equivalent to each other iff for any XML documentD and any query expression
in f ∈ F , the node pairs are either together inf(D), or together not inf(D) 2.

We proved in [7] that theP[k]-partition is the same as theD[k]-partition of node pairs. In addition, we
proved in [5] that everyD[] expression can be rewritten into sub-expressions inD[k], with the help of the inverse
(−1) operation, project operation and natural join operation to stitch the results of the sub-expressions together.
Therefore, a proper index based on theP[k]-partition of an XML document, with a modestk value, having the
index entries featuring the (start, end, level) trio, is sufficient to support index-only evaluation plan for any
XPath queries. Based on this theoretical result, we designed theP[k]-Trie index, which uses the reversed label
path as index key, and organizes the index entries in a trie structure. This index (1) has a reasonable size with a
modestk; (2) is balanced, withk as the upper bound for the length of the search path; and (3) can answer queries
of any length and with any arbitrary branching predicates with index-only plan. Our experiments showed that it
outperformed theA[k]-index by orders of magnitude.

5 Other Contributions
Space constraints prevent us from describing contributions of the TIMBER project beyond the core components
discussed above. In this section, we briefly mention some of these other efforts.

XML holds out the promise of integrating unstructured text with structured data. The challenge lies in
developing query mechanisms that can marry the very different IR-style queries appropriate for text with the

1height(n) denotes the height of noden in D.
2Similarly, we can define the partition induced byF under the node-semantics.

7

structured representations of logic used by databases. TheTIX algebra [3] was an early effort at bringing these
two together.

Uncertainty in databases has recently become a hot topic. Uncertainty is particularly important in the context
of XML because of the nature of applications where information may be obtained from sources that are less
uniformly structured, less under our control, and less reliable. The ProtDB [15] facility in TIMBER provides a
natural model to represent probabilistic data in XML, and toquery it efficiently.

One limitation of XML is that it requires all data to be organized in a strict hierarchy. Often, there isn’t a
single logical hierarchical structuring of the data. For examples, should publications be organized by year, by
venue, or by author? Each may be more appropriate for some application scenarios, but XML requires that a
single choice be made. TIMBER supports multi-color XML [11], where multiple hierarchiescan be established,
in different “color”, on the same data. This multi-color facility is of particular value in a data warehousing
context.

In addition to the macro benchmarks such as XMark [1], in developing an XML database system, we felt
the need for a diagnostic benchmark. Traditional application level benchmarks included too many things in a
single number so that it was hard for us to determine why performance was bad when we found it to be worse
than we expected. We created MBench [20], an engineer’s XML benchmark, for ourselves. MBench provides
pairs of queries that differ in only one parameter value, thereby providing valuable information regarding what
situations hurt performance.

6 Discussion and Conclusion
The heart of TIMBER is its algebra. Having this algebra allowed us to deal with a large subset of XQuery,
including nesting, joins, grouping, and ordering, while atthe same time enabling optimizations and set based
processing. The heterogeneity of XML makes set-oriented processing difficult. The semantics of XQuery are
defined in terms of a tuple-at-a-time nested loops structure, and this exacerbates the difficulty. The TIMBER

family of algebras provide an elegant bridge across this divide.
Unfortunately, this was not one algebra, but rather a set of algebras. Since the algebra did not come before the

query language, the algebra had to be extended to keep pace with language features and optimizations supported.
This is as if there were SQL before relational algebra. And then we were to devise a sequence of algebras, RA,
RA with grouping and aggregation, RA with cube and ROLAP support, and so on. While this was intellectually
the right thing to do, this has kept one early algebra from becoming *THE* standard.

Knowing that the heart of our contribution would be at the algebra level, we consciously chose to focus on
the upper layers of the database system, and use a data store for the lower layers. We chose to use Shore [6],
because it was such a highly-regarded and widely used academic system. This turned out to be a mistake. For one
thing, Shore was an academic project, and the code base was nolonger supported by the time we began to use it.
For another thing, sizes of main memory, and hence of “interesting” databases had grown substantially between
the time Shore was implemented and the time TIMBER was implemented. We kept bumping up against Shore
scaling barriers. Finally, a large part of the code in a storage manager such as Shore is devoted to transaction
management. This was a feature we ended up never using in TIMBER. So we had a great deal of additional code
to carry around without using. After several years, we switched to BerkeleyDB, and that addressed the first two
problems above, but the third still remains.

In spite of the challenges mentioned above, Shore was a sufficiently robust engine, and the TIMBER code on
top written well enough, that we were able to handle gigabytesize XML documents at a time when commercial
native XML companies could only do a few megabytes at best. Since then, there has been significant commercial
activity, and we believe many commercial engines, particularly those of relational vendors, will comfortably
handle much larger sizes than this.

TIMBER is written in a multiplicity of languages, most importantlyin C++ for the query evaluation engine
and in C# for the parser and rule-based query optimizer. We were early adopters of Microsoft’s Visual Studio

8

.Net. Its cross-language development facilities worked asadvertised for us, with only very minor glitches.
TIMBER code is written in a modular way, and source code is availablefor free download at [21]. We

have had over a 1000 copies of TIMBER downloaded. However, we know anecdotally of at least some who
downloaded the source but were unable to build a working executable. We believe we could have had many
more users if only we could have constructed a smaller footprint system that was easier to build.

Neither TAX nor XQuery supported updates when we started TIMBER. We did build in some update facilities
later, but these continue to feel like a retrofit. The weak support for updates once again highlights that transaction
support is unnecessary.

In the document world, people are used to having thousands ofdocuments, each relatively small. When XML
is treated as a database, the entire database becomes one document. For the same total size of data, obtained
as a product of these two, we could have one very large document or many small documents, or something in
between. TIMBER consciously made an effort to support the former, knowing that this was a challenge for other
native XML systems with a document processing orientation.This allowed TIMBER to shine, on the one hand,
but also made comparisons harder.

In terms of a legacy, the stack-based family of algorithms isthe one with the most significant impact among
all parts of the TIMBER system. Since its introduction, the stack-based structural join algorithm has inspired a
stream of work on structural join algorithms, query optimization techniques, indexing techniques, and result-size
estimation techniques for XML. The original paper [2] has been cited 474 times according to Google Scholar to
date, and has had dozens of researchers devise improvements.

In conclusion, TIMBER was a large systems project run on a shoe-string. The code is still available and is
still being downloaded. It includes many novel ideas, and itcertainly taught us a great deal about how to build
a database system. However, the TIMBER system itself would have had much greater impact and use if wehad
found a way to bring it out sooner and smaller.

References

[1] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. Xmark: A benchmark for
xml data management. InVLDB, pages 974–985, 2002.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural joins: A
primitive for efficient XML query pattern matching. InProc. ICDE Conf., Mar. 2002.

[3] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying structured text in an xml database. InProc. SIGMOD
Conf., 2003.

[4] E. Bertino. An indexing technique for object-oriented databases. InICDE, pages 160–170, 1991.

[5] S. Brenes, Y. Wu, D. Van Gucht, and P. Santa Cruz. Trie indexes for efficient xml query evaluation. In
WebDB, 2008.

[6] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh, M. Solomon, C. Tan,
O. Tsatalos, S. White, and M. Zwilling. Shoring up Persistent Applications. InProc. SIGMOD Conf.,
1994.

[7] G. H. L. Fletcher, D. Van Gucht, Y. Wu, M. Gyssens, S. Brenes, and J. Paredaens. A methodology for
coupling fragments of XPath with structural indexes for XMLdocuments. InDBPL, pages 48–65, 2007.

[8] R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization in semistructured
databases. InVLDB, pages 436–445, 1997.

9

[9] M. Gyssens, J. Paredaens, D. Van Gucht, and G. H. L. Fletcher. Structural characterizations of the seman-
tics of XPath as navigation tool on a document. InPODS, pages 318–327, 2006.

[10] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C.Yu. TIMBER: A native XML database.VLDB Journal,
11(4), 2002.

[11] H. V. Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Srivastava, and N. Wiwatwattana. Colorful xml:
one hierarchy isn’t enough. InProc. SIGMOD Conf., 2004.

[12] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A tree algebra for XML. In
Proc. DBPL Conf., Sep. 2001.

[13] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for indexing paths in
graph-structured data. InICDE, pages 129–140, 2002.

[14] C. Kilger and G. Moerkotte. Indexing multiple sets. InVLDB, pages 180–191, 1994.

[15] A. Nierman and H. V. Jagadish. Protdb: probabilistic data in xml. InProc. VLDB Conf.2002.

[16] S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish, L. V. S. Lakshmanan, A. Nierman, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A native system for quering XML. InProc.
SIGMOD Conf., Jun. 2003.

[17] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S. Lakshmanan, A. Nierman, D. Srivastava, and Y. Wu.
Grouping in XML. Lecture Notes in Computer Science, 2490:128–147, 2002.

[18] S. Paparizos and H. V. Jagadish. Pattern tree algebras:sets or sequences? InProc. VLDB Conf., 2005.

[19] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V. Jagadish. Tree logical classes for efficient evaluation
of XQuery. InProc. SIGMOD Conf., Jun. 2004.

[20] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa. The michigan benchmark: towards
xml query performance diagnostics.Inf. Syst., 31(2):73–97, 2006.

[21] Timber Group at Univ. of Michigan. Timber system.http://www.eecs.umich.edu/db/timber.

[22] W3C DOM Working Group. Document Object Model.http://www.w3.org/DOM/.

[23] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating answersizes for XML queries. InProc. EDBT Conf.,
Mar. 2002.

[24] Y. Wu, J. M. Patel, and H. V. Jagadish. Using histograms to estimate answer sizes for XML queries.
Information Systems, 2002.

[25] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order selection for XML query optimization. In
Proc. ICDE Conf., Mar. 2003.

[26] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On supporting containment queries in relational
database management systems. InProc. SIGMOD Conf., 2001.

10

