Web Service Protocols: Compatibility and Adaptation

Marlon Dumas Boualem Benatallah, Hamid R. Motahari Nezhad
University of Tartu, Estonia The University of New South Wales, Australia
mar | on. dumas@it . ee {boual em ham dml@se. unsw. edu. au

Abstract

This paper discusses the notion of protocol compatibilggween Web services, and reviews a number
of techniques for detecting incompatibilities and for s@sizing adapters for otherwise incompatible
services. The paper also reviews related notions such digabdity, substitutability and controllability.

1 Introduction

The composition of Web services involves wiring togethettiple web services and having them interact often
in ways not originally foreseen during their initial devploent. In doing so, it is unavoidable that incompat-
ibilities may arise and need to be identified and resolved. clAssify these incompatibilities into two types:
(i) signature incompatibilitieshat arise when a service requires an operation from ansémeice, but this latter
service does not offer it, or when a service A needs to exahamgessage with another service B, but the schema
of the message that A produces is not compatible with thelwateBt expects; and (iprotocol incompatibilities
that arise when a service A engages in a series of interactidth another service B, but the order in which
service A undertakes these interactions is not compatilitethat of B.

This paper discusses the notion of protocol compatibilgyween Web services and reviews a number of
techniques for detecting incompatibilities and for systhimg adapters for otherwise incompatible services.
The paper also reviews related notions such as realizaffilit substitutability [4] and controllability [10].

The next section introduces background concepts for muglelieb service interactions in general, and
service protocols in particular. Section 3 introduces tbion of protocol compatibility and related concepts.
Section 4 discusses techniques for synthesizing adagtemdtocol-incompatible services. Finally, Section 5
summarizes the discussion and raises directions for futork.

2 Servicelnteraction Modeling

It is customary to distinguish between two types of modelses¥ice interactions: choreographies and orches-
trations [15]. A choreography describes interactions ketwa collection of services from a global perspective.
In a choreography, no service plays a privileged role. Fdifa) depicts a choreography in the Business Process
Modeling Notation (BPMN) [14]. Four services are involvetthis choreography: customer, sales, warehouse
and finance. Each activity denotes an interaction betweersémices. Importantly, a choreography only shows
interactions, as opposed to actions performed interngllg $ervice. In contrast, an orchestration describes the

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

interactions between a designated service (the orchedteaid a plurality of subordinated services. Figure 1(b)
depicts an orchestration for the sales service. An orcitéstr may include internal actions or timeouts. For
example, Figure 1(b) includes four actions internal to thles service (the four “prepare” actions in dashed
lines) and a timeout: After sending a quote, the sales sewaits for an order until the quote’s expiry time.

[Customer sends Request for Quote to Sales)

receive rfQ
send
availabiljty quer:
receive
availabilit

goods unavailable

Sales sends Availability Check to Warehouse;
Warehouse sends Availability Check Response to Sales

goods unavailable

Sales sends RfQ
Rejection to Customer

Sales sends Quote to
Customer

prepare (" prepare
quote __ rejectRfQ /

rejectRfQ

Customer sends
Purchase Order to
Sales

Sales sends Shipment Sales sends Billing
Request to Warehouse Request to Finance

v

‘Warehouse sends Shipment Finance sends Invoice to prepare 3 { 3
Notiication to Customer Customer \shipmentOrder J L)

(a) Order management choreography (b) Orchestration for Sales service
Figure 1: Examples: Choreography and Orchestration

If we consider a multi-party choreography and restrict itHose interactions that involve a given pair of
services — e.g. the interactions between the sales and stenwer services in the above example — we obtain a
(bilateral) service protocal Service protocols described from the perspective of omécgeant are also called
behavioral interface$7], because they define the behaviour of a service vis-afviie of its clients or peers.

The derivation of behavioural interfaces from choreogiepimay require refinements. Consider, e.g. the
choice in Figure 1(a) that the customer performs betweeepdity or rejecting a quote. If the customer accepts
the quote, it sends an order. Thus, when receiving an ordesalles service knows that the customer accepted the
qguote. However, if the customer rejects the quote, it doésemd any message. When deriving a behavioural
interface for the sales service, one needs to insert eittigreaut (as in Figure 1(b)) or an additional interaction
through which the customer communicates the rejectiondcttes service. Otherwise, the sales service will
wait indefinitely for an order. The notion ofalizability [6] (also called enforceability [18]) captures this issue.
A choreography isealizableif the behavioural interfaces obtained by projection of¢hereography into each
of its participatingroles, collectively enforce all control-flow constraints in theoreography.

Languages for specifying choreographies, protocols actiestrations include BPMN (see above) and
BPEL! In BPEL, orchestrations are defined down to the point whesg tian be executed by dedicated plat-
forms. Also, BPEL allows one to specify protocols/behazidnterfaces. For formal analysis, protocols may be
represented using e.g. finite state machines (FSMs) [2¢egmoalgebra [11] or Petri nets [10, 3].

*htt p: / / www. oasi s- open. or g/ conmi t t ees/ wsbpel /

+a

-a

O 0-Z -
@<

& @®

a

@

Figure 2: Incompatibilities & adaptation: (a) unspecifiedeption, (b) deadlock, (c) adapter for protocols in (a)

3 Compatibility

Two services are protocol-compatible if every joint exemutof these services leads to a proper final state,
i.e. a state in which both services are in a final state in ttespective protocols [2]. Under the assumption
synchronous communication, Yellin & Strom [17] identifyd main types of protocol mismatchasmspecified
reception in which one party sends a message while the other is nottimpget; anddeadlock the case where
both parties are mutually waiting to receive some message the other. To illustrate the concepts, consider
the protocols ofP; (of serviceS;) and P, (of serviceS,) in Figure 2(a): P, sends messade(shown by ab),
while P; does not expect to receive it (unspecified reception). lufei(b) insteadP. expects to receive
messageack after sending (shown by+ack), while P, is waiting to receiveb (+b). This is a deadlock case.
Two protocols are said to mmpatibleif they have no unspecified receptions and they are deaditeek-

The protocolA’ obtained by reversing the polarity of every message in apobt is called the mirror ofd.

In other words, sent messagesdmecome received messages in its mirddrwhile received messages become
sent messages. In general, a service protocol is compatithiets mirror. However, if a protocol specification
includes internal actions (e.g. timers or evaluation oflean conditions resulting in certain branches being
taken) it is possible that this protocol is not compatibléwitis mirror protocol, nor with any other protocol. If
so, the service is said to be uncontrollable [10]. The pmobdé controllability is intuitively related to that of
realizability — as that they both result when internal ckeiare not externalized as messages. However, a formal
relation between controllability and realizability is ytetbe established.

Replaceability(or substitutability refers to the ability for a service to replace another on@auit inducing
incompatibilities [4]. In ServiceMosaic [2], two main ckes of replaceability are definedubsubmptiorand
equivalence Protocol P, subsumes>, if P; supports at least all the execution traces thasupports. If so, a
serviceS; (with protocol P;) can replace servic8s (with protocol 7). If P, subsumes, and P, subsumes
Py, then P, and P, are equivalent, and serviceés and .S, can be used interchangeably. Finer notions of
replaceability are defined in terms of bisimulation [3].

Finally, one can ask the question of whether an orchestratimforms toa protocol. If we take the or-
chestration and we project it to those interactions thaeappm its protocol, the question is whether or not the
projected orchestration is compatible with the serviceitqrol. This question is studied in [9].

4 Adaptation

When two services are incompatible, it may be possible toduice an adapter to resolve their mismatches. In
such cases, the service protocols are said tadaptable Depending on the types of mismatches, it may be
possible to automatically synthesize an adapter. Theiguestsynthesizing adapters for incompatible protocols
has been studied in the area of SOA, as well as earlier in #eearcomponent-based software engineering.
Yellin & Strom [17] propose an approach for checking thesetice of an adapter for incompatible protocols.
An adapter is modelled as an FSM consisting of a set of state, of typed memory cells to store the messages

3

received by the adapter, and a set of state transition ribash rule describes a transition from a state to another
in the adapter based on sending or receiving messages,\walthng set of memory actions that store or retrieve
messages in/ffrom the cells. A rule also constructs mesdhgesieed to be sent to partners. The adapter’s
protocol is said to be compatible with protocals and P, of the adapted components, if their interactions
have no unspecified reception and are deadlock free. Figoyesows an example of an adapter for protocols
in Figure 2(a). To synthesize the adapter specification fpaia of components, their interface mappings is
required as the input (e.g. which messages should be mappdudh other messages). The adapter synthesis
process explores all possible interactions between theqwls P, and P, and adds them to the adapter protocol.
If there are states leading to deadlocks or with unspeciéeégtion, they are removed from the adapter protocol.

Other proposals rely on alternative protocol specificatanmguages that explicitly support concurrency.
Mateescu et al. [11] propose a technique for adapter syisthased on protocols specified using process algebra.
Similarly, Brogi et al. [5] provide an automated adaptertlgsis approach for protocols specified in BPEL.

Another line of research for service adapter developmenpgses to characterise the classes of possible
mismatches between protocols, provides guidelines fasusadentify them and proposes templates to resolve
mistmatches based on design patterns [1] or composabldatidapoperations [8]. In these approaches, the
construction of adapters requires manual interventiormesof these approaches, e.g. [8] deal with mismatch
patterns not supported in automated approaches — e.g. tofssavhere a message emitted by a service needs
to be mapped to an unbounded number of messages in the ngcs@rvice.

Automated approaches for adapter generation make thevfotjoassumptions: (i) there is no mismatch
at the interface-level, or the correct interface mappingegehbeen provided as the input, and (ii) if there are
interactions which lead to deadlocks, they are not adaptats discussed in [12], the interface-level mappings
can not be always correctly identified without considering protocol specifications. Second, some deadlock
cases may be adaptable, e.g. the resolution of a deadlockreqaye the generation of messages (e.g., an
acknowledgment) that can be constructed in the adapterseiadefined functions.

To address these limitations, Motahari Nezhad et al. [1pt@gch adapter development as an iterative pro-
cess consisting of both interface-level and protocolileviematch identification and resolution. Their approach
starts from an initial set of interface matchings, compuigdnatching the WSDL interfaces of services, and
then, considering the protocol specifications of two sewjddentifies all the interactions that results in dead-
locks. The result is presented in the form ofmgsmatch tredo the user, where the user can identify if such
interactions are resolvable. The approach also helps trebysanalyzing the mismatch tree. Some deadlock
cases may be handled by going back to the interface matctapgad refining the interface matchings.

5 Summary and outlook

Figure 3 summarizes the notions introduced in the papers panorama summarizes a significant body of
research work in the area of service-oriented computingthisrbody of work, research questions are often
approached under the assumption that the choreographigsc@ls and/or orchestrations are known and given
as input. Sometimes however, these specifications are ilat@eaor they are incompletely or unreliably speci-
fied, yet one needs to make assertions regarding the cogavior of a service-oriented system. Recent work
has addressed the question of analyzing logs represehgngbserved behavior of a service-oriented system in
order to determine if these logs conform to a choreograptpratocol specification [16]. One of the key issues
in this setting is that of “correlation”, that is, how to gmtogether log entries (such as those in message logs)
to produce trails that represent conversations betweerotwaore services [13]. Open questions in this area
include investigating the application of techniques fromcitine learning and information clustering.

An open question in the field of service adaptation is how tintaan adapters in an environment where
services evolve continuously. For example, given two ses/iS1 and S2 that communicate through an adapter,
how can this adapter be updated (with minimal effort) wheimeziS1 or S2 evolve or are replaced?

Chorsogaphy || s]
Can le ‘wy ot

- Compatible? -
Behavioral Adaptable? Behavioral g‘
> Is controllable?

Interface / Protocol Interface / Protocol

T Can replace?
Behavioural conforms to?

e

Interface / Protocol

Orchestration

Figure 3: Relations between service interaction modelieg/points

References

[1]

(2]

[3]

[4]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

B. Benatallah, F. Casati, D. Grigori, H. Motahari Nezhadd F. Toumani. Developing Adapters for Web Services
Integration. InProc. of CAiSEpages 415-429, 2005.

B. Benatallah, F. Casati, and F. Toumani. Represenginglysing and managing web service protocbista Knowl.
Eng, 58(3):327-357, 2006.

F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci. Compsitl Specification of Web Services Via Behavioural
Equivalence of Nets: A Case Study. Pnoc. of PETRI NETSages 52-71, 2008.

L. Bordeaux, G. Salaiin, D. Berardi, and M. Mecella. Wiaea Two Web Services Compatible? Prmoceedings of
the 5th International Workshop on Technologies for E-3ew{TES)pages 15-28, 2004.

A. Brogi and R. Popescu. Automated Generation of BPEL@#des. InProc. of ICSOC2006.

T. Bultan, X. Fu, and J. Su. Analyzing conversations: IRaaility, synchronizability, and verification. In L. Basi
and E. D. Nitto, editorsTest and Analysis of Web Servicpages 57—-85. Springer, 2007.

R. Dijkman and M. Dumas. Service-oriented Design: A Ntlewpoint Approach.International Journal of Coop-
erative Information System$3(4):337-368, 2004.

M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebnd &isual Notation for Service Interface Adaptation.
In Proc. of BPM pages 65-80, 2006.

D. Kdnig, N. Lohmann, S. Moser, C. Stahl, and K. Wolf. Ertling the compatibility notion for abstract WS-BPEL
processes. IRroc of WWWpages 785-794, May 2008.

N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Yaiad interacting WS-BPEL processes using flexible
model generationData Knowl. Eng.64(1):38-54, 2008.

R. Mateescu, P. Poizat, and G. Salaiin. Behavioraltatlap of component compositions based on process algebra
encodings. IrProc. of ASEpages 385-388, 2007.

H. R. Motahari Nezhad, B. Benatallah, A. Martens, F.l&ra, and F. Casati. Semi-automated adaptation of service
interactions. IrProc. of WWWpages 993-1002, 2007.

H. R. Motahari Nezhad, R. Saint-Paul, B. BenatallahC&sati, and P. Andritsos. Process spaceship: Discovering
and exploring process views from event logs in data spaod2rokc. of VLDB 2008.

Object Management Group. Business Process Modelingthda, V1.1.OMG Available Specificatigdanuary 2008.
C. Peltz. Web services orchestration and choreogrd s Computer36(10):46-52, 2003.

W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinatd & Verbeek. Conformance checking of service
behavior. ACM Trans. Internet Techp3(3), 2008.

D. M. Yellin and R. E. Strom. Protocol Specifications @&wimponent AdaptorddCM Transactions on Programming
Languages and Systems (TOPLAI®Y(2):292-333, 1997.

J. M. Zaha, M. Dumas, A. H. M. ter Hofstede, A. P. Barrasi &. Decker. Service interaction modeling: Bridging
global and local views. IProc. of EDOGC 2006.

