
Big, Fast XQuery: Enabling Content Applications

Mary Holstege
Mark Logic Corporation

Abstract

Increasingly, companies recognize that most of their important information does not exist in relational
stores but in documents. For a long time, textual information has been relatively inaccessible and unus-
able. Database applications allow relational data to be used and re-used; the architecture of relational
database systems allow such applications to function even in the face of large amounts of data. XML
[10] and XQuery [8] now allow the creation of a new kind of application that unlocks content in a similar
way: a content application. In this paper, we examine the technologies that enable content applications
to operate at scale in the context of MarkLogic Server [2].

1 Content Applications

Database applications built on top of relational database management systems use SQL to select specific pieces
of data, join them against other data, and reassemble them into new views. It is this flexible, granular reuse
of data makes relational databases powerful tools. Relational databases, however, are less useful for dealing
with content which is arranged not in regular typed fields butin complex hierarchical documents consisting of
running text.

Documents are often described as “unstructured” or “semi-structured” but the problem with documents,
from a relational point of view, is not that there is too little structure, but that there is toomuch. Consider
a medical document that describes the course of treatment for a patient, with procedures, observations, and
actions indicated. Part of such a document, using XML markup, is shown in Figure 1.

The document has sections, which have titles and content. The content has running text which is interspersed
with markup for things such as instruments, actions, and observations. Some of these are nested in other markup.
The relation of an instrument, say, to the section’s contentis not simple: the order relative to other entities and
other chunks of text is crucial and defines the narrative. While a relational model for this information is certainly
possible, it is difficult and loses the narrative coherence of the original. It is easy to represent this narrative
structure using XML markup, however. The more semanticallyrich and detailed the markup becomes, the
harder it gets to map into a relational model, and, crucially, the harder it becomes to further enrich the mapped
structure.

A content application is to textual content as a database application is to relational data. It uses a query
language to select specific pieces of documents, join them against other document pieces, and reassemble them
into new documents. A content application goes beyond simple text search (“get me the document that contains
the phrase ’important symptom”’) into fine-grained selection and assembly based both on full-text operators and

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

...
<section>
<section.title>Procedure</section.title>
<section.content>
The patient was taken to the operating room where she was placed
in supine position and
<anesthesia>induced under general anesthesia.</anesthesia>
<prep>

<action>A Foley catheter was placed to decompress the
bladder</action> and the abdomen was then prepped and draped
in sterile fashion.

</prep>
...
The fascia was identified and
<action>#2 0 Maxon stay sutures were placed on each side of
the midline.

</action>
<incision>

The fascia was divided using
<instrument>electrocautery</instrument>
and the peritoneum was entered.

</incision>
<observation>The small bowel was identified.</observation>

,,,

Figure 1: Simple Medical Document

operators over the hierarchical narrative of the document.A query such as “show me all procedures involving
important symptoms where no anesthesia occurs before the first incision” entails full-text (“important symptoms,
“procedure”), ordering (phrase “important and “symptoms”, “occurs before”), and hierarchy (section’s content’s
incisions). A relational model suited to answering such a question would be ill-suited to reconstructing the
original narrative (the entire procedure): the reconstruction would be an immensely complex join.

With increasing amounts of content being created natively in XML or being readily convertible to XML the
time is ripe for complex scalable content applications built on XML. What that calls for is a language designed
for effective XML processing and a system architecture optimized for content.

1.1 Characteristics of Content Applications

Content applications vary widely, but some general trends can be identified:

• Individual documents may to be relatively large. Documentsas large as 10 megabytes are common; those
running to gigabytes are not unknown.

• The number of documents may also be large, and can run into tens of millions of documents or more.
However, the number of documents is usually much smaller than this.

• Content bases are frequently created from large amounts of existing content which needs to be loaded and
indexed in bulk.

• In general, update is less frequent than selection, but for Web 2.0 style content applications, being able to
add annotations and metadata to the content base is also important. Frequently the content-loading and
content-cleaning (update-intensive) and content-access(update-light) phases in the life-cycle of a content
application are distinct, so optimization does not need to focus on maintaining fast query during periods
of heavy update. This differs from on-line transactional database applications.

• It is important to be able to select small pieces of documentsbased on full-text, ordering, and hierarchical
criteria. Full-text searching brings in linguistic knowledge for stemming, tokenization, and thesauri, as

2

well as relevance calculations to determine which matches are better than others. Multi-lingual content
bases, documents, or even paragraphs are not uncommon.

• Document schemas may be complex, fluid, or unknown. As content applications evolve, new markup may
be incrementally added to enrich the content and enable new kinds of queries.

• Content frequently arrives that does not adhere to the defined document structure, in need of clean-up.
Clean-up transformations may be very complex, involving hierarchical restructuring.

• Content applications do evolve: to gain business advantages over competitors, to provide more accurate
selections or better context for information, to integratenew content sources, and so on. Evolution of
a content application often leads to an evolution of the content and vice versa: this in turn implies that
flexible schemas and some ability to update content in place are important.

• Content applications are amenable to end-to-end XML processing: content can readily be encoded and
stored in XML, XML (especially XHTML) can be directly rendered in a browser, and given an XML-
oriented processing language, selected pieces of XML can beoperated on to provide appropriate business
logic.

Given these general characteristics of content applications, Section 2 reviews some aspects of XQuery that
suit it to building content applications, and and Section 3 looks at how the architecture of the MarkLogic Server
supports building scalable content applications.

2 Query Language

To enable content applications, the query language needs tounderstand large, hierarchically structured docu-
ments containing human text. It needs to permit highly granular selection based on both the hierarchy and the
ordering of children (both of which are highly salient features of content). The XQuery family of specifications
allows documents marked up with XML to do just this.

• XML-aware

XQuery[8] was defined specifically as a query language for XMLcontent. Simple path expressions can
be used to select based on XML structure (both hierarchical and sequential) and XML result structures
can be easily generated, often using an XML syntax.

• Full-text

The query language for content applications needs to be ableto perform full-text operations, not just
string matching, to take into account language-sensitive operations such as stemming and tokenization.
The proposed Full-Text extensions to XQuery[9] will provide such functionality.

• Update

Although content applications typically focus on selection more than updating, the ability to update con-
tent or to add annotations or metadata is important to many content applications. Update operations also
provide for performing content cleanup and augmentation inplace. The proposed Update extensions to
XQuery[7] will define update operations.

• Extension Functions

Depending on the application, specialized capabilities may be required, such as security-related opera-
tions, or trigonometric functions. Fortunately, XQuery provides an extension mechanism through func-
tion libraries. XQuery itself defines a large selection of built-in functions and operators[6] for basic data
manipulation.

3

• Optimization-friendly

XQuery is a functional language without side-effects in which most functions are deterministic and stable
within a single query, allowing optimizers to freely reorder expressions and avoid recomputing expres-
sions.1 The proposed update facility uses snapshot semantics whichpreserves this aspect of the language:
the exact order in which updating operations are performed makes no difference to the result of the ex-
pression, so an optimizer is free to reorder expressions.

The XQuery language design also enables lazy evaluation: ifa path expression results in a million node
sequence, only those nodes in the sequence that make a material difference to the final result need be
fetched. Since full-text searches on large content bases can frequently produce such large results, the
ability to notice that only the first ten results are being rendered and returned as a result of the overall
query can lead to tremendous savings in effort.

• As Typed As You Want To Be

Another interesting feature of XQuery that is particularlyuseful for content applications is that, while
operationsmay be strongly typed, theyneed not be. An XQuery program can require a variable, function
parameter, or return value to be of a specific named type that is declared in an XML Schema, or it can
allow it to be anything at all. More flexibility is possible: a“type” constraint could be the requirement
that the item be some kind of XML node, or a specific kind of XML node — an element for example —
or an element with a particular name, whether defined in an XMLSchema or not.

Content frequently does not arrive perfectly conformant tosome schema, and it may evolve over time. It
is a great benefit to content applications to be able to use thesame tools tools to perform the initial clean-
up and evolution of content as are used to process normalizedcontent. XQuery programs with different
degrees of typing can be applied at different stages of the process. Alternatively, loosely typed XQuery
programs can be used to process content without having to normalize it at all.

3 System Architecture

Query language functionality is only part of the puzzle for enabling content applications. Efficient execution of
the query language at scale is important for real-world content applications. The architecture of the MarkLogic
Server[2] enables such efficient execution at scale, by optimizing for the characteristics of content applications
and taking advantage of the opportunities afforded by the features of XQuery. As [4] and [5] point out, special-
purpose databases tuned for particular kinds of problems can easily out-perform general purpose relational
databases in their problem domain by factors of 10 or more.

The MarkLogic Server architecture divides processing intotwo fundamental parts: evaluation and data
access. Typically, scaling is accomplished by distributing the evaluation to one set of hosts called E-nodes
(“evaluation nodes”) and data access to another set of hostscalled D-nodes (“data nodes”). The E-node and
D-node functionality can be also be combined into a single host. Load balancers and caching proxies can be
used to reduce and distribute the load across E-nodes.

3.1 D-nodes

D-nodes store the XML documents along with indexes to enableefficient access to those documents. D-nodes
respond to requests from E-nodes to locate, fetch, or updatedocuments under their control.

1There are some exceptions, such as the fn:trace() and fn:error() functions, as well as vendor extension functions to perform HTTP
requests, compute random numbers, or report execution times, and the like. Optimizers are nevertheless left with a fairly free hand.

4

Index Resolution

Forest
 Forest
 Forest

Index Resolution

XQuery Evaluation

Filtering

XQuery Evaluation

Filtering

XQuery Evaluation

Filtering

Forest

D-node
 D-node

E-node
 E-node
 E-node

HTTP

Figure 2: System Architecture

• Fragments

Documents are broken into non-overlapping units of access called fragments. Fragments are the basic
unit of operation in the system. Updates and selection from the databases occurs at the fragment level.
Fragmentation choices involve making trade-offs between the expected number of fragments that may
need to be fetched and processed to return the correct results of a query, and the size of fragments that
must be filtered to produce the correct results or written to disk to process an update. These tradeoffs can
be complex and how to balance them is beyond the scope of this paper.

• Forests

A database may be broken into multiple forests, where each forest is under the control of a specific D-node.
Distribution of data across multiple forests allows for greater concurrency and scaling.

• Inverted Indexes

The forests managed by each D-node include universal indexes that map facts about documents to posting
lists. Many kinds of posting lists exist: posting lists for each word, but also posting lists for structural
facts, such as the presence of particular elements. The indexes are compressed inverted indexes[11].
Index settings control which specific kinds of posting listsare available in the indexes, and whether the
lists record position details or just fragment identifiers.

XQuery path expressions and full-text queries can be resolved against the indexes by intersections and
unions of posting lists for the component facts. Such a result may not be accurate, however. For example,
if only a simple word index without positions were available, the phrase query “simple example” could
not be accurately resolved in the index. The best the index could do is return fragments that have postings
for both “simple” and “example”. A secondary phase, called the filter, is responsible for weeding out the
false matches. Index resolution can provide accurate answers in many cases: there is a tradeoff between

5

index resolution accuracy and index size. Again, details ofhow to balance such trade-offs is beyond the
scope of this paper.

• Managing Updates

The fragments themselves are stored in memory-mapped compressed representations of the document
trees. This tree data and the indexes are stored in “stands” in accordance with the principals of a log-
structured file system[3]: new content is initially held in memory and then written out in a sequential
fashion when a sufficient amount has accumulated. Journalling allows for recovery in the event of a crash.
Once written, the tree data and indexes are never updated. Fragments are updated by writing new ver-
sions of those fragments to new stands and noting that the fragment in the old stand has been deleted. The
server uses multi-version concurrency control[1] to increase the throughput for read operations. Each frag-
ment has a timestamp associated with it. Read operations obtain the most recent version of the fragment
with a timestamp preceding the current transaction’s timestamp, and therefore always obtain a consistent
snapshot of the content base. A periodic merge process creates new stands with any deleted fragments
eliminated and the indexes merged to optimize access. This allows both updates and selection to be fast
under the normal expected conditions of relatively few active stands and a relatively modest update load
once the bulk of the content has been added. Initial loading can also be fast because sequential writes of
data in bulk is faster than piecemeal random writes.

3.2 E-nodes

E-nodes are responsible for communicating with clients andfor XQuery evaluation: parsing, static analysis,
dynamic evaluation, and assembly and serialization of results. E-nodes include HTTP listeners that service
requests to execute XQuery modules and return the results.

• Query Processor

The query processor performs static analysis and rewrite optimization of the query. Any operations that
access data are converted into index requests and sent to theD-nodes, with the results being filtered as
necessary. The query processor relies on lazy evaluation ofnode sequences to avoid fetching or processing
content unless it is required by the ultimate result of the query.

• Filter

The filter iterates through the postings returned by the D-nodes and applies the specific match criteria to
the selected fragments and returns the requested nodes.

• Application Server

An E-node also operates as an application server. It acceptsHTTP requests on configured ports. In
addition to performing conventional serving of documents,requests for XQuery modules are serviced by
executing the indicated module and returning the results. Direct execution of XQuery modules enables a
rapid development methodology for web applications: XHTMLcan be generated directly from XQuery
for consumption in a browser.

3.3 Summary: Basic Query Flow

Consider a simple query for a phrase within an element as partof a larger query that only makes use of the first
ten hits.

6

XQuery Evaluation

Filtering

Statement Evaluation

Node Sequence

Fragment References

Index Resolution

"to"

"be"

SCENE

"or"

...

1,2,3,4,5,6,7,8,...

1,2,3,4,5,8,11,12,...

1,2,3,4,5,6,7,8,...

1,2,4,5,6,8,10,...

1,2,4,8,...

Content

Fragments

Figure 3: Query Evaluation

1. A client sends an HTTP request to an E-node. The application server accepts the request, locates, parses,
and analyzes the appropriate XQuery module. For example:2

import module namespace my="http://marklogic.com/example"
at "/MarkLogic/example.xqy";

for $result in cts:search(//SCENE, "to be or not to be")[
fn:position() = (1 to 10)

] return my:render-result($result)

2. The XQuery evaluator constructs an index query to be resolved by the indexes, based on the knowledge
of available indexes. In this case, the query parser produces an index request such as:

AND(SCENE,"to","be","or","not")

3. The indexes combine posting lists to form a sequence of fragment references. Depending on the indexing
options, index resolution may return “false positives”, fragments identified by the index that do not match
original criteria. Each D-node operates in parallel. Indexresolution in this case examines the posting
lists for the five terms, combines them into a single posting list that has references for all fragments that
contain all five terms (fragments 1,2,4,8, etc. in the diagram).

4. The filter turns the sequence of fragment references into asequence of nodes matching the original criteria.
The first fetches each candidate fragment in turn and selectsnodes in the fragment that actually meet the
criteria (all the words in the phrase appearing in the appropriate order within aSCENE element). A
fragment containing, for example, the phrase “not to be seenor heard” would be returned from the index
resolution, but would not meet the original criteria and would be skipped by the filter.

5. XQuery is evaluated to render the result nodes. Lazy evaluation of the node sequence causes fragments to
be fetched and filtered only as needed. In this case the filter only fetches as many candidate fragments are
required to return tenSCENE element nodes to pass to themy:render-result function. If theACT
element were the root of the fragment, the entire act would befetched for filtering, but only the matching

2The XQuery Full-Text extension defines the operatorftcontains which can be used to test whether a particular node matches
some full-text criteria. A common case is to return the sequence of matching nodes, generally ordered by decreasing score. This is what
thects:search extension function does.

7

SCENE elements would be returned. If theACT has ten matchingSCENE elements, only that one fragment
would be fetched.

6. The application server constructs an appropriate HTTP response and returns it to the client.

Caches at various level short-circuit some of these operations.

4 Conclusions

The divide between “content” and “data” is not a hard and fastone. However, content applications do tend to
have different characteristics than relational database applications. Representing content with XML, operating
on it with XQuery, and executing on an architecture optimized for such operations can open up the possibility
manipulating large content bases at a fine-grained level to create new and interesting applications. It provides
for a middle path between simply identifying documents thatmeet certain full-text criteria on the one hand, and
losing the overall complex hierarchical and narrative flow of documents on the other.

References

[1] Philip A. Bernstein and Nathan Goodman. Concurrency Control in Distributed Database Systems.ACM
Computing Surveys, 13(2):185–221, 1981.

[2] MarkLogic Server 4.0, 2008.http://marklogic.com/product/marklogic-server.html.

[3] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-Structured File
System.ACM Transactions on Computer Systems, 10:1–15, 1992.

[4] Michael Stonebraker and Uǧur Çetintemel. ’One Size Fits All’: An Idea Whose Time Has Come and
Gone. InInternational Conference on Data Engineering (IDCE), 2005.

[5] Michael Stonebrakeret al. One Size Fits All? — Part 2: Benchmarking Results. InConference on
Innovative Data Systems (CIDR), 2007.

[6] Ashok Malhotra et al. (editors). XQuery 1.0 and XPath 2.0 Functions and Opera-
tors. W3C Recommendation, W3C, January 2007. http://www.w3.org/TR/2007/
REC-xpath-functions-20070123/.

[7] Don Chamberlinet al. (editors). XQuery Update Facility 1.0. Candidate Recommendation, W3C, March
2008.http://www.w3.org/TR/2008/CR-xquery-update-10-20080314/.

[8] Jérôme Siméonet al. (editors). XQuery 1.0: An XML Query Language. W3C Recommendation, W3C,
January 2007.http://www.w3.org/TR/2007/REC-xquery-20070123/.

[9] Sihem Amer-Yahiaet al. (editors). XQuery and XPath Full Text 1.0. Candidate Recommendation, W3C,
May 2008.http://www.w3.org/TR/2008/CR-xpath-full-text-10-20080516/.

[10] Tim Bray et al. (editors). XML 1.0 Recommendation. Fourth Edition, W3C, August 2006. http:
//www.w3.org/TR/1998/REC-xml-20060816.

[11] Justin Zobel and Alistair Moffat. Inverted Files for Text Search Engines.ACM Computing Surveys, 38,
July 2006.

8

