
Choreography Modeling and Analysis with
Collaboration Diagrams

Tevfik Bultan
University of California, Santa Barbara

bultan@cs.ucsb.edu

Xiang Fu
Hofstra University

xfu2006@gmail.com

1 Introduction

UML collaboration diagrams (called communication diagrams in [8]) provide a convenient visual model for
specifying Web Service choreographies. A choreography specifies the desired set of interactions among a set of
Web services. We formalize the interactions among Web services asconversations, i.e., the sequence of mes-
sages exchanged among the services, recorded in the order they are sent. This paper reviews our recent results on
therealizability problem for choreographies specified as collaboration diagrams [4,5]. The realizability problem
investigates the following question: Is it possible to construct a set of peers that generate exactly the same set
of conversations specified by a given choreography? To studythis problem, we model a set of Web services
(i.e., peers) as a set of communicating finite state machines[3] and we identify a set of sufficient conditions for
realizability of a class of collaboration diagrams.

2 Collaboration Diagrams and Conversations

In a collaboration diagram a set of peers communicate via messages. Each message send event has a unique
sequence label. A sequence label consists of a (possibly empty) string of letters (which we call the prefix)
followed by a numeric part (which we call the sequence number). The numeric ordering of the sequence numbers
defines an implicit total ordering among the message send events with the same prefix. For example, event A2
can occur only after the event A1, but B1 and A2 do not have any implicit ordering. It is also possible to
explicitly state dependency relationship among events. For example if an evente is marked with “B2,C3/A2”
then A2 is the sequence label ofe, and the events with sequence labels B2, C3 and A1 must precede e. In a
collaboration diagram we use the notion ofmessage threads to refer to a set of messages that have the same
prefix (and, therefore, are totally ordered) and that can be interleaved arbitrarily with other messages.

As an example, consider the collaboration diagram in Figure1 for the Purchase Order Handling service de-
scribed in the BPEL language specification [2]. All the messages in this example are transmitted asynchronously.
There are four threads (the main thread, which corresponds to the empty prefix, and the threads with labels A,
B and C). The interactions between the Vendor and the Shipping, Scheduling and Invoicing peers are executed
concurrently. However, there are some dependencies among these concurrent interactions:shipType message
should be sent after theshipReq message is sent, theshipSchedule message should be sent after theshipInfo
message is sent, and theorderReply message should be sent after all the other messages are sent.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

This work is supported by NSF grants CCF-0614002 and CCF- 0716095.

1



1:order

:Vendor 

:Shipping:Customer

:Invoicing

:Scheduling 

A2,B3,C2/2:orderReply

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

Figure 1: An example collaboration diagram for a composite web service.

Based on the assumptions discussed above we formalize the semantics of collaboration diagrams as follows.

Definition 1: A collaboration diagram D = (P,L,M,E,D) consists of a set of peersP , a set of linksL ∈
P ×P , a set of messagesM , a set of message send eventsE, and a dependency relationD ⊆ E ×E among the
message send events. Each event has one of the following three recurrence types:1 (regular),? (conditional),
and∗ (iterative). A dependency(e1, e2) ∈ D means thate1 has to occur beforee2. We assume that there are no
circular dependencies. An evente is aninitial event of D if it has no incoming edges inD.

Given a collaboration diagramD we denote theset of conversations defined byD asC(D) whereC(D) ⊆
M∗. C(D) specifies the desired behaviors in a global perspective. Aconversation σ = m1m2 . . . mn is in C(D),
i.e., σ ∈ C(D), if and only if σ ∈ M∗ and there exists a corresponding matching sequence of message send
eventsγ = e1e2 . . . en such that (1) each message in the conversationσ is equal to the message of the matching
send event in the event sequenceγ; and, (2) the ordering of the events in the event sequenceγ does not violate
the dependencies inD; and, (3) if an event does not appear in the event sequenceγ then it must be either a
conditional event or an iterative event; and, (4) only iterative events can be repeated in the event sequenceγ.

Next, we model the composition of peers [6, 7]. We assume thateach finite state machine has a single FIFO
input queue for asynchronous messages. A send event for an asynchronous message appends the message to the
end of the input queue of the receiver, and a receive event foran asynchronous message removes the message at
the head of the input queue of the receiver.

Definition 2: Each peerAi = (Mi, Ti, si, Fi, δi) is a nondeterministic FSA whereMi = MA
i ∪ MS

i is the set
of messages that are either received or sent bypi, Ti is the finite set of states,si ∈ T is the initial state,Fi ⊆ T

is the set of final states, andδi ⊆ Ti × ({!, ?} × Mi ∪ {ǫ})×Ti is the transition relation. A transitionτ ∈ δi can
be one of the following three types: (1) a send-transition ofthe form(t1, !m, t2), and (2) a receive-transition of
the form(t1, ?m, t2), and (3) anǫ-transition of the form(t1, ǫ, t2).

A run of peers is a sequence of actions (as defined above) taken by the peers. Acomplete run is one such
that at the end of run each peer is in a final state and each FIFO queue is empty. The corresponding sequence
of messages induced from the send events of a run is called aconversation. Given a set of peer state machines
A1, . . . ,An we denote the set of conversations generated by them asC(A1, . . . ,An). We call a set of peers
well-behaved if each partial run is a prefix of a complete run (i.e., well-behaved peers never get stuck).

Definition 3: Let D be a collaboration diagram. We say that the peer state machinesA1, . . . ,An realize D if
C(A1, . . . ,An) = C(D). A collaboration diagramD is realizable if there exists a set of well-behaved peer state
machines that realizeD.

2



:Customer :Store

1:order

:Shipping :Depot

2:ship

:Customer :Store

:Accounting

2:bill

1:order

:P :Q

A1:x

A2:y

B1:y

B2:x 

:R

B3:z

(a) (b) (c)

Figure 2: Unrealizable collaboration diagrams.

Not all collaboration diagrams are realizable. For example, Figure 2(a) shows a simple collaboration dia-
gram that is not realizable. The conversation set specified by this collaboration diagram is{order ship}, i.e.
this collaboration diagram specifies a single conversationin which, first, the Customer has to send theorder
message to the store, and then the Shipping department has tosend theship message to the Depot. However,
this conversation set cannot be generated by any implementation of these peers. Any set of peer state machines
that generates the conversation “order ship” will also generate the conversation “ship order”. The Shipping de-
partment has no way of knowing when theorder message was sent to the Store, so it may send theship message
before theorder message which will generate the conversation “ship order”. Since the conversation “ship or-
der” is not included in the conversation set of the collaboration diagram shown in Figure 2(a), this collaborations
diagram is not realizable. Figure 2(b) and (c) show two othercollaboration diagrams that are not realizable.

3 Sufficient Conditions for Realizability

In this section we present sufficient conditions for realizability of collaboration diagrams.

Definition 4: We call a collaboration diagramseparated if each message appears in the event set of only one
thread, i.e., given a separated collaboration diagramD = (P,L,M,E,D) with k threads, the event setE can be
partitioned asE =

⋃k
i=1

Ei whereEi is the event set for threadi, Mi = {e.m | e ∈ Ei} is the set of messages
that appear in the event setEi andi 6= j ⇒ Mi ∩ Mj = ∅.

Note that dependencies among the events of different threads are still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figure 2(a) and (b), are separated whereas the collaboration
diagram in Figure 2(c) is not separated (because messagex is involved in two threadsA andB). Based on our
experience, requiring a collaboration diagram to be separated is not a significant restriction in practice.

Definition 5: We call the evente well-informed if one of the following conditions hold: (1)e is an initial event.
(2) The immediate predecessor ofe is either a synchronous message send event, or if it is not a conditional or
iterative send event, then fore to be well-informed, the sender of the message fore has to be either the receiver
or the sender of the message for its immediate predecessor. (3) If an immediate predecessor of an evente is
either a conditional or an iterative asynchronous message send event, then, to be well-informed,e cannot be a
conditional or iterative send event and it must have the samesender and the receiver but a different message than
its immediate predecessor.

Theorem 6: A separated collaboration diagramD is realizable if all the eventse ∈ E are well-informed.

The proof of the above property is given in [5]. Note that, theevents with label 2 in Figures 2(a) and (b)
are not well-informed. Well-informedness of the events alone does not guarantee realizability of a collaboration

3



diagram. Consider the unrealizable and un-separated collaboration diagram shown in Figure 2(c). This collabo-
ration diagram has two threads (A and B) and it is not separated since both threads have send events for messages
x andy. Note that, although all the events in this collaboration diagram are well-informed, this collaboration
diagram is not realizable. The conversation set specified bythis collaboration diagram consists of all interleav-
ings of the sequencesxy andyxz which is the set{xyyxz, xyxyz, xyxzy, yxzxy, yxxzy, yxxyz, yxyxz}.
However any set of peer state machines that generate this conversation set will either generate the conversation
xyzxy or will not be well-behaved. Consider any set of peer state machines that generate this conversation set.
Consider the partial run in which first peer P sendsx and then the peer Q sendsy. From the peer Q’s perspective
there is no way to tell ify was sent first or ifx was sent first. If we require peerQ to receive the messagex before
sendingy (hence, ensuring thatx is sent beforey) then we cannot generate the conversations that start with the
prefix yx. Hence, peer Q can continue execution assuming that the conversation being generated isyxzxy and
send the messagez before peer P sends another message. Such a partial execution will generate the sequence
xyz which is not the prefix of any conversation in the conversation set of the collaboration diagram. Therefore
such a partial execution will either lead to a complete run and generate a conversation that is not allowed or it
will not lead to any complete run, either of which violate therealizability condition.

4 Conclusion

To the best of our knowledge, realizability of collaboration diagrams has not been studied before our work
in [4, 5]. There were similar efforts on Message Sequence Charts (MSCs) [1]. However, as MSCs concentrate
on specification of local behaviors, earlier results on realizability of MSCs are not applicable to the realizability
of collaboration diagrams. In our earlier work, we have studied the realizability of conversations specified using
automata, calledconversation protocols [6, 7].

Analysis of interactions specified by collaborations diagrams is becoming increasingly important in the web
services domain where autonomous peers interact with each other through messages to achieve a common goal.
Since such interactions can cross organizational boundaries, it is necessary to focus on specification of interac-
tions rather then the internal structure of individual peers. We argue that collaboration diagrams are a useful
visual formalism for specification of interactions among web services. However, specification of interactions
from a global perspective inevitably leads to the realizability problem. Our work formalizes the realizability
problem for collaboration diagrams and gives sufficient conditions for realizability.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. InProc. 28th Int. Colloq. on
Automata, Languages, and Programming, pages 797–808, 2001.

[2] Business process execution language for web services (BPEL), version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel.

[3] D. Brand and P. Zafiropulo. On communicating finite-statemachines.J. ACM, 30(2):323–342, 1983.
[4] T. Bultan and X. Fu. Specification of realizable service conversations using collaboration diagrams. InProc. of the

IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2007), pages 122–132, 2007.
[5] T. Bultan and X. Fu. Specification of realizable service conversations using collaboration diagrams.Service Oriented

Computing and Applications, 2(1):27–39, 2008.
[6] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and analysis of reactive electronic

services.Theoretical Computer Science, 328(1-2):19–37, November 2004.
[7] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web services.IEEE Transactions on Software

Engineering, 31(12):1042–1055, December 2005.
[8] OMG unified modeling language superstructure, version 2.1.2.http://ww.uml.org/, October 2007.

4


