A Survey of Collaborative Recommendation and the
Robustness of Model-Based Algorithms

J.J. Sandvig and Bamshad Mobasher and Robin Burke
DePaul University
School of Computer Science, Telecommunications
and Information Systems
{jsandvig,mobasher,rburk@cs.depaul.edu

Abstract

The open nature of collaborative recommender systems sléttackers who inject biased profile data
to have a significant impact on the recommendations produSéghdard memory-based collaborative
filtering algorithms, such ag-nearest neighbor, are quite vulnerable to profile injectiattacks. Pre-
vious work has shown that some model-based techniques aeerabnst than standar@-nn. Model
abstraction can inhibit certain aspects of an attack, pdowy an algorithmic approach to minimizing
attack effectiveness. In this paper, we examine the robsstof several recommendation algorithms that
use different model-based techniques: user clusterirsguife reduction, and association rules. In par-
ticular, we consider techniques based/smeans and probabilistic latent semantic analysis (pLBA) t
compare the profile of an active user to aggregate user aisistather than the original profiles. We then
consider a recommendation algorithm that uses principahponent analysis (PCA) to calculate the
similarity between user profiles based on reduced dimessibmally, we consider a recommendation
algorithm based on the data mining technique of associatid@ mining using the Apriori algorithm.
Our results show that all techniques offer large improvetsém stability and robustness compared to
standardk-nearest neighbor. In particular, the Apriori algorithm erms extremely well against low-
knowledge attacks, but at a cost of reduced coverage, anB@#e algorithm performs extremely well
against focused attacks. Furthermore, our results show #&llatechniques can achieve comparable
recommendation accuracy to standarehn.

1 Introduction

A widely accepted approach to user-based collaborativexifilj is thek-nearest neighbor algorithm. However,
memory-based algorithms such fasin do not scale well to commercial recommender systems. eMuased
algorithms are widely accepted as a way to alleviate thérgcptoblem presented by memory-based algorithms
in data-intensive commercial recommender systems. Bigldi model of the dataset allows off-line process-
ing for the most rigorous similarity calculations. In soneses, this is at the cost of lower recommendation
accuracy [1].

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*This work was supported in part by the National Science Fatiod Cyber Trust program under Grant 11S-0430303.

A positive side effect of a model-based approach is that it pravide improved robustness against attacks.
An adaptive system dependent on anonymous, unautheudtioatr profiles is subject to manipulation. The
standard collaborative filtering algorithm builds a recoemaiation for a target user by combining the stored
preferences of peers with similar interests. If a maliciager injects the profile database with a number of
fictitious identities, they may be considered peers to aigenuser and bias the recommendation. We call such
attacksprofile injection attackgalso known ashilling [2]).

Recent research has shown that surprisingly modest attaeksufficient to manipulate the most common
CF algorithms [3, 2, 4, 5]. Profile injection attacks degralde objectivity and accuracy of a recommender
system over time, causing frustration for its users andmietéy leading to high user defection. However, a
model-based approach is an abstraction of detailed usfliegrdNe hypothesize that this abstraction minimizes
the influence of an attack, because attack profiles are reatthfirused in recommendation.

In our study, we have focused on the robustness of user chggtéeature reduction, and association rules.
We first consider techniques basedkemeans clustering and probabilistic latent semantic @mmapLSA) that
compare the profile of an active user to aggregate user dustgher than the original profiles. Probabilistic
latent semantic analysis is used infer hidden relatiosshipong groups of users, which are then used to form
“fuzzy” clusters. Each user has a degree of association evigny cluster, allowing particularly authoritative
users to exercise greater influence on recommendation.

We then consider a recommendation algorithm that usesipalnmomponent analysis (PCA) to calculate the
similarity between user profiles based on reduced dimessPrincipal component analysis tries to extract a set
of uncorrelated factors from a given set of multicolineanatales. By keeping only those principal components
that explain the greatest amount of variance in the data fietigely reduce the number of features that must
be used for a similarity calculation.

Finally, we consider a recommendation algorithm based erd#dia mining technique of association rule
mining using the Apriori algorithm. Association rule migiis a technigue common in data mining that attempts
to discover patterns of products that are purchased tagdthese relationships can be used for myriad purposes,
including marketing, inventory management, etc. We hawaptadl the Apriori algorithm [6] to collaborative
filtering in an attempt to discover patterns of items thateheemmon ratings.

The primary contribution of this paper is to demonstrate thadel-based algorithms provide an algorithmic
approach to robust recommendation. Our results show thegchiniques offer large improvements in stability
and robustness compared to standartearest neighbor. In particular, the Apriori and PCA alipons performs
extremely well against low-knowledge attacks, but in theecaf Apriori at a cost of reduced coverage, and the
k-means and pLSA algorithms perform extremely well agaiost$ed attacks. Furthermore, our results show
that all techniques can achieve comparable recommendatmmacy to standarkcnn.

2 Recommendation Algorithms

In general, user-based collaborative filtering algoritlatiempt to discover a neighborhood of user profiles that
are similar to a target user. A rating value is then predi@edll missing items in the target user’s profile, based
on ratings given to the item within the neighborhood. We bewith background information on the standard
memory-based-nn. We then present several recommendation algorithmedb@s model-based techniques of
user clustering-means and pLSA), feature reduction (PCA), and associatiles (Apriori).

2.1 k-Nearest Neighbor

The standard:-nearest neighbor algorithm is widely used and reasonatayrate [7]. Similarity between the
target usery, and a neighbory, is computed using Pearson’s correlation coefficient:

Z (Tu,i - 'Fu) * (Tv,i - fv)
SiMy p = el Q)

Z (ru,i - 77u)2 * Z (rv,i - 771))2

el el

wherer, ; andr, ; are the ratings of some iteirfor v andv, respectively; and, andr, are the average of the
ratings ofu andv over I, respectively.

After similarities are calculated, themost similar users that have rated the target item are select the
neighborhood. This implies a target user may have a diffemeighborhood for each target item. It is also
common to filter neighbors with similarity below a specifiédeshold. This prevents predictions being based
on very distant or negative correlations. After identify@neighborhood, we compute the prediction for a target
item ¢ and target uset as follows:

> siMy (e — Ty)
predu,i =Ty + veV (2)

2 |simal

veV

whereV is the set ok similar neighbors that have ratedr,, ; is the rating of; for neighborv; 7, andr, are the
average ratings over all rated items foandv, respectively; andim,, , is the Pearson correlation between
andv. The formula computes the degree of preference for all meigh weighted by their similarity, and then
adds this to the target user’s average rating.

2.2 k-Means Clustering

A standard model-based collaborative filtering algoritheesk-means to cluster similar users. Given a set of
user profiles, the space can be partitioned ingyoups of users that are close to each other based on a measure
of similarity. The discovered user clusters are then agpti¢he user-based neighborhood formation task, rather
than individual profiles.

To make a recommendation for a target use@nd target item, we select a neighborhood of user clusters
that have a rating for and whose aggregate profilg is most similar tou. This neighborhood represents the
set of user segments that the target user is most likely torheraber, based on a measure of similarity. For
this task, we use Pearson’s correlation coefficient. We canmake a prediction for itemas described in the
previous section, where the neighborhdods the set of user cluster aggregate profiles most simildrederget
user.

2.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (pLSA) models [Rjvide a probabilistic approach for characterizing
latent or hidden semantic associations among co-occudiipects. We have applied pLSA to the creation of
user clusters in the context of collaborative filtering [9].

Given a set of usersU = {uy,us,--- ,u,}, and a set ofn items,I = {iy, i, - , i, } the pLSA model
associates an unobserved factor varigble {z1, 2o, - - , z;} with observations in the rating data. For a target
useru and a target iten, the following joint probability can be defined:

!
P(u,i) = Z Pr(zx) - Pr(ulzg) - Pr(i|zk) (3)
k=1

In order to explain a set of ratingd/, I), we need to estimate the parametés(z;), Pr(u|z;), and
Pr(ilz), while maximizing the likelihood of the rating dafaU, I) = >, i/ > icj Tu,i - log Pr(u,i) where
ru,i IS the rating of user for item:. The Expectation-Maximization (EM) algorithm is used tafpem maxi-
mum likelihood parameter estimation, based on initial ®alaf Pr(zy), Pr(u|z;), and Pr(i|z;). Iterating the
expectation and maximization steps monotonically in@sdke total likelihood of the observed ddtél, I),
until a local optimum is reached.

We now identify clusters of users that have similar undadyinterests. For each latent variable we create
a user cluste€; and select all users having probabilfy(u|z;) exceeding a certain threshqld If a user does
not exceed the threshold for any latent variable, it is daged with the user cluster of highest probability. Thus,
every user profile will be associated with at least one usestet, but may be associated with multiple clusters.
This allows authoritative users to have broader influenes predictions, without adversely affecting coverage
in sparse rating data. A recommendation is made for a taggrtuuand target iteni in a similar manner to
k-means clustering.

2.4 Principal Component Analysis

Principal component analysis is a dimensionality reductechnique that tries to extract a set of uncorrelated
factors from a given set of multicolinear variables. Eadtdarepresents a latent pattern that is explained by the
degree of correlation to the explicit variables. Factodysiain general assumes there is an underlying structure
to the explicit variables. In a recommendation contextfélcéors may represent fine-grained groupings of items.
For example, movies may have implicit groupings such ag stytl genre.

PCA identifies the orthogonal axes of variance within a ddatashere the first axis represents the largest
variance in the data, the second axis represents the sergedtvariance, and so on. Itis based on a theorem of
linear algebra stating that for any real symmetric mattjxthere exists a unitary matrix such thatc = AT AA
andX is diagonal.

A solution is found using the eigenvectors 4f where the columns af are the eigenvectors ordered in
decreasing eigenvalues. Then, =); is the i!” largest eigenvalue ofl. The principal components are
calculated using the covariance matrix of the user dataith respect to items, such that= ﬁUTU. Prior
to calculating the covariance matrix, it is important toustjthe matrixU such that each item vector is zero-
mean. For each; in U, modify the user vector such thaf = u; — m wherem = % Yoo, wi is the vector of
item means.

A caveat to this approach is the potential effect of missiatad Collaborative filtering datasets are notori-
ously sparse, but PCA requires a dense covariance matraldolate eigenvectors. We have resolved this issue
with an elegant solution. Before adjusting for item means eaiculating the covariance matrix, we subtract
each user’s mean rating from the user vector, where the msazaidulated by ignoring the missing ratings. The
idea is that different users may have different “baselir@sund which their ratings are distributed. We then set
all missing values to 0 under the assumption that a user hpsafierence for an item that has not been rated.

In order to reduce the number of dimensions in the featurtovég we simply keep the eigenvectors with
the largest eigenvalues and discard the rest. There amabaaays to choose the number of eigenvectors to keep
for PCA, but in our experiments we have found the percentdgarance criteria to yield the most accurate
results. We keep the number of eigenvectors such that thedomulative percentage of variance surpasses
some thresholdy.

To calculate a prediction for a target itenand target usew, we modify the standaré-nn algorithm, such
that Equation 1 is calculated with respect to the reducecedsion vectors of usar and neighbor. Each
reduced dimension vector is calculateduas- A'" (u — m), whereA’ is the reduced dimension feature vector;
m is the vector of item means; ands the target user or neighbor vector, mean adjusted acaptdithat user’s
mean.

2.5 Association Rule Mining

Association rule mining is a common technique for perfoignimarket basket analysis. The intent is to capture
relationships among items based on patterns of co-oca@racross transactions. We have applied association
rules to the context of collaborative filtering [10]. Conrsithg each user profile as a transaction, it is possible to
use the Apriori algorithm [6] and generate associationsrfibe groups of commonly liked items.

Given a set of user profilgs and a set of item sets = {I3, I, ..., I}, thesupportof an item setl; € I
is defined awr (I;) = [{u € U : I; C u}|/|U|. Item sets that satisfy a minimum support threshold are tsed
generate association rules. These groups of items aree@fier adrequent item setsAn association rule is
an expression of the forlt — Y'(o,,«,), whereX andY are item setsy, is the support ofX U Y, and
«a, is theconfidencdor the ruler given byo(X UY)/o(X). In addition, association rules that do not satisfy a
minimumlift threshold are pruned, where lift is definediago (Y).

Before performing association rule mining on a collaberafiltering dataset, it is necessary to discretize the
rating values of each user profile. We first subtract eachsuaeerage rating from the ratings in their profile to
obtain a zero-mean profile. Next, we give a discrete categfdtike” or “dislike” to each rated item in the profile
if it's rating value is> or < zero, respectively. In classic market basket analysis aigsumed that a customer will
not purchase an item they do not like. Hence, a transactigayal contains implicit positive ratings. However,
when dealing with explicit rating data, certain items maydisdiked. A collaborative recommender must take
such preference into account or risk recommending an itaighrated often, but disliked by consensus.

To make a recommendation for a target user prafjleve create a set of candidate itedissuch that an
association rule exists of the formX C u — ¢ € C wherei is an unrated item in the profilke In practice,
it is not necessary to search every possible associatierginanw. It is sufficient to find all frequent item sets
X C v and base recommendations on the next larger frequent iterise X whereY contains some item
that is unrated in.. The candidate set' is then sorted according to confidence scores and th&/'tapms are
returned as a recommendation.

A caveat to this approach is the possibility of conflictingaemendations in the candidate g&t For
example, one association rule may add itetm the candidate set with a “like” label, whereas anothex may
add the same item with a “dislike” label. There is no idealisoh, but we have chosen to assume that there are
opposing forces for the recommendation of the item. In oypiémentation, we subtract the confidence value
of the “dislike” label from the confidence value of the “likigbel.

3 Profile Injection Attacks

A collaborative recommender database consists of manypuséies, each with assigned ratings to a number
of products that represent the user’s preferences. A roabcuser may insert multiple profiles under false
identities designed to bias the recommendation of a péatittem for some economic advantage. This may be
in the form of an increased number of recommendations foattaeker’s product, or fewer recommendations
for a competitor’s product.

3.1 An Example

Consider an example recommender system that identifieegtiiey books for a user. The representation of a
user profile is a set of product / rating pairs. A rating for atipalar book can be in the range 1-5, where 5
is the highest possible rating. Alice, having built a profil@m previous visits, returns to the system for new
recommendations. Figure 1 shows Alice’s profile along whtht bf seven genuine users.

An attacker, Eve, has inserted three profiles (Attack1-8) the system to mount an attack promoting the
target item, Item6. Each attack profile gives high rating&ve’s book, labeled Item6. If the attack profiles
are constructed such that they are similar to Alice’s prpfilen Alice will be recommended Eve’s book. Even

Item1 Item2 Item3 Itemd Item5s Itemo6 Co.rrelat‘mn
with Alice

Alice 5 2 3 3 2
Userl 2 4 kS 1 -1.00
User2 3 1 3 1 2 0.76
User3 4 2 3 1 1 0.72
User4 3 3 2 1 3 1 0.21
User5 3 1 2 -1.00
User6 4 3 3 8 2 0.94
User7 5 1 3 1 -1.00
Attackl 5 3 2 5 1.00
Attack2 5 1 4 2 5 0.89
Attack3 5 2 2 2 5 0.93
iy 0.85 -0.55 0.00 0.48 -0.59

Figure 1: an example attack on Item6

without direct knowledge of Alice’s profile, similar attapkofiles may be constructed from average or expected
ratings across all users.

Disregarding Eve’s attack profiles for a moment, we can camplice’s predicted preference for Item6.
Assuming 1-nearest neighbor, Alice will not be recommenitieah6. The most highly correlated user to Alice
is User6, who clearly does not like Item6. Therefore, Ale@xpected to dislike ltem6.

After Eve's attack, however, Alice receives a very diffdrescommendation. As a result of including the
attack profiles, Alice is most highly correlated to Attacklh this case, the system predicts Alice will like
Iltem6 because it is rated highly by Attackl. She is given ameuoendation for Item6, although it is not the
ideal suggestion. Clearly, this can have a profound effadhe effectiveness of a recommender system. Alice
may find the suggestion inappropriate, or worse; she mayttakeystem’s advice, buy the book, and then be
disappointed by the delivered product.

3.2 Attack Types

A variety of attack types have been studied for their effectess against different recommendation algo-
rithms [4, 5]. Anattack typeis an approach to constructing attack profiles, based on legig@ about the
recommender system, its rating database, its productfratslusers. In a push attack, the target item is gen-
erally given the maximum allowed rating. The setfiller itemsrepresents a group of selected items in the
database that are assigned ratings within the attack préfitack types can be characterized according to the
manner in which they choose filler items, and the way thatiipeatings are assigned. In this paper, we focus
on three attack types that have been shown to be very etieagiainst standard user-based collaborative filtering
recommenders.

The random attack is a basic attack type that assigns randtmgs to filler items, distributed around the
global rating mean [2, 4]. The attack is very simple to impdert) but has limited effectiveness.

The average attack attempts to mimic general user prefesencthe system by drawing its ratings from
the rating distribution associated with each filler item42, An average attack is much more effective than a
random attack; however, it requires greater knowledge tatheusystem’s rating distribution. In practice, the
additional knowledge cost is minimal. An average attack lmamuite successful with a small filler item set,
whereas a random attack usually must have a rating for etaryin the database in order to be effective.

An attacker may be interested primarily in a particular $eisers — likely buyers of a product. A segment
attack attempts to target a specific group of users who map@rbe predisposed toward the target item [4].
For example, an attacker that wishes to push a fantasy bogktmiant the product recommended to users
expressing interest iHarry PotterandLord of the RingsA typical segment attack profile consists of a number
of selected items that are likely to be favored by the tagyater segment, in addition to the random filler items.
Selected items are expected to be highly rated within tlgetad user segment and are assigned the maximum

rating value along with the target item.

4 Experimental Evaluation

To evaluate the robustness of model-based techniques, mpate the results of push attacks using different
parameters. In each case, we report the relative improviemwenthek-nearest neighbor approaches.

4.1 Dataset

In our experiments, we have used the publicly-available igkhens 100K dataskt This dataset consists of
100,000 ratings on 1682 movies by 943 users. All ratingsraegyer values between one and five, where one is
the lowest (disliked) and five is the highest (liked). Ouredatludes all users who have rated at least 20 movies.

To conduct attack experiments, the full dataset is split indining and test sets. Generally, the test set
contains a sample of 50 user profiles that mirror the oversliidution of users in terms of number of movies
seen and ratings provided. The remaining user profiles aigribted as the training set. All attack profiles are
built from the training set, in isolation from the test set.

The set of attacked items consists of 50 movies whose ratiistygbution matches the overall ratings distri-
bution of all movies. Each movie is attacked as a separateated the results are aggregated. In each case, a
number of attack profiles are generated and inserted intivdiméng set, and any existing rating for the attacked
movie in the test set is temporarily removed.

For every profile injection attack, we tracktack sizeandfiller size Attack size is the number of injected
attack profiles, and is measured as a percentage of thetpok-trhiining set. There are approximately 1000 users
in the database, so an attack size of 1% corresponds to abatiatk profiles added to the system. Filler size is
the number of filler ratings given to a specific attack profileg is measured as a percentage of the total number
of movies. There are approximately 1700 movies in the daigbso a filler size of 10% corresponds to about
170 filler ratings in each attack profile. The results regblielow represent averages over all combinations of
test users and attacked movies.

4.2 Evaluation Metrics

There has been considerable research on the accuracy dmchaarce of recommender systems [11]. We use
the mean absolute error (MAE) accuracy metric, a statistiegsure for comparing predicted values to actual
user ratings.We define coverage as the percentage of itdhres database for which an algorithm is able to make
a prediction.

However, our overall goal is to measure the effectivenesanadittack; the “win” for the attacker. In the
experiments reported below, we measure hit ratio - the gedikelihood that a tom recommender will recom-
mend a pushed item, compared to all other items.

Hit ratio measures the effectiveness of an attack on a pushed itemacethip other items. Lek, be the
set of topn recommendations for usar For each push attack on iteinthe value of a recommendation hit for
useru denoted byH,;, can be evaluated as liifc R,; otherwiseH,,; is evaluated to 0. We define hit ratio as
the number of hits across all users in the test set dividethiéyptimber of users in the test set. The hit ratio for a
pushed item over all users in a set can be computedasf,;/ |U|. Average hit ratio is calculated as the sum
of the hit ratio for each push attack on iteéracross all pushed items divided by the number of pushed items

Hit ratio is useful for evaluating the pragmatic effect ofuesp attack on recommendation. Typically, a user
is only interested in the top 20 to 50 recommendations. Aachktbon an item that significantly raises the hit

http://www.cs.umn.edu/research/GroupLens/data/

ratio, regardless of prediction shift, can be consideréeca¥e. Indeed, an attack that causes a pushed item to
be recommended 80% of the time has achieved the desiredhoeitico the attacker.

4.3 Accuracy Analysis

We first compare the accuracy lonn versus the model-based algorithms. To monitor accueamy/to assist in
tuning the recommendation algorithms, we use MAE. In alesad0-fold cross-validation is performed on the
entire dataset and no attack profiles are injected.

In neighborhood formation, we achieved optimal resulte@igi = 20 users for the neighborhood size of
the k-nn algorithm. For the model-based algorithms, we obtathednost favorable results usihg= 10 user
segments for the neighborhood size. In all cases, we filteneighbors with a similarity score less than 0.1.
For pLSA, we observed an optimum thresholduct 0.035. We obtained the best results for PCA by extracting
the factors that explain at least 60% of total variance. Mezagge number of extracted principal components
was approximately 100.

Table 1 displays the results from one of five test runs perfokmThe difference in accuracy between the
standard and PCA approaches is not statistically signifidaris is a very promising result, as the scalability of
model-based algorithms often come at the cost of lower revenaation accuracy [1]. For examplemeans
and pLSA show small decreases in accuracy compared to stbkahen.

Determining a suitable evaluation metric for the Apriod@senmender was challenging because it is based on
a fundamentally different approach. Then algorithm predicts a rating value for each target itehramks all
items based on this score. The association rule algoritlutiuyzes a ranked list, such that the recommendation
score is the confidence that a target user will like the recendad item. It is not possible to make a prediction
of the rating value from the association rule recommenddigt. However, the association rule recommender
does make a more general prediction; it predicts a binakg™lor “dislike” classification for a recommended
item if the confidence value is positive or negative, respeigt

For brevity, we do not include the derived metric, but a detadescription can be found in [10]. Our
results showed the difference in accuracy between theiasisocrule recommender arignn to be statistically
insignificant. But because Apriori selects recommendatioom only among those item sets that have met the
support threshold, it will by necessity have lower covertigam the other model-based algorithms. There will be
some items that do not appear and about which the algoritmmotanake any predictions. This problem may
occur in ak-nn algorithm as well, since there may be no peer users whe fzed a given item. However, this
is a relatively rare occurrence. The coverage ofithen algorithm is near 100%, while Apriori is consistently
around 47%.

The Apriori algorithm would therefore lend itself best t@sarios in which a list of top recommended items
is sought, rather than a rating prediction scenario in wkiithrecommender must be able to estimate a rating
for any given item. The selectivity of the algorithm may bearason to expect it will be relatively robust - it
will not make recommendations without evidence that mdetsriinimum support threshold.

4.4 Robustness Analysis

To evaluate the robustness of model-based algorithms, m@ae the results of push attacks on collaborative
recommendation algorithms usikgnearest neighbok-means clustering, pLSA, PCA, and Apriori techniques.

Table 1: Accuracy
k-nn | k-means| plsa pca
mae| 0.7367| 0.7586 | 0.7467| 0.7327

Top 10 Recommendations Top 10 Recommendations
average attack w/ 5% filler average attack w/ 2% attack

—e—k-nn —A&—k-means —*—plsa —%—pca —e— apriori —e—k-nn —&—k-means —%— plsa —%—pca —e—apriori

i
i

[=]
<]
o
<)

&

o
)

hit ratio
o
5
hit ratio
o
N

&

\

" . —
/‘, P el

0 5 10 15 0 25 50 75 100
attack % filler %

I

Figure 2: Average attack hit ratio at 5% filler size Figure 3: Average attack hit ratio at 2% attack size

We report the results for average and segment attacks, ahalexresults for random attack, because average
attack is more effective and exhibits similar robustnessds.

4.4.1 Average Attack

Figure 2 presents hit ratio results for top 10 recommendstat different attack sizes, using a 5% filler. With the
exception ofk-means, the model-based techniques show notable improxemstability overk-nn. Apriori
and pLSA, in particular, have superior performance at a#lckt sizes, and PCA performs extremely well at
small attack sizes of 5% or less. Under a 15% attack, an attlaciovie is in a user’s top 10 recommended list
nearly 80% of the time fok-nn andk-means. However, the attacked movie only shows up in a usgr’'40
recommendations slightly greater than 5% of the time foriépor pLSA and less that 20% of the time for
PCA.

Robustness of the Apriori algorithm may be partially dueciwdr coverage. However, this does not account
for the flat trend of hit ratio with respect to attack size. A% attack, we observed only 26% coverage of the
attacked item. But at a 10% attack, we observed 50% covesagkat 15% attack, we observed a full 100%
coverage of the attacked item.

It is precisely the manner in which an average attack chdfilfersitem ratings that causes the combination
of multiple attack profiles to short-circuit the attack. Rkdhat filler item ratings in an average attack are
distributed around their mean rating. When an averagekapatfile is discretized, there is equal probability
that a filler item will be categorized as “like” or “dislike"Therefore, multiple attack profiles will show little
more than chance probability of having common itemsets.|dtleof mutual reinforcement between filler items
prevents the support of itemsets containing the attacksd fitom surpassing the threshold.

To evaluate the sensitivity of filler size, we have tested |larnge of filler items. The 100% filler is
included as a benchmark for the potential influence of artlattelowever, it is not likely to be practical from
an attacker’s point of view. Collaborative filtering ratidgtabases are often extremely sparse, so attack profiles
that have rated every product are quite conspicuous.Oitpkat interest are smaller filler sizes. An attack that
performs well with few filler items is less likely to be detedt Thus, an attacker will have a better chance of
actually impacting a system’s recommendation, even if #réopmance of the attack is not optimal.

Figure 3 depicts hit ratio for top 10 recommendations at thlerdnge of filler sizes with a 2% attack size.
Surprisingly, as filler size is increased, hit ratio for stard k-nn goes down. This is because an attack profile
with many filler items has greater probability of being disiar to the active user. On the contrary, hit ratio for
k-means and pLSA tend to rise with larger filler sizes. Evdhtuboth algorithms are surpassed kynn and
actually perform worse with respect to robustness.

However, the PCA and Apriori algorithms hold steady at |difier sizes and are essentially unaffected. As

Top 10 Recommendations Top 10 Recommendations
segment attack w/ 5% filler size segment attack w/ 2% attack size

—e—k-nn —A—k-means —*—plsa —%—pca —e— apriori —e—k-nn —&—k-means —%— plsa —%—pca —e—apriori

i
i

%

ey
\

DA E—

o o
[0} =]
M
o
o

hit ratio

o

5

—
hit ratio
o

N

o

[N}
—

o

N

x*w/ e ;&K‘

0 5 10 15 0 25 50 75 100
attack % filler %

o
(=]

Figure 4: Segment attack hit ratio at 5% filler size Figure 5: Segment attack hit ratio at 2% attack size

with attack size, the reason that filler size does not affeetobustness of Apriori is because adding more filler
items does not change the probability that multiple attacKiles will have common itemsets. The fact that

a profile’s ratings are discretized to categories of “liketddislike” means that an attack profile with 100%

filler size will cover exactly half of the total features usadyenerating frequent itemsets. Therefore, it is very
unlikely that multiple attack profiles will result in mutuadinforcement.

4.4.2 Segment Attack

The segment attack is designed to have particular impadkely buyers, or “in-segment” users. These users
have shown a disposition towards items with particular @tristics, such as movies within a particular genre.
For our experiments, we selected popular horror moviess(AlPsycho, The Shining, Jaws, and The Birds)
and identified users who had rated all of them as 4 or 5. This ideal target market to promote other horror
movies, and so we measure the impact of the attack on recodatiems made to the in-segment users.

Figure 4 depicts hit ratio for top 10 recommendations atdgiht attack sizes, using a 5% filler. Clearly, the
attack is extremely effective against thenn algorithm. A meager 1% attack shows a hit ratio of nea@%08
By contrast, a segment attack has little effecttemeans, pLSA, and PCA.

The Apriori algorithm appears to have the same robustnediseasther model-based algorithms at small
attack sizes. However, beyond a 5% attack, Apriori perfogoige poorly with respect to robustness. Hit ratio
reaches 100% at a 15% attack. The cause of such dramatit isffgecise targeting of selected items by the
attacker. This is the opposing force to the phenomena vgeteagainst an average attack. A segment attack
profile consists of multiple selected items, in additionhe target item, where the maximum rating is assigned.
Clearly, all such items will always be categorized as “likdherefore, the mutual reinforcement of common
item sets is a given, and a user that likes any permutatioheo$¢lected items receives the attacked item as a
recommendation with high confidence.

Although the performance of Apriori is not ideal against greent attack, certain scenarios may minimize
the performance degradation in practice. In particulaecammender system with a very large number of users
is somewhat buffered from attack. The algorithm is quiteusblihrough a 5% attack, and is comparable to
both k-means, pLSA, and PCA. The robustness of Apriori is not dralf reduced until attack size is 10% or
greater. Certainly it is feasible for an attacker to injbet hecessary number of profiles into a recommender with
a small number of users, but it may not be economical for a ceria recommender such as Amazon.com,
with millions of users.

10

5

Conclusion

The standard user-based collaborative filtering algorittam been shown quite vulnerable to profile injection
attacks. An attacker is able to bias recommendation by ibgild number of profiles associated with fictitious
identities. In this paper, we have demonstrated the relatbustness and stability of model-based algorithms
over the memory-based approach.

References

[1]

2]

[3]

[4]

[5]

[6]

M. O’Conner and J. Herlocker, “Clustering items for edibrative filtering,” inProceedings of the ACM
SIGIR Workshop on Recommender Syst&aekeley, CA, August 1999.

S. Lam and J. Riedl, “Shilling recommender systems for &md profit,” inProceedings of the 13th Inter-
national WWW Conferencélew York, May 2004.

M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestf€ollaborative recommendation: A robustness
analysis,”ACM Transactions on Internet Technologwl. 4, no. 4, pp. 344-377, 2004.

B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Tads trustworthy recommender systems: An
analysis of attack models and algorithm robustne8€M Transactions on Internet Technologil. 7,
no. 4, 2007.

B. Mobasher, R. Burke, R. Bhaumik, and J. Sandvig, “Atsaand remedies in collaborative recommenda-
tion,” IEEE Intelligent Systemsol. 22, no. 3, pp. 56—63, May/June 2007.

R. Agrawal and R. Srikant, “Fast algorithms for miningsasiation rules,” inProceedings of the 20th
International Conference on Very Large Data Bases (VLDR $antiago, Chile, September 1994.

[7] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “Agoathmic framework for performing collabora-

tive filtering,” in Proceedings of the 22nd ACM Conference on Research anddpeneht in Information
Retrieval (SIGIR'99)Berkeley, CA, August 1999.

[8] T. Hofmann, “Probabilistic latent semantic analysis"Proceedings of the Fifteenth Conference on Un-

[9]

[10]

[11]

certainty in Artificial Intelligence Stockholm, Sweden, July 1999.

B. Mobasher, R. Burke, and J. Sandvig, “Model-basedataitative filtering as a defense against profile
injection attacks,” irProceedings of the 21st National Conference on Artificiglligence AAAI, July
2006, pp. 1388—-1393.

J. J. Sandvig, B. Mobasher, and R. Burke, “Robustnessltdborative recommendation based on associ-
ation rule mining,” inProceedings of the 2007 ACM Conference on RecommendenfSyfRecSys'07)
October 2007, pp. 105-111.

J.Herlocker, J. Konstan, L. G. Tervin, and J. Riedl, aiaating collaborative filtering recommender sys-
tems,”ACM Transactions on Information Systemsl. 22, no. 1, pp. 5-53, 2004.

11

