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Abstract

This paper describes the internal features of the Saxon XQuery processor that make the most significant
contribution to its speed of execution. For each of the features, an attempt is made to quantify the
contribution, in most cases by comparing performance achieved when the feature is enabled or disabled.

1 Introduction

Saxon [1, 2] is an implementation of XQuery written in Java. It implements the XQuery 1.0 specification [3]
in full, with the exception of the static typing feature (see[3], section 5.2.3), but including support for schema-
aware processing. It also implements the XQuery Update specification [4], which is currently a W3C Candidate
Recommendation.

Saxon also implements XSLT 2.0 [5], XPath 2.0 [6], XML Schema1.0 [7], and a significant subset of the
new features in the draft XML Schema 1.1 specification [8]. Infact Saxon started life as an XSLT processor,
and was later adapted to handle XQuery as well. The two languages are implemented as different syntax front-
ends to the same run-time engine; both compilers generate the same code and at run-time there is essentially no
knowledge of whether the code originated as XSLT or XQuery.

Saxon is available in several versions. The open-source product, Saxon-B, implements all the mandatory
features of the W3C specifications. The commercial version of the product, Saxon-SA, provides additional op-
tional features, including schema processing, schema-aware XSLT and XQuery processing, and XQuery Update,
as well as a number of performance-oriented features including a more advanced query optimizer, support for
streamed query execution, document projection [9], and Java code generation.

Saxon is released on both the Java and .NET platforms. The code is written in 100% pure Java. The .NET
version is created by cross-compiling the Java bytecode into .NET IL code, using the open-source IKVMC
cross-compiler [10]. The version described in this paper isSaxon-SA 9.1 on the Java platform, unless otherwise
specified.

Saxon has been under development for over ten years, and the size of the code base is now some 180,000
non-comment lines, excluding test material and tooling. The development objectives for Saxon are, in order of
priority: (1) Rigorous standards conformance;(2) Reliability; (3) Usability (primarily of interfaces and error
messages); and(4) Performance.
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While this paper is concerned with performance, it is important to note at the outset that performance goals
are never achieved by sacrificing the higher-priority objectives. In practice, while the objectives are sometimes
in conflict, it has in nearly all cases proved possible to achieve the required performance without compromising
other goals. For an example see [11].

It is not the intention of this paper to compare the performance of Saxon with other XQuery processors.
It is impossible to do this objectively when one knows one product much better than the others. A number of
papers have been published describing comparative benchmarking of different XQuery processors [12, 13, 14].
Independent benchmarks can be frustrating for a vendor because they exhibit a lack of specialized knowledge on
how to get the best possible results from one’s own product; also in the case of Saxon, they often use the open-
source version rather than the higher-performance commercial version. Nevertheless, the overall conclusion
from these independent studies is that Saxon performance, while not always in pole position, is comfortably
near the front of the field.

Another problem with benchmarks is that performance is not aone-dimensional objective. Some users are
interested in the throughput of a transaction processing workload that handles thousands of small messages per
second using the same queries. Others are interested in the elapsed time for processing very large documents.
Some users generate queries on-the-fly, in which case query compile time can be as important as execution time.
Some workloads are dominated by the cost of parsing source documents, some by serialization of results, others
by the computational cost of the query itself. A well-rounded product needs to satisfy all its users, not just to
optimize its score in a synthetic benchmark.

2 The Architecture of Saxon

There is no space in this paper to give a detailed account of the internal architecture of the Saxon product. An
article [15] was published some years ago, and although it describes the product from an XSLT rather than
XQuery perspective, the broad picture remains valid today.

It should be noted that Saxon is not a database product. Its raw material is XML held in unparsed form
in filestore, or sent over the wire. This means that Saxon doesnot have the luxury of maintaining persistent
indexes or collecting statistical data for use by its optimizer; it has to take the data as it comes. When a query is
schema-aware, Saxon is able to take schema information intoaccount when compiling a query, but the general
rule is that queries are compiled with no knowledge of what will be found in instance documents.

Like every other implementation, the Saxon XQuery processor has compile-time and run-time processing
phases. Broadly, the compiler works by creating an expression tree as the output of the parsing phase. It then
performs type checking, which labels nodes in the tree with the results of static type inferencing, and adds
additional operators to the tree to perform run-time type checking or conversion where required. Saxon works
on the principle ofoptimistic static type checking, which means that a compile-time error is reported only if
the inferred static type of an expression is disjoint with the required type; if the static type overlaps but is not
subsumed by the required type, then additional code is generated to perform run-time type checking. Following
type-checking, the next phase is optimization; this examines the tree for constructs that can be rewritten and
replaced by alternative, hopefully more efficient equivalents. The optimization phase is optional, and where
compile-time performance is critical it can safely be omitted or performed less aggressively.

The final optimized expression tree can then be used in two ways: it can be interpreted by the run-time
execution engine, or it can be used as input to the Java code-generator. This generates Java byte code to execute
the query directly (currently via Java source code as an intermediate form), and the byte code is then executed
by the Java VM in the normal way. The byte code, of course, still makes many calls on a precompiled Saxon
run-time library.

Saxon does not include its own XML parser; it can work with a variety of third-party parsers (both push and
pull). It does however include its own schema processor and validator: close integration between the schema

2



processor and the XQuery engine was considered essential for high performance.

3 Performance Features

In this central section of the paper we examine a number of features implemented in Saxon whose aim is to
improve query performance, and we attempt to quantify the impact of each feature.

3.1 The TinyTree and the NamePool

The XML document used as input to a query may be stored in a variety of ways; what these have in common is
that they all implement the abstract Java interfaceNodeInfo. NodeInfo is essentially at the same level as the
abstract XDM model described by W3C [16]; it differs howeverin that it offers direct support for the thirteen
XPath axes (child, descendant, ancestor, following-sibling, etc). This allows eachNodeInfo implementation
to optimize the way it navigates each axis; and in the case of models that create node objects on demand, it also
means that nodes are created only where the caller actually requires them, and not for intermediate nodes that
end up being skipped.

There are two native implementations of theNodeInfo interface in Saxon: the linked tree, which is a con-
ventional “object-per-node” tree structure in which parent nodes contain a list of their children, and the TinyTree,
which we will describe in this section. There are also a number of implementations ofNodeInfo that wrap
external object models including DOM [17] (both Java and Microsoft versions), JDOM [18], DOM4J[19], and
XOM [20]. A number of vendors integrating Saxon into other applications have writtenNodeInfo implemen-
tations to access other data sources.

The TinyTree structure is unashamedly inspired by the DTM model in Xalan [21], though it does not mimic
the design at a detailed level. There are also some similarities with Intel’s “record representation” [22], though
a significant difference is that Saxon’s structure represents nodes in the tree, whereas Intel’s represents events in
the parse stream.

The TinyTree represents a document using six principal arrays of integers. These arrays contain one entry
for each node (other than attribute and namespace nodes), and are indexed by node number. They contain
respectively: the node kind (for example element, text, comment), thename code(see below), the depth in the
hierarchy, a next sibling pointer (which for the last sibling points back to the parent node), and two overlaid
values which in the case of elements point to the first attribute and the first namespace node, and for other
kinds of nodes are pointers to the textual content in a text buffer (or in the case of a whitespace-only text node,
a representation of the actual whitespace compressed usingrun-length encoding). The total size of these six
integers is 19 bytes per node. Attributes and namespaces arerepresented in separate but similar sets of arrays.

Additional arrays are allocated when needed. The first time areverse axis such as preceding-sibling is used
on a particular document, an array containing prior siblingpointers is created and populated. If the document
is schema validated, an additional array is allocated to hold the type annotations produced as a result of the
validation process (again as integers, using the name code of the type name).

The TinyTree is designed to be compact without sacrificing speed of access. In particular, it avoids the
heavy overhead of using one Java object for each node in the tree; instead,NodeInfo instances are allocated
as transient objects on demand, and are garbage collected when no longer needed. Modern Java VMs make
garbage collection of short-lived objects a highly efficient operation. The TinyTree is also optimized for read-
only access. It makes it very efficient to compare nodes for document order, a common operation in XPath. This
structure does not support XQuery Update; for that, a mutable linked tree must be used.

Names of elements and other nodes are represented using an integer name code, which can be translated
into a fully qualified name by reference to theNamePool holding all the names, which is used to allocated new
codes. The name code contains a unique identifier for the URI/local-name pair in 20 bits, with a further 10 bits
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used to represent the prefix; this imposes a limit of a millionor so URI/local-name pairs, which as far as I know
has never caused a problem, and a limit of 1024 distinct prefixes for each URI, which does occasionally cause
problems for pathological applications; but we can live with that. The essence of the approach is that the same
NamePool is used at compile time and at document parsing time, which means that the compiler can generate
code that searches for named nodes using an integer comparison rather than a string comparison.

The primary motivation for the TinyTree is to reduce memory occupancy and building time for large docu-
ments without sacrificing access speed, while the main driver for the use of integer name codes is to improve the
speed of matching nodes by name. We can evaluate both effectsby comparing the TinyTree with both the Saxon
linked tree (which uses an object per node, but with integer name codes) and with the DOM (which uses an ob-
ject per node, and string comparison for names.) To do this I took the 100Mb version of the XMark dataset [23],
modified to use a namespace to make it more typical, and ran thequerycount(/ns:site//ns:from)
against it. This gave the results shown in Table 1:

Table 1: TinyTree performance
TinyTree Linked Tree DOM

Build time 5136ms 7933ms 8332ms
Memory used 327Mb 370Mb 796Mb
Query time 35ms 226ms 10603ms

This was run with whitespace stripped from the tree, which makes a significant difference to the figures. The
DOM used was the Xerces implementation bundled in JDK 1.5. Itcan be seen that although the TinyTree beats
the linked tree on both time and space, the most noticeable gain is in search speed.

3.2 Pull/Push Pipelining

Pipelining is well established as an execution strategy forfunctional languages as well as for relational databases.
The essence of the approach is that an operator that nominally takes a sequence as input and produces a sequence
as output (for example the filter operator represented in XPath by the syntax A[B]), should read its input one
item at a time and deliver its output to the parent operator one item at a time. This is a description of a pull
pipeline: it is driven by read operations issued by the ultimate consumer of the data. Equally valid is a push
pipeline, controlled using write operations issued by the supplier of the data.

Saxon uses a combination of pull and push pipelines, and choosing the right kind of pipeline at each stage
appears to make a significant difference to performance.

Pull pipelines are used primarily for evaluating XPath expressions, that is, when reading from the source
document. Push pipelines are used primarily when constructing documents (both the initial source document
and the result document), and also when serializing. Saxon’s schema validator is a complex push pipeline, as is
the XML serializer. This split between pull and push was verynatural in an XSLT 1.0 processor, where there is
a clean split in which XPath expressions read the input and XSLT instructions write the output. In XQuery (and
for that matter in XSLT 2.0), the two kinds of operation can becomposed in arbitrary ways. Nevertheless there
are two very different kinds of operation; and it remains true that many queries are “single-phase” in the sense
that they only read nodes from the initial query input and only write nodes to its final output.

Feeding data from a pull to a push pipeline is easy: a program owning the control loop reads from the first
pipeline and writes to the second. Doing the opposite is morechallenging. In the absence of a language with
intrinsic coroutine support, there can only be one control loop. Two solutions are available: either break the
pipeline by building the intermediate sequence in memory, or use multiple threads. Both involve overheads.
Saxon uses both techniques, though multiple threads are used only in one very specific situation, to support
streamed processing where the source document is not built into an in-memory tree. So one of the main design
aims is to use pull and push where appropriate, but while minimizing the need to switch from one to the other.
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for $i in distinct-values(
/site/people/person/profile/interest/@category)

let $p := for $t in /site/people/person
where $t/profile/interest/@category = $i
return <personne>

...
</personne>

return <categorie><id>{$p}</id></categorie>

Figure 1: The XMark queryq10

To achieve this, Saxon divides query operators into three categories:

• Simple read expressions are always executed in pull mode. These include path expressions and fil-
ter expressions, sequence concatenation, union/intersection, and function calls such assubsequence,
insert, orindex-of.

• Node constructors are generally executed in push mode: theywrite events to an output pipeline. This
works especially well when the output is sent straight to a serializer; in this situation there is no need
to materialize the constructed tree in memory. These instructions are also able to operate in pull mode
(to deliver events on demand to a client), but this is only done if the application that fires off the query
explicitly asks for the query result in this form.

• Other expressions, notably FLWOR expressions, conditional expressions, and function calls can operate
in either push or pull mode. In general they operate in the same mode as their caller, so if they are invoked
during tree construction they will push, and if invoked in the middle of a path expression they will pull.
This means that a function body may execute in either mode depending on the context of the caller.

How can we evaluate the effectiveness of this strategy? As anillustration, XMark queryq10 (see Figure 1),
after rewriting by the Saxon optimizer to inline the unnecessary variable$p, is a classic one-phase query; run
with default options it takes 1926ms, but if we force it to runin pull mode it takes 3456ms, largely because the
result document is materialized in memory before being serialized. This query contains a FLWOR expression
(for $t) that is logically inside an element constructor, and is therefore evaluated in push mode. If we artificially
force the FLWOR expression into pull mode (by a tweak to the Saxon code), the execution time becomes
2720ms. Forcing the variable$p to be materialized rather than being pipelined also affectsthe performance
adversely, this time to 2398ms. These figures should be sufficient to illustrate that the impact of pipelining
decisions can be significant, though they do not prove, of course, that Saxon always gets it right.

3.3 Path Expressions

Path expressions in Saxon are evaluated using a nested loop strategy. A path expression such asx/y/z finds all
thex children of the context node; for each of these it finds all they children, and for each of these it finds all
thez children. In case this seems obvious, it is not the strategy that all products use, and some researchers have
expressed surprise that it should perform so well.

Because of pull pipelining, it is actually an inverted nested loop: the client requests the nextz element,
which might cause the nexty to be found, and so on. Neither the final node sequence delivered by the path
expression nor any intermediate results are materialized in memory.

The main optimization carried out by Saxon is to eliminate sorting wherever possible. The semantics require
that the results of each “/” operator, and indeed the resultsof each axis step, are sorted into document order with
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duplicates eliminated. In practice such sorting is very rarely needed because the nested-loop evaluation in many
cases delivers results already sorted and deduplicated. Saxon goes to considerable trouble to avoid unnecessary
sorting. Furthermore, even when the evaluation strategy delivers nodes in the wrong order, the consumer of the
results might not care: for example given the expressionexists(x//y//z), sorting the node sequence will
not affect the outcome.

The main aspect of the analysis is determining combinationsof axis steps that are “naturally sorted”. This is
the case for any sequence of child axis steps. It is also true for an expression such asa/b//c, but not (perhaps
surprisingly) fora//b/c. There is no space here to give the rules in detail.

One case that often causes difficulty is a path such as$x/a/b/c that starts with a variable reference. Here,
if $x is a singleton node sequence, or any sequence that is sorted,contains no duplicates, and contains no node
that is an ancestor of any other, then the entire path will be “naturally sorted”, making sorting unnecessary. This
can sometimes be determined by static analysis, but failingthis, Saxon generates conditional code to test at
run-time whether$x is a singleton, and thus avoids the sort in this common case.

For the query/site//keyword, which returns around 70,000 nodes on the XMark 100Mb database,
eliminating the sort reduces the TinyTree execution time from 107ms to 60ms. When running against a DOM,
where sorting into document order is more expensive, the saving is more dramatic: against the 10Mb database,
run time reduces from 1300ms to 290ms; for 100Mb, the query does not even complete without this optimization.

3.4 Join Optimization

Saxon-SA optimizes joins by constructing hash indexes and then using them to support fast filtering of indexed
sequences. The optimizer does not actually recognize the concept of a join. What it does is firstly, to break up
the condition in thewhere clause of a FLWOR expression and distribute it among the input sequences read by
the expression, thereby turning them into XPath filter expressions; and then (independently) it identifies filter
expressions that are likely to benefit from indexing.

Two kinds of index are used: indexed documents, and indexed variables. Wherever possible, an index
is attached to a document node, which allows it to be reused whenever that document is searched, even in a
different query. Where this is not possible, the contents ofa variable can be indexed: such an index dies when
the variable goes out of scope.

Join optimization is widely discussed in the database literature. A significant difference for Saxon is that
there are no pre-existing indexes: any index that is required must be created within the query. Nevertheless,
impressive savings are possible in the right circumstances. For example, Table 2 shows the performance of
XMark queryq9 against databases of different sizes using Saxon-B (without join optimization) and Saxon-SA
(with).

Table 2: Join optimization
1Mb 10Mb 100Mb

Saxon-B 41ms 3612ms 381543ms
Saxon-SA 3ms 26ms 246ms

It is plain here that Saxon-SA performance is linear while Saxon-B is quadratic.

3.5 Miscellaneous Rewrites

Further compile-time expression rewrites done by the Saxon-SA optimizer include the following:

• Replacecount(X)=0 by empty(X). This takes advantage of the fact that whenX is pipelined, the
latter expression can exit as soon as it sees the first item in the sequence; there is no need to compute the
count.
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• Constant folding: constant subexpressions are evaluated at compile time.

• Variable inlining: when a variable is only referenced once,and not in a loop, the reference is replaced by
the initializing expression

• Function inlining: calls to non-recursive functions of modest size are replaced by the function body. This
often enables further optimization of the new expression.

• Loop lifting: expressions within a repeatedly-evaluated subexpression (for example a filter predicate, or
the return clause of a FLWOR expression) that do not depend onthe loop variables are moved outside the
loop, but taking care to ensure that they are not executed if the loop is iterated zero times.

• Global variable extraction: expressions within a functionbody that do not depend on the function argu-
ments are promoted to global variables.

• Compound if/then/else expressions acting as switch statements, testing the value of one expression against
a range of constant values, are recognized and supported by hashing.

The benefits achieved by these rewrites are highly variable.In each case it is easy to find example queries
where the rewrite gives an order-of-magnitude improvement. It is less easy to quantify how many queries benefit
from each rewrite. Very often these rewrites are most effective in combination: one apparently minor rewrite
simplifies the expression sufficiently to enable another more powerful one, in particular, the join optimizations
discussed in the previous section.

3.6 Schema-Aware Processing

Schema-aware processing allows a query to be compiled with knowledge of the schema that a source document
will conform to.

The major benefits of schema-aware processing are usabilityand reliability: it enables easier debugging of
queries, and increases the likelihood that a query that is put into production with inadequate testing (as many
are) will turn out to be bug-free.

The effect of schema-aware processing on performance is in fact mixed. For some applications, the overhead
of performing schema validation on the input outweighs any savings achieved through greater intelligence in the
query execution plan. There are also cases where manipulating the document as raw text turns out to be faster
than processing it as typed content.

An example where schema-aware processing has a negative effect on performance is in XMark queryq11,
which is dominated by the predicate

where $p/profile/@income > (5000 * $i)

If the attribute@income is typed asxs:decimal, and if$i is alsoxs:decimal, which will happen if
the schema for the XMark database is written to usexs:decimal for money amounts, then this will involve
a decimal comparison; whereas without schema-awareness, the comparison will use double-precision floating
point. In Java, on a typical platform, double arithmetic is much faster than decimal, because it is supported in
the hardware. A user who is aware of this problem can work around it, but by default, the query will run more
slowly.

On the other hand, knowledge of the paths that exist in the source data can sometimes be exploited to great
advantage. The XMark benchmark queries tend to be written with full paths, such as

let $ei := $site/people/person/creditcard

but real users are often less patient, and write
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let $ei := $site//creditcard

Given sufficient type information, Saxon-SA will rewrite the abbreviated path to use the step-by-step form,
which can greatly reduce the number of nodes that need to be searched.

With schema-aware processing, the second query takes around 6ms on the 100Mb XMark dataset; with-
out schema-awareness, it takes 51ms. However, schema validation increases the parsing time for the source
document from 5s to 15s.

3.7 Streaming

Saxon-SA provides the ability to execute certain queries instreaming mode. This is not done as an automatic
optimization, but must be explicitly requested using a pragma. In this mode, simple expressions can be evaluated
without first building a tree in memory.

This does not make the query itself run faster, but it saves the cost of building the tree, and of course it
enables source documents to be processed that are too large to fit in memory (transforming a 20Gb document
has been timed at 50min [24]).

Streaming is a natural extension of pipelining: it pipelines together the operations of parsing and query
evaluation, removing the need to materialize the intermediate data, that is, the tree representation of the source
document.

For a query such ascount(//person)on 100Mb of input, the execution time including parsing is around
5s with streaming, 5.6s without. The big difference is that with streaming, memory is reduced from 450Mb to
1.7Mb. So the effect is not so much on the speed of the query, ason its scalability. This illustrates the message
that performance cannot be considered a one-dimensional property.

Speed improves greatly when the file is not read to completion. The queryexists(//africa) on the
same data takes just 180ms with streaming, 5.6s without.

3.8 Document projection

Document projection (see [9]) is a technique for building a tree containing only that subset of the source doc-
ument that is needed to execute a query, as determined by static analysis of the query. As with streaming, the
technique is only suitable where the document is being parsed in order to execute one query that is known in
advance, but unlike streaming, it works with any query.

At present Saxon never does document projection automatically, only on request. The main reason for this
is that the risk of bugs is considered high, since it relies oninferencing about the access paths used by every
single construct in the language.

Document projection, like streaming, has more effect on memory usage than on execution time: with XMark,
it reduces the tree size by 90% or more for 15 out of 20 queries,but only two are speeded up by more than 25%
(q6 by 75%, andq7 by 95%).

3.9 Java code generation

Saxon-SA offers the option to generate Java bytecode representing the logic of the query, as an alternative to
interpreting the query execution plan. (This is currently done indirectly, via generation of Java source.) The
generated code may be executed from the command line, via an API, or as a Java servlet. Many operations, of
course, are still handled by calls to the run-time library, the same library that the interpreter uses.

The speed-up obtained by compilation is not as great as one might expect: 25% is typical. For XMark
(10Mb), the biggest improvement (54%) is to the slowest query, q11, from 3344ms to 1541ms. The saving
appears to be greatest for queries dominated by arithmetic or string manipulation – simple path expressions
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show very little improvement over the interpreter. This suggests that an equally effective (and more convenient)
strategy might be to do just-in-time compilation of a few selected subexpressions.

I experimented at one time [25] with generating code for pathexpressions that was committed to a particular
tree model such as the TinyTree, rather than working generically on any tree model. The results were not
encouraging, so the experiment was abandoned. Part of the reason is that evaluating path expressions is already
very fast.

3.10 Methodology

I said I would give ten reasons why Saxon is fast, and the first nine have been technical characteristics of the
delivered product. The final reason is deeper, and relates tothe engineering discipline used to develop the
software. Here are a few lessons learnt from the experience of developing Saxon over a period of ten years:

• Investigate every user-supplied performance problem in depth. There is no better raw material for under-
standing how the code behaves, and without such understanding there can be no improvement.

• Optimize the code that typical users write, whether it is well-written code or not. Try to educate users
on how to write code that works well on your product, but recognize that you will only reach a small
minority.

• Never make performance improvements to the code without measuring the impact. If you cannot measure
a positive impact, revert the change (easily said, but psychologically very difficult when you’ve put a lot
of effort in). Keep records of what you learnt in the process.

• Avoid performance improvements that rely on user-controlled switches. Most users (including people who
publish comparative benchmarks) will never discover the switch exists; of the remainder, a good number
will set the switch sub-optimally.

• Remember that every optimization you make to your code is likely to require a substantial investment in
new test material, and even then, is likely to result in several new bugs escaping into the field. Do not do
it unless the gain is worth it.

• Maintain a set of performance regression tests to ensure that performance gains made in one release are
not lost in the next.

• Separately, maintain tests to show that query optimizations are taking place as intended. In Saxon this
is done by outputting an XML representation of the query execution plan for test queries, and checking
assertions about these plans expressed as auxiliary queries.

For the other nine ways of achieving good performance in Saxon, I have tried to quantify the benefit. For
this tenth cause, I am afraid I cannot do so – I do not have anything to compare with.

4 Conclusions

In this paper I have presented ten characteristics of the Saxon XQuery implementation that contribute to its
performance, and for most of these, I have attempted to quantify the size of that contribution for some selected
queries.

Few of these mechanisms are unique to Saxon; what makes Saxondistinctive is the deployment of a balanced
portfolio of techniques to deliver efficient query execution over a variety of user workloads, coupled with a
determination to place other qualities of the product (standards conformance, reliability, usability) ahead of raw
performance. In a crowded marketplace with over 50 XQuery implementations competing for user attention, I
believe it is this balanced approach that has led many users to make Saxon their preferred choice.
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