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Abstract

The Pathfinder project makes inventive use of relational database technology—originally developed to
process data of strictly tabular shape—to construct efficient database-supported XML and XQuery pro-
cessors. Pathfinder targets database engines that implement a set-oriented mode of query execution:
many off-the-shelf traditional database systems make for suitable XQuery runtime environments, but a
number of off-beat storage back-ends fit that bill as well. While Pathfinder has been developed with a
close eye on the XQuery semantics, some of the techniques that we will review here will be generally
useful to evaluate XQuery-style iterative languages on database back-ends.

1 The Rectangularization of XQuery: Purely Relational XML Processing

If you zoom back in time to dig for the semantic roots of XQuery[5], you will find that the language’s core
construct, thefor–let–where–order by–return (FLWOR) block is one particular incarnation of a very
general idea: thecomprehension[26]. Many language-related concepts may be uniformly understood in com-
prehension form, but comprehensions provide a particularly concise and elegant way to express iteration over
collections of objects—in the case of XQuery: finite, ordered sequences of XML nodes and atomic values (or
items) [1]. Any program or query expressed in comprehension form is subject to a number of useful equivalence-
preserving rewriting rules (themonad laws) and so is XQuery’sFLWOR block. Once you look closely, a wide
range of seemingly XQuery-specific optimizations realizedby compilers and interpreters today,e.g., for loop
fusion or unnesting, in fact put the monad laws to work.

The family of programming and query languages whose semantic core may be cast in comprehension form
is large. Among its members, specifically, is SQL,therelational database language. This observation sparked a
whole line of work that we will review in the following pages:

Exploit the common semantic ground of XQuery and SQL and try to turn relational database sys-
tems (i.e., processors for strictly tabular, or rectangular, data) into efficient and scalable XQuery
processors.

XQuery processors of this type should be able to benefit from the 30+ years of research and engineering expe-
rience that shaped relational database technology. This is, in fact, what we repeatedly observed in the course of
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thePathfinderproject (initiated in late 2001), an effort to construct aPurely Relational XQuery Processor[25].
As of today,Pathfindercan compile XQuery expressions into code (different variants of table algebras or SQL)
ready for consumption by relational-style database back-ends. The back-ends evaluate this code against tabular
encodings of XML instances and item sequences and thusact likeXQuery processors. We have found the result-
ing systems to exhibit runtime performance characteristics that often surpass specifically-built “native” XQuery
engines. On top of that, standing on the shoulders of relational giants provides stability, scalability, instant and
wide availability as well as the seamless coexistence of XMLinstances and tabular data.

Input to this purely relational approach to XQuery processing are relational encodings of the XML data model,
i.e., ordered unranked trees of nodes of several kinds. We thus start our tour of thePathfindertechnology in
2 with a brief review of suitable tabular encodings of XML andthen see how XPath location steps may be
efficiently evaluated in terms of (self-)joins over the resulting tables. We turn to XQuery’s dynamic semantics
in 3 and sketchloop lifting, a compilation strategy that derives efficient set-oriented execution plans from nested
FLWOR blocks. 4 shows how a purely relational account of the XQuerysemantics can provide insights and
optimization hooks that would be hard to find and formulate onthe XQuery language level. Different kinds of
database systems have already been turned intoPathfinderback-ends. 5 discusses selected systems and how
they fare in their new role as XQuery runtime environments. Finally, as we said, the comprehension construct
can explain aspects of a large family of languages: 6 sheds some light on how other recent programming and
query language proposals with an iterative core could be “rectangularized”—and thus put on top of relational
back-ends.

2 How Many Rows Does Your Tree Have? (Tabular XML Encoding)

The performance of any RDBMS-backed solution depends critically on how its data is represented in the rela-
tional format, tables of tuples. A purely relational XQueryprocessor is no different in this respect and the choice
of a good relationaltree encodingis an important factor to the functioning of a relational XQuery setup. Two
principal features must be provided by the XML-to-tables translation, both dictated by the semantics of XQuery:

(i) It has to maintain XMLdocument orderand XQuery’s concept ofnode identity. More explicitly, we expect
the existence of asurrogateγv for each nodev such thatγv1

= γv2
iff v1 is v2 andγv1

< γv2
iff v1 << v2.

(ii) Efficient mechanisms must exist that implement core operations on XML data. In particular, given a node
surrogateγv, there must be a way to compute all surrogates for the node sequencev/ax ::nt , whereax and
nt are axis and node test of an XPath location step, respectively.
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(a) XML document tree.

pre size level kind prop

0 9 0 elem a
1 3 1 elem b
2 2 2 elem c
3 0 3 elem d
4 0 3 text e

5 4 1 elem f
...

...
...

...
...

(b) Relational tree encoding.

Figure 1: XML document tree, annotated withpre(·) and
size(·) information (left/right), and resulting tree encoding.

A variety of encodings has been published
which provide both features, including ORDPATH

[21], dynamic intervals [3], or XPath accelerator
[14]. Pathfinderuses a variant of the latter, which
we illustrate in a moment. As a drop-in replace-
ment, the others could be plugged intoPathfinder
seamlessly.

Pathfinder’s relational XML storage, repre-
sents documents as a five-column table as shown
in Figure 1 on the right for the XML instance

<a><b><c><d/>e</c></b>
<f>g<h><i/><j/></h></f></a>

.
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For each nodev, the table holdsv’s rank in a preorder tree traversal,pre(v), the number of descendants belowv,
size(v), its distance to the tree root,level(v), and the two columnskind andprop to represent XML information
set characteristics ofv, i.e., its XML node type (one ofelem, text, attr, . . . ) its tag name or typed value
(depending onkind(v), refer to [14] for details). It is easy to see thatpre(v) provides a suitable implementation
for γv.

Evaluating XPath. Based onpre(·), size(·), andlevel(·) properties, all twelve XPath axes can be characterized
in a concise and machine-friendly manner. For axisdescendant, e.g., we have

v′ ∈ v/descendant
⇔

pre(v) < pre(v′) ≤ pre(v) + size(v)
. (1)

Range expressions of this kind lend themselves to the use ofB-tree indexesfor efficient XPath evalua-
tion. And, in fact, with appropriate index support, a relational XPath evaluation setup can outperform industry-
strength “native” XML processors by significant margins [11].

The relational system plays its trump by organizing and indexing the relational tree encoding in the way
that fits any given XPath query workload best. In [11], we found thatpartitioned B-treesform a particularly
interesting class of indexes for XPath processing. The physical layout of a partitioned〈level, pre〉 index, for in-
stance, ideally matches the access pattern of an XPathchild step. In addition, since ak-step XPath expression
compiles into ak-way self-join at the relational end, the system’s optimizer can gear theorder of these joins to
its liking [7]. This way, anoff-the-shelfRDBMS solves formerly challenging problems in a purely mechanical
way. This includes rewriting into forward-only plans [20] or top-downvs.bottom-up XPath evaluation [17].

Tree Awareness with Staircase Join.With a suitable tree encoding and the right selection of indexes, we
enabled the relational system to act as an efficient tree processor, even though the system remained entirely un-
aware of the tree-structure that the encoded data originated from. Additional performance gains can be achieved
by injectingsuch awareness into the RDBMS kernel.

Staircase join[13] is such an injection that can significantly improve relational XPath performance with
only a local change to the RDBMS kernel. While evaluating an XPath location step, staircase join provides tree
awareness by

• pruningnodes from the context set whose result nodes are already produced by other context nodes,

• partitioning the document space to (a) guarantee a duplicate-free result, sorted in document order and
(b) achieve a strictly sequential, hence cache-efficient, access pattern to the underlying storage, and

• skippingparts of the document table which are early discovered (based on knowledge about the tree-
origin) to not contain any result candidates.

Injecting staircase join into a main memory-oriented database system [13] or a traditional disk-based system [16]
took only little changes to the systems’ code. The change in runtime performance, however, was significant: we
observed speed-ups of several orders of magnitude on both systems.

Types are Data. Other than traditional database query languages, XQuery blurs the distinction between data
and its type. XML Schema types,e.g., can be used as node tests in XPath location steps, just like tag names
or node kinds. Likewise, theruntime typeof arbitrary XQuery items can dynamically be inspected using the
instance of andtypeswitch constructs just like the item’s value. A relational encoding for XQuery type
annotations types, therefore, is called for.

The type system of XQuery, incidentally, has a structure that we already know how to deal with efficiently.
All XML Schema types relate to each other in atree shape. Pairs ofpre andsize values (“type ranks”) are a
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for $ in (0) return

for $x in (5,6,7) return

if ($x mod 2 ne 0)

then ("odd",xs:string($x))

else "even"

(a) Sample XQuery FLWOR block.

iter pos item
1 1 5
1 2 6
1 3 7

(b) (5,6,7)

iter pos item
1 1 "odd"
1 2 "5"
2 1 "even"
3 1 "odd"
3 2 "7"

(c) ("odd","5","even","odd","7")

Figure 2: An XQueryFLWOR block with the loop-lifted representations of its binding sequence and result. The
gray outer pseudo loop establishes a single-iteration context for the top-level item sequence(5,6,7).

logical way to account for that, withpre(·) as a concise implementation for type annotations. But the virtue of
using type ranks is not only their support for tree navigation. As we showed in [23], type ranks enable interesting,
database-style evaluation strategies for queries on types. Type aggregation, e.g., can accelerate the processing
of instance of or typeswitch clauses with sequence-valued input. Type-constrained XPath expressions
can profit from relational indexes over columns that encode type information, or even from combined type/data
indexes.

3 Drawing Independent Work from Lack of Side Effects

Pathfinder’s main XQuery compilation strategy, dubbedloop lifting, revolves around the XQueryFLWOR block
as the main language construct:any subexpressione is considered to be iteratively evaluated in the scope
of its innermost enclosingfor loop (if e is a top-level expression, we install a pseudo single-iteration loop
for $ in (0) return e such that variable$ does not occur free ine). In line with the comprehension
notion, theFLWOR block

for $x in (v1,v2,. . .,vn) return e

describes then-fold side effect-freeevaluation ofe under unmodifiable bindings of$x to itemsvi. The
result will be(e[v1/$x], e[v2/$x], . . ., e[vn/$x]) (note that the resulting sequence will be flat according to the
XQuery data model). Since the individual evaluations of loop bodye cannot interfere, the system may perform
the evaluation in any order or even in parallel [4,§4.8.2]. This leads to a significant load ofindependent work,
the principal source of set-orientation and potential parallelism in Pathfinder-generated query plans.

The “Great Invariant.” To implement this idea on a relational back-end,Pathfindercompiles an XQuery
subexpressione into an algebraic plan fragment that, at runtime, will yielda ternary table encodinge’s result
for all its n iterated evaluations[6, 12]. These tables uniformly adhere to the schemaiter|pos|item in which a
row 〈i, p, v〉 indicates that, in theith iteration, the evaluation ofe returned a sequence in which itemv occurs at
positionp—in a sense, we obtain a fully unrolled representation of theresult ofe’s enclosingfor loop.

Consider the sample XQueryFLWOR block in Figure 2a. The top-level binding sequence(5,6,7) is
evaluated once only while the innerfor loop body undergoes three individual evaluations and thus contributes
three subsequences (marked byin Figure 2c) to the final result (to illustrate: row〈3, 1, ”odd”〉 indicates that
the third iteration contributes a sequence with item"odd" at position1).

This “great invariant” drives the design of the whole compiler and enables a truly compositional style of
translation from XQuery to relational algebra—prepared tocope withfor loop nesting hierarchies of arbitrary
depth. Loop-lifted algebraic plans diverge from the classical σ-π-⋊⋉ pattern emitted by SQL compilers: instead,
the plans exhibit a narrow “stacked” shape [7] reflecting theorthogonal expression nesting that is typical for a
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functional language like XQuery. Figure 3 sketches the planshape for XMark Query Q8 [22] (each box denotes
an algebraic operator, see 5). The resulting plans

(i) are truly set-oriented,e.g., the algebraic plan for$x mod 2 evaluates the subexpression forall bindings of
$x, in some order the database back-end sees fit,

(ii ) offer a range of effective optimization hooks (see 4), and
(iii ) are sufficiently versatile to embrace a family of further iterative languages (6).

4 Relational Insights Into XQuery Affairs

SERIALIZE

¶ (item, pos)

ROW# (pos:<pos1>)

¶ (pos1, item)

|X| (iter = iter1)

NUMBER (iter)

ROOTS

ROW# (pos1:<item1>)

ELEM (iter1, item:<iter1, item><iter1, pos, item>)

¶ (item1)

/| child::element person { item* } (iter, item1)

/| child::element people { item* } (iter, item1)

¶ (iter, item1:item)

/| child::element site { item* } (iter, item)

ROOTS

DOC

TBL: (iter | item)

[#1,"auctionG.xml"]

ELEM_TAG

@ (item), val: item

¶ (iter1, item, pos)

¶ (iter1:iter)

ROW# (pos:<pos1>/iter1)

U

@ (pos1), val: #1 @ (pos1), val: #2

¶ (iter1, item) ¶ (iter1, item)

ROOTS

ATTR (item:<item2, item1>)

@ (item2), val: person

fn:string_join

¶ (iter1, item1, pos) @ (item1), val: " "

ROW# (pos:<pos1>/iter1)

¶ (iter1, pos1, item1)

access textnode content (item1:<item>)

ROW# (pos1:<item>/iter1)

/| child::text (iter1, item)

/| child::element name { item* } (iter1, item)

¶ (item:item1, iter1:iter)

ROOTS

TEXT (item:<item2>)

CAST (item2:<item1>), type: str

U

COUNT (item1:/iter1)

@ (item1), val: 0

¶ (iter1:iter3)

DIFF

DISTINCT

¶ (iter2, iter3)

|X| (item = item1)

¶ (iter2, item)

¶ (iter3, item1)

access attribute value (item:<item1>)

access attribute value (item1:<item>)

/| attribute::attribute person { atomic* } (iter2, item1)

/| child::element buyer { item* } (iter2, item1)

¶ (item1:item, iter2:iter1)

NUMBER (iter1)

¶ (item)

/| child::element closed_auction { item* } (iter, item)

/| child::element closed_auctions { item* } (iter, item)

¶ (item, iter3:iter2)

/| attribute::attribute id { atomic* } (iter2, item)

¶ (item:item1, iter2:iter)

¶ (iter1)

Figure 3: Plan
shape model.

The previous two sections invested considerable effort to “rectangularize” XQuery, press
it into some shape that is digestible by a relational back-end. This section explores how
we can benefit from a relational formulation of XQuery problems thanks to advanced and
well-understood optimization techniques.

A particular example of such well-understood optimizationtechniques is the early dis-
missal of irrelevant information from the processing pipeline, also known asselectionand
projection pushdown. The latter idea, the disposal of columns not inspected by any up-
stream operator, has interesting consequences when applied to a loop-lifting compiler.

And Order is Data, Too. With Pathfinder, XQuery’s various notions of order are encoded
in the data(i.e., the surrogatesγv reflect document order, the columnsiter andpos reflect
iteration and sequence order): generated algebraic plans do not rely on some prescribed
physical row order. Yet, the computation of encoded order information ultimately may still
enforce such row order—and therefore incur a significant cost. With order made explicit on
the data level, however, we now have a handle tocontrol the dependence on ordered pro-
cessing. Byprojecting outorder-encoding columns, operators that were previously needed
to ensure physical order will automatically be eliminated by Pathfinder’s optimizer.

In [10], we demonstrated how this effects in execution plansthat can exploit opportunities to process (sub-)
queries in anunorderedfashion (e.g., in the scope of XQuery’sunordered{}), an opportunity that proved
hard to discover by traditional query analyses on the level of XQuery. For XMark benchmark queries,e.g., this
led to a many-fold speed-up even when the dependence on orderis not apparent in the source query.

Dependable Cardinality Forecasts for XQuery. Finding the most efficient execution plan for a given query
often depends on the availability of accurateresult size estimates. Though fairly well understood in the context
of XPath, the problem of computing such estimates proved notoriously hard to solve for the complete XQuery
language. The problem gets tangible once we look at it in the “rectangular” world. Relational equivalents
for XQuery expressions provide the necessary fabric to connect existing work on XPath estimation with tradi-
tional relational techniques, such as the ones known from System R or different flavors of data statistics (e.g.,
histograms) [24].

The outcome is a cardinality estimator forarbitrary XQuery (sub-)expressions whose accuracy we demon-
strated for a wide range of different XQuery workloads [24].And, most importantly, the estimator shows a high
robustnesswith respect to intermediate estimation errors. Rather than piling up such errors during the estima-
tion process, we found it often to recover gracefully and still come up with a meaningful estimate for the overall
expression.

5 Off-the-Shelf and Off-Beat XQuery Runtime Environments

Loop-lifting turns the input XQuery expression into an algebraic plan solely operating at the table level. Plans
are, generally, DAG-shaped (Figure 3) owing to a common sub-plan analysis stage installed inPathfinder’s
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compilation pipeline. No traces of variable binding and reference, XPath traversal and node construction, explicit
for iteration, conditionals (if or typeswitch), and similar source language features are left. This renders
a wide range of set-oriented execution environments suitable runtime environments for XQuery, most of which
have not originally been designed to act as XML processors.

Running XQuery on Off-the-Shelf SQL:1999 RDBMSs. The data-embedded order representation (4) makes
off-the-shelf RDBMSs perfectly valid compilation targetsand execution platforms forPathfinder-generated
code. A SQL:1999 code generator is, in fact, among the most advanced code generators available forPathfinder
today [8]. The compiler emits a no-frills table algebra dialect in which (groups of) operators have straight-
forward SQL equivalents. Its row numbering operator̺, for example, has its direct correspondence in the
SQL:1999 clauseROW NUMBER()OVER(PARTITIONBY · · · ORDERBY · · ·). Pathfinder’s SQL code gen-
erator implements a greedy template instantiation strategy—much like programming language compilers—that
identifies plan sections whose semantics may be expressed interms of a single SQLSELECT-FROM-WHERE
block. The resulting SQL fragments are reasonably “good-natured”, e.g., all UNION operations are over disjoint
tables, nested queries inFROM clauses are uncorrelated, and most occurringJOIN operations are equi-joins that
implement the behavior of nestedfor iteration scopes.

The code generator introduces plan section boundaries,
(i) voluntarily, to share runtime evaluation effort if a (sub-)plan’s output is input to more than one upstream

branch in the plan DAG, or
(ii ) by necessity, whenever the plan’s stacked shape and the occurrence of a row numbering or duplicate re-

moval operation does not allow to further grow the current SQL block.
The generated sequence of SQL code pieces are assembled intoacommon table expression(WITH · · · ) to jointly
realize the semantics of the input XQuery expression on an off-the-shelf SQL back-end.

Lab experiments have shown how this approach turns SQL RDBMSs, hosting rectangularized XML in-
stances as described in 2, into capable XQuery processors that do not stumble if document sizes get large [8, 11].
Quite the contrary: for queries against XMark instances beyond 100 MB size, we have seen IBM DB2 V9—
running on loop-lifted SQL code—outperform its own built-in native XQuery processorpureXMLTM [7].

Off-Beat XQuery Targets. If the underlying database back-enddoesoperate over deterministically ordered
tables, embedding order in the data appears wasteful: most perceivable implementations of̺ lead to blocking
sort operations in the final physical query execution plans.Pathfinder’s code generator forMonetDB, CWI Am-
sterdam’s extensible database kernel tuned for in-memory operation [15], exploits explicit control over physical
row order [2]. The narrowiter|pos|item tables that are pervasive in loop-lifted plans (3) prove to be a good match
for the strictly column-oriented data and query model realized byMonetDB. The openness of theMonetDBker-
nel permits the injection of an implementation of staircasejoin that can particularly benefit fromMonetDB’s
ability to address rows,i.e., encoded XML nodes, by document order rank [13].Pathfinderplus MonetDBis
distributed asMonetDB/XQuery[19]—a purely relational implementation of an XQuery compiler and runtime
environment that can process Gigabyte-range XML instancesin interactive time [2].

6 Compiling More Iterative Languages

Turning More Semantics into Data? The past few years withPathfinderhave taught us that RDBMSs can
be turned into efficient processors for “alien” (i.e., non-relational) languages if relevant pieces of the language’s
semantics are cast into data. To understand XQuery, in particular, we introduced relational representations of
XML node identity and document order, XPath axes semantics,type annotations, sequence order, and nested
for iteration.
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concat [ ifodd xthen [”odd”,show x]else[”even”]|x< −[5, 6, 7] ] (Haskell)
[5, 6, 7].collect{|x|x% 2! = 0? [”odd”, x.to s] : ”even”}.flatten (Ruby)

Figure 4: Haskell and Ruby equivalents of the XQueryFLWOR block of Figure 2a.

This recipe should be applicable to more languages, especially if their core iteration construct may be under-
stood in terms of comprehensions and thus loop lifting. Comprehensions are indeed to be found, under varying
coats of syntactic sugar, in a large family of languages. Among these are the programming languages Haskell
and Ruby (Figure 4) [9], or Microsoft’s LINQ [18]. A rectangularization of the relevant aspects of the lan-
guage’s semantics—i.e., data types like ordered lists and dictionaries, or constructs like conditionals, variable
assignment, and reference—plus loop lifting enables arelational database engine to seamlessly participate in
program evaluation. Programmers continue to use their language’s very own syntax, idioms, and functions—the
system is in charge to decidewherethe computation described by a given program fragment will take place: on
the heap or inside the relational database back-end. Programs that touch and move huge amounts of data, think
Computational Science, will benefit the most from this support off the relational shelf.
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