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Abstract

The Pathfinder project makes inventive use of relationahloiase technology—originally developed to
process data of strictly tabular shape—to construct efliictatabase-supported XML and XQuery pro-
cessors. Pathfinder targets database engines that impleaneeat-oriented mode of query execution:
many off-the-shelf traditional database systems makeuiteitle XQuery runtime environments, but a
number of off-beat storage back-ends fit that bill as well.ilgvRathfinder has been developed with a
close eye on the XQuery semantics, some of the techniguesehaill review here will be generally
useful to evaluate XQuery-style iterative languages oalukzde back-ends.

1 The Rectangularization of XQuery: Purely Relational XML Processing

If you zoom back in time to dig for the semantic roots of XQugsy; you will find that the language’s core
construct, thd or - et ~wher e-or der by-—r et ur n (FLWOR) block is one particular incarnation of a very
general idea: theomprehensiof26]. Many language-related concepts may be uniformly wstded in com-
prehension form, but comprehensions provide a partiguzrhcise and elegant way to express iteration over
collections of objects—in the case of XQuery: finite, ordesequences of XML nodes and atomic values (or
itemg [1]. Any program or query expressed in comprehension fersubject to a number of useful equivalence-
preserving rewriting rules (theonad law} and so is XQuery'sLWOR block. Once you look closely, a wide
range of seemingly XQuery-specific optimizations realibgadompilers and interpreters todayg, f or loop
fusion or unnesting, in fact put the monad laws to work.

The family of programming and query languages whose semaote may be cast in comprehension form
is large. Among its members, specifically, is S@herelational database language. This observation sparked a
whole line of work that we will review in the following pages:

Exploit the common semantic ground of XQuery and SQL anddrin relational database sys-
tems (.e., processors for strictly tabular, or rectangular, dat&) efficient and scalable XQuery
processors.

XQuery processors of this type should be able to benefit flB80+ years of research and engineering expe-
rience that shaped relational database technology. Thisfesct, what we repeatedly observed in the course of
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the Pathfinderproject (initiated in late 2001), an effort to construd®arely Relational XQuery Processf#25].

As of today,Pathfindercan compile XQuery expressions into code (different vasiaf table algebras or SQL)
ready for consumption by relational-style database bacls.eThe back-ends evaluate this code against tabular
encodings of XML instances and item sequences andatiugke XQuery processors. We have found the result-
ing systems to exhibit runtime performance charactesidtiat often surpass specifically-built “native” XQuery
engines. On top of that, standing on the shoulders of relatigiants provides stability, scalability, instant and
wide availability as well as the seamless coexistence of XiMkances and tabular data.

Input to this purely relational approach to XQuery proaegsre relational encodings of the XML data model,
i.e., ordered unranked trees of nodes of several kinds. We thansaair tour of thePathfindertechnology in

2 with a brief review of suitable tabular encodings of XML atteétn see how XPath location steps may be
efficiently evaluated in terms of (self-)joins over the Héag tables. We turn to XQuery's dynamic semantics
in 3 and sketcltoop lifting, a compilation strategy that derives efficient set-oridmeecution plans from nested
FLWOR blocks. 4 shows how a purely relational account of the XQuamantics can provide insights and
optimization hooks that would be hard to find and formulateat@XQuery language level. Different kinds of
database systems have already been turnedPatiafinderback-ends. 5 discusses selected systems and how
they fare in their new role as XQuery runtime environmentsialfy, as we said, the comprehension construct
can explain aspects of a large family of languages: 6 sheds $ight on how other recent programming and
guery language proposals with an iterative core could betdrgularized’—and thus put on top of relational
back-ends.

2 How Many Rows Does Your Tree Have? (Tabular XML Encoding)

The performance of any RDBMS-backed solution dependsalliji on how its data is represented in the rela-
tional format, tables of tuples. A purely relational XQuerpcessor is no different in this respect and the choice
of a good relationatree encodings an important factor to the functioning of a relational X&y setup. Two
principal features must be provided by the XML-to-tablesmglation, both dictated by the semantics of XQuery:

() Ithasto maintain XMLdocument ordeand XQuery’s concept afode identity More explicitly, we expect
the existence of aurrogatey, for each node such thaty,, = v,, iff v1i s ve andy,, < vy, Iff v; <<wvs.

(ii) Efficient mechanisms must exist that implement core opmraton XML data. In particular, given a node
surrogatey,, there must be a way to compute all surrogates for the nodeeseqv/ az::nt, whereaz and
nt are axis and node test of an XPath location step, respectivel

A variety of encodings has been published

which provide both features, includingrROPATH | pre | size | level kind | prop |
[21], dynamic intervals [3], or XPath accelerator a 019 0 [elem| a
[14]. Pathfinderuses a variant of the latter, which 1k‘33 /sf 4 é g ; 2::m i’
we illustrate in a moment. As a drop-in replace- ,c, g 7h2 3101 3 |elem| d
ment, the others could be plugged imRathfinder o seq  sio ed0 gl 2 ? ;cle;xn: ?
seamlessly. Sl . ) ;
Pathfindeis relational XML storage, repre-
sents documents as a five-column table as shown(@ XML document tree. (b) Relational tree encoding.

in Figure 1 on the right for the XML instance ] )
Figure 1. XML document tree, annotated wiite(-) and

<a><b><c><d/ >e</ ¢c></ b> size(-) information (left/right), and resulting tree encoding.
<f >g<h><i/ ><j [ ></ h></ f ><[ a>



For each node, the table holds’s rank in a preorder tree traversaig(v), the number of descendants below
size(v), its distance to the tree rodevel(v), and the two columnkind andprop to represent XML information
set characteristics af, i.e,, its XML node type (one otlem, text, attr, ...) its tag name or typed value
(depending orkind(v), refer to [14] for details). It is easy to see thaé(v) provides a suitable implementation
for ,.

Evaluating XPath. Based orpre(-), size(:), andlevel(-) properties, all twelve XPath axes can be characterized
in a concise and machine-friendly manner. For a@scendant , e.g, we have

v' € v/descendant
& . Q)
pre(v) < pre(v') < pre(v) + size(v)

Range expressions of this kind lend themselves to the u&tme indexedor efficient XPath evalua-
tion. And, in fact, with appropriate index support, a redail XPath evaluation setup can outperform industry-
strength “native” XML processors by significant margins]j11

The relational system plays its trump by organizing and g the relational tree encoding in the way
that fits any given XPath query workload best. In [11], we fdhat partitioned B-treedorm a particularly
interesting class of indexes for XPath processing. Theipalygyout of a partitionedlevel, pre) index, for in-
stance, ideally matches the access pattern of an Xfdthd step. In addition, since fa-step XPath expression
compiles into &-way self-join at the relational end, the system’s optimizan gear the@rder of these joins to
its liking [7]. This way, anoff-the-shelfRDBMS solves formerly challenging problems in a purely naatbal
way. This includes rewriting into forward-only plans [20]top-downvs. bottom-up XPath evaluation [17].

Tree Awareness with Staircase Join.With a suitable tree encoding and the right selection of xede we
enabled the relational system to act as an efficient treeepsoe, even though the system remained entirely un-
aware of the tree-structure that the encoded data origiffieden. Additional performance gains can be achieved
by injecting such awareness into the RDBMS kernel.

Staircase join[13] is such an injection that can significantly improve tislaal XPath performance with
only a local change to the RDBMS kernel. While evaluating &ab location step, staircase join provides tree
awareness by

¢ pruning nodes from the context set whose result nodes are alreadyged by other context nodes,

e partitioning the document space to (a) guarantee a duplicate-free ,resuied in document order and
(b) achieve a strictly sequential, hence cache-efficiamtigss pattern to the underlying storage, and

e skippingparts of the document table which are early discovered ¢(baseknowledge about the tree-
origin) to not contain any result candidates.

Injecting staircase join into a main memory-oriented dasatsystem [13] or a traditional disk-based system [16]
took only little changes to the systems’ code. The changeritime performance, however, was significant: we
observed speed-ups of several orders of magnitude on bstnsy.

Types are Data. Other than traditional database query languages, XQuerg khe distinction between data
and its type. XML Schema types,g, can be used as node tests in XPath location steps, jusilikeames
or node kinds. Likewise, theuntime typeof arbitrary XQuery items can dynamically be inspected githe
i nst ance of andt ypeswi t ch constructs just like the item’s value. A relational encagdiar XQuery type
annotations types, therefore, is called for.

The type system of XQuery, incidentally, has a structuré wWeaalready know how to deal with efficiently.
All XML Schema types relate to each other irirae shape Pairs ofpre andsize values (“type ranks”) are a
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Iter pos item

iter pos item

for $x in (5,6,7) return
if ($x mod 2 ne 0)

1171715 1171 ["odd"
112 6 112 |"5"
113 7 2|11 |["even"

then ("odd",xs:string($x)) 311 |["odd"
else "even" S
(a) Sample XQuery FLWOR block. (b) (5,6,7) () ("odd","5", "even", "odd", "7")

Figure 2: An XQuery¥LWOR block with the loop-lifted representations of its bindirggsence and result. The
gray outer pseudo loop establishes a single-iteratioregbfr the top-level item sequen¢®, 6, 7) .

logical way to account for that, witpre(-) as a concise implementation for type annotations. But itieevof
using type ranks is not only their support for tree navigatis we showed in [23], type ranks enable interesting,
database-style evaluation strategies for queries on .typgse aggregatione.g, can accelerate the processing
of i nst ance of ortypeswi t ch clauses with sequence-valued input. Type-constrainedhX@aoressions
can profit from relational indexes over columns that encggde tnformation, or even from combined type/data
indexes.

3 Drawing Independent Work from Lack of Side Effects

Pathfindeis main XQuery compilation strategy, dubblep lifting, revolves around the XQueRtwoR block

as the main language construany subexpressior is considered to be iteratively evaluated in the scope
of its innermost enclosing or loop (if e is a top-level expression, we install a pseudo singletitaraoop
for $_in(0) return e such that variablé_ does not occur free ia). In line with the comprehension
notion, theFLWOR block

for $x in (vy, vo,...,v,) return e

describes then-fold side effect-freeevaluation ofe under unmodifiable bindings @Xx to itemswv;. The
result will be( e[v1/sx], e[v2/sx|, ..., e[vn/sx]) (note that the resulting sequence will be flat according o th
XQuery data model). Since the individual evaluations oplbodye cannot interfere, the system may perform
the evaluation in any order or even in parallel {41.8.2]. This leads to a significant load ioflependent work
the principal source of set-orientation and potential fielrsm in Pathfindergenerated query plans.

The “Great Invariant.”  To implement this idea on a relational back-eRathfindercompiles an XQuery
subexpressior into an algebraic plan fragment that, at runtime, will yieldernary table encodings result
for all its n iterated evaluation$6, 12]. These tables uniformly adhere to the schémdpos|item in which a
row (i, p, v) indicates that, in théth iteration, the evaluation efreturned a sequence in which itenoccurs at
positionp—in a sense, we obtain a fully unrolled representation ofdiselt ofe’s enclosingf or loop.

Consider the sample XQuemrsLwoR block in Figure 2a. The top-level binding sequericg, 6, 7) is
evaluated once only while the innkeor loop body undergoes three individual evaluations and tbugibutes
three subsequences (marked byin Figure 2c) to the final result (to illustrate: roi®, 1,”odd”) indicates that
the third iteration contributes a sequence with iteadd" at positionl).

This “great invariant” drives the design of the whole corapiand enables a truly compositional style of
translation from XQuery to relational algebra—prepareddpe withf or loop nesting hierarchies of arbitrary
depth. Loop-lifted algebraic plans diverge from the cleaisi-7-x pattern emitted by SQL compilers: instead,
the plans exhibit a narrow “stacked” shape [7] reflectingdhitbogonal expression nesting that is typical for a



functional language like XQuery. Figure 3 sketches the plaape for XMark Query Q8 [22] (each box denotes
an algebraic operator, see 5). The resulting plans
() are truly set-orienteck.g, the algebraic plan faBx nmod 2 evaluates the subexpression &trbindings of
$x, in some order the database back-end sees fit,
(i) offer a range of effective optimization hooks (see 4), and
(iif) are sufficiently versatile to embrace a family of furtherdtive languages (6).

4 Relational Insights Into XQuery Affairs

The previous two sections invested considerable effortéotangularize” XQuery, press
it into some shape that is digestible by a relational baak-ephis section explores how
we can benefit from a relational formulation of XQuery prabtethanks to advanced and
well-understood optimization techniques.

A particular example of such well-understood optimizatiechniques is the early dis-
missal of irrelevant information from the processing pipel also known aselectionand
projection pushdown The latter idea, the disposal of columns not inspected lyyuga
stream operator, has interesting consequences whendpphbdoop-lifting compiler.

And Order is Data, Too. With Pathfinder XQuery’s various notions of order are encoded
in the data(i.e., the surrogates, reflect document order, the columitsr andpos reflect
iteration and sequence order): generated algebraic plametdely on some prescribed
physical row order. Yet, the computation of encoded ordiermation ultimately may still
enforce such row order—and therefore incur a significarit &vith order made explicit on
the data level, however, we now have a handledotrol the dependence on ordered Prog; i
. - ) : igure 3: Plan
cessing. Byprojecting outorder-encoding columns, operators that were previousiyled shape model.
to ensure physical order will automatically be eliminatgdPathfindeis optimizer.

In [10], we demonstrated how this effects in execution pthas can exploit opportunities to process (sub-)
gueries in arunorderedfashion €.g, in the scope of XQuery'sinor der ed{ } ), an opportunity that proved
hard to discover by traditional query analyses on the lefi/&l@uery. For XMark benchmark queries.g, this
led to a many-fold speed-up even when the dependence onismugrapparent in the source query.

Dependable Cardinality Forecasts for XQuery. Finding the most efficient execution plan for a given query
often depends on the availability of accuratsult size estimate§ hough fairly well understood in the context
of XPath, the problem of computing such estimates provedrimisly hard to solve for the complete XQuery
language. The problem gets tangible once we look at it in teet&ngular” world. Relational equivalents
for XQuery expressions provide the necessary fabric to ecnexisting work on XPath estimation with tradi-
tional relational techniques, such as the ones known frosteBy R or different flavors of data statistiesd,
histograms) [24].

The outcome is a cardinality estimator fanbitrary XQuery (sub-)expressions whose accuracy we demon-
strated for a wide range of different XQuery workloads [24hd, most importantly, the estimator shows a high
robustneswith respect to intermediate estimation errors. Rathan fing up such errors during the estima-
tion process, we found it often to recover gracefully ani@ime up with a meaningful estimate for the overall
expression.

5 Off-the-Shelf and Off-Beat XQuery Runtime Environments

Loop-lifting turns the input XQuery expression into an ddgec plan solely operating at the table level. Plans
are, generally, DAG-shaped (Figure 3) owing to a commongab-analysis stage installed Fathfindels
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compilation pipeline. No traces of variable binding anerefice, XPath traversal and node construction, explicit
f or iteration, conditionalsi(f ortypeswi t ch), and similar source language features are left. This msnde
a wide range of set-oriented execution environments daitaimtime environments for XQuery, most of which
have not originally been designed to act as XML processors.

Running XQuery on Off-the-Shelf SQL:1999 RDBMSs. The data-embedded order representation (4) makes
off-the-shelf RDBMSs perfectly valid compilation targedad execution platforms foPathfindergenerated
code. A SQL:1999 code generator is, in fact, among the mostrmed code generators available Pathfinder
today [8]. The compiler emits a no-frills table algebra délin which (groups of) operators have straight-
forward SQL equivalents. Its row numbering operaporfor example, has its direct correspondence in the
SQL:1999 claus&RONNUMBER( ) OVER( PARTI TI ONBY - -- ORDERBY - - -) . Pathfindeis SQL code gen-
erator implements a greedy template instantiation styateguch like programming language compilers—that
identifies plan sections whose semantics may be expresdednis of a single SQISELECT-FROMWHERE
block. The resulting SQL fragments are reasonably “goddsed”, e.g, all UNI ONoperations are over disjoint
tables, nested queriesROMclauses are uncorrelated, and most occurdi@N operations are equi-joins that
implement the behavior of nestéar iteration scopes.

The code generator introduces plan section boundaries,

(i) voluntarily, to share runtime evaluation effort if a (syfidan’s output is input to more than one upstream
branch in the plan DAG, or
(i) by necessity, whenever the plan’s stacked shape and therence of a row numbering or duplicate re-
moval operation does not allow to further grow the current. ®@ck.
The generated sequence of SQL code pieces are assembladantonon table expressigi TH- - - ) to jointly
realize the semantics of the input XQuery expression onfathefshelf SQL back-end.

Lab experiments have shown how this approach turns SQL RDBM8Ssting rectangularized XML in-
stances as described in 2, into capable XQuery processtrdamot stumble if document sizes get large [8, 11].
Quite the contrary: for queries against XMark instancesohdyl00 MB size, we have seen IBM DB2V9—
running on loop-lifted SQL code—outperform its own buittfiative XQuery process@ureXML™ [7].

Off-Beat XQuery Targets. If the underlying database back-eddesoperate over deterministically ordered
tables, embedding order in the data appears wasteful: neostigable implementations eflead to blocking
sort operations in the final physical query execution pl&ashfindeis code generator favionetDB CWI Am-
sterdam’s extensible database kernel tuned for in-memumeyation [15], exploits explicit control over physical
row order [2]. The narroviter|pos|item tables that are pervasive in loop-lifted plans (3) provedalgood match
for the strictly column-oriented data and query model eeglibyMonetDB The openness of tHdonetDBker-
nel permits the injection of an implementation of staircpmi that can particularly benefit frolonetDBs
ability to address rowsd,e., encoded XML nodes, by document order rank [1B&thfinderplus MonetDBis
distributed asvionetDBXQuery[19]—a purely relational implementation of an XQuery cotapand runtime
environment that can process Gigabyte-range XML instaincegeractive time [2].

6 Compiling More Iterative Languages

Turning More Semantics into Data? The past few years witRathfinderhave taught us that RDBMSs can
be turned into efficient processors for “alielivg(, non-relational) languages if relevant pieces of the |aggls
semantics are cast into data. To understand XQuery, incpkatj we introduced relational representations of
XML node identity and document order, XPath axes semariiypge annotations, sequence order, and nested
f or iteration.



concat [ifodd xthen ["0odd”, show x|else[’even”]|x < —[5,6,7]] (Haskel)
[5,6,7].collect{ |x|x % 2! = 07 ["0dd”,x.tos] : "even”} .flatten (Ruby)

Figure 4: Haskell and Ruby equivalents of the XQuerywoR block of Figure 2a.

This recipe should be applicable to more languages, edlydatiheir core iteration construct may be under-
stood in terms of comprehensions and thus loop lifting. Cafngnsions are indeed to be found, under varying
coats of syntactic sugar, in a large family of languages. Agnibhese are the programming languages Haskell
and Ruby (Figure 4) [9], or Microsoft’s LINQ [18]. A rectaniguization of the relevant aspects of the lan-
guage’s semantics+e., data types like ordered lists and dictionaries, or consdrlike conditionals, variable
assignment, and reference—plus loop lifting enableslational database engine to seamlessly participate in
program evaluationProgrammers continue to use their language’s very owragyitioms, and functions—the
system is in charge to decigenerethe computation described by a given program fragment alik tplace: on
the heap or inside the relational database back-end. Pnsgteat touch and move huge amounts of data, think
Computational Sciengevill benefit the most from this support off the relationaklh
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