Big, Fast XQuery: Enabling Content Applications

Mary Holstege
Mark Logic Corporation

Abstract

Increasingly, companies recognize that most of their important information does not exist in relational
stores but in documents. For a long time, textual information has been relatively inaccessible and unus-
able. Database applications allow relational data to be used and re-used; the architecture of relational
database systems allow such applications to function even in the face of large amounts of data. XML
[10] and XQuery [ 8] now allow the creation of a new kind of application that unlocks content ina similar
way: a content application. In this paper, we examine the technologies that enable content applications
to operate at scale in the context of MarkLogic Server [2].

1 Content Applications

Database applications built on top of relational databaseagement systems use SQL to select specific pieces
of data, join them against other data, and reassemble themméw views. It is this flexible, granular reuse
of data makes relational databases powerful tools. ReHtidatabases, however, are less useful for dealing
with content which is arranged not in regular typed fieldsibuidomplex hierarchical documents consisting of
running text.

Documents are often described as “unstructured” or “sérmactired” but the problem with documents,
from a relational point of view, is not that there is too éttstructure, but that there is taouch. Consider
a medical document that describes the course of treatmemt fatient, with procedures, observations, and
actions indicated. Part of such a document, using XML marlaughown in Figure 1.

The document has sections, which have titles and conteetcdifitent has running text which is interspersed
with markup for things such as instruments, actions, andmbtions. Some of these are nested in other markup.
The relation of an instrument, say, to the section’s coritenbt simple: the order relative to other entities and
other chunks of text is crucial and defines the narrative.l§\threlational model for this information is certainly
possible, it is difficult and loses the narrative coherencthe original. It is easy to represent this narrative
structure using XML markup, however. The more semanticatif and detailed the markup becomes, the
harder it gets to map into a relational model, and, crugiétlg harder it becomes to further enrich the mapped
structure.

A content application is to textual content as a databasécatipn is to relational data. It uses a query
language to select specific pieces of documents, join theximstgother document pieces, and reassemble them
into new documents. A content application goes beyond sirigpdt search (“get me the document that contains
the phrase 'important symptom™) into fine-grained selectand assembly based both on full-text operators and

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any
copyrighted component of thiswork in other works must be obtained from the |EEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering




<section>
<section.title>Procedure</section.title>

<section. content >

The patient was taken to the operating room where she was pl aced
in supine position and
<anest hesi a>i nduced under general anesthesi a. </ anest hesi a>
<pr ep>
<action>A Fol ey catheter was placed to deconpress the
bl adder </ acti on> and t he abdonen was then prepped and draped
in sterile fashion.
</ prep>

The fascia was identified and
<action>#2 0 Maxon stay sutures were placed on each side of
the mdline
</ action>
<i nci si on>
The fascia was divided using
<i nst rument >el ectrocaut ery</i nstrunent >
and the peritoneum was entered
</inci si on>
<observation>The snal|l bowel was identified.</observation>

Figure 1. Simple Medical Document

operators over the hierarchical narrative of the documargquery such as “show me all procedures involving
important symptoms where no anesthesia occurs before shimfiision” entails full-text (“important symptoms,
“procedure”), ordering (phrase “important and “symptonistcurs before”), and hierarchy (section’s content’s
incisions). A relational model suited to answering such astjon would be ill-suited to reconstructing the
original narrative (the entire procedure): the reconsioncwvould be an immensely complex join.

With increasing amounts of content being created nativeNL or being readily convertible to XML the
time is ripe for complex scalable content applicationstlmnl XML. What that calls for is a language designed
for effective XML processing and a system architecturerojaed for content.

11

Characteristics of Content Applications

Content applications vary widely, but some general tretaasbe identified:

Individual documents may to be relatively large. Documasttarge as 10 megabytes are common; those
running to gigabytes are not unknown.

The number of documents may also be large, and can run ingoafemillions of documents or more.
However, the number of documents is usually much smaller this.

Content bases are frequently created from large amounigstiing content which needs to be loaded and
indexed in bulk.

In general, update is less frequent than selection, but fdy YO style content applications, being able to
add annotations and metadata to the content base is alsotampoFrequently the content-loading and
content-cleaning (update-intensive) and content-adegstate-light) phases in the life-cycle of a content
application are distinct, so optimization does not needtu$ on maintaining fast query during periods
of heavy update. This differs from on-line transactionabtdase applications.

It is important to be able to select small pieces of documkeased on full-text, ordering, and hierarchical
criteria. Full-text searching brings in linguistic knowltge for stemming, tokenization, and thesauri, as

2



well as relevance calculations to determine which matchedetter than others. Multi-lingual content
bases, documents, or even paragraphs are not uncommon.

e Document schemas may be complex, fluid, or unknown. As coafgglications evolve, new markup may
be incrementally added to enrich the content and enable &g kf queries.

e Content frequently arrives that does not adhere to the akfioeument structure, in need of clean-up.
Clean-up transformations may be very complex, involvirgydmichical restructuring.

e Content applications do evolve: to gain business advastager competitors, to provide more accurate
selections or better context for information, to integraésv content sources, and so on. Evolution of
a content application often leads to an evolution of the eanand vice versa: this in turn implies that
flexible schemas and some ability to update content in pleeargortant.

e Content applications are amenable to end-to-end XML psiegs content can readily be encoded and
stored in XML, XML (especially XHTML) can be directly rendsat in a browser, and given an XML-
oriented processing language, selected pieces of XML capb&eated on to provide appropriate business
logic.

Given these general characteristics of content applicgtiSection 2 reviews some aspects of XQuery that
suit it to building content applications, and and Sectiondkk at how the architecture of the MarkLogic Server
supports building scalable content applications.

2 Query Language

To enable content applications, the query language needsderstand large, hierarchically structured docu-
ments containing human text. It needs to permit highly die@mselection based on both the hierarchy and the
ordering of children (both of which are highly salient feasiof content). The XQuery family of specifications
allows documents marked up with XML to do just this.

o XML-aware

XQuery[8] was defined specifically as a query language for Xddhtent. Simple path expressions can
be used to select based on XML structure (both hierarchioalsgquential) and XML result structures
can be easily generated, often using an XML syntax.

o Full-text

The query language for content applications needs to betahperform full-text operations, not just
string matching, to take into account language-sensitperations such as stemming and tokenization.
The proposed Full-Text extensions to XQuery[9] will prazisuch functionality.

e Update

Although content applications typically focus on selegtinore than updating, the ability to update con-
tent or to add annotations or metadata is important to mangeab applications. Update operations also
provide for performing content cleanup and augmentatioplace. The proposed Update extensions to
XQuery[7] will define update operations.

e Extension Functions

Depending on the application, specialized capabilitiey b®required, such as security-related opera-
tions, or trigonometric functions. Fortunately, XQuerpyides an extension mechanism through func-
tion libraries. XQuery itself defines a large selection oftbn functions and operators[6] for basic data
manipulation.



e Optimization-friendly

XQuery is a functional language without side-effects inathinost functions are deterministic and stable
within a single query, allowing optimizers to freely reoragxpressions and avoid recomputing expres-
sions.! The proposed update facility uses snapshot semantics wreskrves this aspect of the language:
the exact order in which updating operations are performakles no difference to the result of the ex-

pression, so an optimizer is free to reorder expressions.

The XQuery language design also enables lazy evaluatianpéth expression results in a million node
sequence, only those nodes in the sequence that make aahdifference to the final result need be
fetched. Since full-text searches on large content basedrequently produce such large results, the
ability to notice that only the first ten results are beingdened and returned as a result of the overall
query can lead to tremendous savings in effort.

e As Typed As You Want To Be

Another interesting feature of XQuery that is particulanlgeful for content applications is that, while
operationgmay be strongly typed, thegeed not be. An XQuery program can require a variable, function
parameter, or return value to be of a specific named type shdélared in an XML Schema, or it can
allow it to be anything at all. More flexibility is possible: “gype” constraint could be the requirement
that the item be some kind of XML node, or a specific kind of XMhde — an element for example —
or an element with a particular name, whether defined in an >@dhema or not.

Content frequently does not arrive perfectly conformarédme schema, and it may evolve over time. It
is a great benefit to content applications to be able to ussaime tools tools to perform the initial clean-
up and evolution of content as are used to process normaliment. XQuery programs with different
degrees of typing can be applied at different stages of thegss. Alternatively, loosely typed XQuery
programs can be used to process content without having toatiae it at all.

3 System Architecture

Query language functionality is only part of the puzzle foalkling content applications. Efficient execution of
the query language at scale is important for real-world eéardpplications. The architecture of the MarkLogic
Server[2] enables such efficient execution at scale, byropitig for the characteristics of content applications
and taking advantage of the opportunities afforded by thaufes of XQuery. As [4] and [5] point out, special-
purpose databases tuned for particular kinds of problemseesily out-perform general purpose relational
databases in their problem domain by factors of 10 or more.

The MarkLogic Server architecture divides processing imio fundamental parts: evaluation and data
access. Typically, scaling is accomplished by distrilgutine evaluation to one set of hosts called E-nodes
(“evaluation nodes”) and data access to another set of lsaliesd D-nodes (“data nodes”). The E-node and
D-node functionality can be also be combined into a singkt.hboad balancers and caching proxies can be
used to reduce and distribute the load across E-nodes.

3.1 D-nodes

D-nodes store the XML documents along with indexes to enetfigient access to those documents. D-nodes
respond to requests from E-nodes to locate, fetch, or ughteiements under their control.

There are some exceptions, such as the fn:trace() anddr()iunctions, as well as vendor extension functions tdquer HTTP
requests, compute random numbers, or report executios timnel the like. Optimizers are nevertheless left with dyféiee hand.



XQuery Evaluation XQuery Evaluation XQuery Evaluation

Filtering Filtering Filtering

Index Resolution Index Resolution

Figure 2: System Architecture

e Fragments

Documents are broken into non-overlapping units of accaliedcfragments. Fragments are the basic
unit of operation in the system. Updates and selection ftoendiatabases occurs at the fragment level.
Fragmentation choices involve making trade-offs betwéenexpected number of fragments that may
need to be fetched and processed to return the correctseddt query, and the size of fragments that
must be filtered to produce the correct results or writterigk th process an update. These tradeoffs can
be complex and how to balance them is beyond the scope ofdhirp

e Forests

A database may be broken into multiple forests, where eaeltfts under the control of a specific D-node.
Distribution of data across multiple forests allows forgjes concurrency and scaling.

e Inverted Indexes

The forests managed by each D-node include universal isdbaé map facts about documents to posting
lists. Many kinds of posting lists exist: posting lists facoh word, but also posting lists for structural
facts, such as the presence of particular elements. Thedadme compressed inverted indexes[11].
Index settings control which specific kinds of posting ligte available in the indexes, and whether the
lists record position details or just fragment identifiers.

XQuery path expressions and full-text queries can be redohgainst the indexes by intersections and
unions of posting lists for the component facts. Such a tesal not be accurate, however. For example,
if only a simple word index without positions were availghllee phrase query “simple example” could
not be accurately resolved in the index. The best the indeklaio is return fragments that have postings
for both “simple” and “example”. A secondary phase, calleg filter, is responsible for weeding out the
false matches. Index resolution can provide accurate asswenany cases: there is a tradeoff between



index resolution accuracy and index size. Again, detailsa¥ to balance such trade-offs is beyond the
scope of this paper.

e Managing Updates

The fragments themselves are stored in memory-mapped essgut representations of the document
trees. This tree data and the indexes are stored in “standstdordance with the principals of a log-
structured file system[3]: new content is initially held iremory and then written out in a sequential
fashion when a sufficient amount has accumulated. Jourgadliows for recovery in the event of a crash.
Once written, the tree data and indexes are never updatedymiénts are updated by writing new ver-
sions of those fragments to new stands and noting that tge&at in the old stand has been deleted. The
server uses multi-version concurrency control[1] to iaseethe throughput for read operations. Each frag-
ment has a timestamp associated with it. Read operatioaindbe most recent version of the fragment
with a timestamp preceding the current transaction’s tiemep, and therefore always obtain a consistent
snapshot of the content base. A periodic merge processsraatv stands with any deleted fragments
eliminated and the indexes merged to optimize access. Togsaboth updates and selection to be fast
under the normal expected conditions of relatively fewwactitands and a relatively modest update load
once the bulk of the content has been added. Initial loadimgatso be fast because sequential writes of
data in bulk is faster than piecemeal random writes.

3.2 E-nodes

E-nodes are responsible for communicating with clients fandXQuery evaluation: parsing, static analysis,
dynamic evaluation, and assembly and serialization ofltesie-nodes include HTTP listeners that service
requests to execute XQuery modules and return the results.

e Query Processor

The query processor performs static analysis and rewrtien@ation of the query. Any operations that
access data are converted into index requests and sent Bpribdes, with the results being filtered as
necessary. The query processor relies on lazy evaluatioodsf sequences to avoid fetching or processing
content unless it is required by the ultimate result of thergu

o Filter

The filter iterates through the postings returned by the Besaand applies the specific match criteria to
the selected fragments and returns the requested nodes.

e Application Server

An E-node also operates as an application server. It ac¢€pts® requests on configured ports. In
addition to performing conventional serving of documengsgjuests for XQuery modules are serviced by
executing the indicated module and returning the resulisecDexecution of XQuery modules enables a
rapid development methodology for web applications: XHTEHNn be generated directly from XQuery
for consumption in a browser.

3.3 Summary: Basic Query Flow

Consider a simple query for a phrase within an element awpartarger query that only makes use of the first
ten hits.



XQuery Evaluation

Statemen/t\Evaluation

4 \

Filtering

Node Sequence

Index Resolution

"to" 1,2,34,56,78,... U
"he" 1,2,3,458,11,12,..

SCENE 1,2,3,456,78,...
"or" 1,2,4,5,6,8,10,...

Content
Fragments

Figure 3: Query Evaluation

1. Aclient sends an HTTP request to an E-node. The applicatover accepts the request, locates, parses,
and analyzes the appropriate XQuery module. For example:

i mport nodul e nanmespace ny="http://markl ogi c. com exanpl e"
at "/ MarkLogi c/ exanmpl e. xqy";
for $result in cts:search( //SCENE, "to be or not to be" )|
fn:position() = (1 to 10)
] return my:render-result($result)

2. The XQuery evaluator constructs an index query to be veddby the indexes, based on the knowledge
of available indexes. In this case, the query parser pradacéndex request such as:

AND( SCENE, "t 0", "be","or","not")

3. The indexes combine posting lists to form a sequence gififeat references. Depending on the indexing
options, index resolution may return “false positivesggments identified by the index that do not match
original criteria. Each D-node operates in parallel. Indesolution in this case examines the posting
lists for the five terms, combines them into a single postisigtihat has references for all fragments that
contain all five terms (fragments 1,2,4,8, etc. in the diagra

4. The filter turns the sequence of fragment references is¢gjaence of nodes matching the original criteria.
The first fetches each candidate fragment in turn and setedkss in the fragment that actually meet the
criteria (all the words in the phrase appearing in the apjmit order within aSCENE element). A
fragment containing, for example, the phrase “not to be sed®ard” would be returned from the index
resolution, but would not meet the original criteria and Wddoe skipped by the filter.

5. XQuery is evaluated to render the result nodes. Lazy atialuof the node sequence causes fragments to
be fetched and filtered only as needed. In this case the filtgifetches as many candidate fragments are
required to return te®CENE element nodes to pass to thg: r ender - r esul t function. If theACT
element were the root of the fragment, the entire act woulgtehed for filtering, but only the matching

2The XQuery Full-Text extension defines the operdtbcont ai ns which can be used to test whether a particular node matches
some full-text criteria. A common case is to return the segaef matching nodes, generally ordered by decreasing.sthis is what
thect s: sear ch extension function does.



SCENE elements would be returned. If tAET has ten matchin§CENE elements, only that one fragment
would be fetched.

6. The application server constructs an appropriate HT$pamse and returns it to the client.

Caches at various level short-circuit some of these oersti

4 Conclusions

The divide between “content” and “data” is not a hard and de. However, content applications do tend to
have different characteristics than relational databapéiGations. Representing content with XML, operating
on it with XQuery, and executing on an architecture optimifar such operations can open up the possibility
manipulating large content bases at a fine-grained leveldate new and interesting applications. It provides
for a middle path between simply identifying documents thatt certain full-text criteria on the one hand, and
losing the overall complex hierarchical and narrative flowWl@ecuments on the other.

References

[1]

[2]
[3]

[4]

[5]

Philip A. Bernstein and Nathan Goodman. Concurrencytt@bin Distributed Database Systema&CM
Computing Surveys, 13(2):185-221, 1981.

MarkLogic Server 4.0, 2008t t p: / / mar kl ogi ¢. con? product / mar kl ogi c- server. htm .

Mendel Rosenblum and John K. Ousterhout. The Design ameimentation of a Log-Structured File
System.ACM Transactions on Computer Systems, 10:1-15, 1992.

Michael Stonebraker and Ugur Cetintemel. 'One Sizes Rill': An Idea Whose Time Has Come and
Gone. Ininternational Conference on Data Engineering (IDCE), 2005.

Michael Stonebrakeet al. One Size Fits AllI? — Part 2: Benchmarking Results. Qonference on
Innovative Data Systems (CIDR), 2007.

[6] Ashok Malhotra et al. (editors). XQuery 1.0 and XPath 2.0 Functions and Opera-

[7]

tors. W3C Recommendation, W3C, January 2007.http://ww. w3.org/ TR/ 2007/
REC- xpat h- f uncti ons- 20070123/ .

Don Chamberliret al. (editors). XQuery Update Facility 1.0. Candidate Recomaadginn, W3C, March
2008.ht t p: / / www. w3. or g/ TR/ 2008/ CR- xquer y- updat e- 10- 20080314/ .

[8] Jerdme Siméoset al. (editors). XQuery 1.0: An XML Query Language. W3C Recomnagiuh, W3C,

[9]

[10]

[11]

January 2007ht t p: / / www. W3. or g/ TR/ 2007/ REC- xquer y- 20070123/ .

Sihem Amer-Yahieet al. (editors). XQuery and XPath Full Text 1.0. Candidate Recemaation, W3C,
May 2008.ht t p: / / www. w3. or g/ TR/ 2008/ CR- xpat h-ful | - t ext - 10- 20080516/ .

Tim Bray et al. (editors). XML 1.0 Recommendation. Fourth Edition, W3C,gligt 2006. ht t p:
/[ www. W3. or g/ TR/ 1998/ REC- xm - 20060816.

Justin Zobel and Alistair Moffat. Inverted Files for XieSearch EnginesACM Computing Surveys, 38,
July 2006.



