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Letter from the Editor-in-Chief

International Conference on Data Engineering

ICDE (the International Conference on Data Engineeringhésflagship database conference of the IEEE. The
2009 ICDE will be held in Shanghai, China at the end of Marclwould encourage readers to check the "Call
for Participation” on the back inside cover of this issuetaf Bulletin for more details. ICDE has become not
only one of the best database conferences, but one of thesstaag well. | attend this conference every year and
always find my time well spent. Not only is the research progfiast-rate, but there is an industrial program,
demos, and workshops as well.

Self-managing Database Systems

The current issue contains, starting on page two, a repmr the Working Group on Self-Managing Database
Systems of the Technical Committee on Data Engineerings iBhihe sole working group of the TCDE. The
report is on the group’s third workshop, which has been hetbncert with ICDE for the past three years, most
recently at ICDE in Cancun, Mexico. The area of self-manggiatabases is not only important but also a very
active area of research. The result is that the working dsomprkshops have seen high quality papers and
active participation. The report is well worth reading.

The Current Issue

The database community has witnessed, over the past sgearal a substantial number of papers exploring
query processing as it applies to the XML data model. Thergimoes to be research in this area and re-
search papers, though they are no longer in the same nuntbessli@r. This suggests that XML technology is
maturing. So where has this left us?

The current issue explores the still very active XML and X@ueechnological evolution not only in the
research community but also in the commercial world. Indéadh in the XQuery standards area and in the
deployment commercially of support for it, XML technologyincreasingly pervasive. The technology being
deployed, while originally fairly limited, is now quite rabt and general. The issue is the joint work of Vassilis
Tsotras, one of my appointed editors, and Mike Carey. (Mskéaing an encore with this issue as | remember
well when he was a Bulletin editor in 1987 and | was a Bulletithar for an issue he organized.) Both Vassilis
and Mike are deeply involved in the XML area. Their knowledgé¢he area, the ongoing work, and the people
doing it, has enabled them to cover the XML field very comprshely. If you want to know about research in
the XML area, and what commercial products are capable ofyyith want to read (and save for reference) this
issue. Thanks to both Vassilis and Mike for their fine job oriraportant topic.

David Lomet
Microsoft Corporation



Report: 3rd Int'l Workshop on Self-Managing Database Systens (SMDB 2008)

Introduction

Information management systems are growing rapidly inesaatl complexity, while skilled database adminis-
trators are becoming rarer and more expensive. Incregsihgl total cost of ownership of information manage-
ment systems is dominated by the cost of people, rather traware or software costs. This economic dynamic
dictates that information systems of the future be moreraated and simpler to use, with most administration
tasks transparent to the user.

Autonomic, or self-managing, systems provide a promisimgr@ach to achieving the goal of systems that
are increasingly automated and easier to use. But how camehachieved? The aim of this workshop was
to present and discuss ideas toward achieving self-magagfiormation systems in an intimate, informal, and
interactive environment.

SMDB 2008 was the second workshop organized by the WorkgoouBelf-Managing Database Systems
(htt p://db. uwat erl oo. ca/t cde- sndb/ ) of the IEEE Computer Society’s Technical Committee on
Data Engineering. The Workgroup, which was founded in Qetd905, is intended to foster research that
enables information management systems to manage thesssamlessly, thereby reducing the cost of de-
ployment and administration.

Workshop Overview

The workshop was conducted in Cancun, Mexico on April 7, 2@0®r to the start of the International Con-
ference on Data Engineering. The workshop’s program coteeitonsisted of the members of the SMDB
Workgroup’s Executive Committee plus four other well-kmovesearchers who are leaders in the area. In re-
sponse to the Call for Papers, the program committee ratdi9esubmissions. Each paper was reviewed by
3 program committee members. Six papers were accepted WdHeshop, resulting in an acceptance rate of
32%. In an effort to make the Workshop as inclusive as passibmore submissions were accepted as poster
papers and given a shorter presentation time at the end @fdheshop, for an overall acceptance rate of 53%.
This year, we added an invited keynote speaker and a parsgbsdeaturing four distinguished researchers to
summarize and comment upon the Workshop’s presentatiahgliaoussions. The average attendance at the
Workshop throughout the day was 40 participants.

Technical Program

The technical program was organized into 4 sessions: Welcand Keynote Talk, Self-Healing and Self-
Optimization, Physical Design and Virtualization, PodRapers, and Panel and Wrap-up. Due to a travel
delay, the keynote speaker presented after the second mddséissions. Links to the slides presented for
each talk can be found in “Workshop Program” under SMDB 200&a Workgroup’s web pagen{t p:

/1 db. uwat er | 0o. ca/t cde- sndb/).

The first session contained three papers on ways to enableesding and self-optimization of databases.
Nehme [1] advocated a comprehensive approach to self-rimanagstems, in which all aspects of systems
management, performance, risk assessment, and av@ylaii described and managed as part of a unifying
self-healing framework. Most modern DBMSs have hundredsoafiguration parameters, so it's impossible to
evaluate all combinations of possible values. Debnath ¢2pdlevised a practical approach to determining good
configurations by exploiting a Plackett and Burman methoglplthat ranks queries based upon how sensitive
they were to the extrema of the factorial design of all comgon parameters. Yellin et al. [3] extended
traditional control theory concepts of “flux” to automatlgebalance the load of processors performing a join
that is partitioned among them, taking into account the tmsesponse time of changing the partitioning on
the fly when the load on some of the processors is perturbedadBing heuristics to limit the frequency of



adaptation, they were able to reduce the number of speci@arges caused by overly-adapting, as observed in
the traditional “flux” technique.

The papers of the second session dealt with problems ofgdlydatabase design and the increasing use of
virtualization. Malik et al. [4] addressed the problem ie tBkyQuery sky survey database of widely-varying ad
hoc queries to tables having hundreds or even thousandsuohis, few of which are referenced in any given
query. Their solution was an adaptive, on-line verticatipaning algorithm that improved upon an existing,
off-line vertical partitioning algorithm (Autopart) andgoited some structure in the problem to prune the large
solution space to a computationally tractable size. Mindtaal. [5] measured how much overhead the Xen
hypervisor introduces when running a database (Postgre®ioad. In a head-to-head comparison between a
virtualized and “bare” operating system, the authors fosigdificant overhead (tens of percent) introduced by
virtualization when the buffer pool was warmed, but was msitialler (around 6%) when the buffer pool was
cool. In fact, in some cases the I/O wait time was even lowén Xen, because pre-fetching in Xen’s DomoO is
better than that in Postgres! Tata et al. [6] argued thatipllydesign advisors might better be located on clients,
exploiting server-based advisors if available but alsdidgavith the common case that either such server-based
tools are unavailable or the prerequisite information forning them might not be available, e.g., before the
data is loaded. They suggested ways to glean useful phydsayn information from what limited schema,
data, statistics, and/or workload is available when ded@pisions must sometimes be made.

After lunch, John Wilkes of HP presented his keynote talkiility functions, prices, and negotiation”,
which addressed the problem of designing in a principled maaningful Service Level Objectives (SLOs),
an important part of Service Level Agreements (SLAs). Wilkiescribed a technique that exploits the concept
of utility functions, which measure some degree of “googhés those involved. In the 2-dimensional space
of pricing vs. service outcome (e.g., throughput), utilitgifference curves define contours of equal utility.
The consumer chooses one such indifference curve, beloeghvdafines a “minimal acceptable utility” region.
Similarly, the service provider chooses a (usually difféyautility indifference curve, above which defines a
region in which he is comfortable. Any intersection of thetegions defines an area within which negotiation
on the SLO is possible. That negotiation, however, is muakddrato characterize rationally or to quantify,
because people sometimes react irrationally, are ofterseme losses, and tend to overweight rare, extreme
events.

The poster session contained the four poster papers witteslpwesentations. Furtado et al. [7] described
a prototype of a DBMS (based upon PostgreSQL) that unifonedigiced response times by up to 56% by con-
tinuously monitoring usage and adapting to meet qualityeofise (QoS) objectives. Voigt et al. [8] addressed
the problem of off-line but dynamic physical database desig., taking the order of arrival of queries into
consideration. They modeled each query and a correspondirfgguration (set of indexes) as a node in a state
graph, which is huge but easily solved. To avoid the pitfatheer-fitting to a particular workload and the exact
order of arrival, they simply limited the number of possiblansitions. Sharaf et al. [9] described ASETS, a
self-managing transaction scheduler that is formed as achgbtween the optimal algorithm for low utilization
and the optimal algorithm for high utilization. The comhbinggorithm uses an SLA to calculate a deadline for
each transaction, then puts it on one of two ordered lis{geni@ing upon how tardy it is or how much slack it
has to make its deadline. Finally, Rizvi et al. [10] gave arrgiew of IBM’s Balanced Warehouse (virtual)
appliance for Business Intelligence workloads, which imposed of Balanced Configuration Units (BCUSs),
each a pre-configured, pre-tested unit that can deliverehf@nmance required and allow incremental growth,
but runs on non-proprietary hardware.

The last session had a panel format, with four distinguigbesklists: Surajit Chaudhuri of Microsoft Re-
search, Guy Lohman of IBM Almaden Research Center, Ken Salethe University of Waterloo, and our
keynote speaker, John Wilkes of HP. Each tried to respondéafiestions in light of the day’s presentations:

1. Is completely self-managing achievable®hat are the biggest roadblocks to that, both technicalty an
in gaining the trust of the user to enable the DBMS in “autmpihode”? How do we avoid making life



worse for the administrator by adding more things that cawwgmg? Is “less really more”, i.e., is the
only way to get simplified management by making things go avedlyer than have wizards set dials /
thresholds?

2. Can administration be standardized the way SQL querying haseen standardized?The success of
relational DBMSs has been significantly helped by the statidiaion of SQL, but administration remains
very different from one vendor to the next. Can/ should adstriation be standardized somehow? Would
this facilitate the emergence of client-side tools?

3. How do we know when we've succeeded®e’re used to measuring performance, but how do we mea-
sure self-managing or ease of use? If we can measure it, haddwae benchmark it? What aspects
of self-managing can be realistically included in such achemark (i.e., is it possible to test automatic
recovery from realistic failure modes)?

4. How can self-managing tools function with incomplete infomation, e.g. how can we initially config-
ure a system without having a workload and/or databasestitaft Are existing tools too sensitive to the
workload, anyway? How do we reduce the overhead that thesageaent tools and their information
needs impose on the DBMS?

5. Self-managing DBMS: who cares?DBMS are not deployed in isolation. If self-managing DBM® ar
challenging, can we hope for a self-managing stack? If maiLilsl we bother with self-managing DBMS?
If so, how should DBMS fit in with end-to-end self-managen®ent

Chaudhuri enumerated all the reasons why self-managimgharsl to solve (e.g., large search spaces of possible
configurations, difficulty of diagnosing problems autoroally, the limitations of query optimizers as modeling
tools, ...), but also listed areas in which advances have begle, notably memory management, index selec-
tion, enabling “what if?” analysis, and establishing somedamental principles. However, he warned that a
unifying theory of self-managing was unlikely in the neamteand that progress would likely continue to be
made incrementally on individual problems. He also noted tbbustness of self-managing tools is extremely
important to establish trust with users.

Lohman said that users certainly care about self-manadigthey don't trust features that aren’t on by
default, and the loss of trust due to a failure is hard to regayuoting an actual incident with early automated
Bay Area Rapid Transit trains. He was somewhat skepticatctiraplete self-managing was possible, due to the
complexity (and hence brittleness) of our models, but tleaeat progress is still being made. He cautioned that
we too often rely on performance measures because theymait@farather than real measures of self-managing
or ease of use, which have yet to be devised. Finally, stdizddion in the administration area remains elusive,
because the data definition language (and its underlyimggdanodel), unlike the query portions of SQL, were
never standardized and hence have diverged. He concludedi¢hhave succeeded to a degree, but are farther
from our goal than we like to admit.

Salem emphasized that databases, while an important pidwe problem, do not exist in a vacuum, but are
part of a much larger ecosystem that includes hypervisperating systems, application servers, etc. What gets
deployed are complete systems, not components, and thededbemmanaged and tuned together as a system.
The database is not the center of the universe.

Wilkes stressed the importance of trust, and the difficuftgarning it from humans, who aren'’t always
rational. He noted that people are far better at dealing itteptions and approximations than are machines,
and systems can often ignore useful information. He fettplodicies (rules) were not the answer, because there
are too many of them that would need to be written. Peopleasitept and trust automation when the benefits
exceed the cost, and the worst case disasters are no wansetthbwould happen with a person in charge. Trust
only comes from reassurance that the system will alwaysHhdaight thing”, and only then will the human give



up control. Be sure never to take away that control withoathihhman’s permission, explain your automated
decisions, and be wary of machine learning, which can begor@imconsistencies, he advised.

Summary

Once again, the Workshop on Self-Managing Database Systesextremely successful. Not only was atten-
dance a bit higher than the previous year — despite the IUEanfun’s beach! — but so was patrticipation through
probing questions and lively discussion. The high qualftyhe papers and the enthusiastic interaction in the
workshop demonstrate the vitality of research in self-ngarinformation management systems.

The Workgroup on Self-Managing Database Systems woulddilkeank the participants and the organizers
of the Workshop. They encourage anyone interested in makistgms easier to manage to participate in the
2009 Workshop on Self-Managing Database Systems, whidhowipart of the International Conference on
Data Engineering in Shanghai, China next spring.
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Letter from the Special Issue Editors

The widespread use of XML for describing and exchanging datthe web, together with increasing quantities
of XML data in the enterprise world, make it crucial to haveséficient query capability for XML data. In antic-
ipation of an XML-rich world, the W3C XML Query Working Groupas given us XQuery, a declarative query
language designed specifically for XML. XQuery 1.0 becameféinial W3C standard (a Recommendation) in
January 2007. Today, XQuery is gaining traction in indystmpst major relational database systems, includ-
ing products from IBM, Oracle, and Microsoft, now support)@dL data type and include XQuery support
for querying the contents of XML columns of tables. In middiee, leading enterprise service buses support
both XQuery and XSLT for data transformation and routing] aaveral information integration products are
based on XML and XQuery as well. XML, and to an extent XQuesyalso starting to penetrate key industry
sectors (such as publishing, government, and pharmaak)tibat have heavy technical document management
requirements.

At the same time, XQuery itself is evolving. The W3C XML Quemprking group has several XQuery
extension activities in progress. These include XQuerydxfending the capabilities of XQuery with features
such as grouping and aggregation; the XQuery Update Bagiliding XML update functionality to XQuery;
the XQuery Full-Text Extension, adding content-based yjaapabilities to XQuery for text-heavy XML data;
and, last but not least, the XQuery Scripting Facility, agdihe ability to mix procedural-style control and side
effects with the declarative query capabilities of XQuergupport of complex, XML-centric applications.

These developments make this a good time to take a look atuttient state of the art in the XQuery
processing world, both from academic and industrial petspes. That is the purpose of this special issue
of the Data Engineering Bulletin This issue presents a snapshot of the current state of hetart and the
practice of XQuery processing. Due to space limitations lamsly potential contributors, the snapshot is of
course incomplete, but we feel we have captured an intagestinge of XQuery processors. When considering
applications of XQuery, one finds a broad range of potensal aases that range from file processing and data
transformation to message processing, to data integradimhto data and/or document storage, management,
and querying. We have attempted to cover the full range ierablng this special issue.

The first two articles discuss systentathfinderand TIMBER developed in academia, using two very
different approaches, one based on a relational implermiemtand one on native XML storage. The next
three articles describe server-side XQuery processons afticles on IBM’s DBZureXMLand Oracle’sXML
DB deal with XQuery in relational data servers, while the théscamines XQuery in a native XML server
(MarkLogic Serveraimed at content-oriented XML use cases. Next in this sphéxsue are two articles about
middleware XQuery processors, namely, the XQuery engioe BBEA's AquaLogic Data Services Platform
and theDataDirect XQueryengine, each of which use XQuery for information integmatid he final article is
about XQuery processing Baxon a leading open source XQuery engine.

We hope that this special issue will serve as a starting faititirther academic and industrial contributions,
as XQuery’s increasing acceptance and ongoing evolutioviges a fertile ground for interesting new research.
We would like to thank the articles’ authors, all expertsha field, for their timely efforts in assembling their
excellent contributions for this special issue. Speciahits go to Marcos Vieira at UC Riverside for editorial
assistance with the issue.

Michael J. Carey and Vassilis J. Tsotras
UC Irvine and UC Riverside



Pathfinder: XQuery Off the Relational Shelf

Torsten Grust Jan Rittinger Jens Teubner
Universitat Tubingen, Germany ETH Zurich, Switzerland
torsten. grust @ni -t uebi ngen. de j ens.teubner @nf.ethz.ch

jan.rittinger @ni-tuebi ngen. de

Abstract

The Pathfinder project makes inventive use of relationahloiase technology—originally developed to
process data of strictly tabular shape—to construct efliictatabase-supported XML and XQuery pro-
cessors. Pathfinder targets database engines that impleaneeat-oriented mode of query execution:
many off-the-shelf traditional database systems makeuiteitle XQuery runtime environments, but a
number of off-beat storage back-ends fit that bill as well.ilgvRathfinder has been developed with a
close eye on the XQuery semantics, some of the techniguesehaill review here will be generally
useful to evaluate XQuery-style iterative languages oalukzde back-ends.

1 The Rectangularization of XQuery: Purely Relational XML Processing

If you zoom back in time to dig for the semantic roots of XQugsy; you will find that the language’s core
construct, thd or - et ~wher e-or der by-—r et ur n (FLWOR) block is one particular incarnation of a very
general idea: theomprehensiof26]. Many language-related concepts may be uniformly wstded in com-
prehension form, but comprehensions provide a partiguzrhcise and elegant way to express iteration over
collections of objects—in the case of XQuery: finite, ordesequences of XML nodes and atomic values (or
itemg [1]. Any program or query expressed in comprehension fersubject to a number of useful equivalence-
preserving rewriting rules (theonad law} and so is XQuery'sLWOR block. Once you look closely, a wide
range of seemingly XQuery-specific optimizations realibgadompilers and interpreters todayg, f or loop
fusion or unnesting, in fact put the monad laws to work.

The family of programming and query languages whose semaote may be cast in comprehension form
is large. Among its members, specifically, is S@herelational database language. This observation sparked a
whole line of work that we will review in the following pages:

Exploit the common semantic ground of XQuery and SQL anddrin relational database sys-
tems (.e., processors for strictly tabular, or rectangular, dat&) efficient and scalable XQuery
processors.

XQuery processors of this type should be able to benefit flB80+ years of research and engineering expe-
rience that shaped relational database technology. Thisfesct, what we repeatedly observed in the course of

Copyright 2008 IEEE. Personal use of this material is petait However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
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the Pathfinderproject (initiated in late 2001), an effort to construd®arely Relational XQuery Processf#25].

As of today,Pathfindercan compile XQuery expressions into code (different vasiaf table algebras or SQL)
ready for consumption by relational-style database bacls.eThe back-ends evaluate this code against tabular
encodings of XML instances and item sequences andatiugke XQuery processors. We have found the result-
ing systems to exhibit runtime performance charactesidtiat often surpass specifically-built “native” XQuery
engines. On top of that, standing on the shoulders of relatigiants provides stability, scalability, instant and
wide availability as well as the seamless coexistence of XiMkances and tabular data.

Input to this purely relational approach to XQuery proaegsre relational encodings of the XML data model,
i.e., ordered unranked trees of nodes of several kinds. We thansaair tour of thePathfindertechnology in

2 with a brief review of suitable tabular encodings of XML atteétn see how XPath location steps may be
efficiently evaluated in terms of (self-)joins over the Héag tables. We turn to XQuery's dynamic semantics
in 3 and sketcltoop lifting, a compilation strategy that derives efficient set-oridmeecution plans from nested
FLWOR blocks. 4 shows how a purely relational account of the XQuamantics can provide insights and
optimization hooks that would be hard to find and formulateat@XQuery language level. Different kinds of
database systems have already been turnedPatiafinderback-ends. 5 discusses selected systems and how
they fare in their new role as XQuery runtime environmentsialfy, as we said, the comprehension construct
can explain aspects of a large family of languages: 6 sheds $ight on how other recent programming and
guery language proposals with an iterative core could betdrgularized’—and thus put on top of relational
back-ends.

2 How Many Rows Does Your Tree Have? (Tabular XML Encoding)

The performance of any RDBMS-backed solution dependsalliji on how its data is represented in the rela-
tional format, tables of tuples. A purely relational XQuerpcessor is no different in this respect and the choice
of a good relationatree encodings an important factor to the functioning of a relational X&y setup. Two
principal features must be provided by the XML-to-tablesmglation, both dictated by the semantics of XQuery:

() Ithasto maintain XMLdocument ordeand XQuery’s concept afode identity More explicitly, we expect
the existence of aurrogatey, for each node such thaty,, = v,, iff v1i s ve andy,, < vy, Iff v; <<wvs.

(ii) Efficient mechanisms must exist that implement core opmraton XML data. In particular, given a node
surrogatey,, there must be a way to compute all surrogates for the nodeeseqv/ az::nt, whereaz and
nt are axis and node test of an XPath location step, respectivel

A variety of encodings has been published

which provide both features, includingrROPATH | pre | size | level kind | prop |
[21], dynamic intervals [3], or XPath accelerator a 019 0 [elem| a
[14]. Pathfinderuses a variant of the latter, which 1k‘33 /sf 4 é g ; 2::m i’
we illustrate in a moment. As a drop-in replace- ,c, g 7h2 3101 3 |elem| d
ment, the others could be plugged imRathfinder o seq  sio ed0 gl 2 ? ;cle;xn: ?
seamlessly. Sl . ) ;
Pathfindeis relational XML storage, repre-
sents documents as a five-column table as shown(@ XML document tree. (b) Relational tree encoding.

in Figure 1 on the right for the XML instance ] )
Figure 1. XML document tree, annotated wiite(-) and

<a><b><c><d/ >e</ ¢c></ b> size(-) information (left/right), and resulting tree encoding.
<f >g<h><i/ ><j [ ></ h></ f ><[ a>



For each node, the table holds’s rank in a preorder tree traversaig(v), the number of descendants below
size(v), its distance to the tree rodevel(v), and the two columnkind andprop to represent XML information
set characteristics af, i.e,, its XML node type (one otlem, text, attr, ...) its tag name or typed value
(depending orkind(v), refer to [14] for details). It is easy to see thaé(v) provides a suitable implementation
for ,.

Evaluating XPath. Based orpre(-), size(:), andlevel(-) properties, all twelve XPath axes can be characterized
in a concise and machine-friendly manner. For a@scendant , e.g, we have

v' € v/descendant
& . Q)
pre(v) < pre(v') < pre(v) + size(v)

Range expressions of this kind lend themselves to the u&tme indexedor efficient XPath evalua-
tion. And, in fact, with appropriate index support, a redail XPath evaluation setup can outperform industry-
strength “native” XML processors by significant margins]j11

The relational system plays its trump by organizing and g the relational tree encoding in the way
that fits any given XPath query workload best. In [11], we fdhat partitioned B-treedorm a particularly
interesting class of indexes for XPath processing. Theipalygyout of a partitionedlevel, pre) index, for in-
stance, ideally matches the access pattern of an Xfdthd step. In addition, since fa-step XPath expression
compiles into &-way self-join at the relational end, the system’s optimizan gear the@rder of these joins to
its liking [7]. This way, anoff-the-shelfRDBMS solves formerly challenging problems in a purely naatbal
way. This includes rewriting into forward-only plans [20]top-downvs. bottom-up XPath evaluation [17].

Tree Awareness with Staircase Join.With a suitable tree encoding and the right selection of xede we
enabled the relational system to act as an efficient treeepsoe, even though the system remained entirely un-
aware of the tree-structure that the encoded data origiffieden. Additional performance gains can be achieved
by injecting such awareness into the RDBMS kernel.

Staircase join[13] is such an injection that can significantly improve tislaal XPath performance with
only a local change to the RDBMS kernel. While evaluating &ab location step, staircase join provides tree
awareness by

¢ pruning nodes from the context set whose result nodes are alreadyged by other context nodes,

e partitioning the document space to (a) guarantee a duplicate-free ,resuied in document order and
(b) achieve a strictly sequential, hence cache-efficiamtigss pattern to the underlying storage, and

e skippingparts of the document table which are early discovered ¢(baseknowledge about the tree-
origin) to not contain any result candidates.

Injecting staircase join into a main memory-oriented dasatsystem [13] or a traditional disk-based system [16]
took only little changes to the systems’ code. The changeritime performance, however, was significant: we
observed speed-ups of several orders of magnitude on bstnsy.

Types are Data. Other than traditional database query languages, XQuerg khe distinction between data
and its type. XML Schema types,g, can be used as node tests in XPath location steps, jusilikeames
or node kinds. Likewise, theuntime typeof arbitrary XQuery items can dynamically be inspected githe
i nst ance of andt ypeswi t ch constructs just like the item’s value. A relational encagdiar XQuery type
annotations types, therefore, is called for.

The type system of XQuery, incidentally, has a structuré wWeaalready know how to deal with efficiently.
All XML Schema types relate to each other irirae shape Pairs ofpre andsize values (“type ranks”) are a
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Iter pos item

iter pos item

for $x in (5,6,7) return
if ($x mod 2 ne 0)

1171715 1171 ["odd"
112 6 112 |"5"
113 7 2|11 |["even"

then ("odd",xs:string($x)) 311 |["odd"
else "even" S
(a) Sample XQuery FLWOR block. (b) (5,6,7) () ("odd","5", "even", "odd", "7")

Figure 2: An XQuery¥LWOR block with the loop-lifted representations of its bindirggsence and result. The
gray outer pseudo loop establishes a single-iteratioregbfr the top-level item sequen¢®, 6, 7) .

logical way to account for that, witpre(-) as a concise implementation for type annotations. But itieevof
using type ranks is not only their support for tree navigatis we showed in [23], type ranks enable interesting,
database-style evaluation strategies for queries on .typgse aggregatione.g, can accelerate the processing
of i nst ance of ortypeswi t ch clauses with sequence-valued input. Type-constrainedhX@aoressions
can profit from relational indexes over columns that encggde tnformation, or even from combined type/data
indexes.

3 Drawing Independent Work from Lack of Side Effects

Pathfindeis main XQuery compilation strategy, dubblep lifting, revolves around the XQueRtwoR block

as the main language construany subexpressior is considered to be iteratively evaluated in the scope
of its innermost enclosing or loop (if e is a top-level expression, we install a pseudo singletitaraoop
for $_in(0) return e such that variablé_ does not occur free ia). In line with the comprehension
notion, theFLWOR block

for $x in (vy, vo,...,v,) return e

describes then-fold side effect-freeevaluation ofe under unmodifiable bindings @Xx to itemswv;. The
result will be( e[v1/sx], e[v2/sx|, ..., e[vn/sx]) (note that the resulting sequence will be flat according o th
XQuery data model). Since the individual evaluations oplbodye cannot interfere, the system may perform
the evaluation in any order or even in parallel {41.8.2]. This leads to a significant load ioflependent work
the principal source of set-orientation and potential fielrsm in Pathfindergenerated query plans.

The “Great Invariant.”  To implement this idea on a relational back-eRathfindercompiles an XQuery
subexpressior into an algebraic plan fragment that, at runtime, will yieldernary table encodings result
for all its n iterated evaluation$6, 12]. These tables uniformly adhere to the schémdpos|item in which a
row (i, p, v) indicates that, in théth iteration, the evaluation efreturned a sequence in which itenoccurs at
positionp—in a sense, we obtain a fully unrolled representation ofdiselt ofe’s enclosingf or loop.

Consider the sample XQuemrsLwoR block in Figure 2a. The top-level binding sequericg, 6, 7) is
evaluated once only while the innkeor loop body undergoes three individual evaluations and tbugibutes
three subsequences (marked byin Figure 2c) to the final result (to illustrate: roi®, 1,”odd”) indicates that
the third iteration contributes a sequence with iteadd" at positionl).

This “great invariant” drives the design of the whole corapiand enables a truly compositional style of
translation from XQuery to relational algebra—prepareddpe withf or loop nesting hierarchies of arbitrary
depth. Loop-lifted algebraic plans diverge from the cleaisi-7-x pattern emitted by SQL compilers: instead,
the plans exhibit a narrow “stacked” shape [7] reflectingdhitbogonal expression nesting that is typical for a
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functional language like XQuery. Figure 3 sketches the plaape for XMark Query Q8 [22] (each box denotes
an algebraic operator, see 5). The resulting plans
() are truly set-orienteck.g, the algebraic plan faBx nmod 2 evaluates the subexpression &trbindings of
$x, in some order the database back-end sees fit,
(i) offer a range of effective optimization hooks (see 4), and
(iif) are sufficiently versatile to embrace a family of furtherdtive languages (6).

4 Relational Insights Into XQuery Affairs

The previous two sections invested considerable effortéotangularize” XQuery, press
it into some shape that is digestible by a relational baak-ephis section explores how
we can benefit from a relational formulation of XQuery prabtethanks to advanced and
well-understood optimization techniques.

A particular example of such well-understood optimizatiechniques is the early dis-
missal of irrelevant information from the processing pipel also known aselectionand
projection pushdown The latter idea, the disposal of columns not inspected lyyuga
stream operator, has interesting consequences whendpphbdoop-lifting compiler.

And Order is Data, Too. With Pathfinder XQuery’s various notions of order are encoded
in the data(i.e., the surrogates, reflect document order, the columitsr andpos reflect
iteration and sequence order): generated algebraic plametdely on some prescribed
physical row order. Yet, the computation of encoded ordiermation ultimately may still
enforce such row order—and therefore incur a significarit &vith order made explicit on
the data level, however, we now have a handledotrol the dependence on ordered Prog; i
. - ) : igure 3: Plan
cessing. Byprojecting outorder-encoding columns, operators that were previousiyled shape model.
to ensure physical order will automatically be eliminatgdPathfindeis optimizer.

In [10], we demonstrated how this effects in execution pthas can exploit opportunities to process (sub-)
gueries in arunorderedfashion €.g, in the scope of XQuery'sinor der ed{ } ), an opportunity that proved
hard to discover by traditional query analyses on the lefi/&l@uery. For XMark benchmark queries.g, this
led to a many-fold speed-up even when the dependence onismugrapparent in the source query.

Dependable Cardinality Forecasts for XQuery. Finding the most efficient execution plan for a given query
often depends on the availability of accuratsult size estimate§ hough fairly well understood in the context
of XPath, the problem of computing such estimates provedrimisly hard to solve for the complete XQuery
language. The problem gets tangible once we look at it in teet&ngular” world. Relational equivalents
for XQuery expressions provide the necessary fabric to ecnexisting work on XPath estimation with tradi-
tional relational techniques, such as the ones known frosteBy R or different flavors of data statistiesd,
histograms) [24].

The outcome is a cardinality estimator fanbitrary XQuery (sub-)expressions whose accuracy we demon-
strated for a wide range of different XQuery workloads [24hd, most importantly, the estimator shows a high
robustneswith respect to intermediate estimation errors. Rathan fing up such errors during the estima-
tion process, we found it often to recover gracefully ani@ime up with a meaningful estimate for the overall
expression.

5 Off-the-Shelf and Off-Beat XQuery Runtime Environments

Loop-lifting turns the input XQuery expression into an ddgec plan solely operating at the table level. Plans
are, generally, DAG-shaped (Figure 3) owing to a commongab-analysis stage installed Fathfindels
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compilation pipeline. No traces of variable binding anerefice, XPath traversal and node construction, explicit
f or iteration, conditionalsi(f ortypeswi t ch), and similar source language features are left. This msnde
a wide range of set-oriented execution environments daitaimtime environments for XQuery, most of which
have not originally been designed to act as XML processors.

Running XQuery on Off-the-Shelf SQL:1999 RDBMSs. The data-embedded order representation (4) makes
off-the-shelf RDBMSs perfectly valid compilation targedad execution platforms foPathfindergenerated
code. A SQL:1999 code generator is, in fact, among the mostrmed code generators available Pathfinder
today [8]. The compiler emits a no-frills table algebra délin which (groups of) operators have straight-
forward SQL equivalents. Its row numbering operaporfor example, has its direct correspondence in the
SQL:1999 claus&RONNUMBER( ) OVER( PARTI TI ONBY - -- ORDERBY - - -) . Pathfindeis SQL code gen-
erator implements a greedy template instantiation styateguch like programming language compilers—that
identifies plan sections whose semantics may be expresdednis of a single SQISELECT-FROMWHERE
block. The resulting SQL fragments are reasonably “goddsed”, e.g, all UNI ONoperations are over disjoint
tables, nested queriesROMclauses are uncorrelated, and most occurdi@N operations are equi-joins that
implement the behavior of nestéar iteration scopes.

The code generator introduces plan section boundaries,

(i) voluntarily, to share runtime evaluation effort if a (syfidan’s output is input to more than one upstream
branch in the plan DAG, or
(i) by necessity, whenever the plan’s stacked shape and therence of a row numbering or duplicate re-
moval operation does not allow to further grow the current. ®@ck.
The generated sequence of SQL code pieces are assembladantonon table expressigi TH- - - ) to jointly
realize the semantics of the input XQuery expression onfathefshelf SQL back-end.

Lab experiments have shown how this approach turns SQL RDBM8Ssting rectangularized XML in-
stances as described in 2, into capable XQuery processtrdamot stumble if document sizes get large [8, 11].
Quite the contrary: for queries against XMark instancesohdyl00 MB size, we have seen IBM DB2V9—
running on loop-lifted SQL code—outperform its own buittfiative XQuery process@ureXML™ [7].

Off-Beat XQuery Targets. If the underlying database back-eddesoperate over deterministically ordered
tables, embedding order in the data appears wasteful: neostigable implementations eflead to blocking
sort operations in the final physical query execution pl&ashfindeis code generator favionetDB CWI Am-
sterdam’s extensible database kernel tuned for in-memumeyation [15], exploits explicit control over physical
row order [2]. The narroviter|pos|item tables that are pervasive in loop-lifted plans (3) provedalgood match
for the strictly column-oriented data and query model eeglibyMonetDB The openness of tHdonetDBker-
nel permits the injection of an implementation of staircpmi that can particularly benefit frolonetDBs
ability to address rowsd,e., encoded XML nodes, by document order rank [1B&thfinderplus MonetDBis
distributed asvionetDBXQuery[19]—a purely relational implementation of an XQuery cotapand runtime
environment that can process Gigabyte-range XML instaincegeractive time [2].

6 Compiling More Iterative Languages

Turning More Semantics into Data? The past few years witRathfinderhave taught us that RDBMSs can
be turned into efficient processors for “alielivg(, non-relational) languages if relevant pieces of the |aggls
semantics are cast into data. To understand XQuery, incpkatj we introduced relational representations of
XML node identity and document order, XPath axes semariiypge annotations, sequence order, and nested
f or iteration.
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concat [ifodd xthen ["0odd”, show x|else[’even”]|x < —[5,6,7]] (Haskel)
[5,6,7].collect{ |x|x % 2! = 07 ["0dd”,x.tos] : "even”} .flatten (Ruby)

Figure 4: Haskell and Ruby equivalents of the XQuerywoR block of Figure 2a.

This recipe should be applicable to more languages, edlydatiheir core iteration construct may be under-
stood in terms of comprehensions and thus loop lifting. Cafngnsions are indeed to be found, under varying
coats of syntactic sugar, in a large family of languages. Agnibhese are the programming languages Haskell
and Ruby (Figure 4) [9], or Microsoft’s LINQ [18]. A rectaniguization of the relevant aspects of the lan-
guage’s semantics+e., data types like ordered lists and dictionaries, or consdrlike conditionals, variable
assignment, and reference—plus loop lifting enableslational database engine to seamlessly participate in
program evaluationProgrammers continue to use their language’s very owragyitioms, and functions—the
system is in charge to decigenerethe computation described by a given program fragment alik tplace: on
the heap or inside the relational database back-end. Pnsgteat touch and move huge amounts of data, think
Computational Sciengevill benefit the most from this support off the relationaklh
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Abstract

In this paper, we describe thHEIMBER XML database system implemented at University of Michigan.
TIMBER was one of the first native XML database systems, designedtifi® ground up to store and
query semi-structured data. A distinctive principleToMBER is its algebraic underpinning. Central
contributions of th& IMBER project include: (1) tree algebras that capture the struatunature of XML
queries; (2) the stack-based family of algorithms to eviausructural joins; (3) new rule-based query
optimization techniques that take care of the heteroges@ature of the intermediate results and take
the schema information into consideration; (4) cost-bagedry optimization techniques and summary
structures for result cardinality estimation; and (5) a féyrof structural indices for more efficient query
evaluation. In this paper, we describe not only the architex of TIMBER, its storage model, and
engineering choices we made, but also present in hindsigintretrospective on what went well and not
so well with our design and engineering choices.

The TIMBER system [10, 16] was developed at the University Xuery Or

Algebraic Plan

Michigan, Ann Arbor, beginning 1999. It was an early nativ®X p—y
data management system. In this retrospective, we takk sfomur i
work over the past nine years. Figure 1 provides an overviethe | —-—&— Data Parser
major system components. Secs. 1 through 4 describe thelyinge || Optimizer
algebra, query evaluation methods, query optimization iadices, | — I
respectively. Sec. 5 mentions aspects ofiHER not included in this
article. Sec. 6 concludes with a retrospective view. ooy
Evaluator

1 Algebra L lpaaManager[ "

Relational algebra has been a crucial foundation for matidatabase|
systems, and has played a large role in enabling their ssicéesor- | L= ReriewiFlow
responding XML algebra for XML query processing has beenemqmgure 1: TIMBER Architecture: XML
elusive, due to the comparative complexity of XML, and itstory. documents are parsed and nodes stored in-
In the relational model, a tuple is the basic unit of operatimd dividually in the back-end store. Parsed
a relation is a set of tuples. In XML, a database is often desdr queries, from multiple supported inter-
as a forest of rooted node-labeled trees. Hence, for the baitiand faces. 9o through a query optimizer to

the query evaluator in a relatively standard
central construct of our algebra, we chosexaviL query pattern(or query ey
overall database system architecture.

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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Index
Manager

Storage
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Sample matching sub-trees for the DBLP dataset

article article article article

Selection pattern tree for a simple query

$1 $1.tag = article &
$2.tag = title & " h h . o author
c o . N title: ) title: author: title: author: itle: :
pc P $2.content = “*Transaction*” & Transaction ~__2uthor: Overview of  Sjlperschatz ~ Overviewof — Garcia-  Transaction ~ Thompson
$3.tag = author Mng ... Silberschatz Transaction Transaction Molina Mng ...
$2 $3 Mng Mng
(a) Pattern tree for ‘Select articles with some au- (b) Witness trees from the matching of the tree in Figure 2(&)BLP.

thor and with title that contains Transaction’.

Figure 2: Pattern Tree and Witness Trees.

twig), which is represented as a rooted node-labeled tree. Ampraof such tree, we call pattern tree

is shown in Figure 2(a). An edge in such tree represents atstal containment relationship, between the
elements represented by the respective pattern tree ndtlescontainment relationship can be specified to be
either immediate (parent-child relationship) or of almyr depth (ancestor-descendant relationship). Nodes in
the pattern tree usually have associated conditions ondiag® or content values.

Given an XML database and a query pattern,limess treegpattern tree matchings) of the query pattern
against the database are a forest such that each witnessmissts of a vector of data nodes from the database,
each matches to one pattern tree node in the query pattedntharrelationships between the nodes in the
database satisfy the desired structural relationshipifsgeby the edges in the query pattern. The set of witness
trees obtained from a pattern tree match are all strucqurdéintical. Thus, a pattern tree match against a
variegated input can be used to generate a structurally gensmus input to an algebraic operator. Sample of
witness trees can be found in Figure 2(b).

Using this basic primitives, we developed an algebra, ddltee Algebra for XML(TAX) [12], for manip-
ulating XML data modeled as forests of labeled ordered tréédstivated both by aesthetic considerations of
intuitiveness, and by efficient computability and amengbib optimization, we developed TAX as a natural
extension of relational algebra, with a small set of opesat@AX is complete for relational algebra extended
with aggregation, and can express most queries expressipbgular XML query languages.

Ordering and Duplicates XML itself incorporates semantics in the order in which tlaedis specified. XML
gueries have to respect that and produce results basedsdottument order XQuery takes this concept
even further and adds an extra implicit ordering requirdm&he order of the generated output is sensitive to
the order the variable binding occurred in the query, itmeling order Additionally, a FLWOR statement in
XQuery may include an explic©RDERBYclause, specifying the ordering of the output based on theaf
some expressions — this is similar in concept to orderingérelational world and SQL.

Although XML and XQuery require ordering, many “databasges applications could not care less about
order. This leaves the query processing engine designequmaadary: should order be maintained, as required
by the semantics, irrespective of the additional cost; ararder be ignored for performance reasons. What we
would like is an engine where we pay the cost to maintain ondemn we need it, and do not incur this overhead
when it is not necessary. In algebraic terms, the questioaskeés whether we are manipulating sets, which do
not establish order among their elements, or manipulatogences, which do.

The solution we proposed is to define a new genklybrid Collectiontype, which could be a set or a
sequence or even something else. We associate with eaelctmnil anOrdering Specification O-Spdbat
indicates precisely what type of order, if any, is to be rmaiimed in this collection.

Duplicates in collections are also a topic of interest, nst for XML, but for relational data as well. The
more complex structure of XML data raises more questionshattis equality and what is a duplicate. Therefore
there is room for more options than just sets and multi-€&ts.solution is to extend thidybrid Collectiontype
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with an explicitDuplicate Specification D-SpedJsing our Hybrid Collections we extended our algebra [18]
thus we were able to develop query plans that maintain &sdittier as possible during query execution, while
producing the correct query results and managing to optiigplicate elimination steps.

Tree Logical Classes (TLC) for XML  XQuery semantics frequently requires that nodes be ckstesised on
the presence of specified structural relationships. Fanpiathe RETURN clause requires the complete subtree
rooted at each qualifying node. A traditional pattern tresah returns a set dfat witness trees satisfying the
pattern, thus requiring a succeeding grouping step on ttenpéor root) node. Additionally, in tree algebras,
each algebraic operator typically performs its own patteza match, redoing the same selection time and time
again. Intermediate results may lose track of previouspathatching information and can no longer identify
data nodes that match to a specific pattern tree node in aeregseration. This redundant work is unavoidable
for operators that require a homogeneous set as their ingudwt the means for that procedure to persist.

The loss ofStructural ClusteringtheRedundant Accessaad theRedundant Tree Matchingrocedures are
problems caused due to the witness trees having to be simithe input pattern tree, i.e. have the same size
and structure. This requirement resulted in homogeneotresd trees in an inherently heterogeneous XML
world with missing and repeated sub-elements, thus reguektra work to reconstruct the appropriate structure
when needed in a query plan. Our solution ugexhotated Pattern Trees (APTand Logical Classes (LCstb
overcome that limitation.

Annotated Pattern Treexcept edge matching speci
fications that can lift the restriction of the traditionalesn
to-one relationship between pattern tree node and witngs
tree node. These specifications can be “-” (exactly ong)
“?" (zero or one), “+” (one or more) and “*” (zero or|a,
more). Figure 3 shows the example match for an annotafe
pattern tree. Once the pattern tree match has occurred W
must have a logical method to access the matched n E b
without having to reapply a pattern tree matching or na —r -
gate to them. For example, if we would like to evaluate|d yaiching witness Trees & Lo
predicate on (some attribute of) the “A” node in Figure 3;
how can we say precisely which node we mean? The Eigure 3: Sample Match for Annotated Pattern Tree
lution to this problem is provided by our Logical Classes.

Basically, each node in an annotated pattern tree is mappeddt of matching nodes #achresulting witness
tree — such set of nodes is called @gical ClassFor example in Figure 3, the gray circles indicate how the “A
nodes form a logical class for each witness tree. Using duisriques we extended TAX into oliree Logical
Class(TLC) algebra [19].

B

(b) Annotated
Pattern Tree

@
w

2

gical Class ‘A’ for each tree

2 Query Evaluation

Data Storage The unit of storage in IMBER is a node. For efficiency reasons, a node in tineBER Data
Manageris not exactly the same as a DOM [22] node: there is a nodesmoneling to each element, with links
to nodes corresponding to the first and last sub-elemenhsttdbutes of an element node are clubbed together
into a single node, which is then stored as a child node ofdlesthent node; the content of an element node, if
any, is pulled out into a separate child node, in honor ofieé®ing of multiple sub-elements and text contents
of mixed-type elements. We ignored all processing insimastand comments, which can be extended easily by
creating nodes of those types.

In semi-structured data, the essential of the structurgbgmties is reflected by the containment relation-
ship between an element and its sub-elements. Establiphiemt-child (or ancestor-descendant) relationships
among nodes are the center parts of XML queries, and a selrdmed at certain nodes are frequently de-
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manded as query results. As such, the determination of thiioment relationships is at the core of XML
query processing. InIMBER, we facilitated such operation by associating a numeritovdstart, end, level)

with each data node in the database. $taet andend labels of a node are the pre-order and post-order traversal
of the node in the XML tree structure. Together, they definereesponding interval such that every descendant
node has an interval that is strictly contained in its armssintervals. Thdevel label reflects the depth of the
node in the document for establishing parent-child refetiips between nodes. Formally,

e Anoden;(S1, F1, L) is the ancestor of node;(Ss, Fa, L) iff S1 < So A Ey > Es.
o A nodenl(Sl, El,Ll) is the parent of nOdﬁg(Sg, EQ,LQ) iff S1 <SoANEQ>FEyNLy=1Loy— 1.

The (start, end, level) vector of each node is generated automatically by the syshering the data parsing
process and stored together as attributes with each nodadditionaldoc label is associated with each node,
such that the vectodpc, start, end, level) serves as a logical identifier for each node inldER database.
We chose to store the nodes in the order of tis@rt key, e.g. in document order, such that nodes within a
sub-tree are always clustered together, hence guarafiitgergfaccess of all nodes in a sub-tree, given the root.

Structural Join Evaluation TIMBER includes access methods corresponding to all operatorseirmtC
algebra. TLC (and TAX) operators have two parts: patterncmé&br witness tree identification followed by
the actual operator application to the matched witness Treerefore, efficient pattern matching is crucial.

Pattern matching comprises two steps: first, value indicesised to look up matches for individual nodes
in the pattern; therstructural joinsare computed amongst these matched nodes. Structuras jihie dominate
operation in XML query evaluation both in terms of the freqeye of usage and the cost. Consequently, efficient
implementation of the structural join is critical to the eiifint evaluation of XML queries in general.

Using the formulae of the containment relationship presgm@tbove, each structural join is represented as
an ordinary relational join with a complex inequality joioraition. Variations of the traditional sort-merge
algorithm can be used to evaluate this join effectively, wggested in [2, 26]. We exploited the tree structure
of XML to do better. We have developed, and used imBER, a wholeStack-Tregamily of structural join
algorithms.

The basic idea of th&tack-Treealgorithm is to take the two input operand listsl.ist and DList, both
ordered by thestart position and merge them using a stack. It takes advantageedatt that in a depth-first
traversal of the database tree, every ancestor-descepderdppears on a stack with the ancestor below the
descendant, and perform a limited depth-first traversgpakg over nodes that are not in either input candidate
list (AList or DList). The output is a list of matching pairs, which satisfy theigeated structural relationship, in
ascending order of thetart keyof either the ancestor or descendent participating in time Jche sort order of the
output is very important for pipelined query evaluation.eBtack-Treealgorithm is a non-blocking algorithm
and can produce result as the join happens.

Small variations of the algorithms described above can bd iigshe desired structural join is a parent-child
join rather than an ancestor-descendant join. Similarg can define semi-join, outer-join, and other variants.
(Semi-joins, and left outer joins, in particular, seem towdrequently in XML queries).

The algorithm requires an in-memory stack whose size is thedirby the maximum depth of the XML
document. Even for the variant which requires the outputeadrted by the ancestor node, in which results
has to be temperedly stored for each of the node in the stiidket bottom of the stack is popped. Through
careful list manipulation, we can perform this result-agviwith limited memory buffer space and at most
one additional I/O for any result page. The space and timepéoxty of the Stack-Tree-Analgorithm is
O(|AList| + | DList| + |OutputList|). TheI/O complexity isO (24t 4 [PList] | [Qutpuilist]y |\yhere B is
the blocking factor. (These asymptotic results apply totrotizer algorithms in the Stack-Tree family as well).
Experiments show that these algorithms far outperform évegation-based join algorithms, as well as the RDB
implementation, in all cases.
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(a) On the right the rewritten plan having pushed (b) Minimizing Duplicate Elimination procedures.

the Sortinto the Select
Figure 4: Order and Duplicate Rewrites.

3 Query Optimization

3.1 Algebraic Rewrites

In this section we demonstrate some of the advantages weygadibg algebraic primitives to produce more
efficient solutions. We discuss how we addressed groupin¢Quoery and also show some algebraic rewrites
that focus on smart placement of ordering and duplicateatip@is.

Grouping:  While SQL allows for grouping operations to be specified i}, XQuery provides only im-
plicit methods to write such queries. For example considpraay that seeks to output, for eazit hor all the
titles of articl es he authored. A possible XQuery statement for this purpase EQuery use case
1.1.9.4 Q4 fromht t p: / / www. W3. or g/ TR/ xquer y- use- cases) would involve a nested FOR loop.
A direct implementation of this query as written would inveltwo distinct retrievals from the bibliography
database, one faut hor s and one folar t i cl es, followed by a join. Yet, one of our basic primitives of our
algebra is a GROUPBY operator, thus enabling us to produceaater plan than the one dictated by XQuery.
The power of the algebra allows for the transformation ofrthése join plan into a more efficient query plan
using grouping — overcoming the XQuery nuances and makisgnilar to a relational query asking for the
same information [17].

Duplicates and Ordering: As we discussed in Section 1, smart operation placementlefiog and duplicate
elimination procedures can cause orders of magnituderelifée in evaluation performance. We show two
examples of such rewrites. Figure 4(a) shows how we optimidering. The rewrite takes advantage of our
extended operations that uSedering Specificatiorannotations to push thgor t procedure into the original
Sel ect . Thus, the rewrite provides the cost-based optimizer wighnheans to efficiently plan the pattern tree
match using the appropriate physical access methods, wtitlawing to satisfy a blockin§or t operation at the
final step of the query plan. Figure 4(b) illustrates how thplitate elimination procedures can be minimized.
First, we naively force a duplicate elimination after gveperation to produce the correct behavior. Then our
technique detects and removes all redundant procedurdseoking which operations will potentially produce
duplicates. With the last step, we took advantage of ouigdatiplicate collections and manage to remove the
duplicate elimination procedure completely. Details fotibtechniques can be found in [18].

19



3.2 Structural Join Order Selection

Join order selection is among the more important tasks ofsioral query optimizer. Correspondingly, in an
XML database, structural joins predominate. Every patteatch is computed as a sequence of structural joins,
and the order in which these are computed makes a subsifféaénce to the cost of query evaluation. What's
different from the relational engine is that (1) in the comief XML structural relationships can be as selective
as value predicates; and (2) with the help of value indicestha structural join algorithms, structural join
can be evaluated without accessing the original data. Tdrerat is not always a good idea to push selection
predicates all the way down.

We proposed a set of algorithms for selecting the optimal goder for computing a pattern match [25]. The
Dynamic Programming (DP) algorithm is capable of enumegatill possible evaluation plans and estimating
their costs. This guarantees that the DP algorithm cantgbkeoptimal evaluation plan. However, the number of
plans explored can be exponential in the size of the quetgnpaimaking a full dynamic programming solution
prohibitive. The Dynamic Programming with Pruning (DPR)althm explore only the most promising plans
by pruning the costly plan in the early stage of plan enurnr@rat

A less expensive solution can be developed based on thavfoticobservation: by choosing an appropriate
structural join algorithm, the results of a structural joan be output ordered by either of the two nodes involved
in the join. No extra sorting is needed, and no blocking gooreated in the pipeline, if th@rderBynode in
one join is a node involved in the next join. This leads to tinelifig thatany XML pattern matching can be
evaluated with a fully-pipelined evaluation plan to produesults ordered by any node in the pattern tree

Contrary to the common wisdom in RDB query evaluation thafedeep plan usually outperform bushy
plans, the optimal evaluation plan for XML pattern matchoan be a bushy plan. The Fully-Pipelined (FP)
algorithm explores only these index-only plans, left-deegushy, in the join order selection process. Our
experiments showed that not only can the FP algorithm saleety good (close to optimal) evaluation plan, it
is itself also much more efficient than the DP and DPP algmsth

3.3 Result Size Estimation

Query optimization techniques, as presented above, embesen subset of all the possible join plans and picks
the one with the lowest cost to execute. To estimate this easheed an accurate estimate of the cardinality
of the final query result as well as each intermediate resuleéich query plan. Even though the attributes
participating in a join operation in RDB are often assumebldandependent, such assumption usually results
into biased cardinality estimation in the context of XML edio the fact that nodesre correlated, via parent-
child or ancestor-descendant relationships that arealdtuXML data.

The numericstart andend labels associated with each data node in the database deforeeaponding
interval between them. ignoreDescendant nodes have awahtbat is strictly included. Taking thstart
andend pair of values associated with each node that satisfy a gatgiwe constructed a two-dimensional
histogram [23, 24]. Each grid cell in thosition histogranrepresents a range efart position values and a
range ofend position values. The histogram maintains a count of the si@déisfying the predicate that have
start andend position within the specified ranges. Each data node is ntafapa point in this 2D space. Node
Ais an ancestor of node B iff node A is to the left of and abovdeB. Therefore, given the position histograms
of two node predicate, the estimate of the join result of tivs nodes can be computed by looping through
each grid cell in the histogram of one node predicate andtowuthe number of nodes (in the other histogram)
which can have the desired relationship with a node in thdtagil. The estimate can be represented in forms
of a position histogram itself, which makes it possible tineate the result sizes for complex query patterns.

4 Indexing

There is a rich history of work on index structures suited gec¥fic purposes, in particular, the work done
in the context of object-oriented systems, such as [4, I#],raore resent work on structural indices such as
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DataGuide [8] and A(k)-index [13]. More importantly, we drenspiration from the theoretical work that studies
the properties of the XPath language, and found that seifallices for XML should be those that (1) are based
on the partition of XML components which corresponds to thdifion induced by important sub-language of
XPath; (2) label the partition to facilitate lookup; (3) arjze the partitions in a way that facilitates retrieval of
one or more such partitions; (4) support index-only plamafeswering most XPath queries.

On the data side, seeing XML documebt as a node-labeled tree, we formally define it as a 4-tuple
(V,Ed,r,\), with V' the finite set of nodes’d C V x V the set of edges; € V the root, and\: V' — L
a node-labeling function into the set of labéls For a given pair of nodes: andn in an XML documentD
wherem is an ancestor aof, we define its associatdabel-pathto be the unique path betweenandn, denoted
LP(m,n). Given a node: in D, and a numbek, we define the:-label-pathof n, denotedL P(n, k), to be the
label-path of the unique downward path of lengthto » wherel = min{height(n), k}.%.

We use the notion of label-paths to defikgk|-equivalence such that two nodes Ar¢k]-equivalent if the
upward path of lengttk from them are identical. Th&/[k|-partition of an XML documentD is then defined
as the partition induced by this equivalence relation. Miediately follows that each partition clagsin the
N [k]-partition can be associated with a unique label-path, the label-gatheanodes inC, denotedZL P(C).

On the other hand, &-label-pathp in an XML documentD uniquely identifies anV[k]-partition class, which
we denote asV'[k][p]. In [7] we proved that thé\'[k]-partition and theA[k]-partition are the same. Similarly,
we can define th@[k]-equivalentrelation between node pairs and thé]-partition of node pairs in an XML
document induced by tHE[k]-equivalentrelationship.

XPath query language has been studied by many researchibesXHath algebra, as proposed in [9], is
defined as follows:

X Pathalgebra := €|®| l | T |€|>\|E1 <>E2|E1 [EQ”El U EQ(X)|E1 N E2|E1 — Fy

Where E; and E5 are XPath algebra expressions. Toath semanticef the algebra results into a set of node
pairs, while the node semantics produces results in the édmode set. We focused our study on a few sub-
algebras of XPath. Th® algebra consists of the expressions in the XPath algebrowibccurrences of the
set operators, predicate})(or the? primitive. TheDl algebra consists of thE algebra plus predicates. More
importantly, we studied a localized version of these suiglages, e.gD[k] and DU [k], restricting the length
of the path tck.

The patrtition induced by a query languageunder the path-semantics is defined as a partition of nodg pai
whereas two pairs are —eff-equivalent to each other iff for any XML documehtand any query expression
in f € F, the node pairs are either togetherfifD), or together not irf (D) 2.

We proved in [7] that théP[k]-partition is the same as thB[k]-partition of node pairs. In addition, we
proved in [5] that everypl expression can be rewritten into sub-expressiori3[i], with the help of the inverse
(—1) operation, project operation and natural join operatmatitch the results of the sub-expressions together.
Therefore, a proper index based on g ]-partition of an XML document, with a modesgtvalue, having the
index entries featuring thestart, end, level) trio, is sufficient to support index-only evaluation plaor fany
XPath queries. Based on this theoretical result, we dedigmeP[k|-Trie index, which uses the reversed label
path as index key, and organizes the index entries in a tretste. This index (1) has a reasonable size with a
modestk; (2) is balanced, witlk as the upper bound for the length of the search path; and t®rawer queries
of any length and with any arbitrary branching predicateth widex-only plan. Our experiments showed that it
outperformed thed[k]-index by orders of magnitude.

theight(n) denotes the height of nodein D.
ZSimilarly, we can define the partition induced Byunder the node-semantics.
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5 Other Contributions

Space constraints prevent us from describing contribstarihe TIMBER project beyond the core components
discussed above. In this section, we briefly mention someesfd other efforts.

XML holds out the promise of integrating unstructured texthwstructured data. The challenge lies in
developing query mechanisms that can marry the very diffdiR-style queries appropriate for text with the
structured representations of logic used by databasesTKhalgebra [3] was an early effort at bringing these
two together.

Uncertainty in databases has recently become a hot topimertiinty is particularly important in the context
of XML because of the nature of applications where inforgratmay be obtained from sources that are less
uniformly structured, less under our control, and lessabddi. The ProtDB [15] facility in TMBER provides a
natural model to represent probabilistic data in XML, anduery it efficiently.

One limitation of XML is that it requires all data to be orgamd in a strict hierarchy. Often, there isn't a
single logical hierarchical structuring of the data. Foamyples, should publications be organized by year, by
venue, or by author? Each may be more appropriate for someamn scenarios, but XML requires that a
single choice be made.INIBER supports multi-color XML [11], where multiple hierarchiean be established,
in different “color”, on the same data. This multi-color iléy is of particular value in a data warehousing
context.

In addition to the macro benchmarks such as XMark [1], in @igiag an XML database system, we felt
the need for a diagnostic benchmark. Traditional appbecatével benchmarks included too many things in a
single number so that it was hard for us to determine why pmdoce was bad when we found it to be worse
than we expected. We created MBench [20], an engineer’'s Xktichmark, for ourselves. MBench provides
pairs of queries that differ in only one parameter valuerghg providing valuable information regarding what
situations hurt performance.

6 Discussion and Conclusion

The heart of TMBER is its algebra. Having this algebra allowed us to deal witlargd subset of XQuery,
including nesting, joins, grouping, and ordering, whilgla same time enabling optimizations and set based
processing. The heterogeneity of XML makes set-orientedgssing difficult. The semantics of XQuery are
defined in terms of a tuple-at-a-time nested loops structamd this exacerbates the difficulty. ThevBER
family of algebras provide an elegant bridge across thigleiv

Unfortunately, this was not one algebra, but rather a sdgebaas. Since the algebra did not come before the
query language, the algebra had to be extended to keep pdidamguage features and optimizations supported.
This is as if there were SQL before relational algebra. Amhttve were to devise a sequence of algebras, RA,
RA with grouping and aggregation, RA with cube and ROLAP sup@and so on. While this was intellectually
the right thing to do, this has kept one early algebra fronobeog *THE* standard.

Knowing that the heart of our contribution would be at theshi@ level, we consciously chose to focus on
the upper layers of the database system, and use a dataatdine fower layers. We chose to use Shore [6],
because it was such a highly-regarded and widely used a@adgstem. This turned out to be a mistake. For one
thing, Shore was an academic project, and the code base vi@sgsw supported by the time we began to use it.
For another thing, sizes of main memory, and hence of “isterg@” databases had grown substantially between
the time Shore was implemented and the timeBER was implemented. We kept bumping up against Shore
scaling barriers. Finally, a large part of the code in a gfenmanager such as Shore is devoted to transaction
management. This was a feature we ended up never usingiBER. So we had a great deal of additional code
to carry around without using. After several years, we dvattto BerkeleyDB, and that addressed the first two
problems above, but the third still remains.

In spite of the challenges mentioned above, Shore was aisafficrobust engine, and theMBER code on
top written well enough, that we were able to handle gigabize XML documents at a time when commercial
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native XML companies could only do a few megabytes at bestcedihen, there has been significant commercial
activity, and we believe many commercial engines, pawidylthose of relational vendors, will comfortably
handle much larger sizes than this.

TIMBER is written in a multiplicity of languages, most importantty C++ for the query evaluation engine
and in C# for the parser and rule-based query optimizer. We warly adopters of Microsoft’s Visual Studio
.Net. Its cross-language development facilities workedd&rtised for us, with only very minor glitches.

TIMBER code is written in a modular way, and source code is availtiidree download at [21]. We
have had over a 1000 copies ofMBER downloaded. However, we know anecdotally of at least some wh
downloaded the source but were unable to build a workinggabte. We believe we could have had many
more users if only we could have constructed a smaller foutpystem that was easier to build.

Neither TAX nor XQuery supported updates when we starteBER. We did build in some update facilities
later, but these continue to feel like a retrofit. The wealpsuipfor updates once again highlights that transaction
support is unnecessary.

In the document world, people are used to having thousamdtsooiments, each relatively small. When XML
is treated as a database, the entire database becomes ongedbcFor the same total size of data, obtained
as a product of these two, we could have one very large doduonenany small documents, or something in
between. TMBER consciously made an effort to support the former, knowirag this was a challenge for other
native XML systems with a document processing orientatitims allowed TMBER to shine, on the one hand,
but also made comparisons harder.

In terms of a legacy, the stack-based family of algorithnibésone with the most significant impact among
all parts of the TMBER system. Since its introduction, the stack-based strucjmiraalgorithm has inspired a
stream of work on structural join algorithms, query optiatian techniques, indexing techniques, and result-size
estimation techniques for XML. The original paper [2] hageited 474 times according to Google Scholar
to date, and has had dozens of researchers devise improgemen

In conclusion, TMBER was a large systems project run on a shoe-string. The codé evailable and is
still being downloaded. It includes many novel ideas, arwkitainly taught us a great deal about how to build
a database system. However, th&1BER system itself would have had much greater impact and use fasle
found a way to bring it out sooner and smaller.
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Abstract

In this paper, we describe XQuery compilation and rewritéirozation in DB2 pureXML, a hybrid
relational and XML database management system. DB2 purebddlbeen designed to scale to large
collections of XML data. In such a system, effective filgeoh XML documents and efficient execution
of XML navigation are vital for high throughput. Hence theds of rewrite optimization is to consoli-
date navigation constructs as much as possible and to pugihdomparison predicates and navigation
constructs into data access to enable index usage. In tlpsmpae describe the new rewrite transfor-
mations we have implemented specifically for XQuery andaiggational constructs. We also briefly
discuss how some of the existing rewrite transformationgldped for the SQL engine are extended and
adapted for XQuery.

1 Introduction

XML has emerged in the industry as the predominant mechafasmepresenting and exchanging structured
and semi-structured information across the Internet, éetwapplications, and within an intranet. Key benefits
of XML are its vendor and platform independence and its higgilfiility. With the proliferation of XML data,
several XML management systems [7, 10, 17, 5, 4, 6, 12, 11hdvid been developed over the last couple of
years. All major database vendors have released XML exteaso their relational engines, in addition to many
native XML management systems. XQuery [18] and SQL/XML [83 ¢he two industry-standard languages
that are supported by these systems to query XML. Most ofdhent research now focuses on optimization of
XQuery and SQL/XML in these XML management systems.

In this paper, we describe XQuery rewrite optimization witthe context ofDB2 pureXML [4], which is a
hybrid relational and XML database engine that providetvea{ML storage, indexing, navigation and query
processing through both SQL/XML [9] and XQuery [18], usiig XML data type introduced by SQL/XML.
DB2 pureXML stores XML data in columns of relational tables, as instarafethe XQuery data model [19]
in a structured type-annotated tree. By storing binaryesgmtation of type-annotated tre&B2 pureXML
avoids repeated parsing and validation of documemB2 pureXML [4] query evaluation run-time contains
three major components for XML query processing: (1) XML igation engine, (2) XML index run-time and
(3) the XQuery function library. Additionally, several atlonal runtime operators have been extended to deal

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

“DB2 pureXML is a a trademark or registered trademark of lr@@onal Business Machines Corporation.

25



with XML data. The XML navigation engine evaluates path egsions over the native store, by traversing the
parent-child relationships in XML storage. It returns neeerences and atomic values to be further processed
by the query run-time. Unlike other approaches in which yvéPath step is modeled as separate operator
[6, 16, 5], a single navigation operation B2 pureXML can evaluate multiple XPath expressions, consisting
of multiple steps, as a whole. After parsing both SQL/XML aX@Query queries are mapped into a unified
internal representation and optimized by the hybrid quemygiler [4].

An important decision which impacted the whole XQuery cderpilesign is thaDB2 pureXML does not
require all XML documents in an XML column conform to a singlghema, or to a collection of conforming
schemas, and it does not implement static typing. Statimgyfs too restrictive for evolving schemas, as
each document insertion or change in schema may result amy@tation of applications. As a result, XPath
transformations that exploit schema information cannotpglied in DB2 pureXML. Instead, we focus on
rewrites that optimize the general data flow in a complex X®@oe SQL/XML query. In this paper, we describe
those rewrites that we developed for XQuery.

The rest of this paper is organized as follows: In Section €,provide an overview of how XQuery is
modeled inDB2 pureXML, and then in Section 3 we describe rewrite transformatioreldped for XQuery.
Finally, we conclude in Section 4.

2 XQuery Compilation in DB2 pureXML

DB2 pureXML provides a hybrid compiler, supporting both XQuery and SXQML queries. It contains several
modules: two parsers, one for XQuery and one for SQL/XML,abgl semantics module, a rewrite module,
a cost-based optimizer module, and a code-generation moekgcuted in this order. XQuery and SQL/XML
queries are first parsed using their respective parsers.ottpeit of the parsers is a unified internal represen-
tation, i.e. the QGM (Query Graph Model) graph. The rest efphocessing is common for both languages.
The rewrite module contains a rule-based transformatiginen15], as well as several transformations that
are applied before or after the rule-based engine. It appligebraic transformation to the QGM graph. The
cost-based optimizer translates the final QGM produced éydhrite module into query execution plans and
choses the optimal one. The focus of this paper is the remritgule. But, in this section, we will start with an
overview of basic QGM[15] and its extensions to XQuery, 38egy to understand the rewrites.

In its simplest form, a QGM graph consists of operations @spcand quantifiers (arcs) which represent
the data flow between operations. QGM supports arbitrarg taperations, where the inputs and outputs are
tables. Examples of operations include SELECT, GROUP BYS@M and etc. The SELECT operation node in
QGM roughly represents a SPJ query block and handles tastr{selection), projection, as well as joins. Each
operation consumes a set of input columns through its inpantfiers, and produces a set of output columns.
Quantifiers range over operation nodes or base tables, andtha input columns. There are two types of
quantifiers:ForEachand Any/All. The expression within an operation node is applied to eagle input by a
ForEachquantifier. Any/All quantifiers are used to express universally (or existéyitiqualified predicates.

XQuery [18] includes similar constructs to iterate over Xgkquences, apply predicates and sort data. We
exploit many existing features of QGM to model these XQueattires and introduce new entities to represent
and manipulate XPath expressions and XML sequences. Inaetiee result of every XQuery expression is a
sequence of items. Since XQuery sequences, i.e. XQDM (4Q@isa model) [19] is represented as a column in
DB2 pureXML, any sub QGM-graph that is created to represent a specifielQ@xpression produces a table
with a single row and a single column of type XML. FLWOR and wafifted expressions define new variables
that are in scope within their respective expressions. &p keack of these variable scopes, we model FLWOR
and quantified expressions as scalar sub-queries, witicéXpGM operation nodes defining the query blocks.
The rest of the XQuery expressions that we support are remied as scalar functions; they either have run-time
counterparts that implement them, or they are expandediettnled QGM operations later in the compiler.
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Some XQuery expressions consume a sequence as a whole gdudkteons), while others require iterating
through the items in a sequence. We need to model theseetliffarays of how XML data is flown into various
XQuery expressions. For XQuery, we have introduced two nemskof ForEach quantifiers, FORandLET.

A LET quantifier aggregates the output of an operation nottedn XML sequence, whereas a FOR quantifier
unnests XML sequences output by an operation node andesemater every single item. For example, if
an operation node produces a table with two rows contaifing, c} and {d, e}, then the output of a LET
quantifier is a single row that contains all items, e, b, ¢, d, e}, whereas the output of a FOR quantifier is a
table with five rows, each row containing a single item.

2.1 Representation of XPath Expressions

XPath [18] expressions consist of a series of steps, whafe gi@p either expresses navigation, or contains
another XQuery expression, such as an XQuery built-in fancta FLWOR or a quantified expression, or a
node constructor. The focus of earlier research has beefffiore® representation and execution of XPath
expressions, which contain only navigational steps. Mystiesns [16, 5, 6, 17, 14, 11, 7], represent and execute
each step separately as selections. In other words, thayatine [20] XPath expressions into explicit FLWOR
blocks, where iteration between steps and within predicestexpressed explicitly. Some provide indexes for
efficient access to individual nodes. But, they all requirectural joins [2] to establish parent-child (or ancestor
descendant) relationships.

In DB2 pureXML, we support XPath expressions, with its full generality ahow any XQuery expression
in an XPath step or predicate. In general, we do not normIR&th expressions, except in some certain cases.
Instead, we represent XPath expressions, which may comtaity steps and branches, as a pattern tree which
computes a single variable binding. As the XML navigatiogiea of DB2 pureXML holistically computes an
XPath expression, we do not need to model each step sepaanatkive do not need structural joins to combine
the results. Later, rewrites combine multiple XPath exgimess into a single pattern tree, which computes
multiple variable bindings.

We introduce a new operation, namely tBepBox to represent XML navigation. An ExpBox contains an
annotated pattern tree, and produces tuples of XQDM bisdiAgpattern tree is a tree representation of many
co-mingled XPath expressions. A pattern tree node repiesenXPath step and has three or more positional
children. The first child of a pattern tree node represerdsattis, the second one is either a name, a kind, or
a wildcard test "*", and the third child represents the pcatit. The rest of the children of a pattern tree node
represents the next steps, and are other pattern tree rRatésn tree nodes are annotated with flags to capture
various properties. ThisExtractionflag is set tdrue, if the pattern tree node computes a variable binding that
needs to be extracted and returned to the run-time engirfartber processing. ThisFor flag is set tarue if
the pattern tree node represents the last step of a FOR findimpattern tree node can be marked as a FOR
even if it does not represent an extracted variable bindipen XPath expressions are merged to eliminate
unnecessary extractions, we need to remember the lastfstep@R binding so that navigation run-time can
apply the correct duplicate elimination and document ordegs. TheEmptyOnEmptylag signals when an
empty sequence needs to be created if there is no qualifyidg.n

2.2 Representation of FLWOR Expressions

The FOR and LET bindings in a FLWOR expression produce a stpgam, which is then filtered by téhere
clause, and thesturn clause is invoked for each surviving tuple. We model the FLRV&Xpression by using
two SELECT operations. The lower one computes the FOR andhiBdings and applies thehere clause
predicates. We create a sub-graph for each binding anceceéher a FOR or a LET quantifier over it. These
FOR and LET quantifiers, which provide the tuple stream astitpthe lower SELECT node, reflect the join
semantics of the FLWOR expression. Its output is fed to asrdBfELECT operation, which is used to model the
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return clause and therder by clause, if present. Later in query rewrites these two sélexeés may be merged
depending on the properties of the expressions imtHer-by andreturn clauses.

3 XML Rewrites

The rule-based rewrite engine of DB2 provides several teviransformations for relational data [15]. Some
of these rewrites are also applicable to XQuery, as theyropdi the data flow in QGM by minimizing the
number of operations and the length of the data flow, and b@th &d XQuery are modeled with QGM. For
example, there is a rewrite which merges SELECT operatiolesi0T his rewrite is extended to deal with the new
guantifier types, which are introduced for XQuery. This tigsvenables unfolding of nested FLWOR blocks,
and minimizes the QGM graph significantly. There are otherites which would not be applicable and those
are blocked for XQuery operations.

In this section, we focus on the new set of rewrite transfeiona introduced for XQuery, namely rewrites
for optimizing XPath expressions and the new LET and FOR tfiens. The main goal of these new rewrites
is to consolidate XPath expressions into the least numbeaxifjation operation nodes possible, as well as to
bring comparisons into XPath expressions and close to bhe é&cess to enable XML index usage.

DB2 pureXML supports value indexes defined by XPath expressions. Thds&ds are used to answer
XPath expressions which contain value or general compasis®B2 pureXML employs XML indexes to
eliminate documents that do not satisfy XPath predicated,uges XPath query containment algorithms of [3]
to decide whether an index is eligible.

Most of the new rewrites work as part of the rule-based endinewe also provide some transformations
that are outside. If the transformation can fire multipleggnand interacts with other rewrites to enable them or
is enabled by them, we implement it as part of the rule-basgthe. Otherwise, it is implemented as a one-time
only transformation. The rewrites that are part of the hased engine work on one aspect, such as a quantifier
or an operation node, of the QGM graph at a time and colldgtsienplify the QGM graph.

In addition to these rewrites, we also provide a separatebated transformation engine just for XPath
expressions. The transformations in this set work on asiKflath expression, usually one XPath step at a time.
These transformations include rules that normalize XPaghessions by eliminating parent axes, converting
multiple predicates on a step into a conjunction when péssitimong others.

Note thatDB2 pure XML does not support static typing, but type information is imig@at in query optimiza-
tion. Type information can be derived from two places: frdr@a KML schema against which the document has
been validated, and from the signatures of the applied ifumeand operators. For example, fn:count() function
always returns a single integer, and fn:data() functioragiwgenerates an atomic type. We use the return data
types of functions and operators, as well as literals, teritiie data type of an operation. We exploit type
information both in index matching, as well as in some rexgritFor example, the FOR2REG rewrite, which is
explained below, will fire if the data type of the XML columnassingleton.

In the following, we describe the general conditions undaictv the rewrites will fire. The actual rules
contain more details, which we omit here due to space liroitat

3.1 LET and FOR Quantifier Rewrites

As discussed earlier, a LET quantifier requires aggregdtiagesults of the operation node it ranges over, so it
is translated into a group-by operation, and it is blockiAg=OR quantifier, on the other hand, needs to iterate
over the results of the operation node it ranges over, asdrianslated into an UNNEST operation. It desirable
to eliminate both kinds of operations, if possible. We pdeviewrites which tries to convert a LET quantifier
into a FOR and a FOR quantifier into a regular (REG) quantifike first condition we check for both rewrite
is that the operation node that the quantifier ranges oveatia nommon subexpression.
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In its simplest form, we can convert a FOR quantifier into a Ri@ntifier if we can prove that the oper-
ation node it ranges over produces one singleton sequercerove this property, we may have to trace the
computation back several operations. Converting a LET tifimminto a FOR is more involved and requires
more properties to be proved. We check separate conditependliing on the operation node the LET quantifier
ranges over. Ifitis a SELECT operation, then we check whdttere is a subsequent FOR or a LET quantifier
that obliterates this LET step, ensuring that there is noaijomn in between that requires to consume the output
of the LET quantifier as a single sequence. If the operatiaten® an ExpBox, i.e. an XPath expression, then
we need to prove that this XPath expressiomfut independent We say that an XPath expressioningut
independenif its context sequence contains distinct nodes, and theemgpointed to by the nodes in the con-
text sequence do not overlap. This will be true when the com@umn is a base table column, or the XPath
expression consists of only navigational steps, and doesoméain any descendant axis or positional predicates.

3.2 XPath Merging

There are two forms of XPath merging: one rewrite transfadionawhich is part of the rule-based engine, and
another one that is applied after all rewrites. The first oreges two XPath expressiongyath, andxpaths,

if 1-) zpath, computes the context afpaths, 2-) there is no predicate on the first step, i.e. the context, s
of xpaths, 3-) the output ofrpath; is only used inxpaths as the context, and 449path; and xpathy are
compatible in their distinctness properties. When we méhgse two XPath expressions, we create a new
ExpBox containing the XPath expression that is the conaditem of xpath, andxpatho, without its context
step, and we mark the quantifier ranging over this new node santhe quantifier ranging ovepath,. Note
that if zpath, is a FOR binding, then we need to be careful to produce thecoset of results. For example,
supposerpath, is a FOR binding and produces $i &$oc//customer andzpaths is a LET binding given by
$i/accountld. If the document has multiple customers, the final outputikhbe a set of account id’s for each
customer. When we merge the two XPath expressionsS$iito,//customer /accountId and mark the final
output as a LET binding, we also mark the intermediatetomer step as a FOR step, so that our navigation
run-time produces the correct output.

The second transformation takes as input the resulting QfEv all the rewrites have been applied. It first
computes a dependency graph among the XPath expressiompianablock, i.e. a SELECT operation node.
Next, the algorithm partitions the set of XPath expressigitkin the same query block that are over the same
document into clusters, by taking into account the intéoastwith other operations in the query so as not to
sacrifice an optimal execution plan. Finally, it merges thadh expression within the same cluster, as long as
the resulting dependency graph is acyclic. This transfiomgroduces expressions which compute multiple
bindings. The details of this rewrite can be found in [1].

3.3 Resetting EmptyOnEmpty Flag

A let-clause binds its variable to the result of the assedi@xpression, even when the result of the expression
is an empty sequence. As all values of the LET bindings nebd teturned, we cannot use an XML index to
compute the expression in a LET binding, unless we can prexaio properties. We introduce a new quantifier
flag, calledEmptyOnEmptywhich signals that the quantifier needs to produce an engoyence, even if the
operation node it ranges over produces no results. When stg@éirse an XQuery expression, we create a LET
quantifier over all XQuery expressions, and over LET bindjrgecause all XQuery expressions have implied
LET semantics [18]. Later, we provide a rewrite transfoiioratvhich tries to reset this flag, enabling both index
usage and several other rewrites, most notably the one #rgies SELECT boxes.

In general, we can reset tBenptyOnEmptflag when there is where clause predicate which eliminates the
empty sequence, and there are no other consumers of thatibfifidgp Moreover, there are two other XQuery
operations which discard the empty sequences, iteratach, & FOR clauses, and sequence concatenation. If
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we prove that the empty sequence is to be discarded later @todone of these operations, we can reset the
EmptyOnEmptflag.

3.4 Local Predicate Pushdown into XPath Expressions

Similar to pushing down selections in a relational query,pr@vide a rewrite which tries to push dovarcal
predicates into base column accessing XPath expressiditteit@ut unqualified data as early as possible. We
consider a predicate to becal, if it accesses only one document. Moreover, an XPath suéd@g cid can
also be considered as a local predicate by converting itfidée|cid], and can be pushed down to its context
XPath. We call thisXPath pushdown

3.4.1 XPath Pushdown

XPath itself can be considered as a local predicate, asatauigsteps are also existential tests. A set of rewrite
rules together implement XPath push down. This set mairdjudes (1) rules to push down XPath through
operations such as SELECT and UNION, base tables, and XMheazleconstruction, and (XZPIMPLY rule,
which converts XPath into a local predicate.

An XPath can be pushed down if the following conditions hdlg: The XPath expression consists of only
navigational steps, and does not have any steps contaimetjdns, such asdoc/a/fn : concat(b, c)/d. Note
that functions in predicates do not block this rewrite. ZRefie are no common subexpressions along the path
where the XPath expression will be pushed down. 3-) The X@agthession isnput independent4-) The target
operation node does not have any sorting requirements.

During push down, each rule pushes down the XPath expretigiongh one operation node at a time. The
rule engine remembers the current pushable position anésrakew copy of the pushable XPath expression.
It then recursively calls the next rewrite to further pusilwddhe XPath expression. This way we try to reach to
the base table level, where we can enable index matchinge thacule engine locates the operation node where
the XPath expression cannot be pushed down any fuXt®dMPLY rule fires and converts an XPath expression
of the form$d/steps into $d|[steps], provided that there is no other consumer for this XPathesgion.

3.4.2 Local Predicate Pushdown

This rewrites pushes downvehere clause predicate into an XPath expression. Consider tlenfiolg query:
Query I: for $cin db2 — fn : xmlcolumn("T2.DOC”) /¢, $a in $c/a where $c¢/d = 5 return $c.

The predicatésc/d = 5 in this query can be pushed down into the first XPath expressiod rewritten as:
Query II: for $cin db2 — fn : amlcolumn(®T2.DOC”)/cld = 5], $a in $¢/a return $e.

In general, avhere clause predicate can be pushed down into the context XPatlession if: 1-) Itis a
local predicate, containing general and value comparisons,embed with conjunction and/or disjunction, 2-) It
is not a predicate on an aggregation result, and 3-) ThettXigath expression is a FOR binding. This rewrite
does not work only in a single query block. Instead, when wat® such a candidate predicate, we disconnect it
from its current SELECT operation node, and try to push itiles many query blocks as possible. This rewrite
helps consolidate XPath expressions, and may enable rgesgiiurther XPath expressions. For example, for
Query ll, XPath merging rule will fire at some point, and merge the twa¥h expressions, consolidating the
whole query into a single XPath expression.

3.5 Join Pull up (Simple Decorrelation)

ConsiderQuery Ibelow, which contains an XPath expression with a correlaseible, expressing a join. There
are several problems with this query: 1-) The join order isdidue to the correlation, 2-) Only nested-loop join
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method can be used, and 3-) Only an index on T1 can be usedngivtb@x on T2 cannot be exploited, because
the XPath expression on T2 needs to be executed first.

Query II:
Query I for $i in db2-fn:xmlcolumn("T2.DOC")/c,
for $i in db2-fn:xmlcolumn("T2.DOC")/c, $j in db2-fn:xmlcolumn("T1.DOC")/a
$j in db2-fn:xmlcolumn("T1.DOC”)/a[b=$i/d] where $j/b=%i/d
return $j return $j

To address these problems, we provide a rewrite, c@iadoull up, which pulls up join conditions embed-
ded in XPath expressions into timere clause, decorrelating the query. For exam@aery Iwill be converted
into Query II. This enables the optimizer to consider using both join k&dall join methods, as well as both
indexes on T1 and T2. In general, a join predicate can begufevhen all of the following conditions hold: 1-)
The quantifier ranging over the ExpBox containing the joiedicate, is either a FOR guantifier, or a LET quan-
tifier, which does not have tHemptyOnEmptylag set and which is not consumed anywhere else. 2-) The join
predicate is either a general or a value comparison. 3-Xtigidast predicate of a predicate sequence. 4-) Itis a
predicate, which maybe connected by a conjunction. Giveredigate of formep[prd1 AN D(prd20 Rprd3)),
only prd1 is considered for pull up.

3.6 Query Decorrelation Rewrites

A correlation is a reference to a variable that has been akiima previous or enclosing query block. Correlated
subqueries are quite common in XQuery. For example, mosiping queries in XQuery are expressed using
correlation. Although this a natural way of writing querigsprovides several performance bottlenecks: It
severely limits the optimizer choices, because the cdioelamposes a partial join order, and only a nested-
loop join method can be used. Moreover, in a parallel enwremnt correlation creates a synchronization point,
and becomes a bottleneck in the data flow.

As we discussed earlieDB2 pureXML query compiler already employs a variety of simplifying reev
transformations, which may decorrelate some of the simpbes, such as join-pull up rewrite. However, only
the magic decorrelation rewrite [13] addresses the mostrgeéproblem. The magic decorrelation algorithm is
closely entwined with the magic sets rewrite [8]. For corieane, we highlight the aspects of these rewrites
that need to be revisited for XML processing.

When magic processing a subquery that contains the cooreladriable, we generate a magic operation
node as a SELECT DISTINCT operation, joining all the eligiljuantifiers. Eligible predicates are pushed to
form a semi join under an adornment node, effectively filtgithe data stream. The adornments consists of the
set of conditioned, bound, and free variables which areraéted by the pushed predicates. Simply put, the
magic sets rewrite generalizes local predicate pushdoyoirigredicates. Enforcing distinctness in the magic
node is important so that we do not increase the total cdityinMagic decorrelation rewrite [13] extends the
magic sets to correlations. In this case, the magic node thtis-be-decorrelated columns.

The main challenge in decorrelating an XML-typed varialefierence is enforcing distinctness in the magic
node. There are different ways in which XML data can be coeghaOne natural way is to employ the :
data() function to retrieve a comparable value. However, this epgn can be costly since we potentially
deal with large XML-structures. Another way is to use nods (dhich are comparable) to perform equality
comparisons and GROUP BY operations. However, XML type cartain both nodes and atomic values, which
do not have id’s. If we can prove that the XML type only contaitodes, we can use the id-based approach.
But, in the general case a better solution is to ensure thaiowemt have to enforce distinctness. We can achieve
this by adding keys to the magic node and to the list of to-esdelated columns during decorrelation. We can
obtain keys from descendant nodes as follows: For basestaepull up any key defined on the table. If no
such key exists, we can use the record identifiers of the lah$est For a node which enforces distinctness, we
can pull up all of its output columns. For any join node, we pah up keys from every join operand. If we can
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determine and add such keys, then we do not have to enfortgectliess on the magic node, and we do not add
any GROUP BY columns or equality predicates using any XMpety columns. Naturally, we cannot always
determine such keys. However, we observed that this appisdietter-suited and more flexible for a majority
of queries.

4 Conclusion

In this paper, we described XQuery compilation and algelbmivrite optimization within the context dB2
pureXML, a hybrid relational and XML database engine. We focusedewrnites whose main goal was to
consolidate the XPath expressions in the query into the leamber of possible navigation operations and
enable index usage. We provide other rewrites, which ardateto simplify the QGM graphs generated for
XQuery and SQL/XML, in addition to the rewrites we descriliete. We omit those due to space limitations.
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Abstract

Since the birth of XML, the processing of XML query langudgesXQuery/XQueryP has been widely
researched in the academic and industrial communities. tMbghe approaches consider XQuery as
a declarative query language similar to SQL, for which tregator-based (stream-based), lazy evalua-
tion processing strategy can be applied. The processingrnsbined with XML indexing, materialized
view, XML view query rewrite over source data. An alterratapproach views XQuery as a proce-
dural programming language associated with eager, stegetlaevaluation, where each expression is
fully evaluated by the end of the corresponding expresskecigion step. Usually, this approach uses
a virtual machine running byte-code for compiled progransthis paper, we share our experience of
building a unified XQuery engine for the Oracle XML DB intdgrg both approaches. The key con-
tribution of our approach is that the unified XQuery processtegrates both declarative and imperati
ve XQuery/XQueryP processing paradigms. Furthermoreptbeessor is designed with a clean sepa-
ration between the logical XML data model and the physicptesentation so that it can be optimized
with various physical XML storages and data index and viewle We also discuss the challenges in
our approach and our overall vision of the evolution of XQu&QueryP processors.

1 Introduction

The original XQuery is more SQL-like declarative query laages and this is why XQuery is initially adopted as
a language for querying persistent XML data in database@mvients. The latest XQuery extensions - XQuery
Update Facility and especially XQueryP [2, 15] pushes thauX® evolution far beyond what the original
goal is. Currently, XQuery/XQUpdate/XQueryP is capablaaf only for querying but also for transforming,
updating and manipulating both persistent and transient. Xista in variety of environments. This means that
there is no need to embed XQuery with a host procedural pmugiag languages, such as Java/C to build large
scale XML applications.

Similar to that of SQL/PSM or Oracle PL/SQL, XQueryP comBindybrid imperative-declarative process-
ing paradigm with a single XML data model. This way, usersesadeclarative query constructs to do 'finding
the needles in the haystack’ type of data search efficiegthgderaging index built over large volume of XML
data collections. Meanwhile users can use imperative progring constructs in order to do data transformation
operations efficiently leveraging classical imperativegiaage processing paradigms. Therefore, the design of
XQuery/XQueryP processors needs to embrace both SQL ligard¢ive language processing paradigm and
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Java/C like imperative language processing paradigm. i$hiee primarily design philosophy that we follow to
build an integrated XQuery/XQueryP processor in Oracle.

Furthermore, we take into account XML shapes and charatteri the XML data can have different phys-
ical representations: persistent XML data with differaiorage, index and materialized views, XML view over
relational data, transient based XML data stream, in merkdtl, DOM tree structures, stream of SAX events.
Therefore, we don't want to design an XQuery/XQueryP prsgeshat is hardwired to a limited number of
physical XML representation forms. Instead, our secondjdgzsaradigm is to keep a clean separation between
program logic and XML representation so we can apply both Xhresentation independent and XML rep-
resentation dependent optimizations on an XQuery progfdns. is similar to that of the well known compiler
design principle that separates target independent aget @ependent optimization.

2 Oracle XQuery/XQueryP Product and Requirement Overview

Riding with the XML/XQuery technology wave, Oracle XMLDB][8upports XML, XQuery/XPath/XSLT and
SQL/XML [1] processing in Oracle DBMS database server. Iditioh, Oracle also supports XDK package,
where XQuery/XSLT processors can be used embedded asdibtarbuild standalone application independent
of database server.

The XML processing in Oracle XML DB is based on the XMLTypeatgpe, which is the native datatype in
SQL/XML. XQuery can be invoked directly or embedded in SQMIXto query, update both persistently stored
XML documents in tables and XML views over relational dataenc® XML in general is falling into data centric
XML and document centric XML category, therefore, there agsame-size-fit-all XML storage/index solution.
So Oracle XMLDB supports object relational storage for dagatric XML [5], binary XML with XMLIndex
for document centric XML [3]. For users who truly want textdiiy, storing XML as CLOB is also available.

Beyond the physical representation for XML storage itdbifre are also use cases where XML content is
generated dynamically using XQuery to define query XML viewsr relational data, for example, generation of
hierarchical based XML reports over relational data, or R&@ generation from relational data. Furthermore,
the SQL/XML standard integrates both XQuery and SQL togefitethat users can have a dual XML and
relational view of the underlying data. That duality allousng XQuery to query relational data and using SQL
to query XML by leveraging XMLTable construct in SQL/XML. Sbe requirements of XQuery processing in
Oracle XMLDB are to build a tightly integrated XQuery and Sétgine that can optimize queries over a variety
of physical XML storage and view representations while tegeng different indexes and materialized views.
To facilitate this, the Oracle XMLDB XQuery processor cofapiXQuery and SQL into the same underlying
iterator based query execution plans [18] so that the stte@sad lazy evaluation model is fully shared and
queries are globally optimized across all storage forms [6]

The requirement of XQuery/XQueryP processor, which werrageXVM (XQuery Virtual Machine) [7], in
XDK is expected to work standalone without any prior knowgedf physical XML representation forms. It
uses XQDOM API, which is DOM API extended with PSVI and XQDNhstructs as logical API to manipulate
XML. The implementation of the API can be efficient and sckdatepending on the physical XML representa-
tion without materializing a DOM in memory object. Users alde to do full-blown XML programming with
intensive procedural logics, for example, extensive usdgéQuery modules, user defined XQuery functions,
variable assignments, procedural loops etc. When XVM isexfded into Oracle XMLDB database server, it
compiles database stored XQuery modules, user defineddnacaind XQueryP sequential expressions (aka
statements) into machine independent byte-code and g®adirtual machine environment to execute it. Pure
query expressions are 'pushed down’ to the DB XQuery pracdsse executed by leveraging database index,
materialized views and various join strategies (hash joierge join in addition to nested loop join) and parallel
guery processing capability from the DB iterator enginee Toushed down’ expression results are fetched by
XVM in a form of an iterator data object.
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3 DB-based lterator XQuery Processing

3.1 XML Extended Relational Algebra (XERA)

Although in principal, an iterator based XQuery engine carbbilt from scratch in the Oracle database server,
it is actually much more effective to leverage the matureatte based SQL engine [18] in Oracle database
server. This allows us to handle not only pure XQuery but &lgorid SQL/XML query and to do cross-
language optimizations between SQL and XQuery handlingghly XML data and index stored relationally
[4, 6]. Furthermore, it is important for the XQuery/XQuerpRocessor to leverage existing SQL compilation
and execution infrastructure instead of re-inventing theel again. Note, however, we are NOT translating
XQuery to SQL, instead, we compile XQuery and SQL into the esamderlying compile-time structures and
build iterator based execution plan. The challenge is thatet is semantic difference between XQuery and
SQL so that we need to bridge the semantic gap between theatwodges by leveraging SQL extensibilit y
framework [8] to derive XML Extended Relational Algebra (RB) [4]. The key points to support XERA in
Oracle database server are described below.

¢ Add XMLType that models XQuery Data Model (XQDM) as new natilatatype in SQL.
e Add new SQL table function that can iterate each XQDM item ande as native SQL iterator.
e Add XQuery type in XQDM run time data so that dynamic type ¢feg is feasible.

e Add XQDM manipulation operators that support XQuery camsts and XQuery Functions and Operators
as native XQSQL operators. These XQSQL operators can beitexkieratively under the SQL table
function iterator.

e Add new XQDM based user defined aggregates to support aggriegetions over XQDM.

e Define various algebra rules among these new XQSQL operaiggsegators and table functions with ex-
isting SQL operators and aggregators so that they can bleralgally optimized when they are composed
together.

3.2 Physical XML storage/index independent optimization

The key XML physical storage/index/view independent opation is described below:

e We do static type analysis of XQuery to eliminate as much oyodype checking as possible and compile
expensive type polymorphic operators into efficient comfiine type determined operators as much as
we can.

e Similar to that of SQL view merge [9], we merge nested FLWORression in for clauses to its parent
FLWOR clause.

e Similar to that of SQL EXISTS/NOT-EXISTS subquery un-negtito semi-join and anti-join [10], we
merge existence and not-existence check based XQueryssigmento semi-join and anti-join.

e We perform operator normalization, cancellation and rédandbased on algebra rules [11, 6]. This is
particularly important to cancel XQDM aggregation withtaéble function iteration.
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3.3 Physical XML storage/index dependent optimization

As XPath traversal is typically the unit of optimization rfnophysical XML layer, we add XQSQL XQPath()
operator that processes a sequence of XPath steps [4]. Forwit¥ object relational storage or XML view
over relational data, the XQPath() operator is rewritten jpins of the underlying relational tables [11]. For
binary XML with XMLIndex, the XQPath() operator is rewritieinto path index lookup which becomes the
self-joins of the XMLIndex path tables [4]. For binary or CBOXML storage without XMLIndex, XQPath()
can be executed iteratively using XPath ierator. This fewaind optimization process can be carried inside
out through nested SQL query blocks with view merge, subyquarnesting and operator algebraic reduction
[11] (constructor and destructor simplification) and proskinative query over the underlying XML storage and
index relational tables so that efficient physical join anoug processi ng and parallel execution strategies can
be explored extensively.

Beyond path traversal leveraging index usage, in genekgh\M based approach of matching XML index or
materialized view pattern shall be followed [13]. One of toenmon XAM patterns is the XPath with branching
predicate twig pattern, which we call mater-detail twigteat, that is commonly used in practices observed
from our customer XML usecases. We index such pattern viXMETable based structured XMLIndex [12].
Such master-detail twig pattern is evaluated by probingdtational tables constructed by the XMLTable based
structured XMLIndex.

4 VM-based procedural XQuery & XQueryP Processing

Contrary to the iterator-based stream evaluation of XQuU&WM treats XQuery and XQueryP as general pro-
gramming languages. XVM compiler (XCompiler) compiles X&puexpressions into a set of RISC style virtual
machine byte-code instructions that compute the resul ekaression from each of the sub-expressions in bot-
tom up fashion with the help of stack where the results frofm-expressions are pushed and operands are
popped. During run time, a virtual machine environment &ated to run the byte code.

4.1 XVM Instructions
XVM instructions are classified into the following groupsskd on their tasks:
e XPath stepinstructions
Execution of these instructions calls the proper node @éig methods in the XQDOM interface.

e XML node construction instructions

Execution of these instructions calls the proper node cocisbn methods in the XQDOM interface.

e Arithmetic and Comparison instructions

By default, these instructions are type polymorphic, tisatthey do arithmetic and comparison based
on the type of the operands. However, the XCompiler can gémeron-polymorphic instructions when
XCompiler can determine the types of these operands via $ggae analysis.

e Data transfer (load, store, push, pop)nstructions
These instructions move XVM sequence objects between XV arad context stacks.

e Type checking and type conversionnstructions
These instructions implements XQuery run time type chegkimd value casting.
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e Control transfer (branch and loop) instructions
These instructions move XVM sequence objects between XV arad context stacks.

e Function call instruction

These instructions call XQuery functions. Both built-in X€y functions and operators and user-defined
functions are invoked this way.

e |terator-executer-function-call CISC instruction

This instruction pushes down XQuery expression to be etediuay iterator-based XQuery processor.

4.2 XVM Execution Model

The XVM execution architecture is quite simple. There ista§&inctions, one for each instruction, implement-
ing the instruction semantics. The XVM main loop moves trarurction pointer over byte-code instructions
and calls the corresponding function. The default insipacpointer step is one instruction. Only instructions
like 'branch’ or 'call’ can change the instruction pointescarding to their operand values. Each instruction
takes its operands from the VM-stack and pushes back thi.régiuen a function is called is activated, the cor-
responding function stack frame is pushed into the XVMistathe frame contains the return address, current
stack pointers, current node, a descriptor address plaséified) slots for parameters and local variables.

To avoid as much dynamic memory allocation as possible, Xshé$ advantage of the nature of stack based
expression computing. XVM models XQuery data model itemdeata objects on the pre-allocated stack. (The
stack can grow during run time by dynamically allocatingcktasegments, however, the frequency of dynamic
memory allocations is significantly reduced). One spedial bf the XVM data is the iterator data object, which
delivers the data through an iterator interface. Anothecig kind of data object is the XML node-set object that
stores the XML node references. Although XVM uses the XMLaoeference to perform XQDOM operations,
the content of the XML node reference and the implementaifoQDOM interface is completely opaque to
XVM. This allows XVM to work with different physical XML forns. When XVM runs inside Oracle database
server, there are various optimizations, such as scalabl@ageable DOM implementations, to implement the
XQDOM interface.

4.3 XQuery Module Handling

XVM supports both static and dynamic linking of XQuery maghil For small size XQuery applications, XVM
compiles all modules with the main query body and generate camposite executable byte-code module.
However, for large-scale XQuery applications that invdilsearies of modules, a dynamic linking mode is used.
In this mode, all XQuery modules are compiled separatelythenl byte-code has header containing tables for
imported and exported entities like top-level functionariables etc. All external references are resolved by
name and module id, quite like references in Java classegnltime, when XVM executes an instruction that
refers to unresolved imported entity, it checks if the cgpmnding module is loaded. If the module is not loaded,
the XVM loads it and allocates a table for the module exteratdrences. As it was said earlier, the external
references are resolved lazily on demand.

5 Integrated Iterator & procedural Processing

5.1 Rationale of integration

There is a trade-off between processing iterator baseddealyation model versus procedural oriented eager
evaluation model. The lazy evaluation model scales withelatata size but does not scale with large program
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size because the iterator execution tree with all of itssmegliate computational states have to be maintained.
The eager evaluation strategy scales with large prograenbsiznot with large data size because intermediate
results have to be materialized. Both of which, however,lmmaintained and overflowed to disk if necessary.
Eager evaluation strategy is more efficient than lazy et@oavhen all intermediate results are needed to deter-
mine an answer. However, eager evaluation strategy is gtitnal if only partial results are needed. Therefore,
this results in our unique design principles of combininghbeager and lazy strategies to compile and execute
XQuery in Oracle XML database server.

5.2 XQuery Expression Push Down

XCompiler compiles sequential XQuery expressions into@RIiBe XVM instructions, whose execution se-
guence behaves as classical programming languages witératea finishes its step execution, computes the
result and applies changes before executing the next oneevén, for non-sequential XQuery expressions, the
XCompiler is also able to compile them into an iterator baSESIC type of instruction that is associated with an
iterator query plan which can then be serialized as partefiiita segments of the byte code. When XCompiler
is invoked in the Oracle database server to process XQué&wgmgiler invokes DB-based XQuery compiler to
decide if any non-sequential XQuery expression fragmeamsbe optimized and executed efficiently consider-
ing the physical characteristics of the input XML. As disse in section 3, the DB-based XQuery processor is
able to compile XQuery into XERA and then optimize it basedranphysical XML storage and index forms to
generate iterato r-based query execution plan.

During XVM execution time, execution of the iteraor-basd&C instruction by XVM first de-serializes the
guery execution plan that is prepared by the DB-XQuery ctanfiiom byte code data segment, then executes
the query plan by calling DB-XQuery executor. As discussedaction 3, the DB XQuery executor is an
integrated XQuery-SQL processor that uses index and stezxaination to efficiently execute the query plan
with large XML data sizes. The result of the DB XQuery execugcstored in XVM iterator data object and is
consumed by XVM in an iterator fashion.

Therefore, the overall integrated XQuery and XQueryP eti@sumodel is that the XVM drives the execu-
tion of a sequence of sequential XQuery expressions. Eagleatial expression, like an imperative statement,
may change the execution environment and cause visible#gls, for example, changing the persistent XML
or changing the value of global or local variables. Whenus#tithg each sequential expression, different query
fragments of the expression can be pushed down to a DB-baQegbr¥ processor that evaluates the query
fragment efficiently by using index, parallel query procegdechnique that DB-based XQuery processing is
specially designed for.

One of the key aspects of XQuery expression pushing downnmsate data search and operation as close to
that of the data source as possible so that index search emetand algebraic based constructor and destructor
optimization can be applied. However, data search and bpenaay be separated from the data source access
due to the presence of XQuery user defined functions or XQuaigble accesses. Therefore, inlining XQuery
user defined function and variable access so that data apecan be optimized with its input data source is
critical. However, not every user defined function is inlibke semantically. Furthermore, inlining user defined
function call may not always be optimal. Therefore, the X@der analyzes the XQuery expressions to see if
the inling may produce an optimal plan heustically. It doatadlow analysis by starting with the XML input
data source expressions and to see if inlining inlineabtetfans which consume the result of the XML i nput
data source expressions can produce an optimal plan. Siagehysical XML input data source information
is maintained by the Oracle database server, so for each @upression with inlined functions, XCompiler
actually invokes DB XQuery compiler to see if the inling idexto produce optimal query plans. Ifitis, then the
inline decision is made so that XQuery expression is pusheaddo the DB XQuery processor for evaluation
during run time.

Another optimization resulting from function inlining ibdt a function taking generic parameter type, such
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as item()* , its body can be optimized when more precisedraagi type is available during function inline
time. This is generally known as function specializationd gartial evaluation technique [14]. When a generic
function body expression is cloned and substituted witlspiscific argument expression, more optimization is
achieved.

6 Challenges

XQuery and XQueryP processing can naturally leverage masgarch ideas and techniques from database
and procedural programming language processing. Howaméke the past approaches, such as SQL-PSM
or Oracle PL/SQL, where the demarcation between query psotg logic and procedural programming logic
explicitly separated by the language itself, such demianmtég blurred in XQuery/XQueryP. Users have tremen-
dous freedom to write XQuery and XQueryP logic in whatevey tiney feel is natural for them. Itis then up to
the compiler optimizer to figure out user’s intensions anfirt a proper way to optimize and translate them for
the target environment [16]. Compiler may decide to conaesequential expression into a query or a FLWOR
expression into a sequential loop statement. For examgézscan write procedure loop iterating through the
sequence with conditional logic on testing each item of #gguience within the loop. In a case of non-database
ta rget environment the compiler will keep the loop as is goulyathe typical loop optimizations only. On the
other hand a DB-query oriented optimization may converhsuprocedural loop into a FLWOR expression that
may leverage index to avoid looping each item of the sequehcecursive XQuery function call that traverses
an XML subtree can be optimized into //node() XPath. Sedaklaoping expression that does aggregation of
input items can be optimized into pre-defined XQuery aggregdunctions, such as sum(), avg() etc.

For optimizing pure XQuery without user defined functionl€@nd modules, the challenge of leveraging
cost-effective XML indexing to process the query is reqairkh SQL, writing a semantically equivalent query
in different ways may result in tremendous performanceediffice. This depends on how many different ways
to express the same query and how sophisticated query npatinah, transformation and rewrite techniques the
underlying optimizer is equipped with. In XQuery languagamber of ways to express an equivalent query
is significantly larger compared with SQL. Therefore, it gllenging to build XQuery optimizer that is query
form agnostic without user hints.

Handling XQuery user defined function call is another clmgee Traditionally in procedural programming
language, user defined function call is fully completed atdrn value is materialized before returning of the
function. This is the most efficient way when the size of theuhieset is not large. In SQL, the concept of
pipelined function [17] is introduced to cope with user defirSQL function that can return a collection of data.
The return result of such pipelined function is fetched $et ime through an iterator, effectively streaming
evaluation of the function body. However, in XQuery, anyrugefined function that returns a sequence can
be subject to streaming evaluation. Executing every udamatbXQuery function in streaming manner causes
proliferation of function execution states and closure iamibt scalable with respect to program size. Therefore
deciding what user defined function shall be executed imastigg fashion is left as an exercise to the optimizer.

7 Conclusion

In conclusion, we believe that the best XQuery processitgtiea is the one, which finds the right balance
between query and procedural optimizations, and we betteatethere is still a long way to go till a processor
that implements such a solution appears. Meanwhile it ibadsty beneficial to define different XQuery sub-
sets specialized for efficient use case processing. Formgain backend database settings, XQuery shall be
modeled and processed more towards declarative querydgaguhereas in application mid-tier and settings,
XQuery shall be modeled and processed more towards impe@ibgramming language. In practice, this also
allows users to write much more efficient programs by follugvbest practices to separate data query from data
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transformations, and verifying that data query executianpfor XQuery executed by the database are optimal.
Database queries are expected to find the needle in the blaystd should be index driven where possible. Thi
s is particularly important when XQuery is used to locate Xhiticument or fragment within large document
collection. Our experiences of supporting XQuery and X@Beapplications have actually shown that follow-
ing such disciplined approach of separating query from caman19] when writing XQuery and XQueryP
programs gives guaranteed predictable performance withaved productivity to users when building large
scale XML applications.
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Big, Fast XQuery: Enabling Content Applications

Mary Holstege
Mark Logic Corporation

Abstract

Increasingly, companies recognize that most of their irtgrdgrinformation does not exist in relational
stores but in documents. For a long time, textual infornratias been relatively inaccessible and unus-
able. Database applications allow relational data to bedis&d re-used; the architecture of relational
database systems allow such applications to function avdinei face of large amounts of data. XML
[10] and XQuery [8] now allow the creation of a new kind of ajgpkion that unlocks content in a similar
way: a content application. In this paper, we examine thérnetogies that enable content applications
to operate at scale in the context of MarkLogic Server [2].

1 Content Applications

Database applications built on top of relational databaseagement systems use SQL to select specific pieces
of data, join them against other data, and reassemble themméw views. It is this flexible, granular reuse
of data makes relational databases powerful tools. ReHtidatabases, however, are less useful for dealing
with content which is arranged not in regular typed fieldsibuidomplex hierarchical documents consisting of
running text.

Documents are often described as “unstructured” or “sérmactired” but the problem with documents,
from a relational point of view, is not that there is too éttstructure, but that there is taouch Consider
a medical document that describes the course of treatmemt fatient, with procedures, observations, and
actions indicated. Part of such a document, using XML marlaughown in Figure 1.

The document has sections, which have titles and conteetcdifitent has running text which is interspersed
with markup for things such as instruments, actions, andmbtions. Some of these are nested in other markup.
The relation of an instrument, say, to the section’s coritenbt simple: the order relative to other entities and
other chunks of text is crucial and defines the narrative.l§\threlational model for this information is certainly
possible, it is difficult and loses the narrative coherencthe original. It is easy to represent this narrative
structure using XML markup, however. The more semanticatif and detailed the markup becomes, the
harder it gets to map into a relational model, and, crugiétlg harder it becomes to further enrich the mapped
structure.

A content application is to textual content as a databasécatipn is to relational data. It uses a query
language to select specific pieces of documents, join theximstgother document pieces, and reassemble them
into new documents. A content application goes beyond sirigpdt search (“get me the document that contains
the phrase 'important symptom™) into fine-grained selectand assembly based both on full-text operators and
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<section>
<section.title>Procedure</section.title>

<section. content >

The patient was taken to the operating room where she was pl aced
in supine position and
<anest hesi a>i nduced under general anesthesi a. </ anest hesi a>
<pr ep>
<action>A Fol ey catheter was placed to deconpress the
bl adder </ acti on> and t he abdonen was then prepped and draped
in sterile fashion.
</ prep>

The fascia was identified and
<action>#2 0 Maxon stay sutures were placed on each side of
the mdline
</ action>
<i nci si on>
The fascia was divided using
<i nst rument >el ectrocaut ery</i nstrunent >
and the peritoneum was entered
</inci si on>
<observation>The snal|l bowel was identified.</observation>

Figure 1. Simple Medical Document

operators over the hierarchical narrative of the documargquery such as “show me all procedures involving
important symptoms where no anesthesia occurs before shimfiision” entails full-text (“important symptoms,
“procedure”), ordering (phrase “important and “symptonistcurs before”), and hierarchy (section’s content’s
incisions). A relational model suited to answering such astjon would be ill-suited to reconstructing the
original narrative (the entire procedure): the reconsioncwvould be an immensely complex join.

With increasing amounts of content being created nativeNL or being readily convertible to XML the
time is ripe for complex scalable content applicationstlmnl XML. What that calls for is a language designed
for effective XML processing and a system architecturerojaed for content.

11

Characteristics of Content Applications

Content applications vary widely, but some general tretaasbe identified:

Individual documents may to be relatively large. Documasttarge as 10 megabytes are common; those
running to gigabytes are not unknown.

The number of documents may also be large, and can run ingoafemillions of documents or more.
However, the number of documents is usually much smaller this.

Content bases are frequently created from large amounigstiing content which needs to be loaded and
indexed in bulk.

In general, update is less frequent than selection, but fdy YO style content applications, being able to
add annotations and metadata to the content base is alsotampoFrequently the content-loading and
content-cleaning (update-intensive) and content-adegstate-light) phases in the life-cycle of a content
application are distinct, so optimization does not needtu$ on maintaining fast query during periods
of heavy update. This differs from on-line transactionabtdase applications.

It is important to be able to select small pieces of documkeased on full-text, ordering, and hierarchical
criteria. Full-text searching brings in linguistic knowltge for stemming, tokenization, and thesauri, as
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well as relevance calculations to determine which matchedetter than others. Multi-lingual content
bases, documents, or even paragraphs are not uncommon.

e Document schemas may be complex, fluid, or unknown. As coafgglications evolve, new markup may
be incrementally added to enrich the content and enable &g kf queries.

e Content frequently arrives that does not adhere to the akfioeument structure, in need of clean-up.
Clean-up transformations may be very complex, involvirgydmichical restructuring.

e Content applications do evolve: to gain business advastager competitors, to provide more accurate
selections or better context for information, to integraésv content sources, and so on. Evolution of
a content application often leads to an evolution of the eanand vice versa: this in turn implies that
flexible schemas and some ability to update content in pleeargortant.

e Content applications are amenable to end-to-end XML psiegs content can readily be encoded and
stored in XML, XML (especially XHTML) can be directly rendsat in a browser, and given an XML-
oriented processing language, selected pieces of XML capb&eated on to provide appropriate business
logic.

Given these general characteristics of content applicgtiSection 2 reviews some aspects of XQuery that
suit it to building content applications, and and Sectiondkk at how the architecture of the MarkLogic Server
supports building scalable content applications.

2 Query Language

To enable content applications, the query language needsderstand large, hierarchically structured docu-
ments containing human text. It needs to permit highly die@mselection based on both the hierarchy and the
ordering of children (both of which are highly salient feasiof content). The XQuery family of specifications
allows documents marked up with XML to do just this.

o XML-aware

XQuery[8] was defined specifically as a query language for Xddhtent. Simple path expressions can
be used to select based on XML structure (both hierarchioalsgquential) and XML result structures
can be easily generated, often using an XML syntax.

o Full-text

The query language for content applications needs to betahperform full-text operations, not just
string matching, to take into account language-sensitperations such as stemming and tokenization.
The proposed Full-Text extensions to XQuery[9] will prazisuch functionality.

e Update

Although content applications typically focus on selegtinore than updating, the ability to update con-
tent or to add annotations or metadata is important to mangeab applications. Update operations also
provide for performing content cleanup and augmentatioplace. The proposed Update extensions to
XQuery[7] will define update operations.

e Extension Functions

Depending on the application, specialized capabilitiey b®required, such as security-related opera-
tions, or trigonometric functions. Fortunately, XQuerpyides an extension mechanism through func-
tion libraries. XQuery itself defines a large selection oftbn functions and operators[6] for basic data
manipulation.
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e Optimization-friendly

XQuery is a functional language without side-effects inathinost functions are deterministic and stable
within a single query, allowing optimizers to freely reoragxpressions and avoid recomputing expres-
sions.! The proposed update facility uses snapshot semantics wreskrves this aspect of the language:
the exact order in which updating operations are performakles no difference to the result of the ex-

pression, so an optimizer is free to reorder expressions.

The XQuery language design also enables lazy evaluatianpéth expression results in a million node
sequence, only those nodes in the sequence that make aahdifference to the final result need be
fetched. Since full-text searches on large content basedrequently produce such large results, the
ability to notice that only the first ten results are beingdened and returned as a result of the overall
query can lead to tremendous savings in effort.

e As Typed As You Want To Be

Another interesting feature of XQuery that is particulanlgeful for content applications is that, while
operationganaybe strongly typed, thegeednot be. An XQuery program can require a variable, function
parameter, or return value to be of a specific named type shdélared in an XML Schema, or it can
allow it to be anything at all. More flexibility is possible: “gype” constraint could be the requirement
that the item be some kind of XML node, or a specific kind of XMhde — an element for example —
or an element with a particular name, whether defined in an >@dhema or not.

Content frequently does not arrive perfectly conformarédme schema, and it may evolve over time. It
is a great benefit to content applications to be able to ussaime tools tools to perform the initial clean-
up and evolution of content as are used to process normaliment. XQuery programs with different
degrees of typing can be applied at different stages of thegss. Alternatively, loosely typed XQuery
programs can be used to process content without having toatiae it at all.

3 System Architecture

Query language functionality is only part of the puzzle foalkling content applications. Efficient execution of
the query language at scale is important for real-world eéardpplications. The architecture of the MarkLogic
Server[2] enables such efficient execution at scale, byropitig for the characteristics of content applications
and taking advantage of the opportunities afforded by thaufes of XQuery. As [4] and [5] point out, special-
purpose databases tuned for particular kinds of problemseesily out-perform general purpose relational
databases in their problem domain by factors of 10 or more.

The MarkLogic Server architecture divides processing imio fundamental parts: evaluation and data
access. Typically, scaling is accomplished by distrilgutine evaluation to one set of hosts called E-nodes
(“evaluation nodes”) and data access to another set of lsaliesd D-nodes (“data nodes”). The E-node and
D-node functionality can be also be combined into a singkt.hboad balancers and caching proxies can be
used to reduce and distribute the load across E-nodes.

3.1 D-nodes

D-nodes store the XML documents along with indexes to enetfigient access to those documents. D-nodes
respond to requests from E-nodes to locate, fetch, or ughteiements under their control.

There are some exceptions, such as the fn:trace() anddr()iunctions, as well as vendor extension functions tdquer HTTP
requests, compute random numbers, or report executios timnel the like. Optimizers are nevertheless left with dyféiee hand.
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XQuery Evaluation XQuery Evaluation XQuery Evaluation

Filtering Filtering Filtering

Index Resolution Index Resolution

Figure 2: System Architecture

e Fragments

Documents are broken into non-overlapping units of accaliedcfragments. Fragments are the basic
unit of operation in the system. Updates and selection ftoendiatabases occurs at the fragment level.
Fragmentation choices involve making trade-offs betwéenexpected number of fragments that may
need to be fetched and processed to return the correctseddt query, and the size of fragments that
must be filtered to produce the correct results or writterigk th process an update. These tradeoffs can
be complex and how to balance them is beyond the scope ofdhirp

e Forests

A database may be broken into multiple forests, where eaeltfts under the control of a specific D-node.
Distribution of data across multiple forests allows forgjes concurrency and scaling.

e Inverted Indexes

The forests managed by each D-node include universal isdbaé map facts about documents to posting
lists. Many kinds of posting lists exist: posting lists facoh word, but also posting lists for structural
facts, such as the presence of particular elements. Thedadme compressed inverted indexes[11].
Index settings control which specific kinds of posting ligte available in the indexes, and whether the
lists record position details or just fragment identifiers.

XQuery path expressions and full-text queries can be redohgainst the indexes by intersections and
unions of posting lists for the component facts. Such a tesal not be accurate, however. For example,
if only a simple word index without positions were availghllee phrase query “simple example” could
not be accurately resolved in the index. The best the indeklaio is return fragments that have postings
for both “simple” and “example”. A secondary phase, calleg filter, is responsible for weeding out the
false matches. Index resolution can provide accurate asswenany cases: there is a tradeoff between
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index resolution accuracy and index size. Again, detailsa¥ to balance such trade-offs is beyond the
scope of this paper.

e Managing Updates

The fragments themselves are stored in memory-mapped essgut representations of the document
trees. This tree data and the indexes are stored in “standstdordance with the principals of a log-
structured file system[3]: new content is initially held iremory and then written out in a sequential
fashion when a sufficient amount has accumulated. Jourgadliows for recovery in the event of a crash.
Once written, the tree data and indexes are never updatedymiénts are updated by writing new ver-
sions of those fragments to new stands and noting that tge&at in the old stand has been deleted. The
server uses multi-version concurrency control[1] to iaseethe throughput for read operations. Each frag-
ment has a timestamp associated with it. Read operatioaindbe most recent version of the fragment
with a timestamp preceding the current transaction’s tiemep, and therefore always obtain a consistent
snapshot of the content base. A periodic merge processsraatv stands with any deleted fragments
eliminated and the indexes merged to optimize access. Togsaboth updates and selection to be fast
under the normal expected conditions of relatively fewwactitands and a relatively modest update load
once the bulk of the content has been added. Initial loadimgatso be fast because sequential writes of
data in bulk is faster than piecemeal random writes.

3.2 E-nodes

E-nodes are responsible for communicating with clients fandXQuery evaluation: parsing, static analysis,
dynamic evaluation, and assembly and serialization ofltesie-nodes include HTTP listeners that service
requests to execute XQuery modules and return the results.

e Query Processor

The query processor performs static analysis and rewrtien@ation of the query. Any operations that
access data are converted into index requests and sent Bpribdes, with the results being filtered as
necessary. The query processor relies on lazy evaluatioodsf sequences to avoid fetching or processing
content unless it is required by the ultimate result of thergu

o Filter
The filter iterates through the postings returned by the Besaand applies the specific match criteria to
the selected fragments and returns the requested nodes.

e Application Server

An E-node also operates as an application server. It ac¢€pts® requests on configured ports. In
addition to performing conventional serving of documengsgjuests for XQuery modules are serviced by
executing the indicated module and returning the resulisecDexecution of XQuery modules enables a
rapid development methodology for web applications: XHTk#n be generated directly from XQuery
for consumption in a browser.

3.3 Summary: Basic Query Flow

Consider a simple query for a phrase within an element awpartarger query that only makes use of the first
ten hits.

46



XQuery Evaluation

Statemen/t\Evaluation

4 \

Filtering

Node Sequence

Index Resolution

"to" 1,2,34,56,78,... U
"he" 1,2,3,458,11,12,..

SCENE 1,2,3,456,78,...
"or" 1,2,4,5,6,8,10,...

Content
Fragments

Figure 3: Query Evaluation

1. Aclient sends an HTTP request to an E-node. The applicatover accepts the request, locates, parses,
and analyzes the appropriate XQuery module. For example:

i mport nodul e nanmespace ny="http://markl ogi c. com exanpl e"
at "/ MarkLogi c/ exanmpl e. xqy";
for $result in cts:search( //SCENE, "to be or not to be" )|
fn:position() = (1 to 10)
] return my:render-result($result)

2. The XQuery evaluator constructs an index query to be veddby the indexes, based on the knowledge
of available indexes. In this case, the query parser pradacéndex request such as:

AND( SCENE, "t 0", "be","or","not")

3. The indexes combine posting lists to form a sequence gififeat references. Depending on the indexing
options, index resolution may return “false positivesggments identified by the index that do not match
original criteria. Each D-node operates in parallel. Indesolution in this case examines the posting
lists for the five terms, combines them into a single postisigtihat has references for all fragments that
contain all five terms (fragments 1,2,4,8, etc. in the diagra

4. The filter turns the sequence of fragment references is¢gjaence of nodes matching the original criteria.
The first fetches each candidate fragment in turn and setedkss in the fragment that actually meet the
criteria (all the words in the phrase appearing in the apjmit order within aSCENE element). A
fragment containing, for example, the phrase “not to be sed®ard” would be returned from the index
resolution, but would not meet the original criteria and Wddoe skipped by the filter.

5. XQuery is evaluated to render the result nodes. Lazy atialuof the node sequence causes fragments to
be fetched and filtered only as needed. In this case the filtgifetches as many candidate fragments are
required to return te®CENE element nodes to pass to thg: r ender - r esul t function. If theACT
element were the root of the fragment, the entire act woulgtehed for filtering, but only the matching

2The XQuery Full-Text extension defines the operdtbcont ai ns which can be used to test whether a particular node matches
some full-text criteria. A common case is to return the segaef matching nodes, generally ordered by decreasing.sthis is what
thect s: sear ch extension function does.
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SCENE elements would be returned. If tAET has ten matchin§CENE elements, only that one fragment
would be fetched.

6. The application server constructs an appropriate HT$pamse and returns it to the client.

Caches at various level short-circuit some of these oersti

4 Conclusions

The divide between “content” and “data” is not a hard and de. However, content applications do tend to
have different characteristics than relational databapéiGations. Representing content with XML, operating
on it with XQuery, and executing on an architecture optimifar such operations can open up the possibility
manipulating large content bases at a fine-grained leveldate new and interesting applications. It provides
for a middle path between simply identifying documents thatt certain full-text criteria on the one hand, and
losing the overall complex hierarchical and narrative flowWl@ecuments on the other.
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Experiences with XQuery Processing
for Data and Service Federation
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Abstract

In this paper, we describe our experiences in building anoéwg an XQuery engine with a focus on

data and service federation use cases. The engine that wasdiss a core component of the BEA
Aqualogic Data Services Platform product (recently reeesled under the name Oracle Data Service
Integrator). This XQuery engine was designed to provideieffi query and update capabilities over

various classes of enterprise data sources, serving asdteatcess layer in a service-oriented archi-

tecture (SOA). The goal of this paper is to give an architedtaverview of the engine, discussing some
of the key implementation techniques that were employe@khaswseveral XQuery language extensions
that were introduced to address common data and servicgratien problems and challenges.

1 Introduction

The advent of relational databases in the 1970’s usheregioductive era in which developers of data-centric
applications could work more efficiently than ever beforestéad of writing procedural programs to access and
manipulate data, declarative queries could accomplistsdinge tasks. With physical schemas hidden by the
relational model, developers spent less time worrying apetformance, as physical changes no longer implied
program changes. Simplified views could be defined and us#doenfidence because rewrite optimizations
ensured that queries over views are just as performant aeguer base data. The relational revolution was
a huge success and led to many commercial database prodilroisst every enterprise application developed
in the past 15-20 years uses a relational database for feeists and all enterprises run major aspects of their
operations on relationally-based packaged applicatikesSAP, Oracle Financials, PeopleSoft, Siebel, Clarify,
and SalesForce.com.

Today, developers of data-centric enterprise applicatfage a new challenge. There are many different
relational database systems (Oracle, DB2, SQL Server, MySQ and a given enterprise is likely to have
a number of different relational databases within its comfm walls; information about key business entities
like customers or employees commonly exists in multipl@ases. Also, while most “corporate jewels” are
stored relationally, they are often relationally inacdadssbecause the applications enforce the business rules
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and control the business logic. Meaningful access mustdbiee through the “front door” via application APIs.
Because of this, developers of new applications face a nirajegration challenge: bits and pieces of a given
business entity will live in a mix of relational databaseaclaged applications, files, legacy mainframe systems,
and/or home-grown applications. New “composite” appiaad need to somehow be created from these parts.
Composite application development is the goal of the sergitented architecture (SOA) movement [2].
XML-based Web services are one piece of the puzzle, prayigimysical normalization for intra- and inter-
enterprise service invocations and data exchange. Welzseamchestration languages [3] are another piece of
the puzzle, but are procedural by nature. At BEA, we felt thdeclarative approach was needed for creating
data serviceg8] for use in composite applications. We chose to ride thgenaeated by Web services and
the associated XML standards, using XML, XML Schema, and &@uo knit together a standards-based
foundation for data services development [9, 10]. The BEAidlgpgic Data Services Platform (ALDSP),
introduced in mid-2005, has XQuery in the leading role asahguage for accessing and composing information
from sources including relational databases, Web servigeskaged applications, and files. This paper reviews
the ALDSP XQuery implementation and some of the key chadleripat we addressed during its development.

2 Background

The types of data models employed by enterprise data sospegsfrom semi-structured to fully-structured,
from flat to hierarchical to graph-based, and from untypedbtsely-typed to strictly-typed. For example,
relational databases contain structured, flat data whildeXidcuments contain semi-structured, hierarchical
data. Some backend sources may require input or provideioiutgthe form of flat, structured data (e.g. stored
procedures), or hierarchical, semi-structured data (&/gb services). Given the vast heterogeneity found in
enterprise data models, a data federation approach shopfibd access to as many different kinds of data
sources as possible and employ a rigorous yet versatiletzdeal and type system.

In our approach, the XML data model [11], XML Schema [4, 5]ddhe XQuery language [13] serve as a
solid foundation for integrating diverse data sources. Xpiavides a flexible way of describing many different
types of data representations, while XML Schema offers adstal facility for the formal definition of both
simple and complex, hierarchical types. The combinatioXMf. Schema types and the concept of sequence
type, specified by the XQuery type system, facilitates tleeifjgation of data models that go beyond document
types, admitting collections of heterogeneous, arbijrahiaped data items, and providing additional constructs
for advanced usages [12].

XQuery has been specifically designed to query XML documediite paying a lot of attention to many
details of XML-centric data processing. XQuery supportthbigped and untyped data, focusing on structured
as well as semi-structured use cases [14]. The languagdkistsieclarative, enabling many rewriting and op-
timization opportunities for the compiler and runtime aregimany of which have been extensively researched
over the past years (e.g., [6, 7]). XQuery is relatively efmsyse, with simple constructs for node construc-
tion, XPath-based navigation, and flexible FLWOR expressior joining and ordering of XML data. While
currently focusing on declarative query processing, thguage roadmap includes the XQuery Update Facility
extension [15], for handling data modifications in a dedlaeafashion, as well as the XQuery Scripting Exten-
sion [16], for imperative programming when strict evalaatorder is needed and side-effects may be present.
The XQuery language has an active community of users andri;igaadoption across many commercial soft-
ware vendors. All these factors make it an excellent langudmice for building a complex data federation
system.

Figure 1 illustrates how a complex data federation problérassembling a single view of customer in-
formation is easily accomplished in an XQuery-capableesystit demonstrates a scenario where the data is
assembled from three different data sources: two reldtidatabases containing customer information along
with the orders, and a Web service used to obtain the creihgraAccess to relational tables is modeled via
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decl are nanespace db_custoner = ‘urn: CUSTOMER ;
decl are nanespace db_order = ‘urn: ORDER ;
decl are nanmespace websrv_credit_check = ‘urn: CREDI T_CHECK ;

decl are function getProfile() as el enent(custoner_profile)x
client API
for $custoner in db_custoner: CUSTOVER()
return - l
. I
<cust oner _profile> k7

<custoner _i d>{ data($custoner/cid) }</customer_id> query security

<nane> i
<first>{ data($customer/first_name) }</first> plar? compiler metadata
<l ast>{ data($customer/|ast_nane) }</last> \Cac e/ x

</ name> i

<credit_rating> - .
let $ssn := da{lt a( $cust omer/ ssn) ] L4 function
return websrv_credit_check: GET_CREDI T_RATI N& $ssn) data runtime metadata

}</credit_rating> cache

<order s>{ - I
for $order in db_order: ORDER()
wher e $order/customer_id eq $custoner/cid
order by $order/order_date descending adaptor framework
return

<or der >

<order _i d>{ data($order/order_id) }</order_id> / I \
<dat e>{ dat a($order/order_date) }</date> < =
<total >{ data($order/total _amount) }</total > Web
oraral>{ datal -ameunt) RDBMS | | XML CSV | |goneo || Java
}</ orders>

</ customer_profile> queryable non-queryable functional

+

Figure 1: XQuery example Figure 2: Overview of the ALDSP engine architecture

XQuery function calls (dicustomer:CUSTOMER() and diwder:ORDER()), as is a parameterized invocation
of the Web service (websreredit check: GETCREDIT_RATING()). Note that, due to the usage of XML, the

result has a natural nested structure, allowing for comwdrtlient data consumption and simple bindings to
other programming environments and data models, such ag&&ata Objects (SDO) [17] and the Java Ar-
chitecture for XML Binding (JAXB) [18].

3 XQuery Language Extensions

While our experience has shown XQuery to be an excellenteHor a data federation language, we also found
it necessary to extend the language in certain ways in ocdsupport advanced querying capabilities and to
make existing features easier to use. This section descsimme of the language extensions that have been
implemented in ALDSP for these purposes.

e Metadata. In ALDSP, enterprise information sources are modeled asmat XQuery functions whose actual
implementations are transparently provided by the sysEaarly in the design of ALDSP we were faced with the
need to capture and store metadata pertaining to exterteakdarces. The solution we adopted was to extend
XQuery prolog declarations with a flexible concept of antiotes, which are XML fragments augmenting either
an individual function declaration or a whole prolog/maglint general [19]. They are defined using “pragma”
directives that either precede a function declaration peapat the beginning of a module/prolog definition:

(::pragma nane <XM._content/> ::)

As the content of an annotation is XML, it can easily hold ves kinds of information. One of the usages
of annotations in ALDSP is to describe data source bindirggnties such as relational database connectivity
configurations, Web service definition and endpoint locetjalelimited file format properties, etc. Over time,
ALDSP’s usage of annotations has evolved to store many diteils of a function/prolog configuration in the
product, such as function visibility scope, modeling kinalsdate configuration information, and key specifica-
tions. In retrospect, this powerful annotation framewoikimized the overall number of artifacts in the system
and allowed us to quickly introduce new concepts and feataseALDSP evolved.
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e Optional node constructors. Renaming elements and attributes is a common operatioarpetl in queries
that integrate data. In the following example, an XQueryregpion is used to rename the customer’s “fesne”
element to “last”, creating a new element with the new nantecapying the typed value of the input element:

<l ast >{ data($custoner/|ast_nane) }</|ast>

Per XQuery semantics, this expression calls for the cocisbru of an empty element in the event that the
input is the empty sequence. But what if the user wants tdetba new element with the new name only if the
input is non-empty? One can express that logic in XQuery & follows:

if (exists(data($customer/|ast_nanme))) then <l ast>{ data($custoner/|ast_nane) }</last> else ()

Given the occurrence frequency of this sort of scenario ia oleegration use cases, a less verbose approach
was required. We extended the direct element and attrilarstizictors of XQuery with a ? modifier, so the
same logic can be expressed as follows in ALDSP:

<l ast ?>{ data($custoner/|ast_nanme) }</|ast>

To optionally create attributes based on the input, one avauite

<custoner | ast?="{ data($custoner/|ast_nane) }" />

e Group by. Grouping data is an important operation in query procesbimg unfortunately, the standard
XQuery 1.0 provides no concise way to do so. In our XQuery magive added a GROUP BY clause to the
FLWOR expression [1]. The following query constructs semas of customer names grouped by their zip
codes.

for $customer in db_customer: CUSTOVER()
group $custonmer as $c-group by $custoner/zip_code as $zip
return <group zi p="{ $zip }">{ $c-group/last_nane }</group>

e XQSE. Although any computation can be expressed in XQuery, SOmeepsing is easier to express in an
imperative manner (like in Java, C++, etc). This is alsovahe when the steps in a program have side effects
beyond the state of the program itself, as XQuery is a sifisefree language. We introduced the XQuery
Scripting Extension (XQSE), described in detail in [20],a@ercome this limitation of XQuery. XQSE is a
proper superset of XQuery based on statements. XQueryssipns can be used anywhere in an XQSE program
where an expression is expected. Some of the constructeegpn XQSE are “while” and “iterate” loops,
variable assignment with “set” statements, conditionfil Statements, and “try/catch” based error-handling,
which is commonplace in popular programming languages.

e Typing extensions. The XQuery standard includes an optional feature for stiyi¢yping expressions. We
found it necessary to extend the XQuery type inferencingsrth meet users’ requirements, as requiring query
writers to explicitly request revalidation on node constian in order to stay in the typed world was producing
a poor user experience. To work around this issue, we impitedea structural form of type inferencing; types
in ALDSP are represented by their structure rather than by #thema type name. This is also absolutely
essential for view unfolding, which needs to preserve tyferimation through the process of node construction
and subsequent drill-down [21].

4 Implementation Techniques

Figure 2 gives an overview of the ALDSP query engine. Quearessubmitted for execution through the client
API, compiled and optimized, then evaluated by the runtimesgstem, utilizing the adaptor framework for
external data source connectivity. Assisting in query essing are metadata context providers, which keep
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track of various configuration parameters and other prseras well as caching components for improving
overall system performance.

Efficient query execution is crucial in data integrationrsmgos. Our experience has shown that layers of
XQuery functions are quite common in federated data viewsALDSP, users start with XQuery functions
representing physical data sources, then create fundtotagical transformations, and finally specialize them
for publishing through client APIs. User-defined XQuery dtions can be reused in each step during this
process, selection predicates can be applied at varioasslegnd code reuse could potentially result in subparts
of a function not being required for a final result. The ALDSRjime performs efficient query evaluation by
using standard optimization techniques such as functiming, unnesting, dead code elimination, and many
others [21]. All non-recursive functions are inlined in tieginning of the rewriting process, thus enabling the
optimizer to have a global view of the whole query. Subsetjaoptimization stages rely on this global view to
rewrite parts of the plan to a more efficient form, eliminatpressions that were determined to be unnecessary
for the result, and choose optimal implementations forinaatoperators.

Another important feature of our engine is the inclusioneaftional operators in its core XML query al-
gebra. During the query compilation phase, these operataile well-known relational optimizations such as
join reordering, predicate pushdown, transitive condifiaference, and many others. At runtime, relational op-
erators are evaluated on tuple streams in a traditionatipekl database like) manner. Efficient join processing
is vital to overall system performance. The ALDSP query cibengletects inner, outer, and semi-joins patterns
in XML queries and the execution engine implements themgusiell-known join algorithms. When it comes
to combining data from relational sources, ALDSP employstituted join method internally callezlustered
parameter passing joinit significantly reduces the number of accesses to the iymdgmatabase sources and
leads to a very efficient query evaluation. Grouping and eggfion operations require special attention in data
integration use cases and have always been at the focus oBRldDery processing. First of all, as described
in the previous section, ALDSP introduces an additionabtgrby” clause in the FLWR expression, which
is backed up by optimizer and runtime support. During quemngilation the optimizer may choose to split
group-by into two operations: clustering and pre-clustegeouping. Clustering is a weaker form of sorting
which may be merged with adjacent order-by clauses or editathaltogether if the optimizer can prove that the
input is already clustered on the required field. The grageiperation is then executed in a streaming fashion
on pre-clustered input.

Relational database systems play a central role in thenr#tion federation architecture, typically storing
most of the enterprise data. For this reason, the ALDSP ergpecifically focuses on optimizing database
access patterns. We designed and implemented ALDSP’s XQae2QL translation framework to identify
XQuery subexpressions and patterns that can be translate@quivalent SQL queries and pushed down to
underlying database sources for native execution. A ketyfeaf the SQL generator is its broad support of
different SQL dialects found in modern database systemi;hwik also customizable by users. The XQuery
to SQL translation process is driven by the ALDSP query ogtem First of all, it relies on the join identifi-
cation performed in previous optimization stages. Using f[docks in the plan, the optimizer then re-arranges
expressions to maximize SQL-able fragments. Finally,edBen SQL text generation stage which emits SQL
gueries and replaces XQuery fragments with database itwoaxpressions which will be executed at runtime.
The key problem we faced at this stage is how to preserve tharg& equivalence between a generated SQL
statement and the actual XQuery expression given by the wsefortunately, we found that in some cases
preservation may not be possible or may lead to highly sulaptquery execution plans. In these relatively
rare cases, the query optimizer is designed to prefer dwpraty performance over adhering exactly to precise
XQuery semantics, while also providing query architecthfexible mechanisms to control which parts of the
query are executed by the underlying databases and whievaieated in the middle tier by the ALDSP engine.
An example of such a semantic mismatch is when a databasendbpsoperly distinguish between an empty
string and a NULL value, or if it has some special rules foingttomparison operations on certain character
data types.
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The major challenge in executing queries efficiently in thddieware is to avoid data materialization, as it
usually impacts performance negatively. The ALDSP runtangine meets this challenge by processing data
in a streaming fashion, thus preventing materializatiomndver possible. XML data is represented as a stream
of small tokens, each corresponding to a part of an XML dafa if22]. These tokens flow through the runtime
system and are discarded as soon as possible. The ALDSe@sahiXML data model extends the XQuery
Data Model with support for tuple tokens which serve as typaatainers for various data items. Having tuple
tokens greatly simplifies implementation of joins and ghagpoperators, at the same time natively matching
relational data obtained from back-end database systermgydyuery execution. In cases when large data sets
are unavoidable during query execution, the ALDSP runtioqgpsrts such time-tested memory management
techniques as external merge sorting and secondary stioiageerators.

5 Updates

We now turn our attention to the ALDSP update model. ALDSPRI Anables a client to execute a query,
operate on the results, and then submit the modified datatbguksist the changes. Changes on the client side
are transmitted using Service Data Objects (SDO) [17]. @rs#Hrver side we have extended the XQuery Data
Model (XDM) with an SDO-like ability to carry changes. Thesudt, eXtended XDM, or XXDM for short, is

a proper superset of XDM in terms of information content. inep words, XXDM can model everything that
XDM can model, and it can also model changes to XDM instances.

XXDM nodes share the same data model attributes as XDM negeq{1]) and have an additional attribute
called “state” which is used to indicate if the node has bdwemnged or not, and if so, how. This state attribute
can have one of four values: CREATED, DELETED, MODIFIED, oDNE. A newly created XXDM node
has a value of CREATED, a node to be deleted has a value of DEDE®& node that has been modified has a
value of MODIFIED, and a node that has not been altered halkia @aNONE. Like nodes, atomic values have
state as well but their attribute may not have a value of MOBIF Modified atomic values are represented by
a DELETED value (the old value) followed by a CREATED valuee(thew value). We use this finer-grained
indicator for modification of simple content so that chanigesequences of atomic values can be captured more
efficiently.

XXDM is similar, at least abstractly, to the pending updade(PUL) concept in the XQuery Update Facility
(XUF) [15]. While conceptually related, the goal of XXDM idffgdrent. The PUL is used to explain the
semantics of various XUF constructs, and is used only intglior that purpose. In contrast, XXDM is a
concrete extension to XDM that provides programmatic actesdata and changes.

Changes to a result set need to be translated to the undgdgita sources, and ALDSP provides the user
with two tools for doing this: automatic update maps and X@&te Section 3). Update maps are an internally
generated description of how to map values from target toceoUALDSP generates them automatically by
analyzing the XQuery source for a data service definition esgkntially inverting the query. The mapping
is described using an internal language that the user cgedhsfix, and augment using a graphical editor.
For cases where the update map is insufficient or unavajlgtdeXQSE scripting capabilities can be used to
decompose the changes manually. For this purpose, ALDSRipmoa built-in library of mutator functions for
working with XXDM instances. XQSE can also be used in comtiamawith update maps, allowing the user
to inject complex business logic or error handling withoatihg to hand code the basic “mapping” logic. We
refer the reader to [23] and [24] for more information.

6 Conclusion

In this paper we have explained how we utilized XQuery at BE#w& core technology for a modern information
integration product (ALDSP, now called ODSI — for Oracle ®&ervice Integrator). We discussed how we
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implemented the full XQuery language in that context at BE@yering some of the techniques used to ensure
efficiency and some problems that we faced along the way. &ayniques included the use of efficient and
streamable internal data formats, much like those in coroialeelational query engines, and a strong focus on
delegating query processing to the underlying data costaiwhenever possible. We also briefly described how
ALDSP handles updates. Based on our experiences to datXiithand XQuery, as well as with the diversity
of enterprise data sources, we are very optimistic aboufufuge of XML and XQuery as the “right” fit for
information integration in the SOA era.
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Data Aggregation, Heterogeneous Data Sources and Streangin
Processing: How Can XQuery Help?

Marc Van Cappellen, Wouter Cordewiner, Carlo Innocenti
XML Products, DataDirect Technologies

Abstract

Software infrastructures and applications more and moratndeal with data available in a variety of
different storage engines, accessible through a multiiderotocols and interfaces; and it is common
that the size of the data involved requires streaming-basedessing.

This article shows how XQuery can leverage the XML Data Medlebstract the data physical
details and to offer optimized processing allowing the tgwment of highly scalable and performant
data integration solutions.

1 Introduction

Data access has always been a hot topic. The variety ofantsfavailable for querying, creating and updating
data is impressive and constantly growing. JDBC, ODBC, ADET are the typical basic interfaces you will
deal with when working with relational data sources; but'tigmore also Object Relational Mapping systems,
like Hibernate [4] for example. If you need to deal with XMLgy will most likely hear about DOM, SAX and
StAX interfaces; or maybe object to XML mapping, like JAXB,[8r example. Things get even more difficult
when dealing with different data formats, like Electroniat® Interchange messages (EDI) or even flat files.
The choice about which data access solution to use in whiehasm becomes more complicated when your
application needs to deal with multiple, physically vargata sources, which is a typical problem especially
when dealing with SOA [1].

SOA (Service Oriented Architecture) [8] has been arouna faumber of years earning acceptance as a solid
approach for systems management - one that allows for trelbeuse of existing software assets, provides a
sound architectural model for the federation of dispardtsylstems, and supports the automation of abstract
business processes via a range of programming paradigms.

But how does data management fit in? Guidelines for serviested data access and management tech-
nigues are sparse. Those that are available have typiasly formulated by SOA experts, not data management
experts. As a result, different understandings of the saiwldgms turn into a constant source of confusion and
headaches.

Most SOA data management solutions currently in use relyahtional, well defined interfaces including
ODBC, JDBC, OCI, ADO.NET, OLE DB, and others. All of thesedrfices share similar concepts, but most of
them falil to capture the differences between tradition#h dacess architecture characteristics (tightly coupled,

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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Figure 1: Overview of the DataDirect XQuery engine archiiee

complex state machine, connection based, and relationaéhaoiven) and characteristics associated with SOA
(loosely coupled, stateless, message-centric, and tiypXsIL-based data interchange).

XQuery [10], the XQuery for Java API [6], and Web services j@dpvide a great way to bridge the data
disparity with service-orientation. XQuery still exposas interface against which users submit queries and
from which they process results, but at the same time it idyeasibedded in an application or exposed via a
Web service, and it further provides abstraction betweerttimsumer of the data and the physical details about
how the data is stored. XQuery is designed to give languagé&mentations the possibility to execute queries
against heterogeneous data sources, interpreting (buecessarily materializing) all of them as XML.

XQuery is based on an XML data model, providing smooth irgggn in todays Web service-centric infras-
tructures. When you consider the service-orientationgiegaradigm, it becomes evident that XQuery features
are very much in alignment with the goals of service-oridrdemputing.

Making XQuery work efficiently against heterogeneous dataees presents peculiar challenges. DataDi-
rect XQuery is an XQuery implementation that was first redeaim year 2005. DataDirect XQuery’s design
emphasizes performance and scalability across heterogerdata sources, with a strong focus on relational
data and large XML documents. This paper reviews some ofeitleniques DataDirect XQuery uses to opti-
mize access to relational and XML data sources.

2 Background

Figure 1 describes the high level architecture of the DatdDiXQuery engine. The engine is accessed through
either a Web service framework [2], which allows easy deplegt with most application servers, or through
a standard API, the XQuery API for Java (XQJ) [6]; that's theeiface that can be used to access DataDirect
XQuery directly from a client application. The XQuery engiitself is split in three logical components:

e Mediator
The Mediator is the component that takes care of decompasingQuery based on which data sources
are being accessed, and of merging the result back from timugadata sources.

e SQL adaptor
The SQL adaptor is responsible for handling the parts of therygthat are dealing with relational
databases and for pushing the burden of the query to theadatatself.

e XML adaptor
The XML adaptor is responsible for handling the parts of therg that are dealing with XML data
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sources, implementing a variety of optimization techngtieat allow the process to be highly scalable
and performant.

Each of these logical components covers a critical role ikingathe DataDirect XQuery engine able to
deal with heterogeneous data sources. There are seveesbbeptimization tasks that are accomplished by the
Mediator and that you can probably find described in the ctmevarious XQuery implementations; but some
of the most sophisticated optimizations occur at the dasacecadaptor level. The following sections focus on
the specific techniques implemented by the SQL and XML adapto

3 XQuery and relational data sources

XQuery and SQL support different operations on very diffiéigata models; XQuery works against the XQuery
Data Model (XDM) [11], while SQL works against a Relationahta Model; XQuery is designed to make
navigation of XML hierarchical structures easy, while S@tudses more on the task of joining multiple related
tables and creating projections on the result. And thastsgaratching the surface in terms of differences.

Some XQuery implementations just materialize entire i@t tables as XML; others issue the same SQL
regardless of the database involved; others yet rely oretet common denominator functionality of the least
capable JDBC drivers, which limits performance significgrand many perform most XQuery functions in the
XQuery engine instead of evaluating them in the database.

DataDirect XQuery has been designed to optimize performamd scalability when dealing with all its
supported data sources, especially relational databamktame XML documents. Before taking a look at
specific XQuery examples and how DataDirect XQuery exedhis, let’s take a look at the main high level
techniques implemented by the SQL adaptor:

e Minimal data retrieval
Moving data is expensive. In DataDirect XQuery, the germetr&QL is as selective as possible, retrieving
only the data needed to create the results of a query. It imimagual that in some cases DataDirect
XQuery fetches only part of a single row where other XQuerglementations return an entire table

e Leverage the database
DataDirect XQuery pushes down into the database operatiahgan be performed in SQL; that way the
relational query optimizer can leverage indexes and otinectsires. The performance gains this brings
are particularly important for joins, Where and Order Byusles, and SQL functions. This also reduces
data retrieval, since data need not be retrieved for opermto be done in the database.

e Optimize for each database
Today'’s relational databases support significantly deifédialects of SQL, and even when two databases
support the same operation, their performance may be qitfiteesht. Most databases have enough func-
tionality to support XQuery efficiently, but the construotseded to do this are different for each database.
Some XQuery implementations support only one databaserstienerate the same SQL regardless of
the database involved, which results in poor performanteoitrast, DataDirect XQuery uses a different
SQL adaptor for each database, generating SQL specifigatiimized for that database.

e Support incremental evaluation
In many applications, results are returned to the user as aedhey are available, displaying the first
results well before the entire query has been performed.yMaL applications are based on streaming
architectures. DataDirect XQuery uses lazy evaluatiorhab gtreaming APIs can retrieve data as soon
as it is available. As data is needed, the engine retrievesrémentally from JDBC result sets. Because
there is no need to have the entire result in memory at one vtiemg large documents can be created.
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e Optimize for XML hierarchies
Because XML construction is hierarchical, DataDirect X@ugses SQL algorithms that optimize retriev-
ing data for building hierarchies. For instance, the XQueamgine makes extensive use of merge-joins
when building hierarchical documents.

e Give the programmer the last word
Every SQL programmer knows that occasionally hints are e@&ulget optimal performance for a specific
query. This is also true in XQuery, so DataDirect XQuerywaigprogrammers to influence the SQL it
generates. This can significantly improve performance tinescases.

The following sections illustrate examples of how XQueildesined against relational databases are trans-
lated into SQL by the DataDirect XQuery’s SQL Adaptor. Moktte generated SQL shown in this paper is for
Oracle 11g - SQL generated for other databases may looKisaymiy different.

The following examples all assume a simple database steugtade of two table${OLDINGSandUSERS$
which contain information about how many and what kind otktholdings users of the system own.

3.1 Querying data

To minimize data retrieval, DataDirect XQuery generates welective SQL, returning only the data that is
needed for a given XQuery. To avoid retrieving rows that areneeded, the conditions in Where clauses and
predicates are converted to Where clauses in the gener@iedl8 avoid retrieving columns that are not needed,
the generated SQL specifies the columns actually neededliced® the XQuery.

3.1.1 Where clause pushdown

Consider the following XQuery, which retrieves albbldingsfor less than 10,000 shares; the XQuery can be
easily written in two different ways, one using the Wherauskg the other using straight XPath predicates.

for $h in collection(’HOLDI NGS' )/ HOLDI NGS col I ection(’ HOLDI NGS' ) / HOLDI NGS[ SHARES < 10000]
wher e $h/ SHARES < 10000
return $h

For both XQueries, the SQL query generated by DataDirectet@fetches and returns only the rows that
are actually to compose the XQuery result:

SELECT ALL nrm#. "USERI D' AS RACOL1, nrmd."SHARES' AS RACOL2, nrmé. " STOCKTI CKER' AS RACOL3
FROM " MYDB" . " HOLDI NGS" nr m4
WHERE nrm#. " SHARES" < 10000

3.1.2 Projection pushdown

The following XQuery retrieves first and last name for eachrudder than 40. The XQuery is similar to the
example shown in the previous section, but this time instédadturning the whole row meeting the selection
criteria, the query only needs to retrieve two fields:

for $user in collection(’ USERS )/ USERS
where $user/AGE > 40
return <user>{$user/FlI RSTNAMVE, $user/LASTNAME}</ user >

In this case the DataDirect XQuery engine needs to push t&Qie engine the Where clause, and the
selection of two specific columns:

SELECT ALL nrnb."FI RSTNAME" AS RACOL1, nrnb."LASTNAME' AS RACOL2
FROM " MYDB". " USERS" nr nb
VWHERE nrnb. "AGE" > 40
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3.1.3 Join pushdown

Relational databases are designed to optimize joins, salliract XQuery leverages the database when an
XQuery join involves SQL data. Performing all the joins ire ttlatabase typically results in a dramatic perfor-
mance gain.

Consider the following XQuery, which retrieve all users atack holdings for each user:

for $u in collection(’ USERS' )/ USERS,
$h in collection(’ HOLDI NGS' )/ HOLDI NGS
where $u/ USERI D = $h/ USERI D
return <hol di ng name=" {$u/ LASTNAME}" >{$h/ SHARES/ t ext () }</ hol di ng>

The SQL generated by DataDirect XQuery pushes the resblofithe join operation to the database:

SELECT ALL nrnb."LASTNAME" AS RACOL1, nrnB."SHARES" AS RACOL2
FROM "MYDB". " USERS" nrnb, "MYDB"."HOLDI NGS" nrnd
VWHERE nrnb. "USERI D' = nrnB. " USERI D'

There are of course multiple ways to express the same joiditbam in XQuery; for example, in this case
the same condition could have been expressed using an Xreakicgte, like in:

for $u in collection(’USERS )/USERS, $h in collection(’ HOLDI NGS')/HOLDI NGS[ USERI D = $u/USERI D] return ...
DataDirect XQuery is able to capture the multiple ways toregp the same queries and it will push down
the same SQL.

4 XQuery and XML data sources

While optimizing XQuery when working against relationakalaources is mostly a matter of issuing thest
SQL to the server and to lazily fetch results, when queryiidi>tata sources the XQuery engine needs to deal
with the physical task of analyzing and filtering the data. Xtata sources include:

XML documents

Web service call results (typically SOAP responses)

Office Open XML (OOXML) or OpenDocument format (ODF) docurten

Comma Separated Value (CSV) files, Tab Delimited files orrdthefile formats

Electronic Data Interchange (EDI) messages streamed to XML

Software architects often tend to underestimate the aiggke offered by querying XML documents; that’s
why often that operation becomes the bottleneck of completems. What may start as an application designed
to deal with a few relatively small XML documents can easibed to scale up to handle hundreds of XML
documents per second, or XML documents that grow to be deBayabytes in size.

DataDirect XQuery has been optimized to handle data souncashighly scalable and performant way.
The engine’s XML adaptor implements several techniquestoraplish that task, like general execution tree
optimizations (including function inlining, detectingdp invariants, etc.), in-memory indexing and more; but
two major techniques stand out: document projection amgsting processing.
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4.1 XML document projection

XML document projection is a clever idea introduced oridliney Amelie Marian and Jerome Simeon [7]. The
basic idea behind document projection is: given an XML doennthat represents several details for eigaaim,
if my XQuery only needs to retrieve/query a couple of attiisufor eachtem why should the XQuery engine
materialize in memory the wholeemelements?

Consider this simple XML document, describing a few objestsilable for auction:

items. xnl:
<| TEMS>
<| TEM>
<| TEMNO>1002</ | TEMNO>
<DESCRI PTI ON>Mot or cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>500</ RESERVE_PRI CE>
</ | TEM>
<| TEM>
<| TEMNO>1003</ | TEMNO>
<DESCRI PTI ON>Bi cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>200</ RESERVE_PRI CE>
</ | TEM>
</ | TEMS>

And now consider this XQuery that retrieves the auction eatd tbr a specifitTEM in the XML document
above:

for $i in doc('items.xm ')/ TEMS/ | TEM
where $i/| TEMNO eq ’ 1002’
return $i/END_DATE

The XQuery only needs two pieces of information for eBCEM in the source XML documentTEMNO
to resolve the search criteria aBiND_DATE to return the required result. The only parts of the input XML
document that are instantiated in memory are the ones gigbli in the following XML fragment:

<| TEMS>
<| TEM>
<| TEMNO>1002</ | TEMNO>
<DESCRI PTI ON>Mbt or cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>500</ RESERVE_PRI CE>
</ | TEM>
<I TEM>
<I TEMNO>1003</ | TEMNO>
<DESCRI PTI ON>Bi cycl e</ DESCRI PTI ON>
<OFFERED_BY>U02</ OFFERED_BY>
<START_DATE>1999- 02- 11T00: 00: 00</ START_DATE>
<END_DATE>1999- 03- 25T00: 00: 00</ END_DATE>
<RESERVE_PRI CE>200</ RESERVE_PRI CE>
</ | TEM>
</ | TEMS>

DataDirect XQuery statically analyzes an XQuery and gdasraprojection tree in the example above, the
projection tree can be expressed as:
+-step axis="self" test="docunent-node()"
+-step axis="child" test="|TEMS"
+-step axis="child" test="|TEM
+-step axis="child" test="1TEMNO'
+-step axi s="descendant" test="node()"

+-step axis="child" test="END DATE"
+-step axi s="descendant" test="node()"

The projection tree is used in DataDirect XQuery as part efdbntent handler which processes the XML
parser events, ensuring that only the necessary XML partgdad in the projection tree are actually material-
ized in memory.
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The process is typically not as simple as the one describ#fteiexample above; just think, for example,
about the necessary steps needed to handle expressioW$TIki! (path reduction) or./ITEM (parent axis).
But the benefits in terms of performance and scalability wikealing with large XML documents are often
impressive, even whestocument streaminglescribed below) is not available.

4.2 XML document streaming

Processing XQuery in streaming fashion is the ultimatetgwiun terms of querying XML documents in a
scalable way. In the ideal case, when running an XQuery agaire (or more) XML document(s) in streaming
mode the amount of memory required by the XQuery engine dogssw proportionally to the size of the
input(s). That allows XQuery to run against XML documentscimlarger than the physical memory available
on a workstation, even when XML document projection canfphe

Consider an XML document similar to the one discussed alrotleei context of XML document projection,
where this time the number of listddEM elements is in the order of millions. When DataDirect XQuery
analyzes the following XQuery, it creates the projecti@etand it knows it can avoid materializing in memory
several sub-elements for each analyfEdM element:

<MYl TEMS> {
for $i in doc('items.xm')/ITEMS/ | TEM
where $i / OFFERED_BY eq ' U02'
return
<I TEM>{$i /| TEMNO, $i/DESCRI PTI ON, $i/RESERVE PRI CE}</ | TEM>
} </ MYl TEMS>

But still, there is a large amount of information that wouleed to be stored in memory to execute the
XQuery in a traditional manner (with no streaming procegsirand the amount of required memory would
indeed be proportional to the size of the input XML documdritanks to the XML document streaming tech-
nique, DataDirect XQuery is able to process the XQuery dlesdrabove in streaming fashion, which means
that only ond TEM per time is actually materialized in memory and discarde@mno more needed.

It's worth noting that XML document projection and streamiare two complementary implementation
techniques, which implies that when an XQuery is processeatreaming fashion, XML document projection
still takes place, limiting the amount of data temporarilgterialized by the streaming engine.

When document streaming is used in conjunction with oneetreaming interfaces to consume the result,
like StAX [5] for example, which is supported by the XQuery A8 Java standard, the whole XQuery process-
ing works in a purely streaming fashion, with the XQuery aegionsuming parts of the input XML document
on demand based on the way the client application is congutheaXQuery result.

Thanks to these XQuery processing techniques, applicatoa able to process XML documents in the
range of several dozens of Gigabytes without incurring aladulity issues.

5 Mixing data sources together

In the previous sections we have discussed several te@mimplemented by DataDirect XQuery to optimize
processing of XQuery when working against relational or Xtifita sources. But itis common that applications
need to deal with data which is not available in a single fdrmuad that's the context where dealing with a single
guery language, data model and interface which coversdygreous data sources becomes fundamental.
Think about a scenario, for example, where a list of auctidi&Ms is available in an XML document, as
described in 4.1, but details about the person who'’s offettie I TEM are available in & SERSable hosted on
a relational database, including information about the idsename, address and email. Now think about the
need of creating an application that given a user's ematlesddretrieves all the items that are being auctioned
by that user.
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Thanks to XQuery, that task can be solved by a single, simypdeyg Note how the XQuery author doesn’t
need to worry about different data models or different ifatezs to the underlying physical data sources:

<I TEMS> {
let $user := collection("USERS")/USERS[USERI D = "U02"]
for $i in doc('items.xnl’')/ITEMS/ | TEM
where $i/ OFFERED BY eq $user/USERI D
return
<I TEM>{$user/ NAME, $i/| TEMNO, $i/DESCRI PTION, $i/RESERVE_PRI CE}</| TEM>
} </ 1 TEMS>

Thanks to the optimization techniques discussed abovet dimwu DataDirect XQuery handles relational
and XML data sources, the query above will take full advaataigthe performance capabilities of the database
engine hosting the)SERSable, and of the document projection and streaming prougds dealing with the
items.xmXML document.

The application consuming the result is shielded from thesiglal origin of the data returned by the XQuery;
even if the result mixes information stored in a relationatiatbase and in an XML document, the client appli-
cation doesn’'t need to know about that, and it is able to acitesreturned data through the standard interfaces
exposed by the XQuery API for Java.

6 Conclusions

In this paper we have discussed how XQuery can be useful widing data services which accomplish data
integration tasks across heterogeneous data sourcesddntorsucceed in that task, XQuery implementations
must be optimized to deal with the peculiarities of the vasicupported data sources. DataDirect XQuery
implements a variety of techniques when dealing with refati databases and XML documents; those include
the ability to push SQL to the relational engine, to minimike amount of data retrieved from the database,
to leverage XML document projection and XML document streeymo handle large XML documents in an
efficient and scalable way. Thanks to these techniques XQs&n excellent technology for simplifying and
streamlining data access in the context of traditional DA Spplications.
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Abstract

This paper describes the internal features of the Saxon ¥Quecessor that make the most significant
contribution to its speed of execution. For each of the festuan attempt is made to quantify the
contribution, in most cases by comparing performance agtavhen the feature is enabled or disabled.

1 Introduction

Saxon [1, 2] is an implementation of XQuery written in Javainiplements the XQuery 1.0 specification [3]
in full, with the exception of the static typing feature (§8§ section 5.2.3), but including support for schema-
aware processing. It also implements the XQuery Updatdfsgeimon [4], which is currently a W3C Candidate
Recommendation.

Saxon also implements XSLT 2.0 [5], XPath 2.0 [6], XML Scheit@ [7], and a significant subset of the
new features in the draft XML Schema 1.1 specification [8]fdet Saxon started life as an XSLT processor,
and was later adapted to handle XQuery as well. The two lageguare implemented as different syntax front-
ends to the same run-time engine; both compilers genemtgatne code and at run-time there is essentially no
knowledge of whether the code originated as XSLT or XQuery.

Saxon is available in several versions. The open-sourcguptpSaxon-B, implements all the mandatory
features of the W3C specifications. The commercial versidheproduct, Saxon-SA, provides additional op-
tional features, including schema processing, schemaea¥@L T and XQuery processing, and XQuery Update,
as well as a number of performance-oriented features imgjual more advanced query optimizer, support for
streamed query execution, document projection [9], and Jade generation.

Saxon is released on both the Java and .NET platforms. Theisadritten in 100% pure Java. The .NET
version is created by cross-compiling the Java bytecode.MET IL code, using the open-source IKVMC
cross-compiler [10]. The version described in this pap&aison-SA 9.1 on the Java platform, unless otherwise
specified.

Saxon has been under development for over ten years, aniz¢hefshe code base is now some 180,000
non-comment lines, excluding test material and toolinge @avelopment objectives for Saxon are, in order of
priority: (1) Rigorous standards conformandg@) Reliability; (3) Usability (primarily of interfaces and error
messages); and) Performance.

Copyright 2008 IEEE. Personal use of this material is peteoit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
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While this paper is concerned with performance, it is im@atrto note at the outset that performance goals
are never achieved by sacrificing the higher-priority otiyes. In practice, while the objectives are sometimes
in conflict, it has in nearly all cases proved possible to@ahihe required performance without compromising
other goals. For an example see [11].

It is not the intention of this paper to compare the perforogaaf Saxon with other XQuery processors.
It is impossible to do this objectively when one knows onedpict much better than the others. A number of
papers have been published describing comparative bemkimgaf different XQuery processors [12, 13, 14].
Independent benchmarks can be frustrating for a vendoubedaey exhibit a lack of specialized knowledge on
how to get the best possible results from one’s own prodis; ia the case of Saxon, they often use the open-
source version rather than the higher-performance conmahesmersion. Nevertheless, the overall conclusion
from these independent studies is that Saxon performaniiée not always in pole position, is comfortably
near the front of the field.

Another problem with benchmarks is that performance is mmexdimensional objective. Some users are
interested in the throughput of a transaction processingilaad that handles thousands of small messages per
second using the same queries. Others are interested itaffsed time for processing very large documents.
Some users generate queries on-the-fly, in which case gompile time can be as important as execution time.
Some workloads are dominated by the cost of parsing soumatents, some by serialization of results, others
by the computational cost of the query itself. A well-rouddegoduct needs to satisfy all its users, not just to
optimize its score in a synthetic benchmark.

2 The Architecture of Saxon

There is no space in this paper to give a detailed accounieahtlrnal architecture of the Saxon product. An
article [15] was published some years ago, and althoughsitriees the product from an XSLT rather than
XQuery perspective, the broad picture remains valid today.

It should be noted that Saxon is not a database product. vitsnaterial is XML held in unparsed form
in filestore, or sent over the wire. This means that Saxon doe$ave the luxury of maintaining persistent
indexes or collecting statistical data for use by its optienj it has to take the data as it comes. When a query is
schema-aware, Saxon is able to take schema informatiomatimunt when compiling a query, but the general
rule is that queries are compiled with no knowledge of whditlvei found in instance documents.

Like every other implementation, the Saxon XQuery procebss compile-time and run-time processing
phases. Broadly, the compiler works by creating an expradsee as the output of the parsing phase. It then
performs type checking, which labels nodes in the tree withresults of static type inferencing, and adds
additional operators to the tree to perform run-time typecking or conversion where required. Saxon works
on the principle ofoptimistic static type checkingvhich means that a compile-time error is reported only if
the inferred static type of an expression is disjoint witk thquired type; if the static type overlaps but is not
subsumed by the required type, then additional code is gtrteto perform run-time type checking. Following
type-checking, the next phase is optimization; this exasitne tree for constructs that can be rewritten and
replaced by alternative, hopefully more efficient equiséde The optimization phase is optional, and where
compile-time performance is critical it can safely be oedtbr performed less aggressively.

The final optimized expression tree can then be used in tweswiycan be interpreted by the run-time
execution engine, or it can be used as input to the Java celergtor. This generates Java byte code to execute
the query directly (currently via Java source code as amnrgdiate form), and the byte code is then executed
by the Java VM in the normal way. The byte code, of coursd,ratikes many calls on a precompiled Saxon
run-time library.

Saxon does not include its own XML parser; it can work with Aetg of third-party parsers (both push and
pull). It does however include its own schema processor afidator: close integration between the schema
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processor and the XQuery engine was considered essemtfagfoperformance.

3 Performance Features

In this central section of the paper we examine a number d¢fifes implemented in Saxon whose aim is to
improve query performance, and we attempt to quantify th@aithof each feature.

3.1 The TinyTree and the NamePool

The XML document used as input to a query may be stored in atyasf ways; what these have in common is
that they all implement the abstract Java interfidodel nf 0. Nodel nf o is essentially at the same level as the
abstract XDM model described by W3C [16]; it differs howeurethat it offers direct support for the thirteen
XPath axes (child, descendant, ancestor, following+sifletc). This allows eacNodel nf o implementation

to optimize the way it navigates each axis; and in the caseoolets that create node objects on demand, it also
means that nodes are created only where the caller actegllyres them, and not for intermediate nodes that
end up being skipped.

There are two native implementations of thkedel nf o interface in Saxon: the linked tree, which is a con-
ventional “object-per-node” tree structure in which pamedes contain a list of their children, and the TinyTree,
which we will describe in this section. There are also a nunafémplementations oNodel nf o that wrap
external object models including DOM [17] (both Java and lgéoft versions), JDOM [18], DOM4J[19], and
XOM [20]. A number of vendors integrating Saxon into otheplagations have writteftNodel nf o implemen-
tations to access other data sources.

The TinyTree structure is unashamedly inspired by the DTMeha Xalan [21], though it does not mimic
the design at a detailed level. There are also some sirekasitith Intel's “record representation” [22], though
a significant difference is that Saxon’s structure reprisseodes in the tree, whereas Intel’'s represents events in
the parse stream.

The TinyTree represents a document using six principalarof integers. These arrays contain one entry
for each node (other than attribute and namespace nodeljgranindexed by node number. They contain
respectively: the node kind (for example element, text, romt), thename coddsee below), the depth in the
hierarchy, a next sibling pointer (which for the last siblipoints back to the parent node), and two overlaid
values which in the case of elements point to the first atigiland the first namespace node, and for other
kinds of nodes are pointers to the textual content in a teftéb(or in the case of a whitespace-only text node,
a representation of the actual whitespace compressed usiAgngth encoding). The total size of these six
integers is 19 bytes per node. Attributes and namespacesmesented in separate but similar sets of arrays.

Additional arrays are allocated when needed. The first timevarse axis such as preceding-sibling is used
on a particular document, an array containing prior sibfgters is created and populated. If the document
is schema validated, an additional array is allocated td bz type annotations produced as a result of the
validation process (again as integers, using the name ddte type name).

The TinyTree is designed to be compact without sacrificingedpof access. In particular, it avoids the
heavy overhead of using one Java object for each node indbgitisteadNodel nf o instances are allocated
as transient objects on demand, and are garbage collecte mehlonger needed. Modern Java VMs make
garbage collection of short-lived objects a highly effitieperation. The TinyTree is also optimized for read-
only access. It makes it very efficient to compare nodes founent order, a common operation in XPath. This
structure does not support XQuery Update; for that, a metidked tree must be used.

Names of elements and other nodes are represented usintggariname code, which can be translated
into a fully qualified name by reference to tNarmePool holding all the names, which is used to allocated new
codes. The name code contains a unique identifier for theldfalfname pair in 20 bits, with a further 10 bits
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used to represent the prefix; this imposes a limit of a milboso URI/local-name pairs, which as far as | know
has never caused a problem, and a limit of 1024 distinct mefier each URI, which does occasionally cause
problems for pathological applications; but we can livetviliat. The essence of the approach is that the same
NanmePool is used at compile time and at document parsing time, whiclinséhat the compiler can generate
code that searches for named nodes using an integer compeaibier than a string comparison.

The primary motivation for the TinyTree is to reduce memotgupancy and building time for large docu-
ments without sacrificing access speed, while the main ditvéhe use of integer name codes is to improve the
speed of matching nodes by name. We can evaluate both dffectanparing the TinyTree with both the Saxon
linked tree (which uses an object per node, but with integenacodes) and with the DOM (which uses an ob-
ject per node, and string comparison for names.) To do tlisk the 100Mb version of the XMark dataset [23],
modified to use a namespace to make it more typical, and ragubeg/count (/ ns: site// ns: from
against it. This gave the results shown in Table 1:

Table 1: TinyTree performance
| | TinyTree | Linked Tree]  DOM |

Build time 5136ms 7933ms| 8332ms

Memory used| 327Mb 370Mb 796Mb
Query time 35ms 226ms| 10603ms

This was run with whitespace stripped from the tree, whickeaa significant difference to the figures. The
DOM used was the Xerces implementation bundled in JDK 1.&artbe seen that although the TinyTree beats
the linked tree on both time and space, the most noticealiage search speed.

3.2 Pull/Push Pipelining

Pipelining is well established as an execution strategfuiactional languages as well as for relational databases.
The essence of the approach is that an operator that noyniakdls a sequence as input and produces a sequence
as output (for example the filter operator represented intiXBg the syntax A[B]), should read its input one
item at a time and deliver its output to the parent operateritem at a time. This is a description of a pull
pipeline: it is driven by read operations issued by the wtenconsumer of the data. Equally valid is a push
pipeline, controlled using write operations issued by tygpdier of the data.

Saxon uses a combination of pull and push pipelines, andsagpshe right kind of pipeline at each stage
appears to make a significant difference to performance.

Pull pipelines are used primarily for evaluating XPath esgions, that is, when reading from the source
document. Push pipelines are used primarily when consigidocuments (both the initial source document
and the result document), and also when serializing. Saxsmfiema validator is a complex push pipeline, as is
the XML serializer. This split between pull and push was vesyural in an XSLT 1.0 processor, where there is
a clean split in which XPath expressions read the input andl{iSstructions write the output. In XQuery (and
for that matter in XSLT 2.0), the two kinds of operation canchenposed in arbitrary ways. Nevertheless there
are two very different kinds of operation; and it remaingtthat many queries are “single-phase” in the sense
that they only read nodes from the initial query input and/amtite nodes to its final output.

Feeding data from a pull to a push pipeline is easy: a programng the control loop reads from the first
pipeline and writes to the second. Doing the opposite is mbadlenging. In the absence of a language with
intrinsic coroutine support, there can only be one contvopl Two solutions are available: either break the
pipeline by building the intermediate sequence in memoryse multiple threads. Both involve overheads.
Saxon uses both techniques, though multiple threads aceardg in one very specific situation, to support
streamed processing where the source document is notrdwoilan in-memory tree. So one of the main design
aims is to use pull and push where appropriate, but whilermaing the need to switch from one to the other.
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for $i in distinct-values(
/ sitel/ peopl e/ person/profilelinterest/ @ategory)
let $p : = for $t in /site/people/person
where S$t/profile/interest/ @ategory = $i
return <personne>

</ per sonne>
return <categorie><i d>{$p}</id></categorie>

Figure 1: The XMark query10

To achieve this, Saxon divides query operators into thrésgosaes:

e Simple read expressions are always executed in pull modeeseTnclude path expressions and fil-
ter expressions, sequence concatenation, union/intenseand function calls such asubsequence,
i nsert,ori ndex-of .

e Node constructors are generally executed in push mode: viniéy events to an output pipeline. This
works especially well when the output is sent straight toréakeer; in this situation there is no need
to materialize the constructed tree in memory. These icstns are also able to operate in pull mode
(to deliver events on demand to a client), but this is onlyedifrthe application that fires off the query
explicitly asks for the query result in this form.

e Other expressions, notably FLWOR expressions, conditiexressions, and function calls can operate
in either push or pull mode. In general they operate in theesaumde as their caller, so if they are invoked
during tree construction they will push, and if invoked i thmiddle of a path expression they will pull.
This means that a function body may execute in either moderafpg on the context of the caller.

How can we evaluate the effectiveness of this strategy? Albuatration, XMark queryg10 (see Figure 1),
after rewriting by the Saxon optimizer to inline the unneeeg variablebp, is a classic one-phase query; run
with default options it takes 1926ms, but if we force it to farpull mode it takes 3456ms, largely because the
result document is materialized in memory before beingaliezed. This query contains a FLWOR expression
(for $t ) that is logically inside an element constructor, and isdfege evaluated in push mode. If we atrtificially
force the FLWOR expression into pull mode (by a tweak to thgo8acode), the execution time becomes
2720ms. Forcing the variablp to be materialized rather than being pipelined also affdwsperformance
adversely, this time to 2398ms. These figures should be isuifito illustrate that the impact of pipelining
decisions can be significant, though they do not prove, ofssguhat Saxon always gets it right.

3.3 Path Expressions

Path expressions in Saxon are evaluated using a nesteditatgyy. A path expression suchxdsy/ z finds all
thex children of the context node; for each of these it finds alltrehildren, and for each of these it finds all
thez children. In case this seems obvious, it is not the stratleglyall products use, and some researchers have
expressed surprise that it should perform so well.

Because of pull pipelining, it is actually an inverted ndskaop: the client requests the nextelement,
which might cause the next to be found, and so on. Neither the final node sequence dediviey the path
expression nor any intermediate results are materializegemory.

The main optimization carried out by Saxon is to eliminateisg wherever possible. The semantics require
that the results of each “/” operator, and indeed the resfikaich axis step, are sorted into document order with
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duplicates eliminated. In practice such sorting is verglsaneeded because the nested-loop evaluation in many
cases delivers results already sorted and deduplicatedn$m@es to considerable trouble to avoid unnecessary
sorting. Furthermore, even when the evaluation strateliyetie nodes in the wrong order, the consumer of the
results might not care: for example given the expressionst s(x//y/ / z) , sorting the node sequence will
not affect the outcome.

The main aspect of the analysis is determining combinatibasis steps that are “naturally sorted”. This is
the case for any sequence of child axis steps. It is also druanfexpression such as b/ / ¢, but not (perhaps
surprisingly) fora/ / b/ c. There is no space here to give the rules in detail.

One case that often causes difficulty is a path su@xas/ b/ c that starts with a variable reference. Here,
if $x is a singleton node sequence, or any sequence that is sootgdins no duplicates, and contains no node
that is an ancestor of any other, then the entire path willHagurally sorted”, making sorting unnecessary. This
can sometimes be determined by static analysis, but failiry Saxon generates conditional code to test at
run-time whethefx is a singleton, and thus avoids the sort in this common case.

For the query si t e/ / keywor d, which returns around 70,000 nodes on the XMark 100Mb datgba
eliminating the sort reduces the TinyTree execution tinoenfll07ms to 60ms. When running against a DOM,
where sorting into document order is more expensive, thegas more dramatic: against the 10Mb database,
run time reduces from 1300ms to 290ms; for 100Mb, the queeg dot even complete without this optimization.

3.4 Join Optimization

Saxon-SA optimizes joins by constructing hash indexes bed tising them to support fast filtering of indexed
sequences. The optimizer does not actually recognize theepd of a join. What it does is firstly, to break up
the condition in thesvher e clause of a FLWOR expression and distribute it among thetispguences read by
the expression, thereby turning them into XPath filter exgians; and then (independently) it identifies filter
expressions that are likely to benefit from indexing.

Two kinds of index are used: indexed documents, and indeaedbles. Wherever possible, an index
is attached to a document node, which allows it to be reusezhexter that document is searched, even in a
different query. Where this is not possible, the contenta wériable can be indexed: such an index dies when
the variable goes out of scope.

Join optimization is widely discussed in the databasedlitee. A significant difference for Saxon is that
there are no pre-existing indexes: any index that is reduinest be created within the query. Nevertheless,
impressive savings are possible in the right circumstané&s example, Table 2 shows the performance of
XMark queryq9 against databases of different sizes using Saxon-B (wifleguoptimization) and Saxon-SA
(with).

Table 2: Join optimization
| | 1Mb | 10Mb | 100Mb |
Saxon-B | 41ms| 3612ms| 381543ms
Saxon-SA| 3ms 26ms 246ms

It is plain here that Saxon-SA performance is linear whilgdaB is quadratic.

3.5 Miscellaneous Rewrites
Further compile-time expression rewrites done by the S&8&@mptimizer include the following:

e Replacecount ( X) =0 by enpt y( X) . This takes advantage of the fact that whérs pipelined, the
latter expression can exit as soon as it sees the first iteheisdquence; there is no need to compute the
count.
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e Constant folding: constant subexpressions are evaluatahgile time.

¢ Variable inlining: when a variable is only referenced orexed not in a loop, the reference is replaced by
the initializing expression

¢ Function inlining: calls to non-recursive functions of nestisize are replaced by the function body. This
often enables further optimization of the new expression.

e Loop lifting: expressions within a repeatedly-evaluatebexpression (for example a filter predicate, or
the return clause of a FLWOR expression) that do not deperldeoloop variables are moved outside the
loop, but taking care to ensure that they are not executée ifoop is iterated zero times.

e Global variable extraction: expressions within a functimdy that do not depend on the function argu-
ments are promoted to global variables.

e Compound if/then/else expressions acting as switch statttesting the value of one expression against
a range of constant values, are recognized and supporteashyniy.

The benefits achieved by these rewrites are highly varidhleach case it is easy to find example queries
where the rewrite gives an order-of-magnitude improvemieid less easy to quantify how many queries benefit
from each rewrite. Very often these rewrites are most affeéh combination: one apparently minor rewrite
simplifies the expression sufficiently to enable anotherenpmwerful one, in particular, the join optimizations
discussed in the previous section.

3.6 Schema-Aware Processing

Schema-aware processing allows a query to be compiled watvledge of the schema that a source document
will conform to.

The major benefits of schema-aware processing are usadnilityreliability: it enables easier debugging of
gueries, and increases the likelihood that a query thattisnpo production with inadequate testing (as many
are) will turn out to be bug-free.

The effect of schema-aware processing on performanceasimfixed. For some applications, the overhead
of performing schema validation on the input outweighs awrgys achieved through greater intelligence in the
query execution plan. There are also cases where manipuldiie document as raw text turns out to be faster

than processing it as typed content.
An example where schema-aware processing has a negatet @ff performance is in XMark querp 1,
which is dominated by the predicate

where $p/profil e/ @ncome > (5000 * $i)

If the attribute@ ncone is typed axs: deci mal , and if$i is alsoxs: deci mal , which will happen if
the schema for the XMark database is written to xisedeci mal for money amounts, then this will involve
a decimal comparison; whereas without schema-awareresspmparison will use double-precision floating
point. In Java, on a typical platform, double arithmetic igal faster than decimal, because it is supported in
the hardware. A user who is aware of this problem can workratat) but by default, the query will run more
slowly.

O)r/1 the other hand, knowledge of the paths that exist in thecealata can sometimes be exploited to great
advantage. The XMark benchmark queries tend to be writtémfwil paths, such as

let $ei := $site/peoplelperson/creditcard

but real users are often less patient, and write
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let $ei := $site//creditcard

Given sufficient type information, Saxon-SA will rewriteetlabbreviated path to use the step-by-step form,
which can greatly reduce the number of nodes that need todnehssl.

With schema-aware processing, the second query takesdaBma on the 100Mb XMark dataset; with-
out schema-awareness, it takes 51ms. However, schemati@iidncreases the parsing time for the source
document from 5s to 15s.

3.7 Streaming

Saxon-SA provides the ability to execute certain queriesti@aming mode. This is not done as an automatic
optimization, but must be explicitly requested using a pragln this mode, simple expressions can be evaluated
without first building a tree in memory.

This does not make the query itself run faster, but it savesctist of building the tree, and of course it
enables source documents to be processed that are toodditjgtmemory (transforming a 20Gb document
has been timed at 50min [24]).

Streaming is a natural extension of pipelining: it pipedirtegether the operations of parsing and query
evaluation, removing the need to materialize the interatediata, that is, the tree representation of the source
document.

Foraquery such asount (// per son) on 100Mb of input, the execution time including parsing @uard
5s with streaming, 5.6s without. The big difference is thahwtreaming, memory is reduced from 450Mb to
1.7Mb. So the effect is not so much on the speed of the quenn &s scalability. This illustrates the message
that performance cannot be considered a one-dimensioopéy.

Speed improves greatly when the file is not read to complefidre queryexi st s(// afri ca) on the
same data takes just 180ms with streaming, 5.6s without.

3.8 Document projection

Document projection (see [9]) is a technique for buildingesetcontaining only that subset of the source doc-
ument that is needed to execute a query, as determined yatatysis of the query. As with streaming, the
technique is only suitable where the document is being garserder to execute one query that is known in
advance, but unlike streaming, it works with any query.

At present Saxon never does document projection autortigtioaly on request. The main reason for this
is that the risk of bugs is considered high, since it reliesndarencing about the access paths used by every
single construct in the language.

Document projection, like streaming, has more effect on orgmsage than on execution time: with XMark,
it reduces the tree size by 90% or more for 15 out of 20 qudbigspnly two are speeded up by more than 25%
(¢6 by 75%, and;7 by 95%).

3.9 Java code generation

Saxon-SA offers the option to generate Java bytecode ipiieg the logic of the query, as an alternative to
interpreting the query execution plan. (This is currenthne indirectly, via generation of Java source.) The
generated code may be executed from the command line, vidPhroAas a Java servlet. Many operations, of
course, are still handled by calls to the run-time librang $ame library that the interpreter uses.

The speed-up obtained by compilation is not as great as ogbtrakpect: 25% is typical. For XMark
(10Mb), the biggest improvement (54%) is to the slowest yugll, from 3344ms to 1541ms. The saving
appears to be greatest for queries dominated by arithmestriog manipulation — simple path expressions
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show very little improvement over the interpreter. Thisgests that an equally effective (and more convenient)
strategy might be to do just-in-time compilation of a fewestéd subexpressions.

| experimented at one time [25] with generating code for gaitressions that was committed to a particular
tree model such as the TinyTree, rather than working gesifrion any tree model. The results were not
encouraging, so the experiment was abandoned. Part ofdkerrés that evaluating path expressions is already
very fast.

3.10 Methodology

| said | would give ten reasons why Saxon is fast, and the fire have been technical characteristics of the
delivered product. The final reason is deeper, and relatéset@ngineering discipline used to develop the
software. Here are a few lessons learnt from the experieihdgeveloping Saxon over a period of ten years:

e Investigate every user-supplied performance problem hder here is no better raw material for under-
standing how the code behaves, and without such understatitkre can be no improvement.

e Optimize the code that typical users write, whether it islwegltten code or not. Try to educate users
on how to write code that works well on your product, but ratpg that you will only reach a small
minority.

e Never make performance improvements to the code withousuniggy the impact. If you cannot measure
a positive impact, revert the change (easily said, but pdggically very difficult when you've put a lot
of effort in). Keep records of what you learnt in the process.

e Avoid performance improvements that rely on user-cordgtbiwitches. Most users (including people who
publish comparative benchmarks) will never discover thictwexists; of the remainder, a good number
will set the switch sub-optimally.

e Remember that every optimization you make to your code @yliko require a substantial investment in
new test material, and even then, is likely to result in ssveew bugs escaping into the field. Do not do
it unless the gain is worth it.

¢ Maintain a set of performance regression tests to ensut@énrmance gains made in one release are
not lost in the next.

e Separately, maintain tests to show that query optimizatane taking place as intended. In Saxon this
is done by outputting an XML representation of the query akien plan for test queries, and checking
assertions about these plans expressed as auxiliary guerie

For the other nine ways of achieving good performance in Sakbave tried to quantify the benefit. For
this tenth cause, | am afraid | cannot do so — | do not have angyth compare with.

4 Conclusions

In this paper | have presented ten characteristics of therBXQuery implementation that contribute to its
performance, and for most of these, | have attempted to fydme size of that contribution for some selected
queries.

Few of these mechanisms are unigue to Saxon; what makes 8iakiantive is the deployment of a balanced
portfolio of techniques to deliver efficient query executiover a variety of user workloads, coupled with a
determination to place other qualities of the product @ads conformance, reliability, usability) ahead of raw
performance. In a crowded marketplace with over 50 XQuelementations competing for user attention, |
believe it is this balanced approach that has led many usenske Saxon their preferred choice.
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Data Engineering refers to the use of engineering techniques and methodologies in the design, development and assess-
ment of information systems for different computing platforms and application environments. The 25th International
Conference on Data Engineering provides a premier forum for sharing and exchanging research and engineering results
to problems encountered in today’s information society. The conference programme will include research papers on all

topics related to data engineering, including but not limited to:

Approximation and uncertainty in databases
Probabilistic databases

Data integration

Metadata management and semantic interoperability
Data mining and knowledge discovery

Data privacy and security

Data streams and sensor networks

Data warehousing, OLAP and data grids

Database user interfaces and information visualization
Personalized databases

Accepted contributions at ICDE 2009 will make efforts (1)

Social information management, annotation and data curation
Query processing and query optimization

Database tuning, and autonomic databases

Scientific, biomedical and other advanced applications
Spatial, temporal and multimedia databases

Transaction and workflow management

Ubiquitous, mobile, distributed, and peer-to-peer databases
‘Web data management

XML data management

Database architectures

to expose practitioners to the most recent research results,

tools, and practices that can contribute to their everyday practical problems and to provide them with an early opportunity
to evaluate them; (2) to raise awareness in the research community of the difficult data & information engineering
problems that arise in practice; (3) to promote the exchange of data & information engineering technologies and
experiences among researchers and practitioners; and (4) to identify new issues and directions for future research and

development in data & information engineering.

AWARDS

An award will be given to the best paper submitted to
the conference. A separate award will be given to the
best student paper. Papers eligible for this award must
have a (graduate or undergraduate) student listed as the
first and contact author, and the majority of the authors
must be students.

INDUSTRIAL PROGRAM

ICDE 2009 will include an industrial track covering
innovative commercial implementations or applications
of database or information management technology,
and experience in applying recent research advances to
practical situations. Papers will describe innovative
implementations, new approaches to fundamental
challenges (such as very large scale or semantic
complexity), novel features in information management
products, or major technical improvements to the state-
of-the-practice.

PANELS

Conference panels will address new, exciting, and
controversial issues, being provocative, informative,
and entertaining.

DEMONSTRATIONS

Presented research prototype demonstrations will focus
on developments in the area of data and knowledge
engineering, showing new technological advances in
applying database systems or innovative data
management/processing techniques.

TUTORIALS

ICDE 2009 will host tutorials, relevant to the
conference topics. Tutorials can be single-session (1.5
hour) or for double-session (3 hour).

WORKSHOPS
The following workshops will be hosted by ICDE 2009:

e  DBRank: Third International Workshop on Ranking
in Databases

First IEEE Workshop on Information & Software as
Services (WISS'09)

Fourth International Workshop on Self-Managing
Database Systems (SMDB 2009)

Management and Mining of UNcertain Data
(MOUND)

Modeling, Managing, and Mining of Evolving Social
Networks (M3SN)

Second International Workshop on Data and Services
Managementin Mobile Environments (DS2ME 2009)

For more information, visit http://i.cs.hku.hk/icde2009/
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