
Multilingual Indexing Support for CLIR
using Language Modeling

Prasad Pingali, Vasudeva Varma
{pvvpr, vv}@iiit.ac.in

International Institute of Information Technology
Hyderabad, India.

Abstract

An indexing model is the heart of an Information Retrieval (IR) system. Data structures such as term
based inverted indices have proved to be very effective for IR using vector space retrieval models. How-
ever, when functional aspects of such models were tested, it was soon felt that better relevance models
were required to more accurately compute the relevance of a document towards a query. It was shown
that language modeling approaches [[1]] in monolingual IR tasks improve the quality of search results in
comparison with TFIDF [[2]] algorithm. The disadvantage of language modeling approaches when used
in monolingual IR task as suggested in [[1]] is that they would require both the inverted index (term-to-
document) and the forward index (document-to-term) to be able to compute the rank of document for a
given query. This calls for an additional space and computation overhead when compared to inverted
index models. Such a cost may be acceptable if the quality of search results are significantly improved.
In a Cross-lingual IR (CLIR) task, we have previously shown in [[3]] that using a bilingual dictionary
along with term co-occurrence statistics and language modeling approach helps improve the functional
IR performance. However, no studies exist on the performance overhead in a CLIR task due to language
modeling. In this paper we present an augmented index model which can be used for fast retrieval
while having the benefits of language modeling in a CLIR task. The model is capable of retrieval and
ranking with or without query expansion techniques using term collocation statistics of the indexed cor-
pus. Finally we conduct performance related experiments on our indexing model to determine the cost
overheads on space and time.

1 Introduction

Information retrieval (IR) is the science of searching for information in documents, searching for documents
themselves, searching for metadata which describe documents, or searching within databases, whether relational
stand-alone databases or hypertext networked databases such as the Internet or World Wide Web or intranets,
for text, sound, images or data. Searching for the relevant information also may involve the notion of a ranking
function, which denotes the relevance of a retrieved item for the given query. It should be noted that ranking
the search results in the order of their relevance to query is an important aspect in most of the IR systems that

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Figure 1: A Typical Information Access Framework

deal with text document retrieval. Boolean IR systems are an exception to this observation, where all the search
results that satisfy the boolean constraints of the query are presented to the user in the same order as found in
the database. However, boolean retrieval systems were found to be insufficient in building usable applications
in many domains. In this paper we deal with the problem of text document retrieval and more specifically
Cross-lingual Information Retrieval (CLIR).

CLIR has been an important area of research in the IR community and the need is felt to extend today’s
monolingual techniques to be able to simultaneously handle content of multiple languages. Assume a query Qs

in user’s language (also known as a source language). The core cross-lingual IR problem is defined as retrieving
and ranking of relevant documents which may occur in the same source language as that of Qs and each of a set
of target languages TL1, TL2....TLk. This problem can be first viewed in terms of a single target language (say
the cross language document collection is Dt) and then scaled to multiple languages using the same technique.
However, such a solution will not try to exploit the availability of same or similar (comparable) information in
multiple languages. In CLIR and Multi-lingual IR (MLIR) research, studies exist which address the translingual
IR problem by considering a single target language [[4–7]], and also by exploiting similar information in multiple
target languages [[8,9]]. In this study we consider solutions for one target language and then scale such a solution
for other languages. This would enable us not to assume any comparable data or resources available in multiple
target languages and at the same we would not try to do anything special in the ranking function when multiple
target languages exist. If both the query and documents were in the same language, all the standard IR techniques
(such as weighted keywords, vector space models, probabilistic IR models) can be directly applied to retrieve
and rank the documents with slight adaptations to Indian language content. However these techniques may
not be directly applicable for the cross-language retrieval problem. In order to achieve the CLIR, some of the
possible approaches could be:

2

• Translate the document collection - Manually or automatically translate all the documents in Dt into the
source language document set, say D

′
s and retrieve and rank the documents using the same language query

Qs using any of the monolingual IR techniques

• Translate the query - Convert the source language query Qs into the target language either manually,
automatically or semi-automatically with user interaction (say as Q

′
t) and retrieve and rank the documents

present in the same language (i.e. Dt) using any of the monolingual IR techniques

• cross-lingual relevance feedback - If a parallel corpus exists between the query and document languages,
i.e., for every source language document in Ds there exists an equivalent target language translated docu-
ment in Dt which is identifiably annotated. In such a setup, the source language query Qs can be used to
query documents of the same language first, and the retrieved documents from source language are used
to obtain their equivalent target language documents from Dt. The terms collected from these documents
are then used to retrieve target language documents.

While these different approaches have been studied to address CLIR problem, each of them has its own
disadvantages. Translating the entire document collection might work if the document collection is static and
is locally available. However these may be unrealistic assumptions if a CLIR system were to be built for an
environment like web where the document collection is very huge and is always changing at a very rapid rate.
On the other hand translating the query seems promising, but queries are typically too short to provide enough
context to precisely translate into a different language. Despite this drawback, CLIR researchers have argued
and demonstrated that a precise translation may not be required, since the translated query is not for human
consumption and is meant to obtain the gist of the information need. The third approach of relevance feedback
has been shown to perform very well [[6]] but it requires a parallel corpus which is a difficult resource to obtain
for many language pairs. Since we are looking at Indian languages as the query language, it is difficult to find
any such resources. Therefore we limit our scope to using dictionary based translation of the query, with query
expansion using monolingual corpus (i.e. the second approach).

2 System Overview

Having defined the cross-lingual IR problem in general, let us now look at each of the sub-problems to achieve
the stated larger goal. This understanding is essential to appreciate some of the decisions made in designing
the structure of the index. In order to illustrate some of the major problem areas within CLIR we provide a
typical system overview as shown in Figure 1 and use an example information need represented as a query.
Consider a user trying to locate documents discussing about various “Nestle’s products”. This query would
be written as “����� �� u���	�” in Hindi and as “�� ��� �� u�a
 vu�a
�ua� �u ” in Telugu 1. As evident from the
Figure 1, there are two broad logical divisions in this CLIR sub-problems. The first logical division consists of
offline processing modules to collect and index the document collections. The second logical division deals with
runtime processing of query processing, retrieval, ranking and presentation of information to the user. Some of
the modules in the shown in Figure 1 are not in the scope of this paper and hence will not be discussed in
detail. Let us now look at the functions of various sub-problems or modules that are part of the above mentioned
framework that would be dependent on the underlying design of database. The following sections 2.1 to 2.4
discuss offline processing mainly involving data collection and indexing. Sections 2.5 to 2.10 discuss online
processing of the IR system at the time of issue of a query by the user.

1Hindi and Telugu are two major Indian languages geographically corresponding to Northern and South-Eastern India, respectively.

3

2.1 Language / Encoding Identifier

As mentioned in the previous example query, our system is expected to accept queries from multiple Indian
languages. Similarly, the document collections that are to be retrieved can be present in multiple languages and
multiple encodings in each language. A number of language encodings are in usage on the world wide web and
other document repositories. Especially in Indian language document repositories, these document collections
are available in a set of national and international standards for Indian language character set encodings, while a
number of publishers use proprietary non-standard encodings. In order to be able to index such content, it is very
important to identify the language and such encodings in order to achieve a better recall in retrieval by having
much broader coverage. For language identification a set of statistical and non-statistical (rule based) techniques
can be used to identify the language of a document with a certain precision. Script based recognition for Unicode
character sets works to an extent, but still ambiguities might exist. For example, while most of the major Indian
languages have a script of their own, Marathi, Hindi, Nepali and Sanskrit all occur in the Devanagari script, in
which case script based heuristics may not work. Therefore for ambiguous scripts a better set of heuristics are
required or statistical language identification techniques can help. In our work, we use a set of heuristic based
techniques using fonts and character ranges to recognize character encodings such as UTF-8, ISCII or other
proprietary encodings from HTML and PDF documents [[10]].

2.2 Encoding Converter

Once languages and character encodings are identified for a particular document or a particular piece of text
within a document, such content needs to be converted into a standard encoding so that it can be indexed and
retrieved. Unless all the character encodings of a single language are converted into a single encoding, it will
not be possible to compare strings and match queries for retrieval. Therefore an automatic encoding converter
is essential to enable information access. Again similar to language identification, a set of heuristic based, or
statistical methods can be used to convert content of one encoding into another. For example, one could come
up with a mapping table of various glyphs or glyph sequences of one encoding into another which can be then
used to automatically convert one character encoding into another. Since Indian languages are syllabic in nature
most of these are rarely one to one glyph mappings and end up being one to many or many to one. An example
implementation of such encoding conversion into UTF-8 is discussed in [[10]].

2.3 Language Analyzer

A language analyzer program performs a set of natural language tasks on the indexable content and queries
before passing it to the indexer or retrieval engine. Some of the standard and broad tasks of a language analyzer
w.r.t IR would be to tokenize the input text and identify valid tokens of language, identify which of the valid
tokens are worth indexing and which are not (also known as stop word identification) and performing some level
of morphological processing on these tokens such as stemming. For instance, the example queries of “�����
�� u���	�” and “�� ��� �� u�a
 vu�a
�ua� �u ” may be converted into “����� u���	” and “�� ��� vu�a
 ” after stop-word
elimination and stemming. In order to perform these tasks, a language analyzer specific to each language may be
needed to be built or on the other hand a generic solution can be devised which may work for all the languages.
Tokenization of string into tokens is a fairly standard heuristic based process, however stop word identification
and stemming may have to be language specific if heuristics or word lists were used [[11,12]]. Some research has
been done on this problem using statistical stemming techniques [[13, 14]].

2.4 Indexer

An indexer program builds an index database. This index could be an inverted index or some other data struc-
ture suitable for IR with some meta-data useful for ranking and presentation of information to the user. Each of

4

the indexable tokens obtained after stop-word removal and stemming are used by the indexer module to store
information such as the documents in which the token has occurred and frequencies and position of such occur-
rences in these documents etc. Advanced indexers also have capabilities to store fielded indices. A fielded index
would store the index information per field per document. For example a search engine application may want
to provide ability to search a particular portion or meta-data of a document, such as the title of the document
or the body text or web-based fields such as search within a given website etc. An indexer module should be
capable of building data structures which enable fast retrieval of relevant documents and also enable ranking of
these documents. The design of data-structure for index should also be sensitive to transaction aspects such as
locking of indices for writes, updatability of index without difficulty etc.

2.5 Query Expansion

A query expansion module is an optional module for a search engine, which is used to add/rephrase/refine
some keywords to the query. A query is viewed as user’s expression of information need in the form of a
set of keywords. For the user to express information need as keywords, the user has to guess the language
model (keywords) occurring in the documents relevant to his/her information n.eed. Usually the users may
not be able to guess the right keywords that may be found in the relevant documents thereby resulting in a
poor user satisfaction. A query expansion module would automatically try to add more keywords to the user’s
query resulting in better user satisfaction. Query expansion could be achieved by adding synonymous words or
semantically related words from a thesaurus or by using collocation statistics from a monolingual corpus. For
example, a few terms can be added to the example query previous mentioned using co-occurrence statistics to
add terms such as “
�����
 , ��
�”(Milkmaid, Maggi) which co-occur with “�����” (Nestle) in a large Hindi
corpus.

2.6 Query Translation

A query translation module is required to achieve CLIR. Query translation can be achieved using a bilingual
lexicon or translation models built using parallel corpus. Bilingual lexicon can be obtained by digitizing and
converting human readable dictionaries or can be obtained by manually building them with the help of linguists.
Two types of bilingual lexica exist, one which just lists all the possible translations for a given source language
word, the second one which not only lists the possible translations, but also comes with some meta-data for the
translation, such as the synonyms, the probability of translation etc. Lexicon with translation probabilities are
sometimes referred to as statistical lexicon. Statistical lexicon can be automatically built using parallel corpora.
In some cases the direction of translation may be different from the direction of the CLIR task. For example,
bilingual lexicon may provide translations for words of language L1 into L2, while the CLIR system might take
in queries of L2 to retrieve documents of L1. In such situations proper set of heuristics need to be used in order
to translate queries using a reverse lookup of the dictionary. In case of a statistical lexicon, a likelihood estimate
for the translations needs to be computed. In the previous example query, “u���	” would get translated as
“product, produce, production, producer” etc., since we store only the stems and hence translate stems. Storing
the complete words may result in higher translation precision, but would lead to lower recall since most of the
word formations may not be found in the dictionary.

2.7 Query Transliteration

Not all queries can be translated into the target language using a bilingual lexicon. One of the important issues
for query translation in CLIR systems is the handling of out of vocabulary words (or OOVs). Words such
as proper nouns, words borrowed from a foreign language fall under this category. Such words are directly
transliterated into the script of the target language. Such transliterations are not always exact transliterations and

5

result in being influenced by the dialect and morphology of the target language. It is very common to find such
keywords in the queries of CLIR systems where the source and target languages share a high number of cognates.
Handling OOVs for CLIR systems across various Indian languages becomes very important since various Indian
languages share higher proportion of cognates when compared with English. Heuristic based approaches using
phoneme mappings or probabilistic transliteration models [[15]] can be used to address the problem of OOVs.
This module is responsible to convert “�����” (written as Neslay in Roman script) and “�� ��� ” (written as Neslay
in Roman script) as “Nestle”.

2.8 Post-translation Query Expansion/Refinement

We differentiate post-translation query expansion from the previous query expansion module, since this module
not only adds more keywords to the translated query, but also performs query refinement by eliminating noisy
translations from the previous modules. Query refinement can be achieved by disambiguation from any context
information during the query translation process or using techniques such as pseudo relevance feedback.

2.9 Document Retrieval

Document retrieval forms the central problem of IR. The problem of document retrieval is to retrieve documents
relevant to the user’s information need from a given document collection. The concept of relevance is very
difficult to define. In naive terms, all the documents containing the keywords from the user’s queries may be
treated as relevant, however, such a definition will always have exceptions. A number of relevance definitions
exist which not only are a function of queries and documents but a number of other parameters such as the user
and the context in which the query was issued. However, most of the IR research ignores these other dimensions
and largely tries to define relevance as a function of user’s query and the documents from which a relevant subset
needs to be identified.

2.10 Document Ranking

Document ranking problem is a function performed after retrieval of relevant documents. The goal of document
ranking module is to find the best way to order the set of retrieved documents such that the items/documents
are ordered in the decreasing order of their relevance. In many IR models ranking is achieved using the same
relevance function as mentioned in the previous module. However in some relevance models such as boolean IR
model [[16]] such a ranking is not inherent in the relevance function.

While each of the above mentioned sub-problems in a typical CLIR framework is a research worthy problem
in itself, a set of frameworks / solutions can be defined in such a way that they solve more than one of the above
sub-problems. Such frameworks could be, for example, a vector space framework, probabilistic framework or
ontology based frameworks. In other words this entire problem of information retrieval can be viewed in two
dimensions. One is the vertical dimension which is that of each of the sub-problems mentioned above. The other
is a horizontal dimension of an approach or framework within which generalized solutions to an extent can be
achieved which address more than one of the above mentioned sub-problems.

Traditionally, the language modeling technique for IR as described in [[1]] addresses only document retrieval
and ranking modules. We extend the scope of our problem to also include query translation and query expansion
modules.

3 Problem Definition

The problem being addressed in this paper is to design an underlying indexing mechanism that can support
easy retrieval and ranking of documents for a cross-lingual query using the language modeling based ranking

6

functions mentioned in this section. Before looking at the indexing solution, we need to look at the document
retrieval and ranking functions in order to understand the computation that is required during the retrieval time
for a cross-lingual query. This would in turn lead to the requirements for the indexing module.

We propose a language modeling (horizontal) approach to CLIR as shown in Figure 1 which cuts across a
number of information access sub-problems (verticals). Statistical language models are probability distributions
defined on sequences of elementary units, P (u1...un). Language modeling has been used in many NLP applica-
tions such as part-of-speech tagging, parsing, speech recognition, machine translation and information retrieval.
Estimating sequences can become expensive in corpora where phrases or sentences can be arbitrarily long (data
sparseness problem), and so these models are most often approximated using smoothed N-gram models based
on unigrams, bigrams and/or trigrams.

In speech recognition and in most of the other applications of language modeling, these models refer to a
probabilistic distribution capturing the statistics of the generation of a language, and attempt to predict the next
word in a speech or text or state sequence. However the language models used in information retrieval may be
viewed in a slightly different way. When used in information retrieval, a language model is associated with a
document in a collection. With query Q as input, retrieved documents are ranked based on the probability that
the document’s language model (Md) would generate the terms of the query, P (Q|Md). And such a language
need not be sensitive to term sequence most of the times, since IR applications typically assume bag-of-words
model for documents and queries.

The elementary unit in our IR models is a term. We define a term to be a sequence of characters which are
either words or conflated words (stems). We propose to build and apply term based language models to various
CLIR functions such as query enrichment, query translation, document retrieval and ranking. The language
models being proposed here are trying to model semantically related words and unigram language models rather
than actually modelling the sequences of terms as in other NLP applications such as speech recognition or part-
of-speech tagging. In next few sub-sections we present term based language models which need to be supported
by the underlying indexing mechanism.

3.1 Query Expansion

To achieve query expansion, it is required to automatically predict the keywords in the relevant documents to
the given information need of the user. In order to achieve this in the absence of any further user context, one
can add semantically related keywords to the query to enable retrieval of relevant documents with high precision
and recall. Motivated by the fact that the meaning of a new concept can be learned from its usage with other
concepts within the same concept [[17]], we automatically compute the dependencies of a word w on other words
based on their lexical co-occurrence in the context of w in a sufficiently large corpus. A term collocation matrix
is constructed by taking a window of length k words and moving it across the corpus at one term increments.
All words in the window are said to co-occur with the first word with a given weight. Such a weight can be
determined to be a function of the distance between the co-occurring words or can be assumed to be of equal
weight. The weights assigned to each co-occurrence of terms are accumulated over the entire corpus. That is, if
n(w, k,w′) denote the number of times word w′ occurs k distance away from w when considered in a window
of length K, then

P(w′, w) =
∑K

k=0 n(w, k,w′)
|C|

where |C| is the size of the corpus. This equation is equal to bigram probability distribution if the window length
K = 1.

Once such term-by-term language models are built, it becomes very easy to expand given queries or docu-
ments using such language models.

7

3.2 Query Translation

Query translation functionality for the purpose of cross-language retrieval can be achieved in multiple ways. In
this paper our focus is on using bilingual lexicon for this task and we describe how a bilingual lexicon can be
used to build a probabilistic component which can be embedded into a retrieval model. The embedding of this
translation component becomes easier since we assume the process of translation is independent of the actual
retrieval and ranking and we perform translations at the term level.

We define translation probability of a target language term tk from source language term si as P (tk|si).
This model works well for CLIR since the system need not zero down onto a single possible translation for
a given query. Therefore we compute the translation distribution for a given query and only refine the noisy
translations with whatever evidence is available. In essence, this probabilistic translation model results in a
probabilistic graphical model, where each source language term can get translated to multiple target language
terms with different probabilities. This essentially gives us the graphical structure of dependencies (source/target
dependencies) and the conditional probability distribution which constitutes our model.

Calculation of such a model can be again achieved in different ways. Ideally, the use of a bilingual parallel
corpus would provide the best way to estimate the conditional probabilities and enables building of a statistical
bilingual lexicon. However in [[18]] it was shown that, even in the absence of a bilingual parallel corpus, a
conditional probability distribution can be achieved by assuming uniform probabilities of all possible translations
to a given term. Apart from these we also propose assuming some underlying distribution based on the position
of a given meaning in the lexicon, such as picking only one translation or assume the ordering of translations
in the lexicon to bear an importance. Therefore, the query translation model should be capable of handling all
possible term translations with weights associated with the translation.

3.3 Document Retrieval and Ranking

In [[1]], a language modeling framework was defined to retrieve and rank documents for the given information
needs (queries). The model is non-parametric and does not assume any underlying classes such as relevance or
irrelevance for the items to be retrieved. Every document/item is retrieved by computing the probability of its
language model emitting the given query.

Therefore, the ranking function R(Q, d) is defined as

R(Q, d) = P (Q|Md) (1)

=
∏

wj∈Q

P (wj |Md) ·
∏

wj �∈Q

(1 − P (wj |Md))

where, Q is the user’s query containing a sequence of terms qi and Md is the document’s language model which
can emit a set of terms wj .

Inspired by this model we extend this model to serve the various functions of CLIR. To include query
expansion as part of the retrieval and ranking function, we obtain an expanded query Q

′
and rewrite the ranking

function as

R(Q, d) = P (Q
′ |Q).P (Q

′ |Md) (2)

=
∏

wj∈Q′
P (wj , Q).P (wj |Md) ·

∏

wj �∈Q′
(1 − P (wj |Md))

where P (wj , Q) gives the weight of the expanded term wj in the context of the given query Q. Similarly
query translation probabilities can be included as part of the ranking function, where Q

′
becomes the translated

query or translated and expanded query as the sequence of the modules are plugged in. The actual ranking of

8

documents happens on the probability that the document’s language model emits the transformed query, while
accounting for the joint probability of the transformation itself.

4 Multilingual Index Implementation

Given the language modeling framework described in the previous section, our task is to design an indexing
mechanism to support such a CLIR system. For this purpose, we use a traditional inverted index concept and
see how it can be extended for this task. We use Lucene’s 2 inverted index mechanism and modify it to suit our
model. Before analyzing Lucene’s index file structure, we should understand the inverted index concept. An
inverted index is an inside-out arrangement of documents in which terms take center stage. Each term points
to a list of documents that contain it. On the contrary, in a forward index, documents take the center stage, and
each document refers to a list of terms it contains. You can use an inverted index to easily find which documents
contain certain terms. Lucene uses an inverted index as its index structure while a forward index facility also
exists which can be optionally created. From Equations 2 and 3 it can be observed that, not only the query terms,
but also all the terms contained in a document are required to be accessible while computing the rank of a given
document. Therefore we will be using both inverted and forward index as our core index model as depicted
in the Figure 1. The description of this Lucene core index model is given in the Section 4.1, followed by our
modifications to it in Section 4.4.

4.1 Lucene Index Structure Overview

The fundamental concepts in Lucene are index, segments, document, field and term.
An index contains a sequence of segments which contain documents. Each document is a sequence of fields.

A field is a named sequence of terms and a term is a string. The same string in two different fields is considered
a different term. Thus terms are represented as a pair of strings, the first naming the field, and the second naming
text within the field.

Segments: Lucene indexes may be composed of multiple sub-indexes, or segments. Each segment is a fully
independent index, which could be searched separately. Indexes evolve by creating new segments for newly
added documents or by merging existing segments. Searches may involve multiple segments and/or multiple
indexes, each index potentially composed of a set of segments.

Each segment index maintains the following:

• Field names. This contains the set of field names used in the index.

• Stored Field values. This contains, for each document, a list of attribute-value pairs, where the attributes
are field names. These are used to store auxiliary information about the document, such as its title, url, or
an identifier to access a database. The set of stored fields are what is returned for each hit when searching.
This is keyed by document number.

• Term dictionary. A dictionary containing all of the terms used in all of the indexed fields of all of the
documents. The dictionary also contains the number of documents which contain the term, and pointers
to the term’s frequency and proximity data.

• Term Frequency data. For each term in the dictionary, the numbers of all the documents that contain that
term, and the frequency of the term in that document.

• Term Proximity data. For each term in the dictionary, the positions that the term occurs in each document.

2http://Lucene.apache.org

9

Value First byte Second byte Third byte
0 00000000
1 00000001
2 00000010
...
127 01111111
128 10000000 00000001
129 10000001 00000001
130 10000010 00000001
...
16,383 11111111 01111111
16,384 10000000 10000000 00000001
16,385 10000001 10000000 00000001
...

Table 1: VInt Encoding Example

• Normalization factors. For each field in each document, a value is stored that is multiplied into the score
for hits on that field.

• Term Vectors. For each field in each document, the term vector (sometimes called document vector or the
forward index) is stored. A term vector consists of term text and term frequency.

• Deleted documents. An optional file indicating which documents are deleted.

4.2 Primitive Data Types

Lucene uses Byte, UInt32 (4 bytes), UInt64 (8 bytes), VInt and Chars as primitive data types. The UInt data
types are used based on the address space requirements of 32-bits or 64-bits. A variable-length format for
positive integers (VInt) is defined where the high-order bit of each byte indicates whether more bytes remain
to be read. The low-order seven bits are appended as increasingly more significant bits in the resulting integer
value. Thus values from zero to 127 may be stored in a single byte, values from 128 to 16,383 may be stored in
two bytes, and so on.

It can be observed from Table 1 that the VInt datatype provides compression while still being efficient to
decode, by using only required number of bytes to encode an integer address. Lucene writes unicode character
sequences using Java’s “modified UTF-8 encoding”. A complete string is written as a VInt representing the
length, followed by the actual character data.

4.3 Lucene Index Storage

The following describes the main index files in Lucene. Some of the file structures described below might not
include all of the columns, but it won’t affect the reader’s understanding of the index file.

Segments file: A single file contains the active segments information for each index. This file lists the
segments by name, and it contains the size of each segment. Table 2 describes the structure of this file.

Fields information file: Documents in the index are composed of fields, and this file contains the fields
information in the segment. Tables 3 shows the master field structure. The fields master file has two slave files,
namely field index file (structure described in Table 4) and field data file (described in Table 5).

Fields are numbered by their order in this file. Thus field zero is the first field in the file, field one the next,
and so on. Note that, like document numbers, field numbers are segment relative.

10

Column name Data type Description
Version UInt64 Contains the version information of the index files.
SegCount UInt32 The number of segments in the index.
NameCounter UInt32 Generates names for new segment files.
SegName String The name of one segment. If the index contains more than one segment, this column will

appear more than once.
SegSize UInt32 The size of one segment. If the index contains more than one segment, this column will

appear more than once.

Table 2: Structure of Segments file

Column name Data type Description
FieldsCount VInt The number of fields.
FieldName String The name of one field.
FieldBits Byte Contains various flags. For example, if the lowest bit is 1, it means this is an indexed field;

if 0, it’s a non-indexed field. The second lowest-order bit is one for fields that have term
vectors stored, and zero for fields without term vectors.

Table 3: Structure of Fields information file

Column name Data type Description
FieldValuesPosition UInt64 This is used to find the location within the field data file of the fields of a particular docu-

ment. Because it contains fixed-length data, this file may be easily randomly accessed. The
position of document n’s field data is the Uint64 at n*8 in this file.

Table 4: Structure of Fields Index file

Column name Data type Description
FieldCount VInt
FieldNum VInt
Bits Byte Only the low-order bit of Bits is used. It is one for tokenized fields, and zero for non-

tokenized fields.
Value String

Table 5: Structure of Fields Data file

Column name Data type Description
TIVersion UInt32 Names the version of this file’s format.
TermCount UInt64 The number of terms in this segment.
Term Structure This column is composed of three subcolumns: PrefixLength, Suffix, and FieldNum. It

represents the contents in this term.
DocFreq VInt The number of documents that contain the term.
FreqDelta VInt Points to the frequency file.
ProxDelta VInt Points to the position file.

Table 6: Structure of Term information file

Column name Data type Description
DocDelta VInt It determines both the document number and term frequency. If the value is odd, the term

frequency is 1; otherwise, the Freq column determines the term frequency.
Freq VInt If the value of DocDelta is even, this column determines the term frequency.

Table 7: Structure of the Frequency file

Column name Data type Description
PositionDelta VInt The position at which each term occurs within the documents

Table 8: Structure of the Position file

11

Column name Data type Description
TermDelta VInt It determines both the term number and joint frequency. If the value is odd, the joint

frequency is 1; otherwise, the Freq column determines the joint frequency.
Freq VInt If the value of TermDelta is even, this column determines the joint frequency.

Table 9: Structure of the Collocation file

Column name Data type Description
TermDelta VInt It determines both the term number and conditional probability of translation.
TransProbability VInt

Table 10: Structure of the Term Translation file per language pair

Stored fields are represented by two files, one is field index and the other is field data.
Text information file: This core index file stores all of the terms and related information in the index, sorted

by term. Table 6 shows the structure of this file. The pointers to term expansion file are stored in this file.
This file is sorted by Term. Terms are ordered first lexicographically by the term’s field name, and within

that lexicographically by the term’s text.
Term text prefixes are shared. The PrefixLength is the number of initial characters from the previous term

which must be pre-pended to a term’s suffix in order to form the term’s text. Thus, if the previous term’s text
was ”bone” and the term is ”boy”, the PrefixLength is two and the suffix is ”y”.

Frequency file: This file contains the list of documents that contain the terms, along with the term frequency
in each document. If Lucene finds a term that matches the search word in the term information file, it will visit
the list in the frequency file to find which documents contain the term. Table 7 shows the primary fields of this
file. TermFreq entries are ordered by increasing document number.

DocDelta determines both the document number and the frequency. In particular, DocDelta/2 is the differ-
ence between this document number and the previous document number (or zero when this is the first document
in a TermFreqs). When DocDelta is odd, the frequency is one. When DocDelta is even, the frequency is read as
another VInt.

For example, the TermFreqs for a term which occurs once in document seven and three times in document
eleven would be the following sequence of VInts: 15, 10, 3.

Position file: This file contains the list of positions at which the term occurs within each document. You can
use this information to rank the search results. Table 8 shows the structure of this file.

For example, the TermPositions for a term which occurs as the fourth term in one document, and as the fifth
and ninth term in a subsequent document, would be the following sequence of VInts: 4, 5, 4

4.4 Additional Meta-Index Files

We create three additional meta-index files, namely a collocation file to store co-occurrence frequencies of two
terms (structure described in Table 9), a query translation file to store weighted term-based translations between
languages (shown in Table 10) and a modified text information file to provide pointers to the first two meta-

Column name Data type Description
TIVersion UInt32 Names the version of this file’s format.
TermCount UInt64 The number of terms in this segment.
Term Structure This column is composed of three subcolumns: PrefixLength, Suffix, SuffixLength and

FieldNum. It represents the contents in this term.
DocFreq VInt The number of documents that contain the term.
FreqDelta VInt Points to the frequency file.
ProxDelta VInt Points to the position file.
CollocationDelta VInt Points to the collocation file.

Table 11: Structure of modified Term information file

12

index files. The text information file mentioned in the core Lucene index model is overridden to accommodate
CLIR functions such as stemming and query translation. We first of all modify the term structure to include
the SuffixLength to determine the length of the suffix that needs to be stemmed. Storing the suffix as part of
the term data structure instead of actually indexing the conflated variants allows the CLIR system to be able to
search with or without stemming at the same time. These modifications to the term datastructure can be seen
from Table 11. Having customized the underlying index structure, we conducted CLIR experiments for Indian
language - English language pairs which are discussed in the next section.

5 Index Performance Evaluation

The modified Lucene indexer was evaluated for indexing time and retrieval time. It is compared against the
core Lucene index model which forms our baseline. The evaluations were conducted for 3 runs for both core
Lucene model and language model based index. An average of the 3-runs is being reported. Table 12 shows the
times taken by the indexer to index 100,000 documents belonging to Hindi and Telugu in UTF-8 format. For
the baseline run we used the Lucene’s standard analyzer by modifying it to accept UTF-8 content, while for the
modified Lucene index we used our own language analyzer which has an Indian language rule based stemmer.
In both these runs the JVM was given a runtime memory of 1GB. Similarly, Table 13 shows the times taken
for document retrieval for both the runs. We issued a set of 25 Hindi and 25 Telugu queries in a sequence with
a single thread and show the average time for retrieval and ranking. In the case of monolingual retrieval runs,
only same language documents are retrieved while for cross-lingual run, the queries were also translated into
the other language and both the language documents were retrieved. The results of our indexer with and without
query expansion module for monolingual and cross-lingual tasks are being reported in Table 13.

5.1 Evaluation Setup

An Intel Xeon 3.0 GHz machine with 4GB RAM and an IDE disk with 7,200 RPM speed was used for our
experiments. We used Lucene’s version 1.4 as our baseline and extended it as described in Section 4.4. The
programming was done using Sun’s Java 1.4.2 on a Fedora Core 3 operating system. We indexed a set of 50,000
Hindi and 50,000 Telugu news article HTML documents which were encoded in UTF-8. The total size of the
document collection was approximately 700MB, with an average file size of 7.14KB.

We also performed a load-test on our language modeling based indexer for monolingual retrieval, by sim-
ulating load with 200, 300, and 400 simultaneous users with a ramp-up time of 1 second. It can be seen from
Figure 2 that the index is able to provide a good throughput. The load test for 200 users showed 0% drop rate3,
while the drop rates for 300 and 400 users were 1% and 2.75% respectively.

It can be observed from Tables 12 and 13 that the language modeling based index is slower than the ordinary
TF.IDF based indexing model both during indexing and retrieval. However, functionally the language modeling
based index provides superior search results than the vector space model both for monolingual retrieval [[1]] as
well as cross-lingual retrieval [[3]]. This improvement is even higher in languages where resources are difficult
to obtain. To give a perspective of the kind of functional improvement, we present the evaluation results of
the experiments mentioned in [[3]] in Table 14. These experiments were conducted using CLEF 20064 dataset
for CLIR evaluation of Hindi-English and Telugu-English tasks where the queries are in Hindi, Telugu and
the information is in English. HNTD and TETD runs represent the baseline experiments using the TF.IDF
based retrieval using dictionary based translation, while HNLM and TELM runs represent language modeling
based retrieval for Hindi and Telugu queries respectively. Measures such as Mean Average Precision (MAP),

3A HTTP request which could not be served due to load is treated as a dropped request. Drop rate determines the frequency of failure
of the system for a given load.

4Cross Language Evaluation Forum. http://www.clef-campaign.org

13

Figure 2: Load Testing on Our Index Model using 300 simultaneous users with a rampup of 1 second

Run Index time/1000 docs Memory
Baseline 89 sec 1024MB given to JVM
Lang. Model 359.71 sec 1024MB given to JVM

Table 12: Indexing Statistics

R-Precision and Geometric Average Precision (GAP) clearly show significant improvement. The performances
of HNLM and TELM runs are comparable with the top performing systems at CLEF 2006.

6 Conclusion

In this paper we presented an indexing model for cross language information retrieval using language modeling
technique. We used Lucene’s inverted index model as our base model and extended it to support language
modeling based CLIR. We conducted a set of experiments to test the performance of the new index model during
index time as well as retrieval time. We found that consistently the new index model takes longer time to index
and retrieve documents when compared to the vector space models. However, it has been shown in information

Run Retrieval type Avg. Retrieval Time/Query
Baseline monolingual 667ms
LM monolingual 941ms
LM + query expansion monolingual 1009ms
LM cross-lingual 1156ms
LM + query expansion cross-lingual 1521ms

Table 13: Retrieval Statistics

14

Run-Id total Relevant Relevant-Retrieved MAP (%) R-Prec.(%) GAP (%) B-Pref.(%)
HNTD 1,258 650 12.52 13.16 2.41 10.91
TETD 1,258 554 8.16 8.42 0.36 7.84
HNLM 1,258 1051 26.82 26.33 9.41 25.19
TELM 1,258 1018 23.72 25.50 9.17 24.35

Table 14: Summary of average results for various CLIR runs

retrieval research that the language modeling based techniques have shown considerable improvement in the
quality of search results provided in comparison to TFIDF algorithm. Therefore, we conclude that while there is
an increase in time taken by the new index, it can provide better search results when compared to the traditional
vector space based IR models.

Acknowledgment

We would like to thank the Department of Science and Technology, Government of India for partially funding
this research.

References

[[1]] J. M. Ponte and W. B. Croft, “A language modeling approach to information retrieval,” in SIGIR ’98:
Proceedings of the 21st annual international ACM SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM Press, 1998, pp. 275–281.

[[2]] G. Salton and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,” Information Pro-
cess. Management, vol. 24, no. 5, pp. 513–523, 1988.

[[3]] P. Pingali, K. K. Tune, and V. Varma, “Hindi, Telugu, Oromo, English CLIR Evaluation,” Lecture Notes
in Computer Science: CLEF 2006 Proceedings, 2007.

[[4]] L. Ballesteros and W. B. Croft, “Resolving ambiguity for cross-language retrieval,” in SIGIR ’98: Pro-
ceedings of the 21st annual international ACM SIGIR conference on Research and development in infor-
mation retrieval. New York, NY, USA: ACM Press, 1998, pp. 64–71.

[[5]] W. B. Croft and L. Ballesteros, “Phrasal translation and query expansion techniques for cross-language
information retrieval,” in SIGIR ’97: Proceedings of the 20th annual international ACM SIGIR confer-
ence on Research and development in information retrieval. New York, NY, USA: ACM Press, 1997,
pp. 84–91.

[[6]] P. Clough and M. Sanderson, “Measuring pseudo relevance feedback & clir,” in SIGIR ’04: Proceedings
of the 27th annual international ACM SIGIR conference on Research and development in information
retrieval. New York, NY, USA: ACM Press, 2004, pp. 484–485.

[[7]] D. He, D. W. Oard, J. Wang, J. Luo, D. Demner-Fushman, K. Darwish, P. Resnik, S. Khudanpur, M. Nos-
sal, M. Subotin, and A. Leuski, “Making miracles: Interactive translingual search for cebuano and hindi,”
ACM Transactions on Asian Language Information Processing (TALIP), vol. 2, no. 3, pp. 219–244, 2003.

[[8]] L. Ballesteros and M. Sanderson, “Addressing the lack of direct translation resources for cross-language
retrieval,” in CIKM ’03: Proceedings of the twelfth international conference on Information and knowl-
edge management. New York, NY, USA: ACM Press, 2003, pp. 147–152.

15

[[9]] J. Mayfield and P. McNamee, “Triangulation without translation,” in SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in information retrieval.
New York, NY, USA: ACM Press, 2004, pp. 490–491.

[[10]] P. Pingali, J. Jagarlamudi, and V. Varma, “Webkhoj: Indian language ir from multiple character encod-
ings,” in WWW ’06: Proceedings of the 15th international conference on World Wide Web. Edinburgh,
Scotland: ACM Press, 2006, pp. 801–809.

[[11]] L. S. Larkey, L. Ballesteros, and M. E. Connell, “Improving stemming for arabic information retrieval:
light stemming and co-occurrence analysis,” in SIGIR ’02: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA:
ACM Press, 2002, pp. 275–282.

[[12]] C. Fox, “A stop list for general text,” SIGIR Forum, vol. 24, no. 1-2, pp. 19–21, r 90.

[[13]] J. Goldsmith, Unsupervised Learning of the Morphology of a Natural Language. USA: MIT Press,
2001.

[[14]] J. Mayfield and P. McNamee, “Single n-gram stemming,” in SIGIR ’03: Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion retrieval. New York,
NY, USA: ACM Press, 2003, pp. 415–416.

[[15]] L. S. Larkey, M. E. Connell, and N. Abduljaleel, “Hindi CLIR in thirty days,” ACM Transactions on
Asian Language Information Processing (TALIP), vol. 2, no. 2, pp. 130–142, 2003.

[[16]] W. Waller and D. H. Kraft, “A Mathematical Model of a Weighted Boolean Retrieval System,” Informa-
tion Processing and Management, 1979.

[[17]] K. Lund and C. Burgess, “Producing high-dimensional semantic spaces from lexical co-occurrence,” in
Behavior Research Methods, Instrumentation, and Computers, 1996, pp. 203–208.

[[18]] V. Lavrenko, M. Choquette, and W. B. Croft, “Cross-lingual relevance models,” in SIGIR ’02: Proceed-
ings of the 25th annual international ACM SIGIR conference on Research and development in informa-
tion retrieval. New York, NY, USA: ACM Press, 2002, pp. 175–182.

16

