
A Survey of Collaborative Recommendation and the
Robustness of Model-Based Algorithms∗

J.J. Sandvig and Bamshad Mobasher and Robin Burke
DePaul University

School of Computer Science, Telecommunications
and Information Systems

{jsandvig,mobasher,rburke}@cs.depaul.edu

Abstract

The open nature of collaborative recommender systems allows attackers who inject biased profile data
to have a significant impact on the recommendations produced. Standard memory-based collaborative
filtering algorithms, such ask-nearest neighbor, are quite vulnerable to profile injection attacks. Pre-
vious work has shown that some model-based techniques are more robust than standardk-nn. Model
abstraction can inhibit certain aspects of an attack, providing an algorithmic approach to minimizing
attack effectiveness. In this paper, we examine the robustness of several recommendation algorithms that
use different model-based techniques: user clustering, feature reduction, and association rules. In par-
ticular, we consider techniques based onk-means and probabilistic latent semantic analysis (pLSA) that
compare the profile of an active user to aggregate user clusters, rather than the original profiles. We then
consider a recommendation algorithm that uses principal component analysis (PCA) to calculate the
similarity between user profiles based on reduced dimensions. Finally, we consider a recommendation
algorithm based on the data mining technique of associationrule mining using the Apriori algorithm.
Our results show that all techniques offer large improvements in stability and robustness compared to
standardk-nearest neighbor. In particular, the Apriori algorithm performs extremely well against low-
knowledge attacks, but at a cost of reduced coverage, and thePCA algorithm performs extremely well
against focused attacks. Furthermore, our results show that all techniques can achieve comparable
recommendation accuracy to standardk-nn.

1 Introduction

A widely accepted approach to user-based collaborative filtering is thek-nearest neighbor algorithm. However,
memory-based algorithms such ask-nn do not scale well to commercial recommender systems. Model-based
algorithms are widely accepted as a way to alleviate the scaling problem presented by memory-based algorithms
in data-intensive commercial recommender systems. Building a model of the dataset allows off-line process-
ing for the most rigorous similarity calculations. In some cases, this is at the cost of lower recommendation
accuracy [1].

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by the National Science Foundation Cyber Trust program under Grant IIS-0430303.

1

A positive side effect of a model-based approach is that it may provide improved robustness against attacks.
An adaptive system dependent on anonymous, unauthenticated user profiles is subject to manipulation. The
standard collaborative filtering algorithm builds a recommendation for a target user by combining the stored
preferences of peers with similar interests. If a malicioususer injects the profile database with a number of
fictitious identities, they may be considered peers to a genuine user and bias the recommendation. We call such
attacksprofile injection attacks(also known asshilling [2]).

Recent research has shown that surprisingly modest attacksare sufficient to manipulate the most common
CF algorithms [3, 2, 4, 5]. Profile injection attacks degradethe objectivity and accuracy of a recommender
system over time, causing frustration for its users and potentially leading to high user defection. However, a
model-based approach is an abstraction of detailed user profiles. We hypothesize that this abstraction minimizes
the influence of an attack, because attack profiles are not directly used in recommendation.

In our study, we have focused on the robustness of user clustering, feature reduction, and association rules.
We first consider techniques based onk-means clustering and probabilistic latent semantic analysis (pLSA) that
compare the profile of an active user to aggregate user clusters, rather than the original profiles. Probabilistic
latent semantic analysis is used infer hidden relationships among groups of users, which are then used to form
“fuzzy” clusters. Each user has a degree of association withevery cluster, allowing particularly authoritative
users to exercise greater influence on recommendation.

We then consider a recommendation algorithm that uses principal component analysis (PCA) to calculate the
similarity between user profiles based on reduced dimensions. Principal component analysis tries to extract a set
of uncorrelated factors from a given set of multicolinear variables. By keeping only those principal components
that explain the greatest amount of variance in the data, we effectively reduce the number of features that must
be used for a similarity calculation.

Finally, we consider a recommendation algorithm based on the data mining technique of association rule
mining using the Apriori algorithm. Association rule mining is a technique common in data mining that attempts
to discover patterns of products that are purchased together. These relationships can be used for myriad purposes,
including marketing, inventory management, etc. We have adapted the Apriori algorithm [6] to collaborative
filtering in an attempt to discover patterns of items that have common ratings.

The primary contribution of this paper is to demonstrate that model-based algorithms provide an algorithmic
approach to robust recommendation. Our results show that all techniques offer large improvements in stability
and robustness compared to standardk-nearest neighbor. In particular, the Apriori and PCA algorithms performs
extremely well against low-knowledge attacks, but in the case of Apriori at a cost of reduced coverage, and the
k-means and pLSA algorithms perform extremely well against focused attacks. Furthermore, our results show
that all techniques can achieve comparable recommendationaccuracy to standardk-nn.

2 Recommendation Algorithms

In general, user-based collaborative filtering algorithmsattempt to discover a neighborhood of user profiles that
are similar to a target user. A rating value is then predictedfor all missing items in the target user’s profile, based
on ratings given to the item within the neighborhood. We begin with background information on the standard
memory-basedk-nn. We then present several recommendation algorithms based on model-based techniques of
user clustering (k-means and pLSA), feature reduction (PCA), and associationrules (Apriori).

2

2.1 k-Nearest Neighbor

The standardk-nearest neighbor algorithm is widely used and reasonably accurate [7]. Similarity between the
target user,u, and a neighbor,v, is computed using Pearson’s correlation coefficient:

simu,v =

∑

i∈I

(ru,i − r̄u) ∗ (rv,i − r̄v)

√

∑

i∈I

(ru,i − r̄u)2 ∗
√

∑

i∈I

(rv,i − r̄v)2
(1)

whereru,i andrv,i are the ratings of some itemi for u andv, respectively; and̄ru andr̄v are the average of the
ratings ofu andv overI, respectively.

After similarities are calculated, thek most similar users that have rated the target item are selected as the
neighborhood. This implies a target user may have a different neighborhood for each target item. It is also
common to filter neighbors with similarity below a specified threshold. This prevents predictions being based
on very distant or negative correlations. After identifying a neighborhood, we compute the prediction for a target
item i and target useru as follows:

predu,i = r̄u +

∑

v∈V

simu,v(rv,i − r̄v)

∑

v∈V

|simu,v|
(2)

whereV is the set ofk similar neighbors that have ratedi; rv,i is the rating ofi for neighborv; r̄u andr̄v are the
average ratings over all rated items foru andv, respectively; andsimu,v is the Pearson correlation betweenu
andv. The formula computes the degree of preference for all neighbors, weighted by their similarity, and then
adds this to the target user’s average rating.

2.2 k-Means Clustering

A standard model-based collaborative filtering algorithm usesk-means to cluster similar users. Given a set of
user profiles, the space can be partitioned intok groups of users that are close to each other based on a measure
of similarity. The discovered user clusters are then applied to the user-based neighborhood formation task, rather
than individual profiles.

To make a recommendation for a target useru and target itemi, we select a neighborhood of user clusters
that have a rating fori and whose aggregate profilevk is most similar tou. This neighborhood represents the
set of user segments that the target user is most likely to be amember, based on a measure of similarity. For
this task, we use Pearson’s correlation coefficient. We can now make a prediction for itemi as described in the
previous section, where the neighborhoodV is the set of user cluster aggregate profiles most similar to the target
user.

2.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (pLSA) models [8] provide a probabilistic approach for characterizing
latent or hidden semantic associations among co-occurringobjects. We have applied pLSA to the creation of
user clusters in the context of collaborative filtering [9].

Given a set ofn users,U = {u1, u2, · · · , un}, and a set ofm items,I = {i1, i2, · · · , im} the pLSA model
associates an unobserved factor variableZ = {z1, z2, · · · , zl} with observations in the rating data. For a target
useru and a target itemi, the following joint probability can be defined:

P (u, i) =
l

∑

k=1

Pr(zk) · Pr(u|zk) · Pr(i|zk) (3)

3

In order to explain a set of ratings(U, I), we need to estimate the parametersPr(zk), Pr(u|zk), and
Pr(i|zk), while maximizing the likelihood of the rating dataL(U, I) =

∑

u∈U

∑

i∈I ru,i · log Pr(u, i) where
ru,i is the rating of useru for item i. The Expectation-Maximization (EM) algorithm is used to perform maxi-
mum likelihood parameter estimation, based on initial values ofPr(zk), Pr(u|zk), andPr(i|zk). Iterating the
expectation and maximization steps monotonically increases the total likelihood of the observed dataL(U, I),
until a local optimum is reached.

We now identify clusters of users that have similar underlying interests. For each latent variablezk, we create
a user clusterCk and select all users having probabilityPr(u|zk) exceeding a certain thresholdµ. If a user does
not exceed the threshold for any latent variable, it is associated with the user cluster of highest probability. Thus,
every user profile will be associated with at least one user cluster, but may be associated with multiple clusters.
This allows authoritative users to have broader influence over predictions, without adversely affecting coverage
in sparse rating data. A recommendation is made for a target useru and target itemi in a similar manner to
k-means clustering.

2.4 Principal Component Analysis

Principal component analysis is a dimensionality reduction technique that tries to extract a set of uncorrelated
factors from a given set of multicolinear variables. Each factor represents a latent pattern that is explained by the
degree of correlation to the explicit variables. Factor analysis in general assumes there is an underlying structure
to the explicit variables. In a recommendation context, thefactors may represent fine-grained groupings of items.
For example, movies may have implicit groupings such as style and genre.

PCA identifies the orthogonal axes of variance within a dataset, where the first axis represents the largest
variance in the data, the second axis represents the second largest variance, and so on. It is based on a theorem of
linear algebra stating that for any real symmetric matrixA, there exists a unitary matrixΛ such thatΣ = ΛT AΛ
andΣ is diagonal.

A solution is found using the eigenvectors ofA, where the columns ofΛ are the eigenvectors ordered in
decreasing eigenvalues. Then,Σii = λi is the ith largest eigenvalue ofA. The principal components are
calculated using the covariance matrix of the user dataU with respect to items, such thatA = 1

n−1
UT U . Prior

to calculating the covariance matrix, it is important to adjust the matrixU such that each item vector is zero-
mean. For eachui in U , modify the user vector such thatu′

i = ui − m wherem = 1

n

∑n
i=0

ui is the vector of
item means.

A caveat to this approach is the potential effect of missing data. Collaborative filtering datasets are notori-
ously sparse, but PCA requires a dense covariance matrix to calculate eigenvectors. We have resolved this issue
with an elegant solution. Before adjusting for item means and calculating the covariance matrix, we subtract
each user’s mean rating from the user vector, where the mean is calculated by ignoring the missing ratings. The
idea is that different users may have different “baselines”around which their ratings are distributed. We then set
all missing values to 0 under the assumption that a user has nopreference for an item that has not been rated.

In order to reduce the number of dimensions in the feature vector Λ, we simply keep the eigenvectors with
the largest eigenvalues and discard the rest. There are several ways to choose the number of eigenvectors to keep
for PCA, but in our experiments we have found the percentage of variance criteria to yield the most accurate
results. We keep the number of eigenvectors such that the total cumulative percentage of variance surpasses
some threshold,µ.

To calculate a prediction for a target itemi and target useru, we modify the standardk-nn algorithm, such
that Equation 1 is calculated with respect to the reduced dimension vectors of useru and neighborv. Each
reduced dimension vector is calculated asu′ = Λ′T (u − m), whereΛ′ is the reduced dimension feature vector;
m is the vector of item means; andu is the target user or neighbor vector, mean adjusted according to that user’s
mean.

4

2.5 Association Rule Mining

Association rule mining is a common technique for performing market basket analysis. The intent is to capture
relationships among items based on patterns of co-occurrence across transactions. We have applied association
rules to the context of collaborative filtering [10]. Considering each user profile as a transaction, it is possible to
use the Apriori algorithm [6] and generate association rules for groups of commonly liked items.

Given a set of user profilesU and a set of item setsI = {I1, I2, . . . , Ik}, thesupportof an item setIi ∈ I
is defined asσ(Ii) = |{u ∈ U : Ii ⊆ u}| / |U |. Item sets that satisfy a minimum support threshold are usedto
generate association rules. These groups of items are referred to asfrequent item sets. An association ruler is
an expression of the formX =⇒ Y (σr, αr), whereX andY are item sets,σr is the support ofX ∪ Y , and
αr is theconfidencefor the ruler given byσ(X ∪ Y)/σ(X). In addition, association rules that do not satisfy a
minimum lift threshold are pruned, where lift is defined asαr/σ(Y).

Before performing association rule mining on a collaborative filtering dataset, it is necessary to discretize the
rating values of each user profile. We first subtract each user’s average rating from the ratings in their profile to
obtain a zero-mean profile. Next, we give a discrete categoryof “like” or “dislike” to each rated item in the profile
if it’s rating value is> or≤ zero, respectively. In classic market basket analysis, it is assumed that a customer will
not purchase an item they do not like. Hence, a transaction always contains implicit positive ratings. However,
when dealing with explicit rating data, certain items may bedisliked. A collaborative recommender must take
such preference into account or risk recommending an item that is rated often, but disliked by consensus.

To make a recommendation for a target user profileu, we create a set of candidate itemsC such that an
association ruler exists of the formX ⊆ u =⇒ i ∈ C wherei is an unrated item in the profileu. In practice,
it is not necessary to search every possible association rule givenu. It is sufficient to find all frequent item sets
X ⊆ u and base recommendations on the next larger frequent itemsets Y ⊃ X whereY contains some itemi
that is unrated inu. The candidate setC is then sorted according to confidence scores and the topN items are
returned as a recommendation.

A caveat to this approach is the possibility of conflicting recommendations in the candidate setC. For
example, one association rule may add itemi to the candidate set with a “like” label, whereas another rule may
add the same item with a “dislike” label. There is no ideal solution, but we have chosen to assume that there are
opposing forces for the recommendation of the item. In our implementation, we subtract the confidence value
of the “dislike” label from the confidence value of the “like”label.

3 Profile Injection Attacks

A collaborative recommender database consists of many userprofiles, each with assigned ratings to a number
of products that represent the user’s preferences. A malicious user may insert multiple profiles under false
identities designed to bias the recommendation of a particular item for some economic advantage. This may be
in the form of an increased number of recommendations for theattacker’s product, or fewer recommendations
for a competitor’s product.

3.1 An Example

Consider an example recommender system that identifies interesting books for a user. The representation of a
user profile is a set of product / rating pairs. A rating for a particular book can be in the range 1-5, where 5
is the highest possible rating. Alice, having built a profilefrom previous visits, returns to the system for new
recommendations. Figure 1 shows Alice’s profile along with that of seven genuine users.

An attacker, Eve, has inserted three profiles (Attack1-3) into the system to mount an attack promoting the
target item, Item6. Each attack profile gives high ratings toEve’s book, labeled Item6. If the attack profiles
are constructed such that they are similar to Alice’s profile, then Alice will be recommended Eve’s book. Even

5

Figure 1: an example attack on Item6

without direct knowledge of Alice’s profile, similar attackprofiles may be constructed from average or expected
ratings across all users.

Disregarding Eve’s attack profiles for a moment, we can compute Alice’s predicted preference for Item6.
Assuming 1-nearest neighbor, Alice will not be recommendedItem6. The most highly correlated user to Alice
is User6, who clearly does not like Item6. Therefore, Alice is expected to dislike Item6.

After Eve’s attack, however, Alice receives a very different recommendation. As a result of including the
attack profiles, Alice is most highly correlated to Attack1.In this case, the system predicts Alice will like
Item6 because it is rated highly by Attack1. She is given a recommendation for Item6, although it is not the
ideal suggestion. Clearly, this can have a profound effect on the effectiveness of a recommender system. Alice
may find the suggestion inappropriate, or worse; she may takethe system’s advice, buy the book, and then be
disappointed by the delivered product.

3.2 Attack Types

A variety of attack types have been studied for their effectiveness against different recommendation algo-
rithms [4, 5]. An attack typeis an approach to constructing attack profiles, based on knowledge about the
recommender system, its rating database, its products, and/or its users. In a push attack, the target item is gen-
erally given the maximum allowed rating. The set offiller items represents a group of selected items in the
database that are assigned ratings within the attack profile. Attack types can be characterized according to the
manner in which they choose filler items, and the way that specific ratings are assigned. In this paper, we focus
on three attack types that have been shown to be very effective against standard user-based collaborative filtering
recommenders.

The random attack is a basic attack type that assigns random ratings to filler items, distributed around the
global rating mean [2, 4]. The attack is very simple to implement, but has limited effectiveness.

The average attack attempts to mimic general user preferences in the system by drawing its ratings from
the rating distribution associated with each filler item [2,4]. An average attack is much more effective than a
random attack; however, it requires greater knowledge about the system’s rating distribution. In practice, the
additional knowledge cost is minimal. An average attack canbe quite successful with a small filler item set,
whereas a random attack usually must have a rating for every item in the database in order to be effective.

An attacker may be interested primarily in a particular set of users – likely buyers of a product. A segment
attack attempts to target a specific group of users who may already be predisposed toward the target item [4].
For example, an attacker that wishes to push a fantasy book might want the product recommended to users
expressing interest inHarry PotterandLord of the Rings. A typical segment attack profile consists of a number
of selected items that are likely to be favored by the targeted user segment, in addition to the random filler items.
Selected items are expected to be highly rated within the targeted user segment and are assigned the maximum

6

rating value along with the target item.

4 Experimental Evaluation

To evaluate the robustness of model-based techniques, we compare the results of push attacks using different
parameters. In each case, we report the relative improvement over thek-nearest neighbor approaches.

4.1 Dataset

In our experiments, we have used the publicly-available Movie-Lens 100K dataset1. This dataset consists of
100,000 ratings on 1682 movies by 943 users. All ratings are integer values between one and five, where one is
the lowest (disliked) and five is the highest (liked). Our data includes all users who have rated at least 20 movies.

To conduct attack experiments, the full dataset is split into training and test sets. Generally, the test set
contains a sample of 50 user profiles that mirror the overall distribution of users in terms of number of movies
seen and ratings provided. The remaining user profiles are designated as the training set. All attack profiles are
built from the training set, in isolation from the test set.

The set of attacked items consists of 50 movies whose ratingsdistribution matches the overall ratings distri-
bution of all movies. Each movie is attacked as a separate test, and the results are aggregated. In each case, a
number of attack profiles are generated and inserted into thetraining set, and any existing rating for the attacked
movie in the test set is temporarily removed.

For every profile injection attack, we trackattack sizeandfiller size. Attack size is the number of injected
attack profiles, and is measured as a percentage of the pre-attack training set. There are approximately 1000 users
in the database, so an attack size of 1% corresponds to about 10 attack profiles added to the system. Filler size is
the number of filler ratings given to a specific attack profile,and is measured as a percentage of the total number
of movies. There are approximately 1700 movies in the database, so a filler size of 10% corresponds to about
170 filler ratings in each attack profile. The results reported below represent averages over all combinations of
test users and attacked movies.

4.2 Evaluation Metrics

There has been considerable research on the accuracy and performance of recommender systems [11]. We use
the mean absolute error (MAE) accuracy metric, a statistical measure for comparing predicted values to actual
user ratings.We define coverage as the percentage of items inthe database for which an algorithm is able to make
a prediction.

However, our overall goal is to measure the effectiveness ofan attack; the “win” for the attacker. In the
experiments reported below, we measure hit ratio - the average likelihood that a topn recommender will recom-
mend a pushed item, compared to all other items.

Hit ratio measures the effectiveness of an attack on a pushed item compared to other items. LetRu be the
set of topn recommendations for useru. For each push attack on itemi, the value of a recommendation hit for
useru denoted byHui, can be evaluated as 1 ifi ∈ Ru; otherwiseHui is evaluated to 0. We define hit ratio as
the number of hits across all users in the test set divided by the number of users in the test set. The hit ratio for a
pushed itemi over all users in a set can be computed as

∑

Hui/ |U |. Average hit ratio is calculated as the sum
of the hit ratio for each push attack on itemi across all pushed items divided by the number of pushed items.

Hit ratio is useful for evaluating the pragmatic effect of a push attack on recommendation. Typically, a user
is only interested in the top 20 to 50 recommendations. An attack on an item that significantly raises the hit

1http://www.cs.umn.edu/research/GroupLens/data/

7

ratio, regardless of prediction shift, can be considered effective. Indeed, an attack that causes a pushed item to
be recommended 80% of the time has achieved the desired outcome for the attacker.

4.3 Accuracy Analysis

We first compare the accuracy ofk-nn versus the model-based algorithms. To monitor accuracy, and to assist in
tuning the recommendation algorithms, we use MAE. In all cases, 10-fold cross-validation is performed on the
entire dataset and no attack profiles are injected.

In neighborhood formation, we achieved optimal results using k = 20 users for the neighborhood size of
thek-nn algorithm. For the model-based algorithms, we obtainedthe most favorable results usingk = 10 user
segments for the neighborhood size. In all cases, we filter out neighbors with a similarity score less than 0.1.
For pLSA, we observed an optimum threshold ofµ = 0.035. We obtained the best results for PCA by extracting
the factors that explain at least 60% of total variance. The average number of extracted principal components
was approximately 100.

Table 1 displays the results from one of five test runs performed. The difference in accuracy between the
standard and PCA approaches is not statistically significant. This is a very promising result, as the scalability of
model-based algorithms often come at the cost of lower recommendation accuracy [1]. For example,k-means
and pLSA show small decreases in accuracy compared to standard k-nn.

Determining a suitable evaluation metric for the Apriori recommender was challenging because it is based on
a fundamentally different approach. Thek-nn algorithm predicts a rating value for each target item and ranks all
items based on this score. The association rule algorithm produces a ranked list, such that the recommendation
score is the confidence that a target user will like the recommended item. It is not possible to make a prediction
of the rating value from the association rule recommendation list. However, the association rule recommender
does make a more general prediction; it predicts a binary “like” or “dislike” classification for a recommended
item if the confidence value is positive or negative, respectively.

For brevity, we do not include the derived metric, but a detailed description can be found in [10]. Our
results showed the difference in accuracy between the association rule recommender andk-nn to be statistically
insignificant. But because Apriori selects recommendations from only among those item sets that have met the
support threshold, it will by necessity have lower coveragethan the other model-based algorithms. There will be
some items that do not appear and about which the algorithm cannot make any predictions. This problem may
occur in ak-nn algorithm as well, since there may be no peer users who have rated a given item. However, this
is a relatively rare occurrence. The coverage of thek-nn algorithm is near 100%, while Apriori is consistently
around 47%.

The Apriori algorithm would therefore lend itself best to scenarios in which a list of top recommended items
is sought, rather than a rating prediction scenario in whichthe recommender must be able to estimate a rating
for any given item. The selectivity of the algorithm may be one reason to expect it will be relatively robust - it
will not make recommendations without evidence that meets the minimum support threshold.

4.4 Robustness Analysis

To evaluate the robustness of model-based algorithms, we compare the results of push attacks on collaborative
recommendation algorithms usingk-nearest neighbor,k-means clustering, pLSA, PCA, and Apriori techniques.

Table 1: Accuracy
k-nn k-means plsa pca

mae 0.7367 0.7586 0.7467 0.7327

8

Figure 2: Average attack hit ratio at 5% filler size Figure 3: Average attack hit ratio at 2% attack size

We report the results for average and segment attacks, and exclude results for random attack, because average
attack is more effective and exhibits similar robustness trends.

4.4.1 Average Attack

Figure 2 presents hit ratio results for top 10 recommendations at different attack sizes, using a 5% filler. With the
exception ofk-means, the model-based techniques show notable improvement in stability overk-nn. Apriori
and pLSA, in particular, have superior performance at all attack sizes, and PCA performs extremely well at
small attack sizes of 5% or less. Under a 15% attack, an attacked movie is in a user’s top 10 recommended list
nearly 80% of the time fork-nn andk-means. However, the attacked movie only shows up in a user’stop 10
recommendations slightly greater than 5% of the time for Apriori or pLSA and less that 20% of the time for
PCA.

Robustness of the Apriori algorithm may be partially due to lower coverage. However, this does not account
for the flat trend of hit ratio with respect to attack size. At a5% attack, we observed only 26% coverage of the
attacked item. But at a 10% attack, we observed 50% coverage,and at 15% attack, we observed a full 100%
coverage of the attacked item.

It is precisely the manner in which an average attack choosesfiller item ratings that causes the combination
of multiple attack profiles to short-circuit the attack. Recall that filler item ratings in an average attack are
distributed around their mean rating. When an average attack profile is discretized, there is equal probability
that a filler item will be categorized as “like” or “dislike”.Therefore, multiple attack profiles will show little
more than chance probability of having common itemsets. Thelack of mutual reinforcement between filler items
prevents the support of itemsets containing the attacked item from surpassing the threshold.

To evaluate the sensitivity of filler size, we have tested a full range of filler items. The 100% filler is
included as a benchmark for the potential influence of an attack. However, it is not likely to be practical from
an attacker’s point of view. Collaborative filtering ratingdatabases are often extremely sparse, so attack profiles
that have rated every product are quite conspicuous.Of particular interest are smaller filler sizes. An attack that
performs well with few filler items is less likely to be detected. Thus, an attacker will have a better chance of
actually impacting a system’s recommendation, even if the performance of the attack is not optimal.

Figure 3 depicts hit ratio for top 10 recommendations at the full range of filler sizes with a 2% attack size.
Surprisingly, as filler size is increased, hit ratio for standardk-nn goes down. This is because an attack profile
with many filler items has greater probability of being dissimilar to the active user. On the contrary, hit ratio for
k-means and pLSA tend to rise with larger filler sizes. Eventually, both algorithms are surpassed byk-nn and
actually perform worse with respect to robustness.

However, the PCA and Apriori algorithms hold steady at largefiller sizes and are essentially unaffected. As

9

Figure 4: Segment attack hit ratio at 5% filler size Figure 5: Segment attack hit ratio at 2% attack size

with attack size, the reason that filler size does not affect the robustness of Apriori is because adding more filler
items does not change the probability that multiple attack profiles will have common itemsets. The fact that
a profile’s ratings are discretized to categories of “like” and “dislike” means that an attack profile with 100%
filler size will cover exactly half of the total features usedin generating frequent itemsets. Therefore, it is very
unlikely that multiple attack profiles will result in mutualreinforcement.

4.4.2 Segment Attack

The segment attack is designed to have particular impact on likely buyers, or “in-segment” users. These users
have shown a disposition towards items with particular characteristics, such as movies within a particular genre.
For our experiments, we selected popular horror movies (Alien, Psycho, The Shining, Jaws, and The Birds)
and identified users who had rated all of them as 4 or 5. This is an ideal target market to promote other horror
movies, and so we measure the impact of the attack on recommendations made to the in-segment users.

Figure 4 depicts hit ratio for top 10 recommendations at different attack sizes, using a 5% filler. Clearly, the
attack is extremely effective against thek-nn algorithm. A meager 1% attack shows a hit ratio of nearly 80%.
By contrast, a segment attack has little effect onk-means, pLSA, and PCA.

The Apriori algorithm appears to have the same robustness asthe other model-based algorithms at small
attack sizes. However, beyond a 5% attack, Apriori performsquite poorly with respect to robustness. Hit ratio
reaches 100% at a 15% attack. The cause of such dramatic effect is precise targeting of selected items by the
attacker. This is the opposing force to the phenomena witnessed against an average attack. A segment attack
profile consists of multiple selected items, in addition to the target item, where the maximum rating is assigned.
Clearly, all such items will always be categorized as “like”. Therefore, the mutual reinforcement of common
item sets is a given, and a user that likes any permutation of the selected items receives the attacked item as a
recommendation with high confidence.

Although the performance of Apriori is not ideal against a segment attack, certain scenarios may minimize
the performance degradation in practice. In particular, a recommender system with a very large number of users
is somewhat buffered from attack. The algorithm is quite robust through a 5% attack, and is comparable to
bothk-means, pLSA, and PCA. The robustness of Apriori is not drastically reduced until attack size is 10% or
greater. Certainly it is feasible for an attacker to inject the necessary number of profiles into a recommender with
a small number of users, but it may not be economical for a commercial recommender such as Amazon.com,
with millions of users.

10

5 Conclusion

The standard user-based collaborative filtering algorithmhas been shown quite vulnerable to profile injection
attacks. An attacker is able to bias recommendation by building a number of profiles associated with fictitious
identities. In this paper, we have demonstrated the relative robustness and stability of model-based algorithms
over the memory-based approach.

References

[1] M. O’Conner and J. Herlocker, “Clustering items for collaborative filtering,” inProceedings of the ACM
SIGIR Workshop on Recommender Systems, Berkeley, CA, August 1999.

[2] S. Lam and J. Riedl, “Shilling recommender systems for fun and profit,” inProceedings of the 13th Inter-
national WWW Conference, New York, May 2004.

[3] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre,“Collaborative recommendation: A robustness
analysis,”ACM Transactions on Internet Technology, vol. 4, no. 4, pp. 344–377, 2004.

[4] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Towards trustworthy recommender systems: An
analysis of attack models and algorithm robustness,”ACM Transactions on Internet Technology, vol. 7,
no. 4, 2007.

[5] B. Mobasher, R. Burke, R. Bhaumik, and J. Sandvig, “Attacks and remedies in collaborative recommenda-
tion,” IEEE Intelligent Systems, vol. 22, no. 3, pp. 56–63, May/June 2007.

[6] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” inProceedings of the 20th
International Conference on Very Large Data Bases (VLDB’94), Santiago, Chile, September 1994.

[7] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for performing collabora-
tive filtering,” in Proceedings of the 22nd ACM Conference on Research and Development in Information
Retrieval (SIGIR’99), Berkeley, CA, August 1999.

[8] T. Hofmann, “Probabilistic latent semantic analysis,”in Proceedings of the Fifteenth Conference on Un-
certainty in Artificial Intelligence, Stockholm, Sweden, July 1999.

[9] B. Mobasher, R. Burke, and J. Sandvig, “Model-based collaborative filtering as a defense against profile
injection attacks,” inProceedings of the 21st National Conference on Artificial Intelligence. AAAI, July
2006, pp. 1388–1393.

[10] J. J. Sandvig, B. Mobasher, and R. Burke, “Robustness ofcollaborative recommendation based on associ-
ation rule mining,” inProceedings of the 2007 ACM Conference on Recommender Systems (RecSys’07),
October 2007, pp. 105–111.

[11] J.Herlocker, J. Konstan, L. G. Tervin, and J. Riedl, “Evaluating collaborative filtering recommender sys-
tems,”ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5–53, 2004.

11

