Data Aggregation, Heter ogeneous Data Sources and Streaming
Processing: How Can XQuery Help?

Marc Van Cappellen, Wouter Cordewiner, Carlo Innocenti
XML Products, DataDirect Technologies

Abstract

Software infrastructures and applications more and more must deal with data available in a variety of
different storage engines, accessible through a multitude of protocols and interfaces; and it is common
that the size of the data involved requires streaming-based processing.

This article shows how XQuery can leverage the XML Data Model to abstract the data physical
details and to offer optimized processing allowing the development of highly scalable and performant
data integration solutions.

1 Introduction

Data access has always been a hot topic. The variety ofantsfavailable for querying, creating and updating
data is impressive and constantly growing. JDBC, ODBC, ADET are the typical basic interfaces you will
deal with when working with relational data sources; but'tigmore also Object Relational Mapping systems,
like Hibernate [4] for example. If you need to deal with XMLgy will most likely hear about DOM, SAX and
StAX interfaces; or maybe object to XML mapping, like JAXB,[8r example. Things get even more difficult
when dealing with different data formats, like Electroniat® Interchange messages (EDI) or even flat files.
The choice about which data access solution to use in whiehasm becomes more complicated when your
application needs to deal with multiple, physically vargata sources, which is a typical problem especially
when dealing with SOA [1].

SOA (Service Oriented Architecture) [8] has been arouna faumber of years earning acceptance as a solid
approach for systems management - one that allows for trelbeuse of existing software assets, provides a
sound architectural model for the federation of dispardtsylstems, and supports the automation of abstract
business processes via a range of programming paradigms.

But how does data management fit in? Guidelines for serviested data access and management tech-
nigues are sparse. Those that are available have typiasly formulated by SOA experts, not data management
experts. As a result, different understandings of the saiwldgms turn into a constant source of confusion and
headaches.

Most SOA data management solutions currently in use relyahtional, well defined interfaces including
ODBC, JDBC, OCI, ADO.NET, OLE DB, and others. All of thesedrfices share similar concepts, but most of
them falil to capture the differences between tradition#h dacess architecture characteristics (tightly coupled,

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any
copyrighted component of thiswork in other works must be obtained from the | EEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering




/I:;_ataDirect XQuery

Web service framework
WSDLI/SOAP, REST

XQuery APl for Java (XQJ)

XQuery Engine

Mediator

SQL Adaptor | XML Adaptor

\-_ A A A A A _-/

Figure 1: Overview of the DataDirect XQuery engine archiiee

complex state machine, connection based, and relationaéhaoiven) and characteristics associated with SOA
(loosely coupled, stateless, message-centric, and tiypXsIL-based data interchange).

XQuery [10], the XQuery for Java API [6], and Web services j@dpvide a great way to bridge the data
disparity with service-orientation. XQuery still exposas interface against which users submit queries and
from which they process results, but at the same time it idyeasibedded in an application or exposed via a
Web service, and it further provides abstraction betweerttimsumer of the data and the physical details about
how the data is stored. XQuery is designed to give languagé&mentations the possibility to execute queries
against heterogeneous data sources, interpreting (buecessarily materializing) all of them as XML.

XQuery is based on an XML data model, providing smooth irgggn in todays Web service-centric infras-
tructures. When you consider the service-orientationgiegaradigm, it becomes evident that XQuery features
are very much in alignment with the goals of service-oridrdemputing.

Making XQuery work efficiently against heterogeneous dataees presents peculiar challenges. DataDi-
rect XQuery is an XQuery implementation that was first redeaim year 2005. DataDirect XQuery’s design
emphasizes performance and scalability across heterogerdata sources, with a strong focus on relational
data and large XML documents. This paper reviews some ofeitleniques DataDirect XQuery uses to opti-
mize access to relational and XML data sources.

2 Background

Figure 1 describes the high level architecture of the DatdDiXQuery engine. The engine is accessed through
either a Web service framework [2], which allows easy deplegt with most application servers, or through
a standard API, the XQuery API for Java (XQJ) [6]; that's theeiface that can be used to access DataDirect
XQuery directly from a client application. The XQuery engiitself is split in three logical components:

e Mediator
The Mediator is the component that takes care of decompasingQuery based on which data sources
are being accessed, and of merging the result back from timugadata sources.

e SQL adaptor
The SQL adaptor is responsible for handling the parts of therygthat are dealing with relational
databases and for pushing the burden of the query to theadatatself.

e XML adaptor
The XML adaptor is responsible for handling the parts of therg that are dealing with XML data

2



sources, implementing a variety of optimization techngtieat allow the process to be highly scalable
and performant.

Each of these logical components covers a critical role ikingathe DataDirect XQuery engine able to
deal with heterogeneous data sources. There are seveesbbeptimization tasks that are accomplished by the
Mediator and that you can probably find described in the ctmevarious XQuery implementations; but some
of the most sophisticated optimizations occur at the dasacecadaptor level. The following sections focus on
the specific techniques implemented by the SQL and XML adapto

3 XQuery and relational data sources

XQuery and SQL support different operations on very diffiéigata models; XQuery works against the XQuery
Data Model (XDM) [11], while SQL works against a Relationahta Model; XQuery is designed to make
navigation of XML hierarchical structures easy, while S@tudses more on the task of joining multiple related
tables and creating projections on the result. And thastsgaratching the surface in terms of differences.

Some XQuery implementations just materialize entire i@t tables as XML; others issue the same SQL
regardless of the database involved; others yet rely oretet common denominator functionality of the least
capable JDBC drivers, which limits performance significgrand many perform most XQuery functions in the
XQuery engine instead of evaluating them in the database.

DataDirect XQuery has been designed to optimize performamd scalability when dealing with all its
supported data sources, especially relational databamktame XML documents. Before taking a look at
specific XQuery examples and how DataDirect XQuery exedhis, let’s take a look at the main high level
techniques implemented by the SQL adaptor:

e Minimal data retrieval
Moving data is expensive. In DataDirect XQuery, the germetr&QL is as selective as possible, retrieving
only the data needed to create the results of a query. It imimagual that in some cases DataDirect
XQuery fetches only part of a single row where other XQuerglementations return an entire table

e Leverage the database
DataDirect XQuery pushes down into the database operatiahgan be performed in SQL; that way the
relational query optimizer can leverage indexes and otinectsires. The performance gains this brings
are particularly important for joins, Where and Order Byusles, and SQL functions. This also reduces
data retrieval, since data need not be retrieved for opermto be done in the database.

e Optimize for each database
Today'’s relational databases support significantly deifédialects of SQL, and even when two databases
support the same operation, their performance may be qitfiteesht. Most databases have enough func-
tionality to support XQuery efficiently, but the construotseded to do this are different for each database.
Some XQuery implementations support only one databaserstienerate the same SQL regardless of
the database involved, which results in poor performanteoitrast, DataDirect XQuery uses a different
SQL adaptor for each database, generating SQL specifigatiimized for that database.

e Support incremental evaluation
In many applications, results are returned to the user as aedhey are available, displaying the first
results well before the entire query has been performed.yMaL applications are based on streaming
architectures. DataDirect XQuery uses lazy evaluatiorhab gtreaming APIs can retrieve data as soon
as it is available. As data is needed, the engine retrievesrémentally from JDBC result sets. Because
there is no need to have the entire result in memory at one vtiemg large documents can be created.



e Optimize for XML hierarchies
Because XML construction is hierarchical, DataDirect X@ugses SQL algorithms that optimize retriev-
ing data for building hierarchies. For instance, the XQueamgine makes extensive use of merge-joins
when building hierarchical documents.

e Give the programmer the last word
Every SQL programmer knows that occasionally hints are e@&ulget optimal performance for a specific
query. This is also true in XQuery, so DataDirect XQuerywaigprogrammers to influence the SQL it
generates. This can significantly improve performance tinescases.

The following sections illustrate examples of how XQueildesined against relational databases are trans-
lated into SQL by the DataDirect XQuery’s SQL Adaptor. Moktte generated SQL shown in this paper is for
Oracle 11g - SQL generated for other databases may looKisaymiy different.

The following examples all assume a simple database steugiade of two table$JOLDINGSandUSERS
which contain information about how many and what kind otktholdings users of the system own.

3.1 Queryingdata

To minimize data retrieval, DataDirect XQuery generates welective SQL, returning only the data that is
needed for a given XQuery. To avoid retrieving rows that areneeded, the conditions in Where clauses and
predicates are converted to Where clauses in the gener@iedl8 avoid retrieving columns that are not needed,
the generated SQL specifies the columns actually neededliced® the XQuery.

3.1.1 Whereclause pushdown

Consider the following XQuery, which retrieves abldings for less than 10,000 shares; the XQuery can be
easily written in two different ways, one using the Wherauskg the other using straight XPath predicates.

for $h in collection(’HOLDI NGS' )/ HOLDI NGS col I ection(’ HOLDI NGS' ) / HOLDI NGS[ SHARES < 10000]
wher e $h/ SHARES < 10000
return $h

For both XQueries, the SQL query generated by DataDirectet@fetches and returns only the rows that
are actually to compose the XQuery result:

SELECT ALL nrm#. "USERI D' AS RACOL1, nrmd."SHARES' AS RACOL2, nrmé. " STOCKTI CKER' AS RACOL3
FROM " MYDB" . " HOLDI NGS" nr m4
WHERE nrm#. " SHARES" < 10000

3.1.2 Projection pushdown

The following XQuery retrieves first and last name for eachrudder than 40. The XQuery is similar to the
example shown in the previous section, but this time instédadturning the whole row meeting the selection
criteria, the query only needs to retrieve two fields:

for $user in collection(’ USERS )/ USERS
where $user/AGE > 40
return <user>{$user/FlI RSTNAMVE, $user/LASTNAME}</ user >

In this case the DataDirect XQuery engine needs to push t&Qie engine the Where clause, and the
selection of two specific columns:
SELECT ALL nrnb. " FI RSTNAME" AS RACOL1, nrnb."LASTNAME' AS RACOL2

FROM " MYDB". " USERS" nr nb
VWHERE nrnb. "AGE" > 40



3.1.3 Join pushdown

Relational databases are designed to optimize joins, salliract XQuery leverages the database when an
XQuery join involves SQL data. Performing all the joins ire ttlatabase typically results in a dramatic perfor-
mance gain.

Consider the following XQuery, which retrieve all users atack holdings for each user:

for $u in collection(’ USERS' )/ USERS,
$h in collection(’ HOLDI NGS' )/ HOLDI NGS
where $u/ USERI D = $h/ USERI D
return <hol di ng name=" {$u/ LASTNAME}" >{$h/ SHARES/ t ext () }</ hol di ng>

The SQL generated by DataDirect XQuery pushes the resblofithe join operation to the database:

SELECT ALL nrnb."LASTNAME" AS RACOL1, nrnB."SHARES" AS RACOL2
FROM "MYDB". " USERS" nrnb, "MYDB"."HOLDI NGS" nrnd
VWHERE nrnb. "USERI D' = nrnB. " USERI D'

There are of course multiple ways to express the same joiditbam in XQuery; for example, in this case
the same condition could have been expressed using an Xreakicgte, like in:

for $u in collection(’USERS )/USERS, $h in collection(’ HOLDI NGS')/HOLDI NGS[ USERI D = $u/USERI D] return ...
DataDirect XQuery is able to capture the multiple ways toregp the same queries and it will push down
the same SQL.

4 XQuery and XML data sources

While optimizing XQuery when working against relationatalgources is mostly a matter of issuing thest
SQL to the server and to lazily fetch results, when queryiidi>tata sources the XQuery engine needs to deal
with the physical task of analyzing and filtering the data. Xtata sources include:

XML documents

Web service call results (typically SOAP responses)

Office Open XML (OOXML) or OpenDocument format (ODF) docurten

Comma Separated Value (CSV) files, Tab Delimited files orrdthefile formats

Electronic Data Interchange (EDI) messages streamed to XML

Software architects often tend to underestimate the aiggke offered by querying XML documents; that’s
why often that operation becomes the bottleneck of completems. What may start as an application designed
to deal with a few relatively small XML documents can easibed to scale up to handle hundreds of XML
documents per second, or XML documents that grow to be deBayabytes in size.

DataDirect XQuery has been optimized to handle data souncashighly scalable and performant way.
The engine’s XML adaptor implements several techniquestoraplish that task, like general execution tree
optimizations (including function inlining, detectingdp invariants, etc.), in-memory indexing and more; but
two major techniques stand out: document projection amgsting processing.



4.1 XML document projection

XML document projection is a clever idea introduced oridliney Amelie Marian and Jerome Simeon [7]. The
basic idea behind document projection is: given an XML doennthat represents several details for eéain,
if my XQuery only needs to retrieve/query a couple of attisufor eachtem, why should the XQuery engine
materialize in memory the wholéem elements?

Consider this simple XML document, describing a few objestsilable for auction:

items. xnl:
<| TEMS>
<| TEM>
<| TEMNO>1002</ | TEMNO>
<DESCRI PTI ON>Mot or cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>500</ RESERVE_PRI CE>
</ | TEM>
<| TEM>
<| TEMNO>1003</ | TEMNO>
<DESCRI PTI ON>Bi cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>200</ RESERVE_PRI CE>
</ | TEM>
</ | TEMS>

And now consider this XQuery that retrieves the auction eatd tbr a specifitTEM in the XML document
above:

for $i in doc('items.xm ')/ TEMS/ | TEM
where $i/| TEMNO eq ’ 1002’
return $i/END_DATE

The XQuery only needs two pieces of information for eEEM in the source XML document:TEMNO
to resolve the search criteria affND_DATE to return the required result. The only parts of the input XML
document that are instantiated in memory are the ones gigbli in the following XML fragment:

<| TEMS>
<| TEM>
<| TEMNO>1002</ | TEMNO>
<DESCRI PTI ON>Mbt or cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>500</ RESERVE_PRI CE>
</ | TEM>
<I TEM>
<I TEMNO>1003</ | TEMNO>
<DESCRI PTI ON>Bi cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>200</ RESERVE_PRI CE>
</ | TEM>
</ | TEMS>

DataDirect XQuery statically analyzes an XQuery and gaasraprojection tree; in the example above, the
projection tree can be expressed as:

+-step axis="self" test="docunent-node()"
+-step axis="child" test="|TEMS"
+-step axis="child" test="|TEM
+-step axis="child" test="1TEMNO'
+-step axi s="descendant" test="node()"
+-step axis="child" test="END DATE"
+-step axi s="descendant" test="node()"

The projection tree is used in DataDirect XQuery as part efdbntent handler which processes the XML
parser events, ensuring that only the necessary XML partgdad in the projection tree are actually material-
ized in memory.



The process is typically not as simple as the one describ#fteiexample above; just think, for example,
about the necessary steps needed to handle expressioW$ T (path reduction) or./ITEM (parent axis).
But the benefits in terms of performance and scalability wikealing with large XML documents are often
impressive, even whetiocument streaming (described below) is not available.

4.2 XML document streaming

Processing XQuery in streaming fashion is the ultimatetgwiun terms of querying XML documents in a
scalable way. In the ideal case, when running an XQuery agaire (or more) XML document(s) in streaming
mode the amount of memory required by the XQuery engine dogssw proportionally to the size of the
input(s). That allows XQuery to run against XML documentscimlarger than the physical memory available
on a workstation, even when XML document projection canfphe

Consider an XML document similar to the one discussed alrotleei context of XML document projection,
where this time the number of listd@EM elements is in the order of millions. When DataDirect XQuery
analyzes the following XQuery, it creates the projecti@etand it knows it can avoid materializing in memory
several sub-elements for each analy¥EaM element:

<MYl TEMS> {
for $i in doc('items.xm')/ITEMS/ | TEM
where $i / OFFERED_BY eq ' U02'
return
<I TEM>{$i /| TEMNO, $i/DESCRI PTI ON, $i/RESERVE PRI CE}</ | TEM>
} </ MYl TEMS>

But still, there is a large amount of information that wouleed to be stored in memory to execute the
XQuery in a traditional manner (with no streaming procegsirand the amount of required memory would
indeed be proportional to the size of the input XML documdritanks to the XML document streaming tech-
nique, DataDirect XQuery is able to process the XQuery dlesdrabove in streaming fashion, which means
that only ond TEM per time is actually materialized in memory and discardeémwno more needed.

It's worth noting that XML document projection and streamiare two complementary implementation
techniques, which implies that when an XQuery is processeatreaming fashion, XML document projection
still takes place, limiting the amount of data temporarilgterialized by the streaming engine.

When document streaming is used in conjunction with oneetreaming interfaces to consume the result,
like StAX [5] for example, which is supported by the XQuery A8 Java standard, the whole XQuery process-
ing works in a purely streaming fashion, with the XQuery aegionsuming parts of the input XML document
on demand based on the way the client application is congutheaXQuery result.

Thanks to these XQuery processing techniques, applicatoa able to process XML documents in the
range of several dozens of Gigabytes without incurring aladulity issues.

5 Mixing data sourcestogether

In the previous sections we have discussed several te@mimplemented by DataDirect XQuery to optimize
processing of XQuery when working against relational or Xtifita sources. But itis common that applications
need to deal with data which is not available in a single fdrmuad that's the context where dealing with a single
guery language, data model and interface which coversdygreous data sources becomes fundamental.
Think about a scenario, for example, where a list of auctidi&Ms is available in an XML document, as
described in 4.1, but details about the person who'’s offettie| TEM are available in & SERStable hosted on
a relational database, including information about the idsename, address and email. Now think about the
need of creating an application that given a user's ematlesddretrieves all the items that are being auctioned
by that user.



Thanks to XQuery, that task can be solved by a single, simypdeyg Note how the XQuery author doesn’t
need to worry about different data models or different ifatezs to the underlying physical data sources:

<I TEMS> {
let $user := collection("USERS")/USERS[USERI D = "U02"]
for $i in doc('items.xnl’')/ITEMS/ | TEM
where $i/ OFFERED BY eq $user/USERI D
return
<I TEM>{$user/ NAME, $i/| TEMNO, $i/DESCRI PTION, $i/RESERVE_PRI CE}</| TEM>
} </ 1 TEMS>

Thanks to the optimization techniques discussed abovet dimwu DataDirect XQuery handles relational
and XML data sources, the query above will take full advaataigthe performance capabilities of the database
engine hosting th&JSERS table, and of the document projection and streaming prougeds dealing with the
items.xml XML document.

The application consuming the result is shielded from thesiglal origin of the data returned by the XQuery;
even if the result mixes information stored in a relationatiatbase and in an XML document, the client appli-
cation doesn’'t need to know about that, and it is able to acitesreturned data through the standard interfaces
exposed by the XQuery API for Java.

6 Conclusions

In this paper we have discussed how XQuery can be useful widing data services which accomplish data
integration tasks across heterogeneous data sourcesddntorsucceed in that task, XQuery implementations
must be optimized to deal with the peculiarities of the vasicupported data sources. DataDirect XQuery
implements a variety of techniques when dealing with refati databases and XML documents; those include
the ability to push SQL to the relational engine, to minimike amount of data retrieved from the database,
to leverage XML document projection and XML document streeymo handle large XML documents in an
efficient and scalable way. Thanks to these techniques XQs&n excellent technology for simplifying and
streamlining data access in the context of traditional DA Spplications.

References

[1] Jason Bloomberg and John Goodson. Best Practices for. BGiling a Data Services LayeBOA World
Magazine, May, 2008.

[2] DataDirect Technologies. DataDirect XQuery Web Sesicamework.
http: //mamww.xquer y.com/exampl es/web-ser vi ce-exampl e/xquer ywebservice/.

[3] S. Vajjhala and J. Fialli. The Java architecture for XMibhdiing (JAXB) 2.0.
http://jcp.org/en/jsr/detail 7id=222.
[4] Red Hat Middleware, LLC. Java Persistance with Hibegnhttp://www.hibernate.org/397.html.
[5] Java Community Process. JSR 173: Streaming API for XMIAKS. http://jcp.org/en/jsr/detail ?id=173.
[6] Java Community Process. JSR 225: XQuery API for Java §XQith://jcp.org/en/jsr/detail 7id=225.
[7] A. Marian and J. Simeon. Projecting XML Documeri@sll Laboratories, France, 2003.
[8] M. Huhns and M. Singh. Service-oriented computing: Keypeepts and principledEEE Internet Com-
puting, 1(9):75-81, 2005.
[9] WWW Consortium. Web Servicesttp: //mww.w3.org/2002/ws/.
[10] WWW Consortium. XQuery 1.0: An XML Query Languag@/3C Recommendation, 23 Jan 2007.
[11] WWW Consortium. XQuery 1.0 and XPath 2.0 Data Model (XDM3C Recommendation, 23 Jan 2007.



