
Vibes: A Platform-Centric Approach to Building Recommender
Systems

Biswadeep Nag
Monetisation and Targeting Group

Strategic Data Solutions
Yahoo! Inc

biswadeepnag@yahoo.com

Abstract

Recommender systems have gained a lot of popularity as effective means of drawing repeat business,
improving the navigability of web sites and generally in helping users and customers quickly locate
items that are likely to be of interest. The rich literature of recommendation algorithms presents both
opportunities and challenges. Clearly there are a wide variety of algorithmic tools available, but there
are only a few that are suited for application to a broad variety of problem domains and even fewer
that can scalably deal with very large data sets. In this paper we describe the architecture of the Vibes
platform that is used to power recommendations across a widerange of Yahoo! properties including
Shopping, Travel, Autos, Real Estate and Small Business.

The design principles of Vibes stress flexibility, re-usability, repeatability and scalability. The system
can be broadly divided into the modeling component (“the brains”), the data processing component
(“the torso”) and the serving component (“the arms”). Vibescan accommodate a number of techniques
including affinity based, attribute similarity based and collaborative filtering based models. The data
processing component enables the aggregation of data from users’ browse and purchase history logs
after any required filtering and joining with other data sources such as categorizer outputs and unitized
search terms. We are currently working on moving the modeling and data processing components to the
Hadoop grid computing platform to enable Vibes to take advantage of even larger data sets. Finally the
serving infrastructure uses REST based web services APIs toprovide quick and easy integration with
other Yahoo! properties. The whole Vibes platform is designed to make it easy to extend and deploy new
recommendation models (in most cases without having to write any custom code). We illustrate this point
by using a case study of how Vibes was used to build recommendation systems for Yahoo! Shopping.

1 Introduction

Research into recommendation systems goes back more than a decade with several important classes of algo-
rithms proposed[1]. Lately they have achieved quite a bit ofcommercial success as well[5, 4], culminating in
2007 with the award of the first Netflix prize[7]. Though recommender systems clearly add value to the commer-
cial proposition and user experience of a web site, they suffer from the drawback of being somewhat fragile and

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



sensitive with regard to the matchup between the data and thealgorithms.In other words, recommender systems
usually need a fair bit of tweaking to work well in a particular application setting. Added to this are the prob-
lems in gathering enough data in a common format about user behavior, item metadata and also in presenting
the resulting recommendations in a form that can be easily integrated into target web pages.

The Vibes recommendation platform was built as a scalable and generic solution for Yahoo!’s recommenda-
tion needs. The platform has the capability of housing a variety of recommendation models along with all the
machinery needed (data collection, data processing, modelbuilding, recommendation serving and reporting) to
deploy recommendation modules for internal customers.

2 A Typical Vibes Use Case

Unlike the well-known problem of trying to construct a(user, item)→ rating function given a set of numerical
user ratings, Vibes is usually deployed in the following cases:

1. Provide an inter-item similarity or relatedness function: (item1, item2)→ similarity ∈ [0, 1]. There are a
couple of ways to do this as described in Section 4.

2. Provide a user-to-item recommendation function(user, item)→ recommended∈ {0, 1}. The output of
this function is a boolean which decides whether to suggestitem to useror not.

As an example of case 1, take a look at a product detail page in Yahoo! Shopping, for example an Apple
iPod (http://shopping.yahoo.com/p:Apple%20iPod%20touch%208GB%20MP3%20Player:
1994935518). Vibes item-to-item recommendations are shown in the section titled: Yahoo! Shoppers Who
Viewed This Item Also Viewed:. All the data we need to supply these recommendations can be obtained from
a web log of all the product pages viewed by visitors to Y! Shopping. If enough users visit a common set of
items within, say a 90-day time period, those items can be thebasis of generating recommendation rules.

Providing recommendations for case 2 is harder, primarily because of the sparsity of the data. Getting users
to explicitly rate an item can present a barrier, but we can collect implicit binary rating data either from users’
browse or buy history. It is fairly straight-forward to generate recommendations for users whohavea history
in Y! Shopping, but it is more challenging to cater to users who land-up directly from another search engine
for example. The model then has to augmented with other behavioral data from the Yahoo! network (such as
a user’s search history) if available. This of course may raise some privacy issues in case we tap into a user’s
declared age, gender or any other personally identifiably information. Vibes customers may decide on a case-by-
case basis to explicitly ask permission from users before showing recommendations that rely on their behavioral
history.

Various Vibes customers have reported substantial benefitsfrom adding a recommendation capability to their
web site. For example Yahoo! Shopping has recorded a 16% increase in revenue after deploying Vibes. Similarly
Yahoo! Small Business has measured a 30% increase in per-order revenue over manually generated cross-sell
rules. The big advantage in Yahoo! is that it is possible to leverage users’ network-wide behavior, including
terms typed into general search to segment users into clusters and further personalize the recommendations.
Currently we are in the process of developing such a model.

3 Platform Requirements

Yahoo! is in a unique position as one of the most popular destinations on the internet. Not only does Yahoo!
have one of the largest user bases, a number of Yahoo! properties (such as Autos, Games, Shopping, Sports etc.)
are ranked in the top 2 web sites of their respective categories. Yahoo! also has a major advantage in the fact that
its users spend a significant amount of time on the web site, accumulating a large number of views and clicks,

2



which translate into significant user behavioral history. These User Link Tracking (ULT) data ultimately find its
way into data warehouses from which vertical-specific aggregated data can be queried. To achieve deployment
of scale of the Vibes recommendation system across a broad range of Yahoo! properties, we started with the
following set of requirements:

Loose coupling The recommender system stands apart from its customers. Changes in the recommendation
platform, its algorithms and its infrastructure should be transparent to the consumers of the recommenda-
tions. This means that Vibes would run on a different set of systems running possibly different operating
systems and language runtimes. A standard way of doing this is by using Web Services, in particular using
REST principles.

Configurability It should be possible to easily tailor recommendations for each customer in terms of model
parameters, data sources, and APIs. This could be done via a level of meta-programming where each
instance of Vibes has a set of configuration parameters in theform of XML files that specify the methods
of data generation, model building and the signatures of theRESTful web service.

Extensibility The Vibes platform should be able to easily accommodate new modeling methodologies and par-
ticular requirements for each customer deployment. The modeling block should be able to incorporate new
code (written in any programming language) while the customer interface should have logic to activate
business rules to merge, filter, compare and combine the recommendation results as required.

Easy integration The customer should have to take minimum effort both to provide data that feeds into the
modeling engine as well as to consume the recommendation outputs. The data input could happen through
standardized channels for instrumenting view and click events that flow into the warehouse. The recom-
mendation output would be served through a web service that will be easy to parse and consume.

Quick deployment The platform needs to minimize the man power and incrementaleffort required for each
new deployment. This could be done by having a standard configuration template that could be tailored
to each customer’s requirement by making localized changesfor the input data source and output data
format. No new code should have to be written in the common case, thereby alleviating the need for a
long QA test cycle. The scheduling of model refreshes shouldhappen automatically.

Quality checks We should anticipate operational issues such as missing or truncated input data, or perhaps
changes in data distribution. Models should be evaluated based on metrics such asprecision, recalland
coverage. Every time a new model is built, it should be compared with a set of historical models and
pushed into production only if the deviation is within tolerance limits.

Scalability The recommendation serving infrastructure hosting the webservice should scale horizontally. That
means that the total number of requests that can be served persecond should be linearly proportional to
the number of serving systems. In addition, 99.8% of responses need to be within 20 ms. On the model
building front, the platform also needs to exploit data parallelism and should be able to take advantage of
multi-CPU machines and grid clusters.

Reporting A recommender system is only as good as the visibility it provides into the effectiveness of its
recommendations. Instrumentation needs to be embedded into the recommendations so that we can track
the number of views and clicks made by users. The effectiveness of a recommendation module is measured
using the click-through-rate (CTR) on the recommended items.

The architecture of Vibes takes into account the above requirements and is graphically shown in Fig.1. It
is useful to think of the system as having three main components: the modeling engines, the data gathering
and processing framework and the recommendation serving infrastructure. The data processing and modeling

3



Figure 1: Vibes Platform Architecture

code runs in a central location in close proximity with the data warehouse while the model output is replicated
to various data centers where the front-end systems serve itat real-time to co-located customer web servers.
Before we delve into the details of each component it is worthnoting that the components themselves are
loosely coupled together, making it relatively easy to swapin new implementations.

4 Data Modeling

4.1 The Vibes Affinity Engine

The workhorse of Vibes data modeling is theAffinity Engine that is used to build item-to-item affinity models.
Items could be almost anything in the Yahoo! universe, such as, product pages, auto makes, real estate listings,
travel destinations, RSS feeds, computer games, search keywords and so on. User interaction with items is
discretized into groups. Agroup (also sometimes called a session, transaction or market basket) is a set of
events relating items. For example, a group could be page views by a single user, all the searches in a session,
all the RSS subscriptions for a userid, products bought in a single checkout or pretty much any association of
items. Item-to-item affinity is nothing but a set of association rules[3]. An association ruleA → B relating two
itemsA andB implies that we will recommendB when givenA as input. To qualify as a rule, the pair(A,B)
must co-occur frequently in a group i.e. they must pass certain thresholds ofsupportandconfidence. Support or
minimum pair count is the least number of co-occurences ofA andB for them to generate a rule. The choice of
the support threshold depends on the characteristics of thedata, particularly the ratio of the number of items to
the number of groups. A higher item to group ratio (i.e. sparser data) may require lowering the support threshold
to ensure sufficient number of rules (and item coverage). Typically we choose support thresholds of 9 or above
to minimize noise. In our implementation, confidence or the affinity value is not a threshold, but instead an
ordering metric. Confidence for a ruleA → B is the conditional probability:P (B|A) = P (A ∩ B)/P (A). We
generate all item pairs satisfying the support threshold and then for item A find the topn items X which have
the highestP (X|A). This gives rise ton recommendation rules (n being a config parameter for a particular
deployment).

The most computationally intensive tasks involve finding the item pairs that have at least the minimum pair-
count. At the scale of Yahoo!’s data (3 million items, 100 million groups), this is reasonably hard to do. This is
where classic algorithms like Apriori[3] fail to scale. To make the problem tractable, we only consider binary
rules, i.e., we only count itempair frequency (experiments have shown that the gain from havingrules involving
more than 2 items is not signficant). At a high level, this involves creating aggregate hash tables in memory
mapping item-pairs to current counts and then flushing thesetables to disk when memory overflows. Finally a
second pass is made to merge and sum up all the item pair counts. There are several optimizations geared toward
large data set processing in the actual implementation. Chief among these are encoding all the itemid strings to
integers (as well as all itemid pairs to integers). Processing and comparing strings is the biggest consumer of
cpu time and we have found this integer encoding method to be the biggest contributor to scalability. There are

4



also optimizations involved in dropping items that fall below the occurrence threshold and dropping item pairs
which do not make the cut of the topn affinity rules.

The affinity engine uses the well-known technique of association rule mining. Though this technology is
quite mature, we have found it to be remarkably effective in real-life situations. Given enough data (i.e. a low
item to group ratio) it is remarkably effective in tracking user behavior and often beats other more sophisticated
models in predictive performance. Additionally it can consume large data sets with ease, even when used on
a single system. In the near future, we plan to signficantly enhance the data processing capability of Vibes by
deploying a version of the affinity engine that runs on a Hadoop[8] grid cluster where it would be able to utilize
hundreds of compute nodes.

4.2 The Vibes Attribute Similarity Engine

Affinity based modeling seems to have only two weaknesses. Itmay not be able to produce an accurate model
under these conditions:

• There is not enough data, i.e. the number of items to number ofgroups is high. This can happen if a
particular web store-front does not have enough visitors ortransactions. This reduces the probability of
two items co-occurring enough number of times to overcome the support threshold.

• There are new items that have not accumulated enough history(in views, buys etc.). This is also known
as thecold startproblem. In general, it is very difficult to apply a behavioral model to such items.

One particular case where these conditions occur is for Yahoo! Real Estate and Autos which have high
volume house or car listings. These listings have a finite lifetime and may not accumulate enough views within
a 30-90 day window to make affinity based recommendations. Inthese cases, we plan to leverage structured
metadata that is available with the listing. The idea is somewhat similar to the approach proposed in [6], but we
use structured metadata instead of textual descriptions. In the real estate case, these would include attributes such
as the price, zip, number of bedrooms and number of bathroomsfor a house. Using just these metadata we can
calculate a similarity score between any two listings basedon a linear combination of attribute distances. The
exact formulation of the similarity score between two itemsi andj each havingn attributes(ai1, ai2, . . . ain)
and(aj1, aj2, . . . ajn) respectively is:

Similarity(i, j) = 1 −
n∑

k=1

wk ∗ δk(aik, ajk) (1)

whereδk is the distance function andwk is the weight applied to the kth attribute. It is possible to choose from a
wide variety of distance functions such as Euclidean, Manhattan, Hamming distance etc. The distance function
chosen is normalized to produce an output in the range[0, 1].

Now comes the problem of finding weights. Our current approach is to learn these attribute weights from the
data points where affinity model data exists. Based on user click behavior, we can model the similarity function
to approximate the affinity (or confidence) of the recommendation i → j. GivenAffinity(i, j) and the attribute
metadata for items i and j we can construct a set of linear equations of the form given in Eq.2.

Affinity(i, j) ≃ 1 −
n∑

k=1

wk ∗ δk(aik, ajk) (2)

Sinceδk(aik, ajk) can be easily calculated, it is relatively straight-forward to do a linear regression to derive the
weightswk. A similar idea applies to constructing distance functionsfor categorical attributes. We intend to
leverage user behavior to calculate affinities between categorical attribute labels and thereby deduce the relative
distances between those attribute values.

5



4.3 User-to-Item Recommendations

This is usually considered the classic collaborative filtering (CF) problem, but the primary problem here is one
of scale. Yahoo! has of the order of 500M users, and if we consider 1M items, we are faced with a 500 trillion
cell matrix. Most of the algorithms described in the literature tend to break down when faced with data sets of
this size. Furthermore, the data tend to be rather sparse, partly because of the rank of the user-item matrix and
partly also because of practical problems of cookie churn which tends to inflate the number of users presented to
the CF algorithm. The goal of the Vibes platform is to identify a small set of core algorithms that can be applied
to a wide domain of user-to-item recommendation problems. We are currently evaluating several promising
algorithms like those in [2].

In the meantime, it is possible to simplify the problem somewhat by noting that most of our use cases do
not require a numerical rating prediction. We simply need tooutput a binary prediction of whether to suggest
an item to a particular user or not. Of course we want to optimize the click response to our recommendations as
well. One simple way of doing this would be to look at the clickhistory of a user in a given vertical (say Yahoo!
Shopping), i.e. for a useru, we have a set of itemsViewed(u). Then it is possible to expand this set using affinity
based item-to-item recommendations:

Recommended(u) =
⋃

∀i∈V iewed(u)

AffinityRecos(i)

whereAffinityRecos(i)refers to the set of items recommended for itemi by an affinity based model. When faced
with new items with no behavioral data, it is possible to bring in a content dimension to the above by substituting
(or augmenting) affinity based recommendations with attribute similarity based recommendations.

5 Model Building

The power of the Vibes framework stems not from the sophistication of the modeling engines but rather the
ease and rapidity with which they can be deployed in large number of divergent use cases. The model building
framework (the Data Processing block in Fig.1) has the job ofaggregating, filtering and processing data to feed
into the modeling engine. The following are some of the main operators that have been implemented in the
Vibes Model Builder.

query Queries the data warehouse using an SQL like query language to extract user behavioral data.

mergesort Takes a set of compressed files as input, merges them and sortsthem on the grouping key.

model Encapsulates the modeling engine and is further specialized into affinity, attribute similarity etc.

script Vehicle for plugging in ad-hoc scripts or executables written in any language for data processing.

evaluate Calculates metrics such ascoverage, precision, recallfor each model generated.

compare Compares current model with a set of historical models.

dbload Loads model result into serving database.

dbreplicate Replicates the model database across data centers.

In addition to specific operator properties, each operator has a set of common attributes (derived from a
parent operator class in an inheritance hierarchy) such as name, scheduling frequency, data duration, input data
source, output file and output schema. The individual operators are orchestrated into a workflow (specified as an

6



Figure 2: Vibes Data Modeling Pipeline

XML file) for each customer deployment. Fig.2 shows an example linear workflow, but in general this can be a
dependency graph in the form of a DAG.

Model refreshes happen in an automated fashion depending onthe desired refresh frequency (which in turn
depends on the velocity of the data). Checks are built into each stage of the modeling pipeline so that downstream
processing is halted in the event of any failure. For exampleif a signficant difference in the input data causes a
substantial change in the number of rules, or the precision and recall of a model, then the model comparison oper-
ator fails and stops the dbload and dbreplicate operator preventing the deployment of the (possibly) faulty model
into production. The model outputs are currently stored in aMySQL database table having the following schema:
recos: (src_item, dest_item, score). Thescore column refers to the degree of relatedness of
the source item and the destination item and can either be theaffinity or the attribute similarity score. Therecos
table is indexed on thesrc_item column, making it very easy to look up the set of recommended items using
the SQL query:select dest_item from recos where src_item=’given item’ order by
score desc.

A recommendation platform is only as good as the visibility it provides into its performance. From the outset,
Vibes has ensured that appropriate metadata is sent along with the model output so that customers can record the
number of views and clicks made by users on the recommendations. These data flow into the data warehouse
from which we can report daily performance metrics such as views, clicks, click-through-rate and the number
of unique end users targeted. This allows us to have ongoing quality checks tracking model performance.

6 Recommendation Serving

As we have mentioned before, the Vibes serving infrastructure (which is located in various data centers) is
loosely coupled with the model building apparatus that is co-located with the central data warehouse. The glue
is provided by MySQL replication. After the models are built, they are loaded into a master database that is
then replicated asynchronously to slave serving databasesin data centers across the country. The slave databases
are read-only (except for batch model updates via replication) and this allows us to use the MyISAM storage
engine optimized for batch rather than OLTP. The loose coupling betwen the data processing backend and the
model serving frontend has several advantages namely better online performance and failure isolation. The
Vibes service has to be up and serving recommendations 24 X 7 because of the nature of the traffic coming to
our customers, the Yahoo! properties. There is no downtime due to model refreshes because the replication
pushes the new model data into a staging area and then switches over in less than a second. Equally importantly,
a failure in the model building process would stop the model refresh and replication, but the Vibes frontend
would still satisfy recommendation requests using the older model data in the database. Fig.3 shows the detailed
architecture of the Vibes recommendation web service.

The Vibes front-end is designed to scale horizontally and toserve 99.8% of requests within 20 ms. This
is required to have an acceptable end-user experience. Whena user browses a product page, say:http://
shopping.yahoo.com/p:Apple%20iPod%20touch%208GB%20MP3%20Player:1994935518 a
call is made from the Y! Shopping web server to the Vibes web service in the form:http://shopping.
vibes.yahoo.com/vibes?method=shopping.recos.getVibes&itemid=1994935518. After

7



Figure 3: Vibes Serving Architecture

Vibes returns the recommendations in the form of an XML document, the Y! Shopping server parses the response
and renders the HTML and graphics for the recommended items before sending them to user’s browser. The
browser has to load the complete page in 1-2s. One of the critical components in achieving this low latency
is to use a large (currently 1GB) in memory cache (Fig.3) thatcaches responses from the database. The cache
contains both positive and negative (no recommendations) results and uses technology similar to the popular
memcachedeven though it is not partitioned across machines, (and so does not incur the penalty of an extra
hop). It is possible to further optimize this process by using AJAX to make asynchronous calls to Vibes such
that the main part of the page can load first while the recommendations are rendered in the background.

In the near future, we will be deploying Vibes also on the homepages of Yahoo! properties where rec-
ommendations could be provided without an item context. In that situation we would use information about a
user’s interests as identified by the Yahoo! cookie sent by the browser. This could be used toscorethe user, i.e.
retrieve behavioral and demographic information about theuser which are then used to place the user into one or
more clusters (with certain probabilities). Finally theseuser scores are used to suggest items that are considered
to be the most popular among members of the selected clusters. This dynamic user scoring for personalized
recommendations is also going to be the responsibility of the Vibes front-end.

Vibes uses the Apache web server as the base for its web service. All the logic to parse the request, look
up the recommendations from the serving database and formulate the XML response is compiled into a shared
library that is loaded by Apache. In addition, there is the flexibility to tailor the recommendations in real-time
using a series of rules that can include or exclude items or combine the results of a number of models. For
example, in the cases where we have both affinity based and attribute similarity based models, it is possible to
make run-time decisions about which kind of recommendations to serve based on either item coverage or the
relative magnitudes of the affinity and similarity scores. In the near future we plan to implement a model testing
capability that can be configured to partition the requests among a set of available models whose performance
would then be evaluated by the Vibes reporting mechanism.

As is required for a system in production, the Vibes serving architecture has several layers of fault tolerance
built-in. We are located in several geographically distributed data centers and within each there is redundancy
in the web serving layer as well as in the database tier to enable tolerance of single system failures. Just as for
the data processing backend, the Vibes front-end meticulously preserves a series of statistics related to service
up-time, system load, number of requests coming in, number of recommendations served and the number of

8



cases where there were no recommendations. These data flow into a reporting portal that graphically displays
these metrics over time as well as sends alerts to operationsteams if they deviate over tolerance bounds.

7 Future Direction and Conclusion

There are significant enhancements planned for each component of Vibes. For the modeling component, we
would like to push deeper into personalized recommendations in a way that will scale to millions of items and
hundreds of millions of users. These models are going to be extremely computationally intensive to build, so
we have started moving our backend infrastructure to a Hadoop[8] grid environment. We have already done
experiments for generating affinity rules by mining search query logs which supply this data at a scale that can
only be processed on the grid. Having larger models will alsoput greater stress on the serving infrastructure,
which probably will have to handle models that are at least 100X larger - requiring a different caching solution
and possibly a different storage architecture.

Longer term, we would like to expose the power of the Vibes recommendation platform to a wider audience.
The algorithms and infrastructure should be generic enoughto be able to tackle data from a wide variety of
domains and satisfy a large number of use cases. Moving towards a self-service capability that allows the
customers themselves to configure and deploy the recommender system by defining API parameters and pointing
the system to the data source would be a big plus. Our vision for Vibes is that it would be deployed by a simple
drag-and-drop into a web-enabled application framework. That is when taking a platform-centric approach to
building recommender systems would really pay off.

References

[1] Adomavicius G. and Tuzhilin A.,Toward the Next Generation of Recommender Systems: A Surveyof the
State-of-the-Art and Possible Extensions, IEEE Trans.on Knowledge and Data Engg., Vol 17, No 6, 2005.

[2] Agarwal D. and Merugu S.,Predictive discrete latent factor models for large scale dyadic data, Knowledge
Discovery and Data Mining (KDD) 2007.

[3] Agrawal R. and Srikant R.,Fast algorithms for Mining Association Rules in Large Databases, VLDB 1994.

[4] Das A., Datar M, Garg, A, Rajaram S.,Google News Personalization: Scalable Online Collaborative Fil-
tering World Wide Web Conference (WWW) 2007.

[5] Linden G, Smith B., York, J.,Amazon.com Recommendations: Item-to-Item CollaborativeFiltering, IEEE
Internet Computing, Vol 7, No 1, 2003.

[6] Melville P., Mooney R., Nagarajan R.,Content-Boosted Collaborative Filtering for Improved Recommen-
dations, Proc.of 18th Conf. on Artificial Intelligence, AAAI 2002, Edmonton Canada, July 2002.

[7] The Netflix Prize,http://www.netflixprize.com.

[8] Hadoop,http://hadoop.apache.org.

9


