Choreography Modeling and Analysis with
Collaboration Diagrams

Tevfik Bultan Xiang Fu
University of California, Santa Barbara Hofstra University
bul tan@s. ucsb. edu xf u2006@mai | . com

1 Introduction

UML collaboration diagrams (called communication diagsaim [8]) provide a convenient visual model for
specifying Web Service choreographies. A choreographgifspe the desired set of interactions among a set of
Web services. We formalize the interactions among Web sesvaisconversations, i.e., the sequence of mes-
sages exchanged among the services, recorded in the cegl@réhsent. This paper reviews our recent results on
therealizability problem for choreographies specified as collaboration diagrants][4;he realizability problem
investigates the following question: Is it possible to ¢ams a set of peers that generate exactly the same set
of conversations specified by a given choreography? To ghidyproblem, we model a set of Web services
(i.e., peers) as a set of communicating finite state mach#jesd we identify a set of sufficient conditions for
realizability of a class of collaboration diagrams.

2 Collaboration Diagrams and Conversations

In a collaboration diagram a set of peers communicate visages. Each message send event has a unique
sequence label. A sequence label consists of a (possiblyygsiping of letters (which we call the prefix)
followed by a numeric part (which we call the sequence nuinddre numeric ordering of the sequence numbers
defines an implicit total ordering among the message semisewdth the same prefix. For example, event A2
can occur only after the event Al, but B1 and A2 do not have amlicit ordering. It is also possible to
explicitly state dependency relationship among events.ekample if an event is marked with “B2,C3/A2”
then A2 is the sequence label @fand the events with sequence labels B2, C3 and A1 must @ecdd a
collaboration diagram we use the notionroéssage threads to refer to a set of messages that have the same
prefix (and, therefore, are totally ordered) and that camtezleaved arbitrarily with other messages.

As an example, consider the collaboration diagram in Figuie the Purchase Order Handling service de-
scribed in the BPEL language specification [2]. All the mgssén this example are transmitted asynchronously.
There are four threads (the main thread, which correspantteetempty prefix, and the threads with labels A,
B and C). The interactions between the Vendor and the Shjp@ioheduling and Invoicing peers are executed
concurrently. However, there are some dependencies arhesg toncurrent interactionshipType message
should be sent after thehipReq message is sent, thshipSchedule message should be sent after sheplnfo
message is sent, and tbeder Reply message should be sent after all the other messages are sent.

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any
copyrighted component of this work in other works must be obtained from the |EEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

This work is supported by NSF grants CCF-0614002 and CCFs@J4.

1/Al:shipReq
——

:Customer P E— :Shipping
A2:shipinfo

1:order l [AZ,BS,CZ/Z:orderRepIy 1/Bl:produc;tlnf0

Al1/B2:shipType
—— L

jﬁ :Invoicing
:Vendor B3:invoice

1/C1l:productSchedule
—

:Scheduling

A2/C2:shipSchedule

Figure 1: An example collaboration diagram for a compositb wervice.

Based on the assumptions discussed above we formalizerttaanges of collaboration diagrams as follows.

Definition 1: A collaboration diagram D = (P, L, M, E, D) consists of a set of pee#3, a set of linksL €

P x P, aset of messagéd, a set of message send evehtsand a dependency relatidh C E x E among the
message send events. Each event has one of the followirgyrdzarrence types: (regular),? (conditional),
andx (iterative). A dependencie;, e2) € D means that; has to occur before,. We assume that there are no
circular dependencies. An evenis aninitial event of D if it has no incoming edges ib.

Given a collaboration diagra® we denote theset of conversations defined byD asC(D) whereC(D) C
M*. C(D) specifies the desired behaviors in a global perspectivaniersation o = myms ... m,, isinC(D),
i.e.,o0 € C(D), ifand only if o € M* and there exists a corresponding matching sequence of geessad
eventsy = ejes ... e, such that (1) each message in the conversatigequal to the message of the matching
send event in the event sequencend, (2) the ordering of the events in the event sequert®es not violate
the dependencies i; and, (3) if an event does not appear in the event sequertben it must be either a
conditional event or an iterative event; and, (4) only itigeaevents can be repeated in the event sequence

Next, we model the composition of peers [6, 7]. We assumestheth finite state machine has a single FIFO
input queue for asynchronous messages. A send event foyachasnous message appends the message to the
end of the input queue of the receiver, and a receive evemainfasynchronous message removes the message at
the head of the input queue of the receiver.

Definition 2: Each peetd; = (M;,T;, s;, I, d;) is a nondeterministic FSA where; = MZA U MZ-S is the set
of messages that are either received or sent; by; is the finite set of states, € T is the initial statef; C T

is the set of final states, angd C T; x ({!, 7} x M; U {e}) x T; is the transition relation. A transition € §, can
be one of the following three types: (1) a send-transitiothefform(¢;, !m, t2), and (2) a receive-transition of
the form(¢y, ?m, t3), and (3) are-transition of the form(¢y, ¢, ¢2).

A run of peers is a sequence of actions (as defined above) taker Ipeéns. Acomplete run is one such
that at the end of run each peer is in a final state and each RIEQedgs empty. The corresponding sequence
of messages induced from the send events of a run is calledversation. Given a set of peer state machines
Ai,..., A, we denote the set of conversations generated by thefi.4s,...,.4,). We call a set of peers
well-behaved if each partial run is a prefix of a complete run (i.e., welklieed peers never get stuck).

Definition 3: Let D be a collaboration diagram. We say that the peer state mexHin . .., A, realize D if
C(Ai,..., A,) =C(D). Acollaboration diagran® is realizable if there exists a set of well-behaved peer state
machines that realizB.

1:order
—

1:order
—_

:Customer :Store
:Customer :Store
. AL:X
- 2:bill A2:y B3:z
:ship . <« . — .
P —_—>) | P |—|<_ Q R |
:Shipping :Depot :Accounting| BLy
—
B2:x
(a) (b) (c)

Figure 2: Unrealizable collaboration diagrams.

Not all collaboration diagrams are realizable. For examplgure 2(a) shows a simple collaboration dia-
gram that is not realizable. The conversation set specifjethis collaboration diagram iorder ship}, i.e.
this collaboration diagram specifies a single conversatiowhich, first, the Customer has to send threer
message to the store, and then the Shipping department Baadaheship message to the Depot. However,
this conversation set cannot be generated by any impletimnts these peers. Any set of peer state machines
that generates the conversatiamder ship” will also generate the conversatioship order”. The Shipping de-
partment has no way of knowing when threler message was sent to the Store, so it may senshtpenessage
before theorder message which will generate the conversatignp order”. Since the conversationship or-
der” is not included in the conversation set of the collaboratiiagram shown in Figure 2(a), this collaborations
diagram is not realizable. Figure 2(b) and (c) show two otledlaboration diagrams that are not realizable.

3 Sufficient Conditions for Realizability
In this section we present sufficient conditions for redlility of collaboration diagrams.

Definition 4. We call a collaboration diagraseparated if each message appears in the event set of only one
thread, i.e., given a separated collaboration diagfam (P, L, M, E, D) with k threads, the event sétcan be
partitioned ast = |J¥_, E; whereF; is the event set for threag M; = {e.m | e € E;} is the set of messages
that appear in the event sBf andi # j = M; N M; = 0.

Note that dependencies among the events of different thrasa still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figueg 80d (b), are separated whereas the collaboration
diagram in Figure 2(c) is not separated (because mesasegavolved in two threadst and B). Based on our
experience, requiring a collaboration diagram to be sépedia not a significant restriction in practice.

Definition 5: We call the eveng well-informed if one of the following conditions hold: (19 is an initial event.

(2) The immediate predecessoreis either a synchronous message send event, or if it is nobditamal or
iterative send event, then ferto be well-informed, the sender of the messagesfhas to be either the receiver
or the sender of the message for its immediate predeces¥olf ah immediate predecessor of an everig
either a conditional or an iterative asynchronous message svent, then, to be well-informeelcannot be a
conditional or iterative send event and it must have the ssander and the receiver but a different message than
its immediate predecessor.

Theorem 6: A separated collaboration diagrainis realizable if all the events € E are well-informed.

The proof of the above property is given in [5]. Note that, dvents with label 2 in Figures 2(a) and (b)
are not well-informed. Well-informedness of the eventsialdoes not guarantee realizability of a collaboration

diagram. Consider the unrealizable and un-separatedootition diagram shown in Figure 2(c). This collabo-
ration diagram has two threads (A and B) and it is not sepausatee both threads have send events for messages
x andy. Note that, although all the events in this collaboratioagdam are well-informed, this collaboration
diagram is not realizable. The conversation set specifietthibycollaboration diagram consists of all interleav-
ings of the sequencesy andyxz which is the sefxyyzz, zyryz, zyzzy, yrzay, yrezy, yrryz, yryxz}.
However any set of peer state machines that generate thisrsation set will either generate the conversation
xyzxy or will not be well-behaved. Consider any set of peer statehings that generate this conversation set.
Consider the partial run in which first peer P sendsd then the peer Q sengsFrom the peer Q’s perspective
there is no way to tell iy was sent first or ift was sent first. If we require pe€rto receive the messagebefore
sendingy (hence, ensuring thatis sent beforgy) then we cannot generate the conversations that start legth t
prefix yz. Hence, peer Q can continue execution assuming that thersation being generatedyszxy and
send the messagebefore peer P sends another message. Such a partial eresiltigenerate the sequence
xyz which is not the prefix of any conversation in the conversasiet of the collaboration diagram. Therefore
such a partial execution will either lead to a complete ruth generate a conversation that is not allowed or it
will not lead to any complete run, either of which violate tiealizability condition.

4 Conclusion

To the best of our knowledge, realizability of collaboratidiagrams has not been studied before our work
in [4, 5]. There were similar efforts on Message Sequencat€slSCs) [1]. However, as MSCs concentrate
on specification of local behaviors, earlier results onizaaillity of MSCs are not applicable to the realizability
of collaboration diagrams. In our earlier work, we have Eddhe realizability of conversations specified using
automata, calledonversation protocols [6, 7].

Analysis of interactions specified by collaborations déas is becoming increasingly important in the web
services domain where autonomous peers interact with éhehthrough messages to achieve a common goal.
Since such interactions can cross organizational bourglatiis necessary to focus on specification of interac-
tions rather then the internal structure of individual pee@ie argue that collaboration diagrams are a useful
visual formalism for specification of interactions amongbvweervices. However, specification of interactions
from a global perspective inevitably leads to the realittgiboproblem. Our work formalizes the realizability
problem for collaboration diagrams and gives sufficientditions for realizability.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizabilitydaverification of MSC graphs. IRroc. 28th Int. Collog. on
Automata, Languages, and Programming, pages 797-808, 2001.

[2] Business process execution language for web servideEI(version 1.1.
http://ww.ibm com devel operworks/|ibrary/ws-bpel .

[3] D. Brand and P. Zafiropulo. On communicating finite-stai@chinesJ. ACM, 30(2):323—-342, 1983.

[4] T. Bultan and X. Fu. Specification of realizable serviameersations using collaboration diagrams.Phoc. of the
| EEE International Conference on Service-Oriented Computing and Applications (SOCA 2007), pages 122-132, 2007.

[5] T.Bultan and X. Fu. Specification of realizable serviomeersations using collaboration diagrar8arvice Oriented
Computing and Applications, 2(1):27-39, 2008.

[6] X. Fu, T. Bultan, and J. Su. Conversation protocols: Anfatism for specification and analysis of reactive electoni
services.Theoretical Computer Science, 328(1-2):19—-37, November 2004.

[7] X. Fu, T. Bultan, and J. Su. Synchronizability of convagiens among web servicekEEE Transactions on Software
Engineering, 31(12):1042-1055, December 2005.

[8] OMG unified modeling language superstructure, versidn2ht t p: / / ww. urd . or g/ , October 2007.

