A Short Overview of FLOWS:
A First-Order Logic Ontology for Web Services'

Michael Gruninger Richard Hull Sheila A. Mcllraith
University of Toronto IBM T.J. Watson Research Center University of Toronto
Toronto, ON, Canada Yorktown Heights, NY, USA Toronto, ON, Canada

Abstract

FLOWS is a first-order logic ontology for Web services and aCW&ibmission. In this article, we
describe some of the motivation behind the development W&, together with its key features.

1 Introduction

TheFirst-order Logic Ontology for Web ServicéSLOWS) [9], also known as the Semantic Web Services On-
tology (SWSO), was initially developed during 2002 to 20§4alteam of academic and industrial researchers,
as part of the larger Semantic Web Services Framework (S}, which culminated in a W3C Member
Submission [10] in 2005. FLOWS was created on the premiseathainambiguous, computer-interpretable
description of the process model of Web services and howdhegomposed, and client constraints on the ser-
vices to be provided, are critical to automating a diversitjasks, including Web service discovery, invocation,
composition, monitoring, verification and simulation. Tastend, FLOWS is based on first-order logic, and
provides a rigorous axiomatization that captures the sgtiocess-level semantics of Web services.

FLOWS is an extension of the Process Specification Language)([4], a first-order logic ontology for
modeling processes that was originally developed for mentufing processes, and realized as an ISO standard
in 2004. FLOWS enables partial and/or complete specifioatad the properties of Web services, including pre-
and post-conditions, internal structures, compositiditepas, messaging behaviors, and impact on the external
world, all in the context of a rigorously axiomatized firstder logic framework. This article provides a very
brief overview of FLOWS, including comparisons with reldteork, key principles underlying the creation of
FLOWS, and illustrations of key components of the framework

Background. A Web serviceprocess modealescribes the program that implements a Web service, whightm
itself be formed as a composition of other Web services. @hweryears, a number of languages have been
proposed for describing the process models of Web serviSesne of the most important examples include
Microsoft's XLANG, a Web service process modeling languagsed on pi-calculus; IBM’s WSFL based on
Petri Nets; BPEL4AWS, a Microsoft, IBM, BEA, SAP and Siebdbdf which merges XLANG and WSFL;
HP’s Web Service Conversation Language (WSCL); BEA, lotéAP and Sun’s Web Service Choreography

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

*This work was supported in part by NSF grants [1S-0415195 @N&-0613998, and by grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and thei@ménistry of Research and Innovation.

Interface (WSCI); BPML, backed by the Business Process genant initiative; the XML Process Description
Language (XPDL) backed by the Workflow Management Coalitiba Business Process Specification Schema
(BPSS) of ebXML; and the W3C Choreography effort, WS-CDL jekhdraws on pi-calculus. The most pop-
ular language for Web Service orchestration in use today $sBPEL 2.0 (or BPEL for short), which offers
significant enhancements over its predecessor, BPEL4WS.

In evaluating and comparing these efforts, a key obsenvadithat they were designed to address a diversity
of targeted process management tasks. Some, like BPEL,designed to address Web service orchestration
issues and to standardize workflow and execution with theatibg of increasing transaction reliability and
synchronization. Others, like WS-CDL, have focused ondssof Web service choreography, which involves
message exchange to coordinate the activities of indepenadents. As a consequence of the diversity of uses
for which these languages have been designed, comparimghthged on concept coverage is important, but not
necessarily pertinent, as many of these languages coulktdreded to incorporate further concept descriptions.

It is our view that the most important shortcoming of thesgylaages, and the one that is least easily ad-
dressed, is their lack of well-defined semantics. For exang#veral attempts have been made to formalize
predecessors to WS-BPEL 2.0 using Petri nets, processrafjednd abstract state machines. While the WS-
BPEL 2.0 specification is more precise with respect to theaseics, it is still informally defined [6].

In 2001, a coalition of semantic Web researchers, undernubgiees of the DARPA DAML program, under-
took to develop an ontology for Web services, using the Sém#veb ontology language DAML+OIL. This
culminated in the creation of OWL-S (formerly DAML-S) [2] aaly service ontology developed in OWL (the
successor of DAML+OIL) [5], and a W3C Member Submission if200WL is a family of knowledge repre-
sentation languages for authoring ontologies and is eaddrg the World Wide Web Consortium (W3C). The
semantics of most of the OWL languages, specifically OWL Dd @WL Lite, is based on artificial intelli-
gence description logic, a subset of first-order logic. OWIll 5oon to be replaced by OWL 1.1) is based on a
novel semantics that provides compatibility with RDF Schemdost importantly OWL, and thus OWL-S, has
a well-defined (formal) semantics, in constrast to effasi®tl above.

Unfortunately, OWL has not proven sufficiently expressigecharacterize Web service process models.
While OWL-S does indeed have a description of the processhuica Web service, OWL is not sufficiently
expressive to denote all and only timended interpretationsf that process model. As such, like other process
modeling languages, the OWL process model must be humanprieteed to resolve ambiguities, or translated
to another, richer language, in which this new model can laanimguously interpretted by a program. Indeed
there have been four efforts towards defining the intendedtpretation of the OWL-S (or DAML-S) process
model: a Petri Net-based operational semantics [7], anéaténg function-based operational semantics based
on subtype polymorphism [1], a semantics via translatidhedirst-order language of the situation calculus [7],
and a semantics provided by translation to PSL [3].

OWL-S has many strong features. In particular, the conoepgrage of OWL-S provides a firm foundation
for process modeling efforts, including the ability to deeloth partial and complete specifications of relevant
aspects of a group of Web services. Further, OWL's expressss limitations, which OWL-S inherits, exist to
address the important trade-off between expressivenegeane hand and decidability and tractability on the
other, and are thus easily defensible in this context. Nleekrss, it was experience with OWL-S that, in part,
motivated the development of FLOWS.

The Web Service Modeling Ontology (WSMO) [11] also providesexpressive, layered ontology for web
services and their compositions, using a semantics basadombination of description logic and horn logic.

Principlesunderlying FLOWS. FLOWS was developed based on the following three principles

Provide a fully expressive language and framewoilkhe goal of FLOWS is to enable reasoning about the
semantics underlying Web services, and how they interatt @dch other and with the “real world”. FLOWS

does not strive for a complete representation of Web sesyvimat rather for an abstract model that is faithful
to the semantic aspects of service behavior. In that cqritE@®WS enables a variety of reasoning tasks, by

supporting descriptions of Web services that enable autmndiscovery, compaosition, and verification. This
also includes the creation of declarative descriptions dfed service, that can be mapped (automatically or
through a systematic, partially manual process) to exbitspecifications. In particular, then, unlike the
industrial process modeling languages listed above, FL@A®ended to support, within one language and
underlying framework, reasoning about Web services frorarg broad range of perspectives.

FLOWS is a modular and extensible ontology. It is thus pdagib provide alternative extensions to repre-
sent different approaches to message handling, chordograpd orchestration. As such, FLOWS can serve as
an interlingua ontology that can facilitate interoperiypibf Web services that use different ontologies.

Use first-order logic as the basig.irst-order logic enables the characterization of reamptasks for semantic
Web services in terms of classical notions of deduction amsistency. FLOWS can be used to specify tasks
in support of Web service discovery and composition; chregkiervice properties such as reachability, liveness,
and compliance with behavioral patterns and constraintdgaerying about a wide range of semantic and tem-
poral properties of services. This enables exploitationfbthe-shelf systems such as existing FOL reasoning
engines and database query engines, thereby facilitatipigmentation and improving our understanding of the
reasoning tasks. At the same time, the use of first-ordec lbges not preclude the use of alternative reasoning
methods on selected subsets of FLOWS.

First-order logic has been criticized because it is semieddble (as opposed to OWL DL, which is decid-
able). Nevertheless, the motivating scenarios for semakéb services show that in general we will need to
solve intractable reasoning problems. Intractable raaggomroblems are inherently intractable — using a dif-
ferent language does not make them tractable. The restritia language that is tractable simply means that
there will exist reasoning problems that cannot be spedifitgide language.

Capture full semantics using an extensible family of axioAlghough other approaches to semantic Web ser-
vices specify concepts contained in FLOWS, they do not plea rigorous and complete axiomatization to
support automated reasoning about the concepts. Incamgt@matizations require the use of additional ex-
tralogical mechanisms rather than reasoning from the axialone. Since automated Web services can share
axioms, but not the specification of special-purpose axjont®mplete axiomatizations restrict the reusability
and sharability of an ontology.

In FLOWS, the process model for Web services and their coitipos is formally specified using PSL
This provides predicates and axioms that enable reprégentd, and reasoning about, core process modeling
concepts, including fluents (that is, first-order predisatpresenting some portion of the “real world” that
can change over time), activities (such as Web servicesyjtgaccurrences (such as individual executions of
Web services), and the values of fluents before and aftesitgieticcurrences. The PSL standard is comprised
of a layered collection of families of axioms that can be ukedeason about a broad class of processes. As
discussed in more detail below, FLOWS provides additioaaiifies of axioms, layered on top of a subset of
the PSL axiom families, to enable representation of, ansor@ag about, Web services and their compositons.

2 Key aspectsof FLOWS

After providing some motivating use cases, this sectioeflyrihighlights some key aspects of the FLOWS
language and framework, and illustrates how it can suppertise cases.

Motivating use cases. The space of use cases that motivates and illustrates theare@omputer-interpretable
Web service process models is vast, ranging from discovaycamposition to analysis, monitoring and error-
recovery, and including activities such as queries abalivitual services and over families of services, contract
enforcement, service histories, and provenance. Werditesshow with just a few examples, centered around
services that focus on selling and shipping books.

1. Inquiries about one serviceDoes the Acme bookseller service always return a list oflalvks second-
hand copies of my requested book, if the book is out of printtddy what conditions does the Acme
bookseller service permit me to pay for books using Paypal?

2. Discovering servicesEind all bookselling services that will, at least in someesaseturn a list of avail-
able second-hand copies of my requested book if that boakt igferint. Or, find all bookselling services
that will always return a list of available second-hand espf my requested book, if it is out of print.

3. Discovering composite serviceBind all book seller-shipper partnerships that are ablglib shipments
(e.g., as a consequence of delayed availability of somed)anikhout an additional charge.

4. Requesting (composite) serviceSreate a service that can book a flight to Toronto, find andvesz
hotel room there for next Monday to Wednesday, identify thstlway to get from the airport to the hotel,
and ship a guide-book about Toronto to me at that hotel intoney arrival. Furthermore, the hotel must
be within 15 minutes travel (by foot and/or public transptidn) of the Computer Science department.

5. Responding to exceptiondf: the preceding scenario is underway and the flight into mayas delayed,
then dynamically provide new recommendations on the begttavget from airport to hotel.

Ontology. As noted above, in the FLOWS ontology Web services (both etamd composite) are represented
as PSLactivities and Web service executions are represented asde®lity-occurrences Predicates that
change in the real world due to activity-occurrences areatsobusingfluents An activity-occurrence is a
limited, temporally extended piece of the world, with a cleanporal start-point and end-point.

As in PSL, the set of possible executions of a composite Weaficesis modeled essentially as a tree, whose
nodes correspond to individual activity-occurrences,, service executions, and where the children of one
activity-occurrence correspond to the set of all possibl#vity-occurrences that could immediately follow it.
For a fluent such adsook availablgt, w) for title t and warehouse, and service-occurrence the value of the
fluent immediately before occurs is given by the predicapge(book availabldt, w),0), and the value of the
fluent just afte occurs is given by the predicateldgbook availablgt, w),0). Itis from these basic constructs
that the full family of possible executions of a compositeb/gervice can be represented and reasoned about.
These constructs can also be used to specify pre-condaimheffects of services.

FLOWS also provides constructs for modeling the internatpssing of composite Web services, including
sequences, nondeterminism (i.e. alternative activjtiegated activities, conditional activities, and comency.

As with Golog [8], these constructs are formally modeledasstraints, which enables both partial and complete
specifications of processing characteristics. Activitas be decomposed into primitive activities or composed
into more complex activities, and different classes ofvéidis are defined with respect to ordering and temporal
constraints on the subactivities. In this way, FLOWS sufgporasoning with both complete and incomplete
process specifications. In addition, FLOWS refines aspdcBSa with Web service-specific concepts and

extensions, such as providing the infrastructure for gm8ng messages between services.

Axiomatization. The FLOWS axiomatization is layered on top of the axiomaittraof PSL Outer Core. The
axioms provide a rigorous and complete specification of h®WS constructs, including such concepts as
service, service-occurrence, messages and channelsplammistructs for service composition, various kinds
of constraints, and exceptions.

Enabling the use cases through queries and reasoning. The approach to support reasoning tasks with the
FLOWS ontology and axioms is now illustrated with the useesad he focus here is to illustrate the expressive
power of FLOWS. It is clear that many of the problems that carspecified in FLOWS have high complexity
or are undecidable; as noted above it is possible to cresiigcted versions of these reasoning tasks in order to
obtain decidability and lower complexity.

Inquiries about an individual service, such as Acme bodleisalan be achieved by reasoning over the tree
of possible executions of the service. Note that both usalesind existential quantification will be called for.
For service discovery, the properties characterizing #mreld services can be specified using formulas over
the FLOWS ontology. This essentially reduces discoveryurygjng a database of service specifications. Even
the composition of services is achieved through the spatiic of a formula with one free variable which
describes the desired properties of the composition; ezlatian for this variable will be a (composite) service
that provides a composition with the desired capabilitiesmally, FLOWS is able to represent the state of the
world when a composite service has partially completedxsetion. As such, it enables exception handling.

3 Closing Remarks

In this article we described some of the motivation behirddbvelopment of FLOWS, together with key aspects
of the FLOWS ontology. In doing so, we argued that existimglaages for modeling Web services were either
lacking in expressivity, or did not have a well-defined sefitcan As such, their ability to model and enable
automated reasoning about Web services was limited. IrasintFLOWS’ use of first-order logic provides
sufficient expressivity, a well-defined semantics, and ardity of automated reasoning tools. FLOWS presents
a natural evolution in the modeling of semantic Web serviceféecting a trend in semantic Web techonologies
towards the use of more expressive ontology languages.nRextensions to OWL, both realized and proposed,
bear witness to this trend. Readers interested in furtharlsden FLOWS are encouraged to consult the FLOWS
(a.k.a. SWSO) specification at [9], which includes the fulilabogy and selected use cases.

References
[1] A. Ankolekar, F. Huch, and Katia Sycara. Concurrent exien semantics for DAML-S with subtypes. Rroceed-
ings First International Semantic Web Conference (ISWQ2@ED02.

[2] DAML-S Coalition: A. Ankolekar, M. Burstein, J. Hobbs, .Qassila, D. Martin, S. Mcllraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara, and H. Zeng. DAML-S: Seiganarkup for Web services. IRroc. International
Semantic Web Working Symposium (SW\W&)es 411-430, 2004t t p: / / www. dam . or g/ servi ces/.

[3] M. Gruninger. Applications of PSL to semantic web sees. InProc. of Workshop on Semantic Web and Databases,
in association with the Very Large Databases Conferenc®@jl.2003.

[4] M. Gruninger and C. Menzel. Process specification laggu Theory and applicationl Magazine 24:63-74,
2003.

[5] I. Horrocks, P. F. Patel-Schneider, and F. van HarmelErom SHIQ and RDF to OWL: The making of a web
ontology languageJournal of Web Semantic$(1):7-26, 2003.

[6] N. Lohmann, H. M. W. Verbeek, C. Ouyang, C. Stahl, and W.Rvivan der Aalst. Comparing and evaluating Petri
net semantics for BPEL. Computer Science Report 07/23,. Téah. Eindhoven, The Netherlands, August 2007.

[7]1 S. Narayanan and S. Mcllraith. Analysis and simulatibaweb servicesComputer Networks12:675 — 693, 2003.

[8] R. Reiter. KNOWLEDGE IN ACTION: Logical Foundations for Specifyingldmplementing Dynamical Systems
The MIT Press, 2001.

[9] SWSF Committee. Semantic Web Service Ontology (SWS@kt®rder Logic Ontology for Web Services
(FLOWS), September 9, 200Bt t p: / / www. W3. or g/ Subni ssi on/ SW5F- SWEQ .

[10] SWSF Committee. Semantic Web Services Framework (SWu@trview, September 9, 2005.
htt p: //ww. w3. or g/ Subni ssi on/ SW5F/ .

[11] WSMO Committee The Web Service Modeling Ontology (WSMEDibmission, June, 2005.
http://ww. w3. or g/ Submi ssi on/ 2005/ 06/ .

