Vibes: A Platform-Centric Approach to Building Recommende
Systems

Biswadeep Nag
Monetisation and Targeting Group
Strategic Data Solutions

Yahoo! Inc
biswadeepnag@yahoo.com

Abstract

Recommender systems have gained a lot of popularity adiedfeneans of drawing repeat business,
improving the navigability of web sites and generally ingied) users and customers quickly locate
items that are likely to be of interest. The rich literaturerecommendation algorithms presents both
opportunities and challenges. Clearly there are a wide etyriof algorithmic tools available, but there
are only a few that are suited for application to a broad véyief problem domains and even fewer
that can scalably deal with very large data sets. In this pape describe the architecture of the Vibes
platform that is used to power recommendations across a vedge of Yahoo! properties including
Shopping, Travel, Autos, Real Estate and Small Business.

The design principles of Vibes stress flexibility, re-ukgbrepeatability and scalability. The system
can be broadly divided into the modeling component (“theitsd, the data processing component
(“the torso”) and the serving component (“the arms”). Vibean accommodate a number of techniques
including affinity based, attribute similarity based andlaborative filtering based models. The data
processing component enables the aggregation of data fsersubrowse and purchase history logs
after any required filtering and joining with other data soas such as categorizer outputs and unitized
search terms. We are currently working on moving the modelimd data processing components to the
Hadoop grid computing platform to enable Vibes to take athga of even larger data sets. Finally the
serving infrastructure uses REST based web services ARiowde quick and easy integration with
other Yahoo! properties. The whole Vibes platform is desiigio make it easy to extend and deploy new
recommendation models (in most cases without having te amy custom code). We illustrate this point
by using a case study of how Vibes was used to build recommi@mdgstems for Yahoo! Shopping.

1 Introduction

Research into recommendation systems goes back more treradedwith several important classes of algo-
rithms proposed[1]. Lately they have achieved quite a bitashmercial success as well[5, 4], culminating in

2007 with the award of the first Netflix prize[7]. Though recoender systems clearly add value to the commer-
cial proposition and user experience of a web site, thewsfidm the drawback of being somewhat fragile and

Copyright 0000 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering




sensitive with regard to the matchup between the data aralgbethms.In other words, recommender systems
usually need a fair bit of tweaking to work well in a partiaukgpplication setting. Added to this are the prob-

lems in gathering enough data in a common format about usevie, item metadata and also in presenting
the resulting recommendations in a form that can be eagiygiated into target web pages.

The Vibes recommendation platform was built as a scalalideganeric solution for Yahoo!'s recommenda-
tion needs. The platform has the capability of housing aetaef recommendation models along with all the
machinery needed (data collection, data processing, nbailding, recommendation serving and reporting) to
deploy recommendation modules for internal customers.

2 A Typical Vibes Use Case

Unlike the well-known problem of trying to construct(aser, item)— rating function given a set of numerical
user ratings, Vibes is usually deployed in the followingesas

1. Provide an inter-item similarity or relatedness funatifitem1, item2)— similarity € [0, 1]. There are a
couple of ways to do this as described in Section 4.

2. Provide a user-to-item recommendation functfoser, item)— recommended: {0, 1}. The output of
this function is a boolean which decides whether to sugggsito useror not.

As an example of case 1, take a look at a product detail pagahiod Shopping, for example an Apple
iPod (http://shoppi ng. yahoo. cont p: Appl e%20i Pod%20t ouch%208GB¥%R20MP3%20PI ayer :
1994935518). Vibes item-to-item recommendations are shown in the@etitled: Yahoo! Shoppers Who
Viewed This Item Also Viewed: All the data we need to supply these recommendations cabthaed from
a web log of all the product pages viewed by visitors to Y! §#ing. If enough users visit a common set of
items within, say a 90-day time period, those items can bédlses of generating recommendation rules.

Providing recommendations for case 2 is harder, primaglalise of the sparsity of the data. Getting users
to explicitly rate an item can present a barrier, but we cdlecioimplicit binary rating data either from users’
browse or buy history. It is fairly straight-forward to geate recommendations for users whavea history
in Y! Shopping, but it is more challenging to cater to useroudnd-up directly from another search engine
for example. The model then has to augmented with other aiadwlata from the Yahoo! network (such as
a user’s search history) if available. This of course magergiome privacy issues in case we tap into a user's
declared age, gender or any other personally identifialibyrimation. Vibes customers may decide on a case-by-
case basis to explicitly ask permission from users befare/siyg recommendations that rely on their behavioral
history.

Various Vibes customers have reported substantial befrefitsadding a recommendation capability to their
web site. For example Yahoo! Shopping has recorded a 16%dserin revenue after deploying Vibes. Similarly
Yahoo! Small Business has measured a 30% increase in par+awbnue over manually generated cross-sell
rules. The big advantage in Yahoo! is that it is possible terage users’ network-wide behavior, including
terms typed into general search to segment users into dusiel further personalize the recommendations.
Currently we are in the process of developing such a model.

3 Platform Requirements

Yahoo! is in a unique position as one of the most popular dastins on the internet. Not only does Yahoo!
have one of the largest user bases, a number of Yahoo! piespéstich as Autos, Games, Shopping, Sports etc.)
are ranked in the top 2 web sites of their respective catego¥ahoo! also has a major advantage in the fact that
its users spend a significant amount of time on the web siteinaglating a large number of views and clicks,



which translate into significant user behavioral historlge3e User Link Tracking (ULT) data ultimately find its
way into data warehouses from which vertical-specific agmped data can be queried. To achieve deployment
of scale of the Vibes recommendation system across a broag @& Yahoo! properties, we started with the
following set of requirements:

Loose coupling The recommender system stands apart from its customersig€fan the recommendation
platform, its algorithms and its infrastructure should tansparent to the consumers of the recommenda-
tions. This means that Vibes would run on a different set sfesys running possibly different operating
systems and language runtimes. A standard way of doingsthiglising Web Services, in particular using
REST principles.

Configurability It should be possible to easily tailor recommendations &mhecustomer in terms of model
parameters, data sources, and APIls. This could be done eizehdf meta-programming where each
instance of Vibes has a set of configuration parameters ifotheof XML files that specify the methods
of data generation, model building and the signatures oREBSTful web service.

Extensibility The Vibes platform should be able to easily accommodate nedeting methodologies and par-
ticular requirements for each customer deployment. Theatmogiblock should be able to incorporate new
code (written in any programming language) while the customterface should have logic to activate
business rules to merge, filter, compare and combine thenreemdation results as required.

Easy integration The customer should have to take minimum effort both to pi®data that feeds into the
modeling engine as well as to consume the recommendatiguisufT he data input could happen through
standardized channels for instrumenting view and cliclns/éhat flow into the warehouse. The recom-
mendation output would be served through a web service tifidieveasy to parse and consume.

Quick deployment The platform needs to minimize the man power and incremegitait required for each
new deployment. This could be done by having a standard aoafign template that could be tailored
to each customer’s requirement by making localized chafmethe input data source and output data
format. No new code should have to be written in the commoe,dagreby alleviating the need for a
long QA test cycle. The scheduling of model refreshes shbajpen automatically.

Quality checks We should anticipate operational issues such as missinguocated input data, or perhaps
changes in data distribution. Models should be evaluatsddan metrics such gsecision, recalland
coverage Every time a new model is built, it should be compared wittketacs historical models and
pushed into production only if the deviation is within t@ace limits.

Scalability The recommendation serving infrastructure hosting the seebice should scale horizontally. That
means that the total number of requests that can be servesgtgamd should be linearly proportional to
the number of serving systems. In addition, 99.8% of resg@need to be within 20 ms. On the model
building front, the platform also needs to exploit data paliam and should be able to take advantage of
multi-CPU machines and grid clusters.

Reporting A recommender system is only as good as the visibility it ples into the effectiveness of its
recommendations. Instrumentation needs to be embeddethentecommendations so that we can track
the number of views and clicks made by users. The effectsseata recommendation module is measured
using the click-through-rate (CTR) on the recommendedstem

The architecture of Vibes takes into account the above reopgints and is graphically shown in Fig.1. It
is useful to think of the system as having three main compsnghe modeling engines, the data gathering
and processing framework and the recommendation servfrastructure. The data processing and modeling

3



Data Processing

Real Time

Warehouse [elg% Repl Servin REST
Model Builder it -

-
DB

Figure 1: Vibes Platform Architecture

code runs in a central location in close proximity with théadaarehouse while the model output is replicated
to various data centers where the front-end systems seataéil-time to co-located customer web servers.
Before we delve into the details of each component it is wordting that the components themselves are
loosely coupled together, making it relatively easy to swapew implementations.

4 Data Modeling

4.1 The Vibes Affinity Engine

The workhorse of Vibes data modeling is th#inity Engine that is used to build item-to-item affinity models.
Items could be almost anything in the Yahoo! universe, sgcipepduct pages, auto makes, real estate listings,
travel destinations, RSS feeds, computer games, seargtokiy and so on. User interaction with items is
discretized into groups. Aroup (also sometimes called a session, transaction or markkef)ds a set of
events relating items. For example, a group could be pagesviy a single user, all the searches in a session,
all the RSS subscriptions for a userid, products bought imgles checkout or pretty much any association of
items. Item-to-item affinity is nothing but a set of assaomtules[3]. An association ruld — B relating two
items A and B implies that we will recommend when givenA as input. To qualify as a rule, the pdid, B)
must co-occur frequently in a group i.e. they must pass icetieesholds oSupportandconfidence Support or
minimum pair count is the least number of co-occurenced ahd B for them to generate a rule. The choice of
the support threshold depends on the characteristics afatae particularly the ratio of the number of items to
the number of groups. A higher item to group ratio (i.e. spagsita) may require lowering the support threshold
to ensure sufficient number of rules (and item coverage)ic@jly we choose support thresholds of 9 or above
to minimize noise. In our implementation, confidence or tfimify value is not a threshold, but instead an
ordering metric. Confidence for a rule — B is the conditional probabilityP(B|A) = P(AN B)/P(A). We
generate all item pairs satisfying the support threshottitaen for item A find the tom items X which have
the highestP(X|A). This gives rise to» recommendation rules:(being a config parameter for a particular
deployment).

The most computationally intensive tasks involve findingitem pairs that have at least the minimum pair-
count. At the scale of Yahoo!’s data (3 million items, 100lion groups), this is reasonably hard to do. This is
where classic algorithms like Apriori[3] fail to scale. Tcake the problem tractable, we only consider binary
rules, i.e., we only count iteqpair frequency (experiments have shown that the gain from havuleg involving
more than 2 items is not signficant). At a high level, this Imes creating aggregate hash tables in memory
mapping item-pairs to current counts and then flushing tteddes to disk when memory overflows. Finally a
second pass is made to merge and sum up all the item pair cdineie are several optimizations geared toward
large data set processing in the actual implementatioref@niong these are encoding all the itemid strings to
integers (as well as all itemid pairs to integers). Proocgsand comparing strings is the biggest consumer of
cpu time and we have found this integer encoding method tbdobiggest contributor to scalability. There are

4



also optimizations involved in dropping items that fall ®&lthe occurrence threshold and dropping item pairs
which do not make the cut of the tepaffinity rules.

The affinity engine uses the well-known technique of assiociaule mining. Though this technology is
quite mature, we have found it to be remarkably effectiveerml-tife situations. Given enough data (i.e. a low
item to group ratio) it is remarkably effective in trackingan behavior and often beats other more sophisticated
models in predictive performance. Additionally it can com® large data sets with ease, even when used on
a single system. In the near future, we plan to signficanthaane the data processing capability of Vibes by
deploying a version of the affinity engine that runs on a Haf®logrid cluster where it would be able to utilize
hundreds of compute nodes.

4.2 The Vibes Attribute Similarity Engine

Affinity based modeling seems to have only two weaknesserayjt not be able to produce an accurate model
under these conditions:

e There is not enough data, i.e. the number of items to numbgrafps is high. This can happen if a
particular web store-front does not have enough visitorsamsactions. This reduces the probability of
two items co-occurring enough number of times to overcorasstipport threshold.

e There are new items that have not accumulated enough higtoviews, buys etc.). This is also known
as thecold startproblem. In general, it is very difficult to apply a behaviomreodel to such items.

One particular case where these conditions occur is for ¢atReal Estate and Autos which have high
volume house or car listings. These listings have a finigitife and may not accumulate enough views within
a 30-90 day window to make affinity based recommendationghdee cases, we plan to leverage structured
metadata that is available with the listing. The idea is sehat similar to the approach proposed in [6], but we
use structured metadata instead of textual descriptiortbelreal estate case, these would include attributes such
as the price, zip, number of bedrooms and number of bathréan@shouse. Using just these metadata we can
calculate a similarity score between any two listings based linear combination of attribute distances. The
exact formulation of the similarity score between two iteiandj each having: attributes(a;1, a2, . . . ain)
and(a;1, ajo, . .. aj,) respectively is:

Similarity(i,j) =1 -3 wy * (i, ajr) (1)
k=1

wheredy, is the distance function and,, is the weight applied to the kth attribute. It is possibletoase from a
wide variety of distance functions such as Euclidean, MaahaHamming distance etc. The distance function
chosen is normalized to produce an output in the radgsg.

Now comes the problem of finding weights. Our current apgrasito learn these attribute weights from the
data points where affinity model data exists. Based on usde lebhavior, we can model the similarity function
to approximate the affinity (or confidence) of the recomménda — j. GivenAffinity(i, ) and the attribute
metadata for items i and j we can construct a set of lineartemsaof the form given in Eq.2.

Af finity(i, ) =~ 1= 3 wy * 6 (ain, ajp) (2)
k=1

Sincedy (aix, a;;) can be easily calculated, it is relatively straight-fordvéw do a linear regression to derive the
weightswy. A similar idea applies to constructing distance functiforscategorical attributes. We intend to
leverage user behavior to calculate affinities betweergoatsl attribute labels and thereby deduce the relative
distances between those attribute values.



4.3 User-to-ltem Recommendations

This is usually considered the classic collaborative filgCF) problem, but the primary problem here is one
of scale. Yahoo! has of the order of 500M users, and if we clemsiM items, we are faced with a 500 trillion
cell matrix. Most of the algorithms described in the literat tend to break down when faced with data sets of
this size. Furthermore, the data tend to be rather sparg; pacause of the rank of the user-item matrix and
partly also because of practical problems of cookie churichvtends to inflate the number of users presented to
the CF algorithm. The goal of the Vibes platform is to idgn&ifsmall set of core algorithms that can be applied
to a wide domain of user-to-item recommendation problem® afé currently evaluating several promising
algorithms like those in [2].

In the meantime, it is possible to simplify the problem sorhatby noting that most of our use cases do
not require a numerical rating prediction. We simply needutput a binary prediction of whether to suggest
an item to a particular user or not. Of course we want to ogentine click response to our recommendations as
well. One simple way of doing this would be to look at the clidktory of a user in a given vertical (say Yahoo!
Shopping), i.e. for a user, we have a set of itemdewed(u) Then it is possible to expand this set using affinity
based item-to-item recommendations:

Recommended(u) = U Af finityRecos(1)
VieViewed(u)

whereAffinityRecos(iyefers to the set of items recommended for itelmy an affinity based model. When faced
with new items with no behavioral data, it is possible to giima content dimension to the above by substituting
(or augmenting) affinity based recommendations with attélsimilarity based recommendations.

5 Model Building

The power of the Vibes framework stems not from the soplasto of the modeling engines but rather the
ease and rapidity with which they can be deployed in largetrarrof divergent use cases. The model building
framework (the Data Processing block in Fig.1) has the jodiggfregating, filtering and processing data to feed
into the modeling engine. The following are some of the maierators that have been implemented in the
Vibes Model Builder.

query Queries the data warehouse using an SQL like query langoagdract user behavioral data.
mergesort Takes a set of compressed files as input, merges them andhrsart®n the grouping key.
model Encapsulates the modeling engine and is further spedidilite affinity, attribute similarity etc.
script Vehicle for plugging in ad-hoc scripts or executables wntin any language for data processing.
evaluate Calculates metrics such asverage, precision, recalbr each model generated.

compare Compares current model with a set of historical models.

dbload Loads model result into serving database.

dbreplicate Replicates the model database across data centers.

In addition to specific operator properties, each operaésr dnset of common attributes (derived from a
parent operator class in an inheritance hierarchy) suclmenscheduling frequency, data duration, input data
source, output file and output schema. The individual opesatre orchestrated into a workflow (specified as an



DB Load
&
Replicate

Filter
Sort
Merge

Data
Extract

Figure 2: Vibes Data Modeling Pipeline

XML file) for each customer deployment. Fig.2 shows an exaipkear workflow, but in general this can be a
dependency graph in the form of a DAG.

Model refreshes happen in an automated fashion dependitigeatesired refresh frequency (which in turn
depends on the velocity of the data). Checks are built inth stage of the modeling pipeline so that downstream
processing is halted in the event of any failure. For exanf@esignficant difference in the input data causes a
substantial change in the number of rules, or the precisidnecall of a model, then the model comparison oper-
ator fails and stops the dbload and dbreplicate operateeptieg the deployment of the (possibly) faulty model
into production. The model outputs are currently storedMy&QL database table having the following schema:
recos:. (src_item dest_item score). Thescor e column refers to the degree of relatedness of
the source item and the destination item and can either tafthity or the attribute similarity score. Theecos
table is indexed on ther c_i t emcolumn, making it very easy to look up the set of recommentieds using
the SQL querysel ect dest _itemfromrecos where src_itenr given item order by
score desc.

A recommendation platform is only as good as the visibilifyrovides into its performance. From the outset,
Vibes has ensured that appropriate metadata is sent altimgheimodel output so that customers can record the
number of views and clicks made by users on the recommemgdatibhese data flow into the data warehouse
from which we can report daily performance metrics such awsj clicks, click-through-rate and the number
of unique end users targeted. This allows us to have ongaiality checks tracking model performance.

6 Recommendation Serving

As we have mentioned before, the Vibes serving infrastractwhich is located in various data centers) is
loosely coupled with the model building apparatus that isooated with the central data warehouse. The glue
is provided by MySQL replication. After the models are hutltey are loaded into a master database that is
then replicated asynchronously to slave serving datalasieda centers across the country. The slave databases
are read-only (except for batch model updates via reptinatand this allows us to use the MyISAM storage
engine optimized for batch rather than OLTP. The loose d¢ogietwen the data processing backend and the
model serving frontend has several advantages namelyr letiee performance and failure isolation. The
Vibes service has to be up and serving recommendations 24e¢auke of the nature of the traffic coming to
our customers, the Yahoo! properties. There is no downtimeetd model refreshes because the replication
pushes the new model data into a staging area and then ssviebein less than a second. Equally importantly,
a failure in the model building process would stop the modélesh and replication, but the Vibes frontend
would still satisfy recommendation requests using theraitedel data in the database. Fig.3 shows the detailed
architecture of the Vibes recommendation web service.

The Vibes front-end is designed to scale horizontally andetve 99.8% of requests within 20 ms. This
is required to have an acceptable end-user experience. Whear browses a product page, shyt p: //
shoppi ng. yahoo. coni p: Appl e%20i Pod%20t ouch%208GB%20MP3%20P| ayer : 1994935518 a
call is made from the Y! Shopping web server to the Vibes webice in the form:ht t p: / / shoppi ng.

vi bes. yahoo. con vi bes?net hod=shoppi ng. recos. get Vi bes&i t eni d=1994935518. After



|1

REST
Apache
S 5 Shared Library Lay] Rules
S o Engine ¥'"—
3c Metadata DB Layer
g5 e ] [
) V\N L
Meta Model Item MySQL
Data Data Data Recos
Memory Cache i

Figure 3: Vibes Serving Architecture

Vibes returns the recommendations in the form of an XML doenithe Y! Shopping server parses the response
and renders the HTML and graphics for the recommended itesftsd sending them to user’s browser. The
browser has to load the complete page in 1-2s. One of thealritbmponents in achieving this low latency
is to use a large (currently 1GB) in memory cache (Fig.3) tda@hes responses from the database. The cache
contains both positive and negative (no recommendatia®)lts and uses technology similar to the popular
memcacheaven though it is not partitioned across machines, (and ss dot incur the penalty of an extra
hop). It is possible to further optimize this process by gsfdAX to make asynchronous calls to Vibes such
that the main part of the page can load first while the recondaigmns are rendered in the background.

In the near future, we will be deploying Vibes also on the hqmages of Yahoo! properties where rec-
ommendations could be provided without an item contexthét situation we would use information about a
user’s interests as identified by the Yahoo! cookie sent byotbwser. This could be usedgoorethe user, i.e.
retrieve behavioral and demographic information aboutider which are then used to place the user into one or
more clusters (with certain probabilities). Finally theser scores are used to suggest items that are considered
to be the most popular among members of the selected clustéis dynamic user scoring for personalized
recommendations is also going to be the responsibility @Mibes front-end.

Vibes uses the Apache web server as the base for its web eserikthe logic to parse the request, look
up the recommendations from the serving database and fatentile XML response is compiled into a shared
library that is loaded by Apache. In addition, there is thgifidity to tailor the recommendations in real-time
using a series of rules that can include or exclude items mbate the results of a number of models. For
example, in the cases where we have both affinity based aifalitgtsimilarity based models, it is possible to
make run-time decisions about which kind of recommendationserve based on either item coverage or the
relative magnitudes of the affinity and similarity scorestie near future we plan to implement a model testing
capability that can be configured to partition the requesteray a set of available models whose performance
would then be evaluated by the Vibes reporting mechanism.

As is required for a system in production, the Vibes servirfpigecture has several layers of fault tolerance
built-in. We are located in several geographically distrdadl data centers and within each there is redundancy
in the web serving layer as well as in the database tier tolenalerance of single system failures. Just as for
the data processing backend, the Vibes front-end metislylqareserves a series of statistics related to service
up-time, system load, number of requests coming in, numbesammmendations served and the number of



cases where there were no recommendations. These data titow fieporting portal that graphically displays
these metrics over time as well as sends alerts to operdéanss if they deviate over tolerance bounds.

7 Future Direction and Conclusion

There are significant enhancements planned for each compoh¥®ibes. For the modeling component, we
would like to push deeper into personalized recommendsgiiom way that will scale to millions of items and
hundreds of millions of users. These models are going to breraely computationally intensive to build, so
we have started moving our backend infrastructure to a Hg8barid environment. We have already done
experiments for generating affinity rules by mining searchry logs which supply this data at a scale that can
only be processed on the grid. Having larger models will @lsbgreater stress on the serving infrastructure,
which probably will have to handle models that are at leaSXLi@drger - requiring a different caching solution
and possibly a different storage architecture.

Longer term, we would like to expose the power of the Vibesmemendation platform to a wider audience.
The algorithms and infrastructure should be generic endadse able to tackle data from a wide variety of
domains and satisfy a large number of use cases. Moving tewarself-service capability that allows the
customers themselves to configure and deploy the recommgystem by defining API parameters and pointing
the system to the data source would be a big plus. Our visioWibes is that it would be deployed by a simple
drag-and-drop into a web-enabled application framewottkatTs when taking a platform-centric approach to
building recommender systems would really pay off.

References

[1] Adomavicius G. and Tuzhilin A.Toward the Next Generation of Recommender Systems: A Safrtlay
State-of-the-Art and Possible ExtensiplisEE Trans.on Knowledge and Data Engg., Vol 17, No 6, 2005.

[2] Agarwal D. and Merugu SRredictive discrete latent factor models for large scaladig datg Knowledge
Discovery and Data Mining (KDD) 2007.

[3] Agrawal R. and Srikant REast algorithms for Mining Association Rules in Large Dadabs VLDB 1994.

[4] Das A., Datar M, Garg, A, Rajaram S500gle News Personalization: Scalable Online Collabaediil-
tering World Wide Web Conference (WWW) 2007.

[5] Linden G, Smith B., York, J.Amazon.com Recommendations: Item-to-ltem Collaboréiitering, IEEE
Internet Computing, Vol 7, No 1, 2003.

[6] Melville P., Mooney R., Nagarajan RContent-Boosted Collaborative Filtering for Improved Beunen-
dations Proc.of 18th Conf. on Artificial Intelligence, AAAI 2002,dgonton Canada, July 2002.

[7] The Netflix Prizehtt p: // www. netfl i xpri ze. com

[8] Hadoop,htt p: // hadoop. apache. org.



