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Abstract

Since the birth of XML, the processing of XML query langudgesXQuery/XQueryP has been widely
researched in the academic and industrial communities. tMbghe approaches consider XQuery as
a declarative query language similar to SQL, for which tregator-based (stream-based), lazy evalua-
tion processing strategy can be applied. The processingrnsbined with XML indexing, materialized
view, XML view query rewrite over source data. An alterratapproach views XQuery as a proce-
dural programming language associated with eager, stegetlaevaluation, where each expression is
fully evaluated by the end of the corresponding expresskecigion step. Usually, this approach uses
a virtual machine running byte-code for compiled progransthis paper, we share our experience of
building a unified XQuery engine for the Oracle XML DB intdgrg both approaches. The key con-
tribution of our approach is that the unified XQuery processtegrates both declarative and imperati
ve XQuery/XQueryP processing paradigms. Furthermoreptbeessor is designed with a clean sepa-
ration between the logical XML data model and the physicptesentation so that it can be optimized
with various physical XML storages and data index and viewle We also discuss the challenges in
our approach and our overall vision of the evolution of XQu&QueryP processors.

1 Introduction

The original XQuery is more SQL-like declarative query laages and this is why XQuery is initially adopted as
a language for querying persistent XML data in database@mvients. The latest XQuery extensions - XQuery
Update Facility and especially XQueryP [2, 15] pushes thauX® evolution far beyond what the original
goal is. Currently, XQuery/XQUpdate/XQueryP is capablaaf only for querying but also for transforming,
updating and manipulating both persistent and transient. Xista in variety of environments. This means that
there is no need to embed XQuery with a host procedural pmugiag languages, such as Java/C to build large
scale XML applications.

Similar to that of SQL/PSM or Oracle PL/SQL, XQueryP comBindybrid imperative-declarative process-
ing paradigm with a single XML data model. This way, usersesadeclarative query constructs to do 'finding
the needles in the haystack’ type of data search efficiegthgderaging index built over large volume of XML
data collections. Meanwhile users can use imperative progring constructs in order to do data transformation
operations efficiently leveraging classical imperativegiaage processing paradigms. Therefore, the design of
XQuery/XQueryP processors needs to embrace both SQL ligard¢ive language processing paradigm and
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Java/C like imperative language processing paradigm. i$hiee primarily design philosophy that we follow to
build an integrated XQuery/XQueryP processor in Oracle.

Furthermore, we take into account XML shapes and charatteri the XML data can have different phys-
ical representations: persistent XML data with differaiorage, index and materialized views, XML view over
relational data, transient based XML data stream, in merkdtl, DOM tree structures, stream of SAX events.
Therefore, we don't want to design an XQuery/XQueryP prsgeshat is hardwired to a limited number of
physical XML representation forms. Instead, our secondjdgzsaradigm is to keep a clean separation between
program logic and XML representation so we can apply both Xhresentation independent and XML rep-
resentation dependent optimizations on an XQuery progfdns. is similar to that of the well known compiler
design principle that separates target independent aget @ependent optimization.

2 Oracle XQuery/XQueryP Product and Requirement Overview

Riding with the XML/XQuery technology wave, Oracle XMLDB][8upports XML, XQuery/XPath/XSLT and
SQL/XML [1] processing in Oracle DBMS database server. Iditioh, Oracle also supports XDK package,
where XQuery/XSLT processors can be used embedded asdibtarbuild standalone application independent
of database server.

The XML processing in Oracle XML DB is based on the XMLTypeatgpe, which is the native datatype in
SQL/XML. XQuery can be invoked directly or embedded in SQMIXto query, update both persistently stored
XML documents in tables and XML views over relational dataenc® XML in general is falling into data centric
XML and document centric XML category, therefore, there agsame-size-fit-all XML storage/index solution.
So Oracle XMLDB supports object relational storage for dagatric XML [5], binary XML with XMLIndex
for document centric XML [3]. For users who truly want textdiiy, storing XML as CLOB is also available.

Beyond the physical representation for XML storage itdbifre are also use cases where XML content is
generated dynamically using XQuery to define query XML viewsr relational data, for example, generation of
hierarchical based XML reports over relational data, or R&@ generation from relational data. Furthermore,
the SQL/XML standard integrates both XQuery and SQL togefitethat users can have a dual XML and
relational view of the underlying data. That duality allousng XQuery to query relational data and using SQL
to query XML by leveraging XMLTable construct in SQL/XML. Sbe requirements of XQuery processing in
Oracle XMLDB are to build a tightly integrated XQuery and Sétgine that can optimize queries over a variety
of physical XML storage and view representations while tegeng different indexes and materialized views.
To facilitate this, the Oracle XMLDB XQuery processor cofapiXQuery and SQL into the same underlying
iterator based query execution plans [18] so that the stte@sad lazy evaluation model is fully shared and
queries are globally optimized across all storage forms [6]

The requirement of XQuery/XQueryP processor, which werrageXVM (XQuery Virtual Machine) [7], in
XDK is expected to work standalone without any prior knowgedf physical XML representation forms. It
uses XQDOM API, which is DOM API extended with PSVI and XQDNhstructs as logical API to manipulate
XML. The implementation of the API can be efficient and sckdatepending on the physical XML representa-
tion without materializing a DOM in memory object. Users alde to do full-blown XML programming with
intensive procedural logics, for example, extensive usdgéQuery modules, user defined XQuery functions,
variable assignments, procedural loops etc. When XVM isexfded into Oracle XMLDB database server, it
compiles database stored XQuery modules, user defineddnacaind XQueryP sequential expressions (aka
statements) into machine independent byte-code and g®adirtual machine environment to execute it. Pure
query expressions are 'pushed down’ to the DB XQuery pracdsse executed by leveraging database index,
materialized views and various join strategies (hash joierge join in addition to nested loop join) and parallel
guery processing capability from the DB iterator enginee Toushed down’ expression results are fetched by
XVM in a form of an iterator data object.



3 DB-based lterator XQuery Processing

3.1 XML Extended Relational Algebra (XERA)

Although in principal, an iterator based XQuery engine carbbilt from scratch in the Oracle database server,
it is actually much more effective to leverage the matureatte based SQL engine [18] in Oracle database
server. This allows us to handle not only pure XQuery but &lgorid SQL/XML query and to do cross-
language optimizations between SQL and XQuery handlingghly XML data and index stored relationally
[4, 6]. Furthermore, it is important for the XQuery/XQuerpRocessor to leverage existing SQL compilation
and execution infrastructure instead of re-inventing theel again. Note, however, we are NOT translating
XQuery to SQL, instead, we compile XQuery and SQL into the esamderlying compile-time structures and
build iterator based execution plan. The challenge is thatet is semantic difference between XQuery and
SQL so that we need to bridge the semantic gap between theatwodges by leveraging SQL extensibilit y
framework [8] to derive XML Extended Relational Algebra (RB) [4]. The key points to support XERA in
Oracle database server are described below.

¢ Add XMLType that models XQuery Data Model (XQDM) as new natilatatype in SQL.
e Add new SQL table function that can iterate each XQDM item ande as native SQL iterator.
e Add XQuery type in XQDM run time data so that dynamic type ¢feg is feasible.

e Add XQDM manipulation operators that support XQuery camsts and XQuery Functions and Operators
as native XQSQL operators. These XQSQL operators can beitexkieratively under the SQL table
function iterator.

e Add new XQDM based user defined aggregates to support aggriegetions over XQDM.

e Define various algebra rules among these new XQSQL operaiggsegators and table functions with ex-
isting SQL operators and aggregators so that they can bleralgally optimized when they are composed
together.

3.2 Physical XML storage/index independent optimization

The key XML physical storage/index/view independent opation is described below:

e We do static type analysis of XQuery to eliminate as much oyodype checking as possible and compile
expensive type polymorphic operators into efficient comfiine type determined operators as much as
we can.

e Similar to that of SQL view merge [9], we merge nested FLWORression in for clauses to its parent
FLWOR clause.

e Similar to that of SQL EXISTS/NOT-EXISTS subquery un-negtito semi-join and anti-join [10], we
merge existence and not-existence check based XQueryssigmento semi-join and anti-join.

e We perform operator normalization, cancellation and rédandbased on algebra rules [11, 6]. This is
particularly important to cancel XQDM aggregation withtaéble function iteration.



3.3 Physical XML storage/index dependent optimization

As XPath traversal is typically the unit of optimization rfnophysical XML layer, we add XQSQL XQPath()
operator that processes a sequence of XPath steps [4]. Forwit¥ object relational storage or XML view
over relational data, the XQPath() operator is rewritten jpins of the underlying relational tables [11]. For
binary XML with XMLIndex, the XQPath() operator is rewritieinto path index lookup which becomes the
self-joins of the XMLIndex path tables [4]. For binary or CBOXML storage without XMLIndex, XQPath()
can be executed iteratively using XPath ierator. This fewaind optimization process can be carried inside
out through nested SQL query blocks with view merge, subyquarnesting and operator algebraic reduction
[11] (constructor and destructor simplification) and proskinative query over the underlying XML storage and
index relational tables so that efficient physical join anoug processi ng and parallel execution strategies can
be explored extensively.

Beyond path traversal leveraging index usage, in genekgh\M based approach of matching XML index or
materialized view pattern shall be followed [13]. One of toenmon XAM patterns is the XPath with branching
predicate twig pattern, which we call mater-detail twigteat, that is commonly used in practices observed
from our customer XML usecases. We index such pattern viXMETable based structured XMLIndex [12].
Such master-detail twig pattern is evaluated by probingdtational tables constructed by the XMLTable based
structured XMLIndex.

4 VM-based procedural XQuery & XQueryP Processing

Contrary to the iterator-based stream evaluation of XQuU&WM treats XQuery and XQueryP as general pro-
gramming languages. XVM compiler (XCompiler) compiles X&puexpressions into a set of RISC style virtual
machine byte-code instructions that compute the resul ekaression from each of the sub-expressions in bot-
tom up fashion with the help of stack where the results frofm-expressions are pushed and operands are
popped. During run time, a virtual machine environment &ated to run the byte code.

4.1 XVM Instructions
XVM instructions are classified into the following groupsskd on their tasks:
e XPath stepinstructions
Execution of these instructions calls the proper node @éig methods in the XQDOM interface.

e XML node construction instructions

Execution of these instructions calls the proper node cocisbn methods in the XQDOM interface.

e Arithmetic and Comparison instructions

By default, these instructions are type polymorphic, tisatthey do arithmetic and comparison based
on the type of the operands. However, the XCompiler can gémeron-polymorphic instructions when
XCompiler can determine the types of these operands via $ggae analysis.

e Data transfer (load, store, push, pop)nstructions

These instructions move XVM sequence objects between XV arad context stacks.

e Type checking and type conversionnstructions
These instructions implements XQuery run time type chegkimd value casting.



e Control transfer (branch and loop) instructions
These instructions move XVM sequence objects between XV arad context stacks.

e Function call instruction

These instructions call XQuery functions. Both built-in X€y functions and operators and user-defined
functions are invoked this way.

e |terator-executer-function-call CISC instruction

This instruction pushes down XQuery expression to be etediuay iterator-based XQuery processor.

4.2 XVM Execution Model

The XVM execution architecture is quite simple. There ista§&inctions, one for each instruction, implement-
ing the instruction semantics. The XVM main loop moves trarurction pointer over byte-code instructions
and calls the corresponding function. The default insipacpointer step is one instruction. Only instructions
like 'branch’ or 'call’ can change the instruction pointescarding to their operand values. Each instruction
takes its operands from the VM-stack and pushes back thi.régiuen a function is called is activated, the cor-
responding function stack frame is pushed into the XVMistathe frame contains the return address, current
stack pointers, current node, a descriptor address plaséified) slots for parameters and local variables.

To avoid as much dynamic memory allocation as possible, Xshé$ advantage of the nature of stack based
expression computing. XVM models XQuery data model itemdeata objects on the pre-allocated stack. (The
stack can grow during run time by dynamically allocatingcktasegments, however, the frequency of dynamic
memory allocations is significantly reduced). One spedial bf the XVM data is the iterator data object, which
delivers the data through an iterator interface. Anothecig kind of data object is the XML node-set object that
stores the XML node references. Although XVM uses the XMLaoeference to perform XQDOM operations,
the content of the XML node reference and the implementaifoQDOM interface is completely opaque to
XVM. This allows XVM to work with different physical XML forns. When XVM runs inside Oracle database
server, there are various optimizations, such as scalabl@ageable DOM implementations, to implement the
XQDOM interface.

4.3 XQuery Module Handling

XVM supports both static and dynamic linking of XQuery maghil For small size XQuery applications, XVM
compiles all modules with the main query body and generate camposite executable byte-code module.
However, for large-scale XQuery applications that invdilsearies of modules, a dynamic linking mode is used.
In this mode, all XQuery modules are compiled separatelythenl byte-code has header containing tables for
imported and exported entities like top-level functionariables etc. All external references are resolved by
name and module id, quite like references in Java classegnltime, when XVM executes an instruction that
refers to unresolved imported entity, it checks if the cgpmnding module is loaded. If the module is not loaded,
the XVM loads it and allocates a table for the module exteratdrences. As it was said earlier, the external
references are resolved lazily on demand.

5 Integrated Iterator & procedural Processing

5.1 Rationale of integration

There is a trade-off between processing iterator baseddealyation model versus procedural oriented eager
evaluation model. The lazy evaluation model scales withelatata size but does not scale with large program



size because the iterator execution tree with all of itssmegliate computational states have to be maintained.
The eager evaluation strategy scales with large prograenbsiznot with large data size because intermediate
results have to be materialized. Both of which, however,lmmaintained and overflowed to disk if necessary.
Eager evaluation strategy is more efficient than lazy et@oavhen all intermediate results are needed to deter-
mine an answer. However, eager evaluation strategy is gtitnal if only partial results are needed. Therefore,
this results in our unique design principles of combininghbeager and lazy strategies to compile and execute
XQuery in Oracle XML database server.

5.2 XQuery Expression Push Down

XCompiler compiles sequential XQuery expressions into@RIiBe XVM instructions, whose execution se-
guence behaves as classical programming languages witératea finishes its step execution, computes the
result and applies changes before executing the next oneevén, for non-sequential XQuery expressions, the
XCompiler is also able to compile them into an iterator baSESIC type of instruction that is associated with an
iterator query plan which can then be serialized as partefiiita segments of the byte code. When XCompiler
is invoked in the Oracle database server to process XQué&wgmgiler invokes DB-based XQuery compiler to
decide if any non-sequential XQuery expression fragmeamsbe optimized and executed efficiently consider-
ing the physical characteristics of the input XML. As disse in section 3, the DB-based XQuery processor is
able to compile XQuery into XERA and then optimize it basedranphysical XML storage and index forms to
generate iterato r-based query execution plan.

During XVM execution time, execution of the iteraor-basd&C instruction by XVM first de-serializes the
guery execution plan that is prepared by the DB-XQuery ctanfiiom byte code data segment, then executes
the query plan by calling DB-XQuery executor. As discussedaction 3, the DB XQuery executor is an
integrated XQuery-SQL processor that uses index and stezxaination to efficiently execute the query plan
with large XML data sizes. The result of the DB XQuery execugcstored in XVM iterator data object and is
consumed by XVM in an iterator fashion.

Therefore, the overall integrated XQuery and XQueryP eti@sumodel is that the XVM drives the execu-
tion of a sequence of sequential XQuery expressions. Eagleatial expression, like an imperative statement,
may change the execution environment and cause visible#gls, for example, changing the persistent XML
or changing the value of global or local variables. Whenus#tithg each sequential expression, different query
fragments of the expression can be pushed down to a DB-baQegbr¥ processor that evaluates the query
fragment efficiently by using index, parallel query procegdechnique that DB-based XQuery processing is
specially designed for.

One of the key aspects of XQuery expression pushing downnmsate data search and operation as close to
that of the data source as possible so that index search emetand algebraic based constructor and destructor
optimization can be applied. However, data search and bpenaay be separated from the data source access
due to the presence of XQuery user defined functions or XQuaigble accesses. Therefore, inlining XQuery
user defined function and variable access so that data apecan be optimized with its input data source is
critical. However, not every user defined function is inlibke semantically. Furthermore, inlining user defined
function call may not always be optimal. Therefore, the X@der analyzes the XQuery expressions to see if
the inling may produce an optimal plan heustically. It doatadlow analysis by starting with the XML input
data source expressions and to see if inlining inlineabtetfans which consume the result of the XML i nput
data source expressions can produce an optimal plan. Siagehysical XML input data source information
is maintained by the Oracle database server, so for each @upression with inlined functions, XCompiler
actually invokes DB XQuery compiler to see if the inling idexto produce optimal query plans. Ifitis, then the
inline decision is made so that XQuery expression is pusheaddo the DB XQuery processor for evaluation
during run time.

Another optimization resulting from function inlining ibdt a function taking generic parameter type, such



as item()* , its body can be optimized when more precisedraagi type is available during function inline
time. This is generally known as function specializationd gartial evaluation technique [14]. When a generic
function body expression is cloned and substituted witlspiscific argument expression, more optimization is
achieved.

6 Challenges

XQuery and XQueryP processing can naturally leverage masgarch ideas and techniques from database
and procedural programming language processing. Howaméke the past approaches, such as SQL-PSM
or Oracle PL/SQL, where the demarcation between query psotg logic and procedural programming logic
explicitly separated by the language itself, such demianmtég blurred in XQuery/XQueryP. Users have tremen-
dous freedom to write XQuery and XQueryP logic in whatevey tiney feel is natural for them. Itis then up to
the compiler optimizer to figure out user’s intensions anfirt a proper way to optimize and translate them for
the target environment [16]. Compiler may decide to conaesequential expression into a query or a FLWOR
expression into a sequential loop statement. For examgézscan write procedure loop iterating through the
sequence with conditional logic on testing each item of #gguience within the loop. In a case of non-database
ta rget environment the compiler will keep the loop as is goulyathe typical loop optimizations only. On the
other hand a DB-query oriented optimization may converhsuprocedural loop into a FLWOR expression that
may leverage index to avoid looping each item of the sequehcecursive XQuery function call that traverses
an XML subtree can be optimized into //node() XPath. Sedaklaoping expression that does aggregation of
input items can be optimized into pre-defined XQuery aggregdunctions, such as sum(), avg() etc.

For optimizing pure XQuery without user defined functionl€@nd modules, the challenge of leveraging
cost-effective XML indexing to process the query is reqairkh SQL, writing a semantically equivalent query
in different ways may result in tremendous performanceediffice. This depends on how many different ways
to express the same query and how sophisticated query npatinah, transformation and rewrite techniques the
underlying optimizer is equipped with. In XQuery languagamber of ways to express an equivalent query
is significantly larger compared with SQL. Therefore, it gllenging to build XQuery optimizer that is query
form agnostic without user hints.

Handling XQuery user defined function call is another clmgee Traditionally in procedural programming
language, user defined function call is fully completed atdrn value is materialized before returning of the
function. This is the most efficient way when the size of theuhieset is not large. In SQL, the concept of
pipelined function [17] is introduced to cope with user defirSQL function that can return a collection of data.
The return result of such pipelined function is fetched $et ime through an iterator, effectively streaming
evaluation of the function body. However, in XQuery, anyrugefined function that returns a sequence can
be subject to streaming evaluation. Executing every udamatbXQuery function in streaming manner causes
proliferation of function execution states and closure iamibt scalable with respect to program size. Therefore
deciding what user defined function shall be executed imastigg fashion is left as an exercise to the optimizer.

7 Conclusion

In conclusion, we believe that the best XQuery processitgtiea is the one, which finds the right balance
between query and procedural optimizations, and we betteatethere is still a long way to go till a processor
that implements such a solution appears. Meanwhile it ibadsty beneficial to define different XQuery sub-
sets specialized for efficient use case processing. Formgain backend database settings, XQuery shall be
modeled and processed more towards declarative querydgaguhereas in application mid-tier and settings,
XQuery shall be modeled and processed more towards impe@ibgramming language. In practice, this also
allows users to write much more efficient programs by follugvbest practices to separate data query from data



transformations, and verifying that data query executianpfor XQuery executed by the database are optimal.
Database queries are expected to find the needle in the blaystd should be index driven where possible. Thi
s is particularly important when XQuery is used to locate Xhiticument or fragment within large document
collection. Our experiences of supporting XQuery and X@Beapplications have actually shown that follow-
ing such disciplined approach of separating query from caman19] when writing XQuery and XQueryP
programs gives guaranteed predictable performance withaved productivity to users when building large
scale XML applications.
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