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Letter from the Editor-in-Chief

Organizational Changes

This issue contains letters from the incoming and outgoing chairs of the two key organizations within the IEEE
Computer Society that are involved in the database area. I urge you to read these letters. The organizations are:

• the Technical Committee on Data Engineering (TCDE), which is the sponsoring organization for both this
publication (the Bulletin) and for the International Conference on Data Engineering (ICDE). The outgoing
chair is Erich Neuhold of the University of Vienna, the incoming chair is Paul Larson of Microsoft.

• the International Conference on Data Engineering Steering Committee (StC). The outgoing chair is again
Erich Neuhold, the incoming chair is Calton Pu of the Georgia Institute of Technology.

I’d like to thank Erich for the enormous role that he has played in chairing so successfully both of these
organizations, and to wish the new chairs, Paul and Calton, all the best in their ongoing efforts to build on the
foundation that Erich as provided.

The Current Issue

The current issue of the Bulletin is on the topic of multi-lingual support within information systems. This is a
topic that is important now and will only continue to grow in importance over time. The world is now ”flat” as
Thomas Friedman reminds us in his book. This means there are users and developers of information systems
all over the world. Further there is clearly source material in a very wide variety of languages. Accessing this
source material via a database or over the web is of increasing importance as people throughout the world expect
to be able to find virtually everything ever written anywhere.

What makes this topic an interesting technical area, even a research area, is how extraordinarily difficult it
is to deal with the entire gamut of languages. Many languages and language families have idiosyncracies that
make things complicated. Simple alphabets are all too frequently the exception rather than the rule. Dealing
with these diverse languages within a common framework is a very challenging problem.

Jayant Haritsa has done a fine job of bringing together a some of the work in this area, from a sampling
of the languages that we need to be able to deal with. This work comes from both academic and industrial
organizations, which indicates to me that there is both great practical interest and real technical challenges in
providing multi-lingual support within information systems. I think you will find this issue to be a real eye-
opener in terms of both the difficulty of multi-lingual issues and the ingenuity of systems that support it.

David Lomet
Microsoft Corporation
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Letter from the Outgoing TCDE Chair

It is time to hand over the chairmanship of the IEEE-CS Technical Committee on Data Engineering. I took over
from Betty Salzberg in 2002 and kept the Executive Committee she had selected intact to continue its excellent
work.

We have continued the sponsorship of international database related conferences, especially of course our
flagship conference, the International Conference on Data Engineering (ICDE). We also have, with the help of
our excellent Editor in Chief Dave Lomet, continued the publication of the quarterly Bulletin on Data Engineer-
ing and kept working with ACM SIGMOD on keeping the Computer Science Bibliography (DBLP) up to date
in the database field. Two years ago we have started our first Workgroup on Self Managing Database Systems.
It will present itself at its second workshop just before the ICDE 2007 in Istanbul.

I would like to thank all the members of the Executive Committee for their excellent work and all the
Members of the Technical Committee on Data Engineering for their support. I also wish the new Chairman
Per-Åke (Paul) Larson all the best for the future and want to thank him again for his willingness to take on the
leadership of TCDE.

Erich Neuhold
University of Vienna

Letter from the Incoming TCDE Chair

First of all I would like to thank the members of the TCDE for having elected me chair. On behalf of the TCDE,
I would also like to thank Erich Neuhold for his leadership over the last four years.

The activities of the TCDE are led by an Executive Committee whose members are selected by the chair.
I am pleased to announce that the Executive Committee for 2007-2008 consists of Karl Aberer (Switzerland),
Masaru Kitsuregawa (Japan), Per-Åke (Paul) Larson, chair, (USA), Sam Lightstone (Canada), David Lomet
(USA), Erich Neuhold (Austria), Calton Pu (USA), Thomas Risse (Germany). I thank the outgoing committee
for their contributions to the TCDE and welcome new and continuing members to the committee.

I do not anticipate any significant changes in the activities of the TCDE. We will continue to sponsor the
International Conference on Data Engineering (ICDE), our yearly flagship conference, and strive to maintain
and further enhance its quality and reputation. We have also sponsored a number of smaller conferences and
workshops in the area of Data Engineering and will continue to do so. Publication of the Bulletin on Data
Engineering will continue with Dave Lomet serving as Editor in Chief. As previously, we will cooperate with
ACM Sigmod and the VLDB Foundation on issues of common interest to the data management field.

If you have comments, suggestions or ideas for the TCDE, please contact me (paul.larson@microsoft.com)
or any member of the Executive Committee. We would appreciate hearing from you.

Per-Åke (Paul) Larson
Microsoft Research
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Letter from the Outgoing ICDE Steering Committee Chair

My term as the Chair of the ICDE Steering Committee has ended with 2006 and I would like to thank all the past
and current members of the Steering Committee that have served during my time. We have been a great team
that worked very well together in selecting future conferences, tracking their planning process and evaluating
the final result. Here thanks are also due to Dr. Thomas Risse, my assistant in handling the Chairmans duties.

I am so thankful that we together have been able to grow ICDE from a low point in 1998 to its current
size, which is close to 600 participants, including the newly introduced workshops. Of course, the Steering
Committee contribution was small, the real work has always been with the officers of the respective conferences
and I would like to thank them with this short note also. They are too numerous to list but their enthusiasm and
never-ending effort have lead to this result.

I now want to wish all the members of the Steering Committee, but especially its new Chairman Calton Pu,
all the success and may ICDE continue to prosper in the future with Cancun, Mexico coming up next year and
Shanghai, China in 2009.

Erich Neuhold
University of Vienna

Letter from the Incoming ICDE Steering Committee Chair

First, I want to thank Dr. David Lomet, the editor-in-chief of the Bulletin, for this opportunity for the ICDE
Steering Committee(StC) to communicate directly with TCDE members. Second, I want to thank members of
the StC for electing me as the new chair. I will do my best to carry out the duties of the StC chair.

The main purpose of this letter is to explain the function of ICDE StC. Foremost is an acknowledgement
and expression of gratitude to the past StC chair, Dr. Erich Neuhold. During the last 8 years, Erich has provided
firm leadership that brought ICDE to the Modern Era, characterized by a successful democratization of ICDE.
The main tenets established by Erich are:
Principle of Law. StC functions, conduct, and member election are governed by written rules, which have been

published in the Charter document http://www.informatik.uni-trier.de/ ley/db/conf/icde/bylaws.html.
Principle of Openness. A nurturing environment that encourage the active participation of delegates from all

countries and underrepresented groups in all aspects of ICDE, including the StC itself.
Principle of Least-Interference. The best organizers are selected to run the ICDE conferences. They make

their own decisions (responsively) and are free to innovate according to their talents.
These principles have had a huge impact by bringing in new talents and ideas into each new ICDE. My goal
as the new StC chair is to uphold these principles established by Erich, so the StC can guide the future ICDEs
towards both greater intellectual impact and wider participation.

Concretely, the main function of StC is to select the organizers of future ICDE conferences. For details of
the proposal and selection process, please contact me at calton.pu@cc.gatech.edu. After a team is selected, the
StC also monitors the progress of future ICDE organization as a process and provides support to the organizers
to help them make every ICDE a success.

The current StC members are: Calton Pu, Karl Aberer, Rakesh Agrawal, Dimitrios Georgakopoulos, Masaru
Kitsuregawa, Per-Åke Larson, David B. Lomet, Kyu-Young Whang.

Calton Pu
Georgia Institute of Technology
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Letter from the Special Issue Editor

This issue of the Data Engineering Bulletin describes a spectrum of research projects making the first attempts
towards scaling the multi-lingual Tower of Babel confronting today’s globalized information systems.

Most industrial-strength database engines, both commercial and public-domain, are extremely well-designed
for efficiently storing and processing textual information in languages based on the Latin script. These languages
include English, the defacto lingua franca of the world, as well as Western European languages such as French,
German, Spanish and Italian. But in a rapidly globalizing universe, where the “world is becoming flat”, database
engines should ideally support text data processing equally efficiently and seamlessly in the entire panoply of
human scripts, including Arabic, Cyrillic, Greek, Brahmi, and Kanji, each used by millions of people in a variety
of languages. Apart from ease-of-use, there are also compelling business imperatives – market studies indicate
that customers are significantly more likely to purchase a product if it is advertised in their native language
– making multilingualism a critical factor in global e-Commerce. Similarly, the importance of multilingual
support in e-Governance solutions has been well documented.

In a nutshell, while database engines have by and large successfully become “programming-language-
neutral”, we must now work towards creating natural-language-neutral database systems. This issue contains
five articles that provide insight into the technical challenges of developing such systems and propose techniques
for addressing several key issues in their development.

The first article, by Sorensen and Roukos of IBM Research, highlights the problems of handling full-text
indexing and search for morphologically complex languages, such as Chinese and Arabic. A UIMA-based
modular architecture for flexible processing of texts based on language-specific properties is proposed as a
roadmap towards organically supporting applications for world markets.

The second article by Sarkar of IIT Kharagpur considers the problem of regular expression matching, as ex-
emplified by SQL’s LIKE operator, in the multi-lingual world. Through a detailed analysis of language scripts, a
rich set of character classes is proposed to comprehensively support script-specific regular expression matching.
A new crosslingual operator is introduced to match regular expressions across languages, and extending the
standard character-based matching to higher-order linguistic terms is also discussed.

The third article by Ramanand et al from IIT Bombay investigates the Wordnet world of semantically rich
language ontologies and quantitatively shows how under all the seeming diversity, there is significant unity
in their structural and semantic properties even across vastly different language families. They also discuss
strategies for automatically generating, given the Wordnet of a seed language, the Wordnets of related languages
in the family, demonstrating their approach by constructing the Marathi Wordnet from Hindi.

The fourth article by Kumaran and Carlin of Microsoft Research leverages the recently-proposed OrdPath
node ordering technique to efficiently implement cross-lingual semantic queries on Wordnet ontologies. Effi-
ciency is of paramount importance in handling such queries since they entail the computationally expensive task
of computing transitive closures on the Wordnet hierarchies. The initial performance results suggest that the
proposed algorithm can more than halve the time taken by the classical approaches.

Finally, the last article by Pingali and Varma of IIIT Hyderabad, tackles the problem of improving the rele-
vance of answers in multilingual information systems. Specifically, they propose strategies for simultaneously
achieving the twin objectives of high precision and high efficiency by developing powerful indexing techniques
that are tailored to language models, in contrast to the standard term-based inverted-index approaches.

In closing, I thank the article authors for their painstaking and timely efforts in developing their contributions
for this special issue. I also thank Dave Lomet, the Editor-in-Chief, for patiently showing me the ropes. I hope
that the work presented here will serve as a stimulus for the academic and industrial research communities to
redouble their efforts on multi-lingual information processing.

Jayant R. Haritsa
Indian Institute of Science

Bangalore, India
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Rethinking Full-Text Search for Multilingual Databases

Jeffrey Sorensen and Salim Roukos
IBM T. J. Watson Research Center

Yorktown Heights, New York
<sorenj|roukos>@us.ibm.com

Abstract

Textual fields are commonly used in databases and applications to capture details that are difficult
to formalize—comments, notes, and product descriptions. With the rise of the web, users expect that
databases be capable of searching these fields quickly and accurately in their native language. Fortu-
nately, most modern database systems provide some form of full-text indexing of free text fields. However,
these capabilities have yet to be combined with the simultaneous demand that databases provide support
for world languages. In this paper we introduce several of the challenges for handling multilingual data
and introduce a solution based on an architecture that enables flexible processing of texts based upon
the properties of each text’s source language. Extending the indexing architecture, and standardizing
the query capabilities, are important steps to creating the applications that will serve world markets.

1 Introduction

Text fields capture unstructured information such as descriptions, comments, notes and other difficult to formal-
ize information, and are part of most large scale database applications. Standard database tools, and the popular
Structured Query Language (SQL), provide little support for applications that demand indexing and searching
these fields.

Even so, full-text search indexing is a standard non-standard component of every major database system,
including the popular open-source databases MySQL and PostgreSQL, through add-ons such as TSearch2 [[3,11]].
Microsoft SQL Server provides the ability to generate full-text indexes and, as shown in Figure 1, a query syntax
for searching the database records.

These three examples illustrate searching for a keyword, searching for the different inflected forms of the
word foot (feet, footed, etc.), and searching for documents that contain two terms in close proximity. More
traditional databases do not provide such query capabilities. While most databases provide string wildcards and
LIKE operator or regular expression matching, using them for search of text fields requires laborious record by
record string comparison operations.

In order to implement fast full-text search, a full-text index must be built. However, to make a full-text index
one must understand issues of tokenization, punctuation handling, normalization stemming and morphology,
and word segmentation; these are all properties that are specific to each language and region. Today, most
databases are configured to contain only one language, but for international companies this is already changing.

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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SE AdventureWorks;
GO
SELECT Name, ListPrice
FROM Production.Product
WHERE ListPrice = 80.99
AND CONTAINS(Name, ’Mountain’);
GO

USE AdventureWorks;
GO
SELECT Comments, ReviewerName
FROM Production.ProductReview
WHERE CONTAINS (Comments,

’FORMSOF(INFLECTIONAL, "foot")’);
GO

USE AdventureWorks;
GO
SELECT Description
FROM Production.ProductDescription
WHERE CONTAINS(Description,

’bike NEAR performance’);
GO

Figure 1: Examples of full-text queries for Microsoft SQL Server 2005 [[5]]

We distinguish between (1) a single language database, (2) a database that contains specific fields in a specific
language (as in a system that supports searching Arabic and Chinese documents using English queries), and (3)
the most general case, a database with fields that have multiple languages in the same field. We are proposing to
use an architecture that supports all three types of databases.

Both Unicode support and full-text indexing are recent additions to traditional relational databases. However,
as the Internet becomes truly international, see Figure 2, the ability to index world languages will become
essential. Especially note that the size of the “Other” category means that developers will need to handle many
new languages.

Looking at Microsoft SQL Server, again as representative of the state of the art, Microsoft uses a separate
operating system component to implement the full-text search. This component has some support [[5]] for inter-
national text support using “word breakers, stemmers, and filters.” However, this fixed architecture, originally
designed for English, makes it difficult to handle databases that have fields from multiple languages.

In this paper we will be describing in detail the differences between the processing needed for several
languages. By discussing languages that differ greatly in morphological complexity, we hope to demonstrate the
need for a flexible, modular architecture for full-text indexing. To address this we propose database developers
look to the Unstructured Information Management Architecture (UIMA) project affiliated with the Apache web
server and its related projects.

2 Related Work

This paper references a number of papers dealing with various aspects of text processing needed for constructing
indexes. However, the details of how to build and maintain indexes are beyond the scope, but well summarized
in [[29]]. More recent developments in building compressed full-text indexes are presented in [[16]].
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Figure 2: Internet population growth by language [[24]]

Our focus is primarily on the operations required to extract terms from the text for indexing purposes. How-
ever, there are several papers related to the building of indexes and their use in search. In [[13]], query operators
are built into a database engine to allow fuzzy matching of strings from different languages through a map-
ping to approximate pronunciation differences, and, more abstractly, using a multilingual taxonomy, semantic
category matching. Similarly, [[32]] studies the application of various edit distances seeking to match strings
cross-lingually if their pronunciations are similar.

The trade off between building an exhaustive index and using a fuzzy distance metric during search involves
trade-offs between computational complexity and memory storage. Several algorithms are compared in [[21]],
matching terms cross lingually based upon string matching functions. Algorithms of this type can be used to
reduce the total size of the index by collapsing interlanguage spelling variation. Similarly, [[1]] presents work that
seeks to identify terms in documents that represent names of people or places in different languages.

3 Internationalization of Applications

Traditionally, internationalization efforts have focused on creating applications that can be operated by popula-
tions in different languages. This means tailoring fonts, menus, and other application messages often through the
modification of global operating system settings. Many systems today determine the precise manner to collate
and search strings through global “locale” settings. While these technologies have allowed products to be sold
in international markets, this approach to “internationalizing” applications has been largely unsuccessful as an
approach to creating multilingual applications. Even today, the standard ANSI C++ language has very limited
support for international character representations.

Web browsers represent the leading edge of internationalization technology, as the web rendering technolo-
gies are the only software currently capable of rendering multilingual texts irrespective of most operating system
settings. To a large extent most users today can effectively retrieve, and even create, texts in most languages,
often limited only by their keyboards and the availability of alternate text input methods. This is amply demon-
strated by the Wikipedia project [[28]] which, using a unified set of web tools, has successfully grown to more
than 10,000 articles in each of 21 languages.

7



Chinese Text
Han

Unification

Arabic Text
Diacritic
Removal

English Text
Punctuation/
Tokenization

Sentence
Segmentation

Bigram
Extraction

Word
Segmentation

Index

Affix
Separation

Stemming

Figure 3: Typical text processing components for indexing

4 Modularization of Text Analysis

Developing international applications is a challenge for any platform. At present, implementing applications
with full-text search requires correctly configuring a database server’s operating system and a careful design of
the database. If full-text searching is to become a standard feature of applications, making it work with multi-
lingual texts must be simplified. Some of the current impediments include: a lack of standards for indexing and
query specification, small alphabet assumptions in the text-processing components of databases and operating
systems, the widespread use of components that do not correctly transfer Unicode data.

We seek to address many of these problems using a text processing architecture that is sensitive to the source
language, even if said language is not specified explicitly. We present examples of processing pipelines for
several languages that represent some of the widely varying needs.

4.1 Text-Indexing Pipeline

The full-text processing pipeline, as implemented in all of the current indexers for current database platforms,
invariably involves a word segmenter, often just synonymous with “whitespace” tokenization. Many systems
also make use of stemmers and stop word lists. Such a pipeline is usually adequate, at least for English texts.
This is less true for other European languages which often have much richer word morphologies.

The Unstructured Information Management Architecture (UIMA) is a set of standards [[9]] and an Apache
hosted collection of libraries intended to foster interoperability between developers of semantic analysis tools
and other components for document search. While UIMA is intended to integrate analysis tools that reach to
higher levels of abstraction than is typical for full-text search [[17]], it also has considerable strength for interna-
tionalization through its integration with Java and the International Classes for Unicode (ICU) [[12]] project. The
capability to chain a sequence of text analysis engines, when appropriate, is a crucial capability when dealing
with multiple languages. Figure 3 illustrates several chains of analysis tools used for a variety of languages.

Figure 4: Marking character spans using stand-off notation in UIMA
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4.2 Stand-off Notation

UIMA, through the Common Analysis Structure (CAS) represents tokens and other values to be indexed through
the use of stand-off notation. Stand-off notation is the separate demarkation of text substrings via data structures
that mark the begining and ending character offsets, as opposed to mark-up which uses in-line notation which
is inserted into the text document. As the original text is unmodified, it can be inspected by any indexing
processing subsystem. Stand-off notation is also important when text spans may be overlapping. The case of
Chinese is exemplary, as Chinese text must be broken into individual words either using rules or some other
automatic mechanism. However, this cannot be done unambiguously. Therefore, a common practice is to
index Chinese simultaneously as words and as overlapping bigrams [[14]]. By referring to the text through a
sequence of offset pairs instead of a single sequence of tokens, stand-off notation can support indexing of these
overlapping spans. Figure 4 illustrates a potential use of stand-off notation to mark an English sentence that
contains complex morphology. In addition to finding word stems and labeling verbs with their infinitive form,
we may also apply, potentially, overlapping labels of semantic categories like “persons” or “locations” and even
hierarchical relationships between these labels (e.g., the PARTICIPANT(PERSON,EVENT) relation in Figure 4).

4.3 Subjects of Analysis

When documents are translated, either by human or machine, or when text processing is used in a manner
that modifies text in an irreversible way, the CAS is capable of maintaining multiple parallel representations.
Within UIMA, these separate representations are considered differing views of the same text. Multiple subjects
of analysis can be an important tool when building an index multilingually, as links into a view provide the
matching correspondence in the original text. Thus both the document and its translation may be maintained in
parallel in this CAS container.

4.4 Unicode Representation

The Unicode standard is an ambitious effort to represent the union of the characters from all written languages
into one extended alphabet. Unicode remains controversial as a solution in some quarters, particularly among
Chinese and Japanese communities [[27]]. The controversy is in part due to the complexity of the task of cata-
loging all of the hundreds of thousands of characters that occur in languages around the world. However, the
problem is also due to the difficult experiences that developers have had with incomplete or, often, incorrect
implementations of the Unicode Standard.

The Unicode consortium has been very active and the Unicode Standard is a rapidly evolving document
with changes in virtually every aspect. The reference, and open-source, implementation [[12]] of the standard
- the International Classes for Unicode (ICU) project has been under constant evolution and is itself a large
and complex project that is often included, in whole or in part, in other projects such as Apache and the Java
language.

5 Text Analysis Components

Most full-text indexing systems have a fixed architecture for text ingestion. At present, full-text indexing is still
considered a special feature with only limited integration into the database. This means, in part, that the database
has very limited control over the processing of individual text fields.

We are proposing that a more flexible approach be used. To illustrate why this would be beneficial, we
would like to review some of the major components of text analysis to demonstrate how their relative importance
changes, depending upon which language is being processed. When these multiple components can be combined
flexibly on a record by record basis, perhaps based upon the content of other fields, multilingually indexing

9



and searching can be more easily and effectively accomplished. This dynamic ability to combine text-analysis
components is one of the principal design goals of the UIMA project.

5.1 Language Identification

Where possible, applications should allow users to specify unambiguously what language a source text is written
in. Typically, users enter texts in the same language as the interface an application is written in. However, this is a
brittle assumption for polyglots. For text entry, the ability to check spelling is highly desirable, and this requires
specification of not only the language but even the specific regional variant. Well written applications allow the
user to make these specifications explicitly, although support for mixed languages within a single text field can
pose significant interface challenges. When users cannot specify the language, or in cases where text fields are
otherwise uncategorized, statistical techniques can be employed to determine the likely language [[2, 23]]. The
UIMA standoff annotation can effectively encode the language ID of different spans in mixed language fields.

5.2 String Matching

The question of whether two strings, perhaps one typed in by the user and one stored in a database, are equivalent
is an essential component of nearly every application. While less complicated than the issue of near match or
phonetic match, there are difficulties that must be faced when a single string has multiple representations that
are visually equivalent.

In the English world, many applications make use of lower case comparisons so that “English” and “en-
glish” are considered equivalent. However, this is quite problematical for applications comparing “espanol”
with “Español” for a number of reasons, including ongoing difficulties associated with the case folding func-
tions and case-insensitive string comparison functions that are based on ASCII character assumptions.

The Unicode standard has a substantial literature on the problem of accented characters, the first to be
aware of is the existence of the variety of normalization forms [[7]] where characters can be represented in both
composed and decomposed forms. In addition, the Unicode report on Case Mappings [[8]] gives some guidance
on how to perform a case-independent string matching.

The growth of web search as a user interface has greatly changed the expectations of users. Most search
engines use broad equivalence classes so that distinctions between searches that involve punctuation and accents
are often impossible to make. This can be both forgiving when the representation is ambiguous (consider résumé
versus resume) but maddening when the difference is essential.

However, when considering languages outside of European contexts, these problems are only the beginning.
Although most non-European languages do not have upper and lower case distinctions, some languages have
rich morphology that makes simple many-to-one equivalence insufficient for searching indexes. We will consider
two specific languages cases as illustrative.

5.2.1 Traditional and Simplified Chinese

For databases and user interfaces, Chinese presents numerous challenges. Beyond the sheer complexity and size
of the character set, there also exist several related language variants. In Taiwan and Hong Kong, Traditional
Chinese characters are the predominant written form. Mainland China and Singapore use the much more recently
developed Simplified Chinese character set.

The Unihan database is a project that seeks to index the relationship between the characters used in these
different representations. While it important to maintain the distinctions between the various forms of the written
Chinese language for rendering purposes, for search and indexing the representation of terms should be unified,
typically by mapping to simplified Chinese. Of course, what constitutes a “term” in Chinese, where characters
are written without any white-space separation, is a matter addressed in Section 5.3.3.
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li + aal + maqar ly + maqari + hum
to the location to their location

Figure 5: An illustration of Arabic morphological changes

Many older string handling libraries assume byte or smaller alphabet sizes - in particular libraries that per-
form compression; many Asian texts clearly violate these assumptions. In addition to the some 70,000 unique
ideographs designated in the Unicode specification, there exists extension mechanisms such as ideographic
descriptions which allow users to describe an individual character using a hierarchical combination of other
characters; a description that may be as many as 16 Unicode code points, meaning a single rendered character
might be described by some 30 bytes in a file.

Character descriptions that are this long and complex are often chopped into meaningless sequences by naı̈ve
components. This is one of the many reasons we advocate, wherever possible, the use of standoff notation for
text processing components.

5.2.2 Arabic

The Arabic alphabet is more similar in size to English than Chinese. However, it is much richer than either
language in morphological complexity. In written Arabic, a single word often represents many terms, sometimes
related. Written Arabic does not typically encode short vowel sounds; the reader determines the meaning based
upon the context, filling in the missing vowels. Through the use of diacritics, or accent marks, the short vowels
can be specified, and often are, in contexts where they must be specified unambiguously such as in children’s
educational books or poetry.

Unicode supports the encoding of diacritics through combining forms and through the use of composite
forms for the most common diacritic combinations. That is, there is more than one representation of many
accented characters, and they are graphically equivalent. This is true for other languages besides Arabic. For
example, the “ü” character may be equivalently encoded using the code point U+00FC, or as the ASCII equiva-
lent letter “u” U+0075 followed by the combining diaeresis (or umlaut) character U+0308. Note too that this
is also distinct from the stand alone diaeresis character U+00A8.

For Arabic, diacritics are not used for searching and indexing because they do not typically appear in the
written text. However, a much larger problem exists with Arabic writing, and that involves the complex mor-
phology. Arabic words typically combined with suffixes and prefixes that indicate gender, number, possessives
and other relationships typically represented with prepositions in English. Searching typically requires identi-
fying the “root” word or, for more effective searching, the “stem.” Figure 5 shows an example of these types of
modifications all of which share the same stem word.

11



5.3 Segmentation

Working with international or multilingual texts also presents problems already familiar to practitioners working
with English texts. Consider the issue of tokenization, or the practice of segmenting an English text into word
or word-like units.

One of the first difficulties that developers encounter is how to correctly handle punctuation. A first approx-
imation is to simply consider words to be all contiguous alphabetic sequences. However, the frequent use of
abbreviations, such as “Mr.” or “Mrs.” would be incorrectly segmented as a sentence boundary by a simple rules
based tokenizer that considered periods as end of sentence markers.

In many cases, the solutions used for English tokenization can be applied to other languages directly. We
will review some of those techniques in the subsequent sections. However, it is important to also note the ways in
which techniques originally developed for other languages are now influencing the processing of English texts.

5.3.1 Rule based segmenters

The highly popular Snowball stemmers [[22]], originally developed for the English language, are used for a
variety of European languages. Snowball is a language for encoding an algorithmic description of a stemming
algorithm as well as C++ and Java code generators that convert the algorithmic description into code. The
Snowball website includes ample references detailing the effect that stemming has on information retrieval.

Unfortunately, rule based segmenters, at least as they are used today, are limited in the amount of context
that can be employed when trying to determine the correct word root. Words which involve spelling changes can
be incorrectly processed; “mouse” being the root of “mice” is a well known example. As one begins to integrate
texts with increased use of morphological changes, the limitations of rule based systems become increasingly
apparent.

5.3.2 Statistical Stemmers

In addition to the rule based systems popular for European languages, the use of statistical models has received
considerable attention [[15]] for languages such as Arabic. In these cases, character or word n-grams are used
with a dynamic programming search algorithm to find the most likely segmentation of words into roots, prefixes,
and suffixes (affixes).

Arabic segmentation can also depend upon contextual features not captured by n-grams, and in these cases
additional features may prove useful [[31]]. However, it is important to remember that search terms are supplied
without context, and determining which index entries match can be quite difficult when compared to the words
in context. In these cases, query expansion or n-best segmentation should be applied to make the search more
inclusive.

5.3.3 Words

Text processing of documents in multiple languages often entails solving problems that English speaking devel-
opers take for granted. For example, in many Asian languages, the concept of a word is subtle. Chinese and
Thai are written in a style that does not delimit word boundaries.

The Unicode consortium has acknowledged this problem, and has sought to provide applications such as
word processors with reasonable equivalents of the “next word” and “last word” commands through the use of
dictionary based techniques. However, the current implementation, which is only currently used for Thai, is still
considered by the community to be a work in progress.

The segmentation of Chinese into word units, such as those that denote actions, places, or people, is an
area of considerable research [[26]] among the machine learning community. As with segmentation, the use of
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statistical machine learning techniques show the greatest promise for providing an automatic means of separating
words in Chinese and, potentially, other Asian languages.

5.3.4 Transliteration

Representing names of people and locations in non-native languages requires a system of mapping from one
representation to another. Usually this is done phonetically, although in many cases place names are simply
different words in different languages requiring, in this case, translation dictionaries. Figure 5 includes several
such examples of Arabic words rendered to be read phonetically, using the letters of the English language.

Phonetic transliteration is also very commonly used in Chinese names, often resulting in letter sequences
atypical of English rules, such as the name “Qian.” Transliteration is a process that is amenable to automatic
methods [[25]]. It should also be noted that ICU has support for rule based transliterations [[12]] even though this
is not part of the Unicode standard.

5.4 Translation

Machine translation has been demonstrated [[6,10,30]] to be effective in providing cross-lingual search. Using the
CAS Subject of Analysis capability, it is possible, in a UIMA processing pipeline, to simultaneously maintain
multiple representations of the same text. By indexing records in both their source language and one or more
translations that can be indexed in parallel, thus making it possible to build cross-lingual search tools.

5.5 Semantic Labeling

The information retrieval community also performs higher levels of annotation of texts, including the identifi-
cation of “entities” such as people, places, organizations, and companies. The extraction, from text fields, of
these types of objects—and the ability to build structured data from free text [[4]] also promise to greatly enhance
future search capabilities. Thus, it is important for database systems to include flexibility in their text analysis
architecture so as to not limit future applications’ ability to use such deeper analysis.

6 Information Retrieval for International Text

Extracting terms from text fields is only the first step in implementing full-text search, as the terms must be
placed into an index that provides a fast reverse map from terms back to the relevant documents. The details
of building such an index can range from straightforward to complex, depending upon the quantity of text and
the vocabulary. While many of the issues are beyond the scope of this paper, we would like to introduce several
relevant ideas from the information retrieval community that can be employed to make index based retrieval
more valuable.

6.1 String Comparison

Approximate string matching techniques, such as the use of edit distance or phonetic matching is an important
tool for assisting users when the exact spelling of a term is unknown. Efficient computational methods exist [[20]]
for many edit distances. However incorporating fuzzy string matching in the index search has to be carefully
throttled to mitigate the increased computational requirements.

6.2 n-gram Indexing

Chinese text, in particular, due to its lack of explicit word segmentation is frequently indexed [[14]] using character
bi-grams. That is, every overlapping two character sequence is placed into the index. Interestingly, as we move
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Figure 6: A demonstration of a cross-lingual search engine

to larger n-grams, this technique can also be used for European languages. In [[18]], character n-grams were
found to be comparable to other text indexing techniques. Although similar results were not found in the case of
Arabic [[19]]. Ideally, n-gram enabled search can be combined, in a weighted fashion, with traditional word based
search and provide near matches in cases where exact matches are not found, without introducing expensive
string comparisons across the entire database contents.

7 Conclusion

Full text indexing typically involves the process of stripping away details that are unimportant in terms of search.
However, complete applications must also report results and generate meaningful output. Figure 6 shows an
example of output from a cross-lingual search engine that has found relevant Chinese and Arabic documents
given search terms in English. The system uses UIMA and many of the components discussed in this paper to
provide access to a multilingual database of documents.

Fully indexed text fields in databases often change substantially the way that applications are designed.
While structured data, and database normalization are important contributors to efficiency and scaling, many
real world problems resist structuring. Text fields are widely used in applications to capture those ad-hoc details.
Without full-text indexing, these fields are essentially opaque to the application, and, unfortunately, the users.

As applications continue to push into international forums, the need to uniformly handle records regardless
of the language is increasingly important. Fortunately, mature standards already exist that database designers
should consider when extending these capabilities. Unicode technology is already part of most desktop comput-
ers through their web browsers. Modularizing the full-text indexing capability of contemporary databases, and
standardization of the analysis would be a substantial step in the right direction.
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Abstract

Modern database systems mostly support representation and retrieval of data belonging to different
scripts and different languages. But the database functions are mostly designed or optimized with re-
spect to the Roman script and English. Most database querying languages include support for regular
expression matching. However the matching units are designed for the Roman script, and do not satisfy
the natural requirements of all other scripts. In this paper, we discuss the different scripts and languages
in use in the world, and recommend the type of regular expression support that will suit the needs for
all these scripts. We also discuss crosslingual match operators and matching with respect to linguistic
units.

1 Introduction

Language is a defining feature of human civilization, and many languages and scripts have come into existence
that are used by people around the world. As multilingual requirements are coming to the forefront in today’s
world, databases are required to effectively and efficiently support storage, indexing, querying and retrieval of
multilingual texts. Various databases now offer some multilingual support, but most of the features are still
designed and optimized for the Roman script.

Database languages like SQL use certain string matching primitives. However these primitives are very
rudimentary and have been primarily designed with the Roman alphabet in view. But when one considers the
diversity of writing systems, firstly there is a need to re-think these primitives for monolingual matching, and
evolve patterns that accommodate the diverse requirements for the different scripts. Secondly, we also need to
address the requirements of multilingual databases, where information from different languages and scripts are
stored in the same database. For multi-script databases, in addition to being able to handle matching require-
ments in various individual languages, we need to have cross-lingual regular expression matching operators.
Thirdly, as text data is becoming increasingly common, databases are being used to store running text data.
The use of special matching units in addition to the letter-based matching methods will extend the power and
functionality of databases with respect to text data.

In this work we will inspect some of the important types of writing systems, and discuss effective operators
keeping in view the requirements of these writing systems. The most popular pattern matching operator in
SQL and other popular database languages is LIKE which supports wildcard characters for matching a single
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character or a sequence of characters. We find that in some writing systems the elementary character units are
different from a visual graphemic unit, and the notion of what a character stands for varies across different
writing systems. We discuss this diversity, and recommend appropriate matching units for various types of
scripts and languages. In this work, we propose different standard character classes which need to be defined
for the various languages and script families. The support for this may be built into the database. If not it
is possible to specify these using user defined functions. We also propose the introduction of a cross-lingual
pattern matching operator, so that pattern matching can be supported across different languages. Further, we
recommend that databases provide support to linguistic matching units.

The paper is organized as follows: In Section 2, we discuss briefly about the major types of writing systems,
in order to understand the meaningful units with respect to the different systems. In Section 3 we discuss the
regular expression support in standard databases including SQL. In Section 4, we make our recommendations
about defining character classes to better support regular expressions across different scripts and languages. We
also introduce a crosslingual matching operator LexLIKE.

2 Writing systems

A writing system [[2, 11]] is a type of symbolic system used to represent elements or statements expressible in
language. All writing systems possess a set of base units, which are called graphemes, and collectively they
form a script. Writing systems differ in many ways including the basic units they use and the direction in which
the script is written. We now discuss in brief the major classes of writing systems.

2.1 Types of writing systems

Abjads Abjads [[3]] which are used by scripts of languages like Arabic, Hebrew and Persian were the first type
of alphabet to be developed. These scripts represent only consonants, and not vowels in the basic graphemes.
They have one symbol per consonantal sound. In rare cases, the vowel marks may optionally be included by
means of diacritics. Most of Abjads are written from right to left.

In the Arabic script, words are written in horizontal lines from right to left, but numerals are written from
left to right. The long vowels /a:/, /i:/ and /u:/ are represented by letters. Vowel diacritics, which are used to
mark short vowels, and other special symbols appear only in a few religious and children texts.

Alphabets An alphabetic writing system has a set of letters, or graphemes, each of which roughly represents
one or more phonemes, both consonants and vowels, of the spoken language. Many languages (e.g., those
based on the Latin, Cyrillic, Greek and Armenian alphabets) use multiple letter cases in their written form (e.g.,
English uses majuscule or upper case and minuscule or lower case). The most widely used alphabets are the
Latin or Roman alphabet and the Cyrillic alphabet, which have been adapted to write numerous languages.

In some cases combinations of letters are used to represent single phonemes, as in the English ‘ch’. A pair of
letters used to write one sound or a sequence of sounds that does not correspond to the written letters combined
is called a digraph. In some languages, digraphs and trigraphs are counted as distinct letters in themselves, and
assigned to a specific place in the alphabet, separate from that of the sequence of characters which composes
them, in orthography or collation. For example, the Dutch alphabet includes ‘ij’ which is usually collated as a
single unit. The Croatian alphabet includes some digraphs such as ‘dz̆’, ‘lj’ and ‘nj’ which are treated as single
letters. Other languages, such as English, split digraphs into their constituent letters for collation purposes.
Some alphabetic writing systems use extra letters and ligatures. A ligature occurs where two or more letter-
forms are joined as a single glyph. French has the ligatures œ and æ. The German ‘esszett’ represented as ß is
a ligature that is replaced by SS in capitalized spelling and alphabetic ordering. In English, æ is treated as a
spelling variant and not an independent letter. But languages like Icelandic, Danish and Norwegian, treat æ as
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a distinct vowel. Many alphabetic systems add a variety of accents to the basic letters, These accented letters
can have a number of different functions, such as, modifying the pronunciation of a letter, indicating where the
stress should fall in a word, indicating pitch or intonation of a word or syllable, and indicating vowel length. We
discuss more about accents in Section 2.2.

Syllabic Alphabets or Abugidas A syllabic alphabet (also referred to as Abugida or alphasyllabary) is an
alphabetic writing system which has symbols for both consonants and vowels. Consonants have an inherent
vowel. A vowel other than the inherent vowel is indicated by diacritical marks. The dependent vowels may
appear above or below a consonant letter, to the left of or to the right of the consonant letter, and in some cases
it may have more than one glyph component that surround the consonant letter. A consonant with either an
inherent or marked vowel is called an akshara. Vowels can also be written with separate letters when they occur
at the beginning of a word or on their own. The vast majority of Abugidas are found in South and Southeast
Asia and belong historically to the Brahmi family.

Devanagari (used to write Hindi, Sanskrit, Marathi, Nepali, and some other North Indian languages), Ben-
gali, Gurmukhi script, Tamil, Telugu, Tibetan, Burmese, Thai are some examples of Abugidas. The inherent
vowel in Devanagari is /a/. Thus the first consonant in Devanagari � stands for ‘ka’ and not just the consonant
sound ‘k’. ‘ki’ is written by using a diacritic along with ‘ka’ that stands for the vowel sound ‘i’. The same diacritic
will be used to get ‘ti’ from ‘ta’. Diacritics are also used for nasalizing the vowel in the syllable (e.g., ��� which
represents ‘ki’ nasalized.). A lonely consonant or dead consonant without any following vowel is sometimes in-
dicated by a diacritic e.g. halant or virama in Devanagari (�� ). In a few cases, a separate symbol is used (e.g.,
in Bengali is the dead form of the consonant . When two or more consonants occur together, special conjunct
symbols are often used which add the essential parts of first letter or letters in the sequence to the final letter.
Such consonants are called half consonants. The final character may retain some similarity with the combining
consonants or can be different. Some examples from Devanagari are �� + � = ��, �� + � = 	. The half forms do
not have an inherent vowel. A consonant cluster can be composed of partial parts of the constituent consonants
or can have a completely different form. Thus the effective orthographic unit in Abugidas is a syllable consisting
of C*V (C stands for a consonant, and V for a vowel) in general.

Syllabaries A syllabary is a phonetic writing system consisting of symbols representing syllables. A syllable
is often made up of a consonant plus a vowel or a single vowel. Some examples are hiragana (Japanese), katakana
(Japanese), Inuktitut, Cherokee (Tsalagi). Some writing systems like Iberian use a script that is a combination
of syllabic and alphabetic. Modern Japanese is written with a mixture of hiragana and katakana, plus kanji.

Logographic writing systems In logographic writing systems, each character or logograph represents a mor-
pheme which is the minimal unit in a language that carries meaning. A logogram may represent a word, or part
of a word like a suffix to denote a plural noun. Many Chinese characters are classified as logograms. But no
logographic script is comprised solely of logograms. All contain graphemes which represent phonetic elements
as well. Each Chinese character represents a syllable and also has a meaning. The phonetic elements may be
also used on their own.

2.2 Diacritics

A diacritic is a small sign added to a letter. As we have already pointed out, several types of diacritic [[9, 10]]
markers are used in different scripts. It often alters the phonetic value of the letter to which it is added, but in
some cases it may modify the pronunciation of a whole word or syllable, like the tone marks of tonal languages.
As we have already discussed, Abugidas and, in some cases, Abjads (such as Hebrew and Arabic script) use
diacritics for denoting vowels. Hebrew and Arabic also indicate consonant doubling and change with diacritics.
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Diacritics are used in Hebrew and Devanagari for foreign sounds. As noted earlier, Devanagari and related
Abugidas use a diacritical mark called a halant to mark the absence of a vowel. The Japanese hiragana and
katakana syllabaries use the dakuten and handakuten symbols to indicate voiced consonants.

A letter which has been modified by a diacritic may be treated as a new, individual letter, or simply as a
letter-diacritic combination, in orthography and collation.

Some of these languages use diacritics that are considered separate letters in the alphabet, a few of which
are mentioned below. Estonian has the following distinct letters õ, ä, ö, ü which have their own place in
the alphabet, between w and x. Finnish uses dotted vowels ä and ö which are regarded as individual letters.
Hungarian uses the acute and double acute accents. In Spanish, the character ñ is considered a letter, and is
collated between n and o. Icelandic uses acute accents, digraphs, and other special letters, which each have have
their own place in the alphabet.

On the other hand, some languages with diacritics do not produce new letters. For example, French uses
grave, acute, circumflex, cedilla and diæresis. German uses the umlauted vowels ä, ö or ü to indicate vowel
modification. Thai has its own system of diacritics derived from Indic numerals, which denote different tones.

2.2.1 Tones

Tone is the use of pitch in language to distinguish words. Many of the languages of South-East Asia and Africa
are tone languages and the script contains marks to indicate tones. The tone contour represents how the pitch
varies over a syllable for a tone in a tonal language. It is usually denoted by a string of two or three numbers,
or an equivalent pictogram. Many languages have tones and there are several schemes for representing tones in
the orthography of the language: tone letters, tone diacritics, and superscript numbers. In African languages,
usually a set of accent marks are used to mark tone. The most common accent marks are: high tone denoted by
acute (as in á), mid tone denoted by macron (as in ā) and low tone denoted by grave (as in à. Several variations
are common, and often one of the tones is omitted. Omotic languages have a more complex tonal system which
are indicated by numbers from 1 to 5. Contour tones are indicated by a pair of numbers e.g., 14, 21.

In Thai (an Abugida) and Vietnamese (an alphabet) tones are indicated with diacritics. In a few cases, a
script may have separate letters for tones, as is the case for Hmong and Zhuang. Numerical systems to denote
tones are more common in Asian languages like Chinese.

2.3 Word segmentation

Apart from differing scripts, writing systems also differ in other dimensions. In many written languages, the
word boundary is explicit. For example, many languages like English and Hindi have spaces marking word
boundaries. Arabic uses different letter shapes for word initial, medial and final letters. But word segmentation
is a problem in several Asian languages that have no explicit word boundary delimiter, e.g. Chinese, Japanese,
Korean and Thai. In Sanskrit, words are joined together by external sandhi which involves the process of
coalescence of the final letter of a word with the initial letter of the following word.

2.4 Writing systems on the computer

Writing systems on the computer make use of a character encoding for a language which assigns a unique value
to represent each of the characters in that language. Different ISO/IEC standards are defined to deal with each
individual writing system to implement them in computers (or in electronic form). There are several different
encodings like ASCII and the ISO Latin family of encodings which use one byte to represent a character. ISO
10646 is an international standard, by ISO and IEC. It defines UCS, Universal Character Set, which is a very
large and growing character repertoire, and a character code for it. Since 1991, the Unicode [[1]] Consortium has
worked with ISO to develop The Unicode Standard (“Unicode”) and ISO/IEC 10646 in tandem. Unicode adds
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rules and constraints such as rules for collation, normalization of forms, and so on. In Unicode, each character,
from the writing systems of all languages, is given a unique identification number, known as its code point.

While Unicode is a standard for representation of various languages, if one considers the Unicode repre-
sentation, in many cases there is a difference between a grapheme or code represented in the computer and a
visual unit or glyph. This is especially evident in the case of Abugidas, where three different approaches are
used in Unicode representation. Regular expression support for a script must take into account the model of
representation used for that script.

The Devanagari model, used for most Indian languages, represents text in its logical order and encodes an
explicit halant (virama) symbol. For example, the syllable ‘ki’ is written in Devanagari by placing the diacritic
for the vowel ‘i’ to the left of ‘ka’ as in ��, but is represented in Unicode as the code for ‘ka’ followed by the code
for ‘i’. The diacritic marker for the vowel ‘o’ in Bengali surrounds the consonant letter to which it is attached:
(‘ka’) with vowel ‘o’ is represented as ‘ko’ as in , but the Unicode representation of ‘ko’ is U+0995 U+09CB
representing ‘ka’ and ‘o’ respectively.

The Thai model represents text in its visual display order. For example, consider the syllable ‘ke’. In Thai
script, the diacritic for the vowel ‘e’ comes to the left of the consonant symbol ‘ko kai’ ( ) as in . In Unicode
this syllable is represented by U+0E40 U+0E01, where the code for the vowel comes before the code for the
consonant, but ‘kae’ as in , is written as U+0E41 U+0E01 U+0E30, where the vowel marker is indicated
by two codes, one coming before and one after the code for the consonant.

The Tibetan script is syllabic with consonant clusters written using groups of characters, some of which are
stacked vertically into conjunct characters. Vowels (other than the inherent /a/) are indicated using diacritics.
Morphemes are separated by a dot (tsheg). The Unicode representation of the Tibetan script [[1]] uses one set of
codepoints which are used to represent either a stand-alone consonant or a consonant in the head position of a
vertical stack, and a second set of codepoints to represent consonants in the subjoined stack position. The code
for the vowel sign is always placed after the consonants in the Unicode representation. Thus a syllable is rep-
resented by a consonant symbol followed by zero or more subjoined consonant symbols followed optionally by
vowel diacritics. The syllable , is represented by U+0F66 U+DF90 U+0FB2 U+0F74 where the four codes
stand for the following four characters, , the first being a head consonant(‘sa’), the next two subjoined
consonants (‘ga’ and ‘ra’), and the third a vowel diacritic (‘u’).

3 Regular expression and multilingual support in databases

We will now turn our attention to reviewing the regular expression support in standard database systems, and
then discuss their suitability for multilingual handling.

3.1 Multilingual datatype and collation support

Most databases now have support for storing multilingual characters in fixed and variable length formats, and
also have support for representation in Unicode. Further, since the lexicographical order may be different in
different scripts, the SQL standard allows one to specify collation sequences to index the data, as well as to
correctly sort the data for display order. The database server specifies a default collation sequence to be specified
during installation. Most database servers allow collation sequences to be specified at the table and individual
column level while creating a database. Collation can be changed using alter database. Database systems
like Oracle 10g [[12]], SQL Server 2005 define different collation sequences for many languages including ones
that are case insensitive and accent insensitive. Similar to sort order, match can be case insensitive or diacritic
insensitive.

21



ˆ Matches start of line
$ Matches end of line
? Matches zero or one occurrence of the preceding element

* Matches zero or more occurrences of the preceding element
{n} Exactly n repetitions of the preceding element
[abc] Character list, matches a, b or c
[b-g] Matches b, c, d, e, f or g
[.ce.] Matches one collation element including digraphs e.g., [.ch.] in Spanish.
[:cc:] Matches character classes e.g., [:alpha:] matches any character in the alphabet class. Some

of the defined character classes are [:alnum:] for all alphanumeric characters, [:digit:] for all
numeric digits, [:lower:] for all lowercase alphabetic characters, etc.

[=ec=] Matches equivalence classes. For example [=a=] matches all characters having base letter ‘a’.
A base letter and all its accented variations constitute an equivalence class.

Table 1: Additional wildcards supported in Oracle

3.2 Regular expression support in databases

Regular expressions are a powerful tool for matching text data. A regular expression comprises one or more
character literals and/or metacharacters.

SQL SQL uses the LIKE operator for regular expressions. This allows one to match literals as well as patterns
of a single character or multiple characters. The usage of LIKE is as follows:

select “column name” from “table name” where “column name” like PATTERN
PATTERN can include the following wildcard characters: which matches a single character, and % which
matches a string of 0 or more characters.

Oracle Oracle SQL [[8]] has introduced several operators including regexp like and regexp substr. Oracle’s
implementation of regular expressions is based on the Unicode Regular Expression Guidelines and meant to
encompass a wide variety of languages. regexp like has the following syntax: regexp like (string, pattern,
[parameters]);. The optional argument parameters can have different values including i (to match case insen-
sitively) and c to match case sensitively. In addition to the and % wildcard characters which are used in like,
regexp like uses regular POSIX and Unicode expression matching. Some of the wildcards used are shown in
Table 1. However though there is support for multiple scripts, all scripts are treated uniformly.

3.3 Crosslingual matching

In multilingual databases there is very little support for comparison of strings across different scripts. Equality
comparison of strings from different languages can be useful for proper nouns and can be done to strings from an
equivalent set of languages under equivalence of individual character sets. Kumaran and Haritsa [[5,6]] proposed a
new SQL operator called LexEQUAL for phonetic matching of specific types of attribute data across languages.
It is suggested that the LexEQUAL operator be implemented based on parameterized approximate matching in
phoneme space. It requires a G2P (Grapheme to Phoneme) for the concerned languages.

select BookTitle, Author from Books where BookTitle LexEQUAL ‘Himalaya’
InLanguages English, Arabic, Marathi, Bengali

will return entries where the BookTitle column has strings that are phonetically close to ‘Himalaya’ and can be
in one of the languages specified. The SemEQUAL operator [[7]] has been proposed by Kumaran and Haritsa for
semantic matching of multilingual attribute data. The query
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select BookTitle, Author from Books where Category SemEQUAL ‘History’
InLanguages English, Hindi, French

will return entries where category is ‘History’ for English books, ‘Histoire’ for French books, i��
�� for Hindi
books. A variation, ‘SemEQUAL ALL’ is used to retrieve additional entries whose category column contains
synonyms of ’History’ in a thesaurus.

3.4 Lexical Query processing

In addition to these, with the growing popularity of text processing, the database engines need to build in support
for functional units of words. Microsoft SQL Server 2005 has good support for full-text search (SQL FTS) [[4]].
This allows efficient querying with large amounts of unstructured data. In contrast to the LIKE predicate, which
only works on character patterns, full-text queries perform linguistic searches against this data, by operating on
words and phrases based on rules of a particular language. Full Text Searching allows for string comparisons,
returning both results and a matching score or weight. Typically, full text index may be enabled on some selected
columns in a database table. Four T-SQL predicates are involved in full-text searching: freetext, freetexttable,
contains, and containstable. The query

select BookTitle from Books where freetext(BookTitle, ‘database’)
finds a word having ‘database’ as stem anywhere in the BookTitle column. It matches with “Database Systems”
as well as with “Principles of Databases”. freetexttable works similarly, but returns its results in a Table object.
contains and containstable offer a much more complex syntax for using a full-text indexed column. Some
of the capabilities include search for a given prefix term, and searching for different generations of a word
using the formsof term. fomsof accepts two arguments inflectional or thesaurus. The inflectional argument
causes match with entries containing the same linguistic stem as each word in the search phrase. The thesaurus
argument enables a thesaurus based expansion on the search phrase. For each supported language, there will
have to exist a single thesaurus file. For example, the following query

select BookTitle, Author from Books where contains(BookTitle, ’formsof (inflectional, design)’)
retrieved those entries where the BookTitle field contains a word which is any inflected form of ‘design’.

contains(*,‘formsof(inflectional, climb) and formsof(thesaurus, mountain)’)
will find documents containing inflectional forms of ‘climb’ and all words meaning the same as ‘mountain’
(from thesaurus support). During indexing, language options specify how words or tokens are broken from
the text stream and stored in the index. At query time, the search phrases supplied in a query are expanded
by the parser before searching the full-text index. This expansion process is performed by a language-specific
component called a stemmer and the exact expansions that occur will depend on the language-specific rules that
have been used.

3.5 Setting up globalization support environment

Databases that support multiple scripts and languages need to provide a support environment for specifying
information about the supported languages. As an example, we discuss the support provided in Oracle for
setting up locale and language specific support and configuration.

National language support (NLS) in Oracle provides the ability to choose a national language and store,
process and retrieve data in native languages. It also ensures that database utilities, error messages, sort order,
and date, time, etc. automatically adapt to any native language and locale. Oracle’s globalization support
is implemented with the Oracle NLS Runtime Library (NLSRTL). The NLSRTL has language-independent
functions that allow proper text and character processing and language convention manipulations. The behavior
of these functions for a specific language is governed by a set of locale-specific data that is identified and loaded
at runtime.

The locale-specific data is structured as independent sets of data for each locale that Oracle supports. The
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locale data specifies language, territory, character set, and linguistic sort and can be customized by the user.
It is used to define whether matching is to be case or accent insensitive, the collation sequences, the collating
elements, etc. Oracle also supports user-defined characters and customized linguistic rules.

NLS parameters in Oracle can be specified by initialization parameters on the server which override the
default. It can also be specified as environment variables on the client, with the ‘alter session’ statement, and
in SQL function in reverse order of priority.

4 Recommendations for multilingual and multiscript support

4.1 Units in different writing systems

When we study the adequacy of the regular expressions to handle scripts in multiple languages we note that the
notion of what comprises a character varies across languages. Different writing systems use different graphemic
units for representation. A single unit may represent a single consonant, a single vowel, a syllable, a conso-
nant and vowel combination, a letter with accent, or a ligature. Different languages have different semantics
associated with a character.

1. In Abjads, a grapheme corresponds to a single consonant. A consonant is the main unit along with a few
long vowels. The vowel sounds are mostly left out, but in a few cases, they are indicated by diacritics
associated with the consonant unit.

2. In alphabetic writing systems, a grapheme corresponds to a single vowel or a single consonant. Conso-
nants and vowels have equal status as letters. Some scripts contain ligatures, some contain digraphs or
trigraphs as collating units. Accents or diacritics combine with letters and can be treated as an accented
base unit in some cases, and as separate letters in others. In the former case, a character along with its
diacritic may be considered as a single unit, or one may consider them as two different units. Ligatures
and multi-character collating units can also be treated as one or two units.

3. In Abugidas, a grapheme corresponds to a phoneme unit which represents a consonant vowel combination,
or isolated vowel sounds. A consonant letter by itself has an inherent vowel associated with it, usually /a/,
which is overridden by diacritic marks for other dependent vowels. In some cases, dead consonants which
are not associated with any vowel, and do not combine with the next consonant letter, are used. Dead
consonants are usually marked by the diacritic for halant in Devanagari, Bengali, etc. Even though the
consonant vowel combination is visually a single unit, this unit is obtained by composing the consonant
symbol with diacritic marks. Thus these units are decomposable. Some of the Abugidas also use conso-
nant clusters which are represented by ligatures. Orthographically such ligatures are a single unit, even
though they are formed by a sequence of consonants. Half consonants are part of a consonant cluster.
For some of these languages, there are four types of units: consonant only (without the inherent vowel),
independent vowel, consonant(s) plus vowel unit forming a syllable, and diacritic marker/vowel marker.

4. In syllabic writing systems, a grapheme corresponds to a syllable.

5. In logographic writing systems, a grapheme corresponds to a morpheme. However in most logographic
scripts many of the characters have associated phonemes representing syllables.

6. In all languages, the word as a lexical unit plays a very important role. Morphological analysis of a word
lets us find the root form which is also called the stem or lemma, and the inflectional affixes.

Based on the above discussion, we identify the following units which are meaningful for different scripts: col-
lating unit, vowel, vowel mark diacritic, consonant, consonant cluster, ligature, single live consonant, dead
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consonant, half consonant, syllable, morpheme, diacritic, accent diacritic, tone diacritic and tonal symbols. At
the lexical level, the important units are word, stem, suffix, and prefix.

A subset of these units are typically meaningful for a given script and language. These more natural units
can be defined as the default units for those scripts. Table 2 shows the meaningful units for the different writing
systems, and Table 3 shows the composition of some of the character classes for the different types of scripts.

In addition, when we have a multilingual database where different entries may be in different languages,
it is important to define crosslingual matching capabilities. The proposed crosslingual operator LexEQUAL
discussed earlier does phonological mappings across multiple scripts. Similar to the LexEQUAL operator, it is
also useful to design crosslingual pattern matching operators.

4.2 Recommended character classes for monolingual match

On the basis of the units found in different languages, we identify a few symbols that stand for a single instance of
a given unit. We use the character class notion used in Oracle to represent the different units. The SQL wildcard
“ ” matches a single character. We equivalently introduce the character class [:char:], and use either of them to
denote a single character unit. The interpretation of a character in different writing systems is recommended to
be as follows:

Abjads: a vowel or a consonant with optional diacritic marks
Alphabets: a single consonant or vowel letter or a ligature or a multi-character collating unit or a letter with

the associated diacritics
Abugidas: independent vowel or diacritic vowel or consonant or consonant cluster with or without vowel

diacritic
syllabaries: a syllable
logograms: a morpheme or a phonetic syllable

Sequences of characters are represented in the following ways:

% or [:char:]* is taken to be a sequence of zero or more character units.
[:char:]+ is taken to be a sequence of one or more character units.
[:char:]? is taken to be zero or one character unit.

In addition to these, we propose the following more specific wildcards:

[:c:] is used to represent a consonant or a consonant cluster, or a collating unit consisting of
two or more consonants.

[:v:] is used to represent a vowel or a ligature of vowels in case of Abjads and alphabets, and
an independent vowel in case of Abugidas.

[:hc:] is used to represent a half consonant for some Abugidas.
[:dc:] is used to represent a dead consonant for some Abugidas.
[:syll:] is used to represent a syllable. This is meaningful for syllabaries, is used for independent

vowels or consonant clusters in case of Abjads and Abugidas, and for phonetic units in
logographs.

The following classes are recommended for diacritic symbols:

[:dia:] is used to represent any diacritic symbol, or a set of diacritic marks.
[:acc:] is used to represent an accent diacritic.
[:dvow:] is used to represent a vowel diacritic.
[:tone:] is used to represent a diacritic representing a tone. This is also used to represent a separate

tone symbol as well as numeric tone representations.

The following lexical units are also recommended. These units are meaningful in almost all languages, but it is
especially useful to identify these entities in languages where the written language does not use word boundaries,
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Abjads Alphabets Abugidas Syllabaries Logograms
Character consonant, consonant, consonant, syllable morpheme
Units independent vowel, vowel,

vowel, digraph, syllable,
consonant accented unit, vowel dia.
with dia. ligature cons cluster

independent long vowels yes yes
vowel only
vowel yes(rare) yes
diacritic
ligature yes yes yes yes
consonant yes yes yes
consonant yes
cluster (dn)
live consonant yes (dn)
dead consonant yes (dn)
half consonant yes (dn)
syllable yes yes yes yes
diacritic yes yes yes yes
accent dia. yes
tone dia. yes yes(Thai)
morpheme yes yes yes yes yes

Table 2: Table showing the meaningful units in different writing systems (dn denotes Devanagari)

Abjads consonant = consonant + consonant with vowel dia
vowel = independent vowel
syllable = consonant with optional diacritic + independent vowel
char = syllable

Alphabets char = consonant + vowel + digraph + accented unit + ligature
Abugidas consonant = live consonant + dead consonant + half consonant

consonant cluster = live consonant + half consonant* live consonant
syllable = independent vowel + consonant cluster with optional diacritic
vowel = = independent vowel + vowel dia.
diacritic = vowel dia + tone dia
char = vowel + consonant + consonant cluster + syllable

Syllabary char = syllable
Logogram char = morpheme

Table 3: Rules showing relations between the different units in different writing systems.
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as in Thai, Chinese and Japanese. Identifying these units would require a morphological analyzer or a stemmer
for the languages, as well as a text segmentation module for languages with no delimiters.

[:morph:] is used to represent a morpheme. This is the basic unit for logographs. But such units
are meaningful for all languages.

[:word:] matches a single word
[:stem:] matches the stem of a word
[:suffix:] matches a suffix
[:prefix:] matches a prefix

Apart from the character classes we define the following matching units:
[=a=] matches all letters with the base character ‘a’ and includes all diacritics of ‘a’, as

well as upper and lower cases of ‘a’. It also matches multiple diacritics on a.
[=a=:v] matches all letters with the base character ‘a’ with optionally vowel diacritics.
[=a=:acc] matches all letters with the base character ‘a’ with optionally accent diacritics.
[=a=:tone] matches all letters with the base character ‘a’ with optionally tone diacritics. Tones

may also occur as numeric superscripts or as separate tone symbols. In the case
where they are separate symbols, we may use [:tone:].

Note that in order to do these matches, the database system has to know not only the code points which corre-
spond to diacritics like accents, vowel markers, etc., but also there will be language specific differences about
the position of the diacritic in the text representation with respect to the base letter.

4.3 Monolingual match operators

Most database systems allow the specification of a collation sequence. For example, by appropriately setting
the value of nls sort in Oracle one can do accent or case insensitive matching. PostgreSQL additionally uses a
special keyword ILIKE to make the match case insensitive.

We recognize that various types of case and accent insensitive matching are often very useful, and we
recommend that apart from being able to specify the matching scheme, databases should have distinct operators
for various levels of matching: literal matching, case insensitive matching, diacritic insensitive matching, as well
as phonetic matching. Phonetic matching can also be done across languages and is discussed in Section 4.4.

x LIKE y : x matches y according to the current match environment
x ILIKE y : x matches y insensitive to case
x DILIKE y : x matches y insensitive to diacritics

The semantics for these operators must be specified in the locale for the language. Some examples for successful
matches in English are Book ILIKE book and naive DILIKE naı̈ve. For languages like Hindi and Bengali,
diacritic insensitive matching should match on the consonants only. Some examples of successful matches
might be �
� DILIKE 
���, and ��� DILIKE ��. While defining the match levels we have to take into
account the characteristics of the script. For example, in scripts where the accented forms are treated as different
characters, accent insensitive matching with respect to these characters is not common.

4.4 Crosslingual operators

The LexEQUAL operator [[5]] has been proposed for crosslingual matching. We wish to extend crosslingual
matching to pattern matching. Our proposed operator LexLIKE is modeled based on LexEQUAL, and can be
used for phonological matching between two strings or between a string and a pattern belonging to one language
or two different languages. In case of crosslingual match, the user has to specify the set of target languages, or
* to specify any language, and an optional Threshold parameter can help tune the degree of match between the
string and the pattern. The syntax is proposed to be x LexLIKE y [Threshold α] [InLanguages ...].
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Suppose one is looking for books in different languages whose titles reference ‘Manas Sarovar’ (a holy lake
in Tibet variously transliterated in English as ‘Manas Sarobar’, ‘Manas Sarovar’, ‘Mansarovar’, ‘Manasarovar’,
‘Manasarowar’, etc., written in Hindi usually as ������, and in Bengali as ). The following
query

select BookTitle from BOOKS where BookTitle LexLIKE ”Man% Sa[:syll:][vb]ar” Threshold 0.75
InLanguages Bengali, Hindi, English

should match the different renderings of ‘Manas Sarovar’ in the language sets indicated. Some examples of
match using the LexLIKE operator for monolingual match in Bengali are LexLIKE , and LexLIKE

Threshold 0.7.
The LexLIKE operator can be implemented if the grapheme to phoneme mappings (G2P) for the languages

are specified. The G2P is used to convert the pair of expressions being compared to a canonical form. Approxi-
mate string matching can be performed in the phonemic space akin to the LexEQUAL operator [[6]].

In addition to crosslingual matching on exact words, crosslingual semantic matching is very useful for which
the SemEQUAL operator had been proposed. We propose an equivalent notation for a crosslingual semantic
matching operator which allows us to search a part of a field by using ‘contains’. This is illustrated by the
following example.

select BookTitle from Books where contains(BookTitle, [=rain=:syn])
InLanguages English, Bengali, German

will match with all BookTitles that contain synonyms of ‘rain’ from the documents in the specified languages.
For example, this will match titles containing the word in Bengali, ���� in Hindi, and Regen in German.

4.5 Lexical processing

For lexical processing, we use the contains [[4]] predicate from Microsoft SQL server full text search. This allows
us to match some of the words in a field. The contains predicate has the basic syntactic form contains (col list,
‘<search condition>’). This predicate is true if any of the indicated columns in the list col list contains terms
which satisfy the given search condition. A search condition can be a regular expression denoting a word, a
phrase, or can be a prefix, suffix, or stem. We propose the following lexical units that can be used:

[:stem=book] matches all words with stem as ‘book’.
[:prefix=anti] matches all words with a prefix ‘anti’.
[:suffix=ment] matches all words with a suffix ‘ment’.
[:syn=book] matches all words synonymous to ‘book’ from the thesaurus.

Example:
select BookTitle from Books where contains(BookTitle, [:stem=discovery])

will match with all BookTitles that contain inflections of ‘discovery’, e.g., ‘discoveries’.
select BookTitle from Books where contains(BookTitle, [:syn=discovery])

will match with all BookTitles that contain synonyms of ‘discovery’ in the thesaurus, like ‘breakthrough’ and
‘uncovering’.

select BookTitle from Books where contains(BookTitle, [:stem= ] and [:suffix= ])
will match with all BookTitles that contain a word which has stem and has as one of its suffixes, and
thus will match with a title containing the word , a word whose stem is and which has three
suffixes, , and .

5 Conclusion

In this paper we have examined different scripts and proposed different character classes to facilitate construction
of regular expressions for different scripts. We also study the support that some databases provide for linguistic
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matching with respect to the morphology of the words in free text, as well as semantic matching operators. Based
on the study and the characteristics of different languages, we recommend that lexical classes for these units be
used which can be the basis of matching. We have also discussed crosslingual matching operators that compare
patterns across different languages. To check for semantic equivalence, semantic matching needs to be supported
with the help of a thesaurus. Cross lingual semantic matching would require multi-language dictionaries and
thesauri. However we have not discussed about the implementation of these operators in this paper. Many
of these can be implemented on top of some existing database systems. For example, corresponding to every
language, the appropriate character classes can be defined in the style file for the language. But the efficient
implementation of some of the operators can be facilitated by intrinsic support by database engines, so that
efficient index structures are created.
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Abstract

In this paper, we present observations on structural properties of wordnets of three languages: English,
Hindi, and Marathi. Hindi and Marathi, spoken widely in India, rank 5th and 14th respectively in the
world in terms of the number of people speaking these languages. The observations suggest the existence
of the ‘small world’ property in wordnets and also lend credence to the belief that the world of concepts,
which the words are manifestations of, share common properties across languages. These concepts are
represented by synsets (sets of synonymous words) in wordnets. Therefore, it makes sense to link the
synsets of wordnets of different languages to create a global wordnet grid. In fact, the EuroWordnet
project is already doing so for a number of European languages. We too report our work on linking
English, Hindi and Marathi synsets. The first task – linking of English and Hindi wordnets – requires
clever ideas on mapping accurately the synsets of the two languages. The second task – relatively easier
due to the close correspondence between Hindi and Marathi – reduces to programmatically borrowing
lexico-semantic relations from the Hindi wordnet into the Marathi wordnet, since the Marathi wordnet
is largely aligned with the Hindi wordnet. To the best of our knowledge, ours is the first in-depth inves-
tigation into lexical knowledge networks of multiple languages with a view to evaluating them, and also
the first attempt to create a multiwordnet involving two major Indian languages and English.

1 Introduction

Princeton wordnet ( [[MB90]]) is a lexical knowledge network of English words. Its growing popularity as a
useful resource for English and its incorporation in natural language tasks has prompted the creation of similar
wordnets in other languages as well. The English wordnet is maintained manually by a team of lexicographers
and computer scientists. This manual method sacrifices speed for quality and may be impractical for efforts to
bootstrap new wordnets in other languages, especially if there is a lack of linguistic support. This has therefore
motivated research into using existing wordnets in Indian languages like Hindi to create data for languages
like Marathi which are part of the same language family. Also, matching synsets from wordnets in unrelated
languages such as English and Hindi provide benefits in multi-lingual contexts.

The increasing number of wordnets has also sparked off interest in understanding the structure and properties
of these wordnets with a view to characterising and comparing them. A starting point is to study some statistical
properties by considering a wordnet as a graph. This yields interesting observations on degree distribution,
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nature of clustering, and shortest path lengths of the graphs. These help understand the nature of relatedness of
words in languages, enhance the usefulness of wordnets and could also help design these databases better.

The roadmap of this paper is as follows: Section 2 discusses the related work. Section 3 introduces the basics
of wordnet relevant to this discussion. Section 4 is on the structural properties of wordnets in English, Hindi,
and Marathi. Section 5 outlines an automatic algorithm for bridging synsets of the Princeton English wordnet
(EWN) and the Hindi wordnet (HWN). Section 6 gives a programmatic way of establishing relations in the
Marathi wordnet (MWN) using HWN. Section 7 discusses the results and observations and suggests directions
for future work.

2 Related work

Our study of the structure of wordnets has been motivated by the desire to compare and evaluate many different
lexical knowledge networks, viz. wordnets (Princeton wordnet [[MB90]], EuroWordnet [[VR98]], Hindi wordnet
[[NC02]] etc.), Conceptnet [[LS04]], Hownet [[ZQ00]], Mindnet [[VR98]], VerbNet [[KS05]], IEEE SUMO [[NP01]] and
ontologies [[GU04]]. Another source of motivation has been the ‘small world’ property observed in complex
networks [[WA06, WC03]] (do wordnets possess such properties?).

Mapping/Linking/Bridging of knowledge networks has always been a problem of great interest. Quite a few
wordnets in Eurowordnet [[VO98]] have been created by leveraging existing wordnets. [[PB02]] gives details of
methodologies used for this purpose. [[SR06]] is interesting from the point of view of linking wordnets of two
sister languages (Hindi and Marathi).

Mapping synsets of one wordnet to the synsets of another involves word sense disambiguation (WSD)
[[YA92]] as an important sub-task. [[LL00]] discusses a set of automatic WSD techniques for linking Korean words
collected from a bilingual machine readable dictionary (MRD) to English WordNet synsets. An example of
work on aligning one wordnet (Italian) with another (Princeton) is in [[PB02]]. Many of these mapping efforts
have used the idea of the Lesk algorithm [[LE86]].

The mapping of Princeton wordnet to other knowledge networks has also received attention in the lexical
knowledge network community [[NP03]].

A multi-lingual linked structure of wordnets is the goal of the Global Wordnet effort. Wordnets of many
languages of the world can be found at the website (http://www.globalwordnet.org) of this endeavour.

3 A primer on wordnet

A wordnet for a language is a linked structure of concept nodes represented by sets of synonymous words called
synsets, which are connected through lexico-semantic relations. For the user, the wordnet is a rich lexicon-
like database that is queried using an API or a browser to obtain information about words. The basic idea of
a wordnet can be presented through the lexical matrix. The rows in the matrix represent concepts, while the
columns stand for words. Thus, a particular column represents the polysemy of a word, while a particular row
depicts synonymy. The entries of a row define a synset. An example is shown in Table 4. Here, board is a
polysemous words with several meanings. The synset for the sense ‘a stout length of sawn timber’ consists of
the words board and plank.

For the discussions that follow, we give examples from Hindi and Marathi wordnets – with adequate trans-
lations in English – to keep the multi-lingual flavour.

Synsets are the building blocks of wordnets. The principles of minimality, coverage and replaceability
govern the creation of the synsets:

1. Minimality: Only the minimal set that uniquely identifies the concept is used to create the synset, e.g.
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S.No. (Senses, Words) Board Plank Table Card Gameboard
1. A committee having supervisory powers x
2. A stout length of sawn timber x x
3. A surface for board games x x
4. A table for meals x x
5. An endorsed policy of a political party x
6. A set of data arranged in rows and columns x
7. A printed circuit board x x

Table 4: Example of entries in the English wordnet lexical matrix

{ghar, kamaraa, kaksh}1 (room).
The Hindi word ghar is ambiguous and cannot by itself uniquely denote the concept of a room. For
instance, it could also mean house, native country, or family. The addition of kamaraa and kaksh (also
meaning room) to the synset brings out this unique sense.

2. Coverage: The synset should contain all the words denoting a concept. The words are listed in order of
(decreasing) frequency of their occurrence in the corpus. e.g. {ghar, kamaraa, kaksh} (room)

3. Replaceability: The words forming the synset should be mutually replaceable in a specific context. Two
synonyms may mutually replace each other in a context C, if the substitution of the one for the other in C
does not alter the meaning of the sentence. Consider,

{svadesh, ghar} (motherland)
amerikaa meN do saal bitaane ke baad shyaam svadesh/ghar lauTaa
Literal translation: America in two years stay after Shyam motherland returned
‘Shyam returned to his motherland after spending two years in America’

The replaceability criterion is observed with respect to synonymy (semantic properties) and not with
respect to the syntactic properties (such as subcategorization).

To explicate the meaning, a synset is associated with a gloss of definition and an example sentence.

3.1 Lexico-Semantic relations

A wordnet incorporates semantic and lexical relationships among synsets.

3.1.1 Semantic Relations

Semantic relations link two synsets. Examples of these are:

1. Hypernymy and Hyponymy encode semantic relations between a more general term and specific in-
stances of it.
{belpatra, belpattii, bilvapatra} ‘a leaf of a tree named bel’→ {pattaa, paat, parN,
patra, dal} ‘leaf’
Here, belpatra (a leaf of a tree named bel) is a kind of pattaa (leaf ). pattaa (leaf ) is the hy-
pernym of belpatra (a leaf of a tree named bel), and belpatra (a leaf of a tree named bel) is a
hyponym of pattaa (leaf ).

1For transliterations of the Devanagari script used in Hindi and Marathi, refer to http://www.aczoom.com/itrans/ and
http://en.wikipedia.org/wiki/ITRANS
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2. Meronymy and Holonymy express the part-of relationship and its inverse.
{jaR, muul, sor} ‘root’→ {peR, vriksh, paadap, drum} ‘tree’

Here, jaR (root) is the part of peR (tree), implies jaR (root) is the meronym of peR (tree) and peR
(tree) is the holonym of jaR (root).

3. Entailment is a semantic relationship between two verbs. Any verb A entails a verb B, if the meaning of B
follows logically and is strictly included in the meaning of A. This relation is unidirectional. For instance,
snoring entails sleeping, but sleeping does not entail snoring.
{kharraaTaa lenaa, naak bajaanaa} ‘snore’→ {sonaa} ‘sleep’

4. Troponymy is a semantic relation between two verbs when one is a specific ‘manner’ elaboration of
another. For instance,
{dahaaRanaa} ‘to roar’ is the troponym of {bolanaa} ‘to speak’.

5. Cross-linkage between different parts of speech: Some wordnets like the HWN also link synsets across
different parts of speech.

3.1.2 Lexical Relations

Lexical relations link two specific words in two different synsets. Examples of these are:

1. Antonymy is a lexical relation indicating ‘opposites’. For instance,
{moTaa, sthuulkaay} (‘fat’)→ {patlaa, dublaa} ‘thin’.
patlaa (thin) is the antonym of moTaa (fat) and vice versa.

2. Gradation is a lexical relation that represents possible intermediate states between two antonyms. e.g.,
{jawaanii} ‘youth’ between {shaishav} ‘childhood‘ and {buDaapaa} ‘old age’.

4 Structural properties of wordnets

Wordnets can be represented as graphs and studied for graphical properties like average shortest path. ‘Small
World’ properties ( [[WA06]]), which have been observed in complex and large networks ranging from the likes
of citation graphs to the web graph to biological oscillators, are also seen to occur in wordnets.

The Small World nature of these graphs means that despite the formidable size of the graphs, the average
shortest path between nodes is small. Another statistic is that of cluster coefficient which measures whether
“friends” of a node are also “friends” of each other. Results show that this is indeed true of wordnets, indicating
a grouping of concepts that could suggest the presence of “clouds” or “cores” in wordnets. The last measure is
that of the shape of the degree distribution graph of these nodes. Each wordnet shows a characteristic power-
law distribution in its degree distribution, which indicates the presence of a few highly-connected hubs and a
majority of nodes with much lesser connectivity. This also explains why the average path length is small – this
can be attributed to the ‘popular’ hub concepts.

The observations were carried out on EWN, HWN, and MWN. Only semantic relations were considered
for the small world properties as these relations link one synset to another. In contrast, lexical relations such as
antonymy link two specific words within different synsets and do not apply to the other words in those synsets.
All the links in the graphs are directed. For EWN, nouns and verbs were studied individually, as each set is a
large graph in its own right and is separately provided in the wordnet database. The data is summarised in Table
5.
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Wordnet No. of Nodes No. of Edges Edges per Node
English WN v2.1 (Nouns) 84709 226483 2.674

English WN v2.1 (Verbs) 13769 29883 2.167

Hindi WN v1.0 24041 80138 3.333

Marathi WN v1.0 21116 39136 1.853
Table 5: Surface level statistics of wordnets

4.1 Degree Distribution

We compute a distribution function P (k) which is the proportion of total number of nodes that have exactly k
edges emanating from them ( [[WC03]]). The function was calculated as follows:

1. Get degree k for each node

2. For each unique k, count the total number of nodes whose degree is k

3. For each unique k, P (k) = (degree occurrences/total number of synsets)

Plotting P (k) vs. k shows a power-law characterised by an exponent γ. A log-log plot shows a straight-line,
indicating the scale-free nature of the graph. This shape was seen repeated for all wordnet graphs. A sample
graph (for HWN) is shown in Figure 1.

Figure 1: Degree Distribution and Log-Log plot for HWN

By measuring the slope of the line in the log-log plot, we obtained exponents γ as shown in Table 6.

Wordnet English WN (Nouns) English WN (Verbs) Hindi WN Marathi WN
Exponent(γ) −2.063 −2.224 −2.592 −2.841

Table 6: Exponents for the Degree Distributions

These results show that while most of the nodes in the graphs have very low degree, a few nodes with very
high connectivity exist. These concepts are abstract or common concepts that tend to have many specific instan-
tiations and are richly connected to other concepts. For instance, in EWN, the synset for the concept {person,
individual, someone, somebody, mortal, soul} has 403 relations, the synset for {city} has 666 relations, while
nodes such as {tour-de-force} or {oversight, inadvertence} have just one relation (to their parent). Similarly,
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the synsets equivalent to {person, individual, ...} in HWN and MWN have 607 and 626 relations respectively,
the highest in each wordnet. The lower exponents (by absolute value) in the English wordnet show that the gap
between proportions of degree-poor nodes and degree-rich nodes is lower than in the newer wordnets. This is
possibly due to the relative maturity of EWN. Wordnet building involves identifying new synsets and creating
appropriate links among synsets, which remains an ongoing task. A new synset will at least be linked to its
parent hypernym. A synset in a more mature database is likely to have greater ‘richness’ by being linked to
more synsets, whereas in a new wordnet, a greater proportion of synsets will only have the parental link. In the
newer wordnets, the hubs are much more important and vital to the network than in the older database. This can
be one indication of the maturity of a wordnet.

4.2 Cluster Coefficient

Cluster Coefficient Ci for a node i (with degree ki) of a directed graph is defined as follows [[WA06]]:

Ci =
|E(Γi)|
2×

(ki
2

)

where Γi is the subgraph made of the neighbours of i, |E(Γi)| is the number of edges of the subgraph, and
2×

(ki
2

)
is the total number of possible edges in Γi.

One extreme is where no neighbour of a node is connected to other neighbours of that node giving Ci = 0,
whereas at the other end, each neighbour is adjacent to every other neighbour, thus forming a clique and giving
Ci = 1. The cluster coefficient for the entire graph is found by averaging cluster coefficients for its nodes.

For the wordnets, the results are shown in Table 7. The results show that the coefficient is much higher than
would be possible for a random graph, where it would be closer to 1/N (where N is the number of nodes). In
EWN, the nodes with smaller degrees (usually ≤ 5) tend to have a higher Ci, while the degree-rich hubs have
very low Ci as it is very unlikely that many of their neighbours will be related to each other. In fact, diverse
groups connect to each other via these hubs. It is also seen that synsets pertaining to a specific domain such as the
synset for {American football} tend to have greater Ci. The newer wordnets have lower clustering coefficients
as the relations structure among synsets is not very rich.

Wordnet English WN (Nouns) English WN (Verbs) Hindi WN Marathi WN
Cluster Coefficient 0.526 0.632 0.268 0.358

Table 7: Cluster Coefficients

4.3 Shortest Path

The shortest path length between two vertices i and j in a graph is the smallest number of edges required to
traverse from i to j. Further, the shortest lengths between all pairs in the graph are averaged to produce the
average length for the graph. The results are summarised in Table 8. The average length is fairly small for
graphs of these sizes. The hubs of high degree are responsible for these short distances by being well-connected.
The length in HWN and MWN is smaller, primarily because of the relatively smaller size of the graphs.

4.4 Link Distribution in wordnets

Wordnets have a collection of relations of different types that connect synsets. These are not standardised, but the
nature of relations is fairly similar across different wordnets as the expectations from them are common. From
the results (Figure 2), it can be seen that the taxonomic relations i.e. hypernymy/hyponymy usually dominate.

35



Wordnet Average Median Avg. Std. Dev. Maximum
Shortest Path Shortest Path Shortest Path Shortest Path

English WN (Nouns)* 8.878 8.779 7.174 20
English WN (Verbs) 9.611 9.399 7.997 27

Hindi WN 4.378 4.339 2.639 15
Marathi WN 4.255 4.132 0.187 20

(*A 10 % sample was used for calculation)

Table 8: Average Shortest Path for the wordnets

Figure 2: Distribution of Link Types for wordnets

4.5 Synset Sizes

Each synset entry has one or more words in it, which are (near) synonyms for each other and have that specific
concept as their meaning. Figure 3 shows the distribution of the number of nodes with different synset sizes. This
can be taken to be a distribution of synonymy in the languages. We see that all the wordnets show very similar
graphs (the English wordnet has a greater number of short synsets just because of the size of the database),
indicating that there seems to be no significant linguistic differences in this distribution.

5 Mapping English and Hindi wordnet synsets

5.1 Intuition

The algorithm takes as input an English synset and produces as output the best matching Hindi synset. First, a
set of candidate synsets is obtained by finding the Hindi translations of the first word in the input synset and then
finding the Hindi synsets that contain one or more of these translations in them. The first word in an English
synset best represents the sense of the synset ( [[MB90]]). Hence, the Hindi synsets which denote senses closely
related to that denoted by the input synset are likely to contain some translation of this first word.
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Figure 3: Synset Sizes Distributions for wordnets

After finding the candidate synsets, the actual weighting procedure starts. This involves the following steps:

1. Find the hypernymy hierarchies of the candidate synsets and call them the candidate hierarchies.

2. Traverse the hypernymy hierarchy of the input synset and for each synset in the hierarchy, find the Hindi
translations of the words occurring in the synset.

3. Find the synsets occurring in the candidate hierarchies, which contain any of these translations. Increase
the weights of these hierarchies if such a match is found.

At the end of the weighting procedure, the candidate synset corresponding to the hierarchy with the maximum
weight is returned as output. In case there is no candidate synset, the string “No match found” is returned as
output.

The hypernymy hierarchy is employed for many word sense disambiguation endeavours ( [[LE86]]). Hence it
was the natural choice for this algorithm too.

5.2 Algorithm

Following are the steps to find a match for a given English synset:

1. The first word of the given English synset is extracted and all the Hindi translations of this word are found
out from a bilingual English-Hindi dictionary.

2. All the Hindi synsets which contain any of these translations are determined. They are called the candidate
synsets.

3. The hypernymy hierarchies of these candidate synsets are obtained. They are called the candidate hierar-
chies.

4. The hypernymy hierarchy of the given English synset is obtained.

5. For each synset occurring in the English hypernymy hierarchy, the Hindi translations of all the words
occurring in it are found out.

6. These resulting Hindi words are then searched for matches in the candidate hierarchies. If a match is
found, the weight of the candidate hierarchy is increased. Initially, the weights of all the candidate
hierarchies are set to zero. The increment is a function of:
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(a) The level of the Hindi synset in the candidate hierarchy, where the match is found. The level of a
synset in its hierarchy is defined as the number of synsets by which the synset is separated from the
candidate synset in the hypernymy hierarchy. The level of the original candidate synset is set to 1,
that of its hypernym is 2 and so on.

(b) The level of the English synset being considered in the English hierarchy. The level is defined in a
similar manner as above: it is the number of synsets by which the present synset is separated from
the original synset. The level of the original synset is set to 1.

7. The total weight of each candidate hierarchy is computed depending on the number of matches thus
found.

8. The candidate synset whose candidate hierarchy has the maximum weight is mapped to the input English
synset.

The following points are to be kept in mind:

1. The increment awarded for a match at lower levels in the hypernymy hierarchy is more than that awarded
when the synsets involved are at higher levels. This is because the synsets having higher levels are farther
off – in terms of the sense denoted by them – from the original synset.

2. The increment should depend on the levels of the English and Hindi synsets in consideration, and that too
in a symmetric manner.

3. Due to the limitations of the lexical resources, the algorithm employs substring matching technique.

The function used to increment the weightage of the candidate hierarchy is:

Increment =
[(15−m) + (15 − n)]

2

where,
m: The level of English synset in its hierarchy, whose translation has found a match in some candidate

hierarchy.
n: The level of the Hindi synset in the candidate hierarchy, where the match is found.

Justification: As described above, a symmetric function was required, which decreased in value as the levels
of the synsets increased. The above menioned function was heuristically chosen. The number 15 was chosen
since of all the English synsets whose matches were found, the maximum depth of the hypernymy hierarchy was
found to be 15. Also, the maximum shortest path between any 2 synsets in the Hindi wordnet is 15 (Table 8).

Figure 4 illustrates the working of the algorithm. The input synset is {substance, matter}. Two of the candi-
date synsets are shown: {arth, abhipraay, aashay, matalab, bhaav, maane, taatpary}
and {padaarth}, along with their candidate hierarchies. The candidate hierarchy corresponding to the synset
{padaarth} has more number of matches as compared to the number of matches for the other candidate hi-
erarchy. The final weight of the candidate hierarchy 1 is 40.5 and that of the candidate hierarchy 2 is 108.5.
Hence, the synset {padaarth} is mapped to the given English synset. Please note that for the purpose of
matching, substring matching technique is employed.

5.3 Results

We have mapped the complete EWN V2.0 to the HWN. Approximately 6500 mappings have been checked
manually. If we insist on exact matches, we get about 10% accuracy2, whereas matching with near synonyms

2The accuracy is based on the judgement of a human expert, who was involved in building the Hindi WordNet itself.
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(i.e. match with immediate hypernyms are accepted) yield about 25% accuracy. The reasons for the low accuracy
are (i) a much larger number of English synsets, (ii) the relative immaturity of the Hindi wordnet, and (ii) the
deficiencies in the English to Hindi dictionaries. We believe our approach is powerful and interesting, and with
the improvement and enrichment of Hindi lexical resources, it will yield much better results.

6 Indo Wordnet Creation - Linking of Wordnets in different Indian Languages

We have, for long, been engaged in building lexical resources for Indian languages ( [[NC02]]) with focus on Hindi
and Marathi (http://www.cfilt.iitb.ac.in). The HWN and MWN more or less follow the design principles of the
Princeton wordnet for English, paying particular attention to language specific phenomena (such as complex
predicates meaning verbs with incorporated nouns and compound verbs) whenever they arise.

While HWN had been created from first principles by looking up listed meanings of words from different
dictionaries, MWN has been created derivatively from HWN. That is, the synsets of HWN are adapted to MWN
via addition or deletion of synonyms in the synset. For example, the synset in HWN for the word peR (meaning
‘tree’) is {peR, vriksh, paadap, drum, taru, viTap, ruuksh, ruukh, adhrip, taru-
var}. MWN deletes {peR, viTap, ruuksh, ruukh, adhrip} and adds jhaaR to it. Thus, the
synset for ‘tree’ in MWN is {jhaaR, vriksh, taruvar, drum, taru, paadap}. Hindi and Marathi
being close members of the same language family, many Hindi words have the same meaning in Marathi – es-
pecially the tatsam words (directly borrowed from Sanskrit).

6.1 Relation Borrowing in Marathi wordnet

The process of setting up lexico-semantic relations in one wordnet using the corresponding information from
another wordnet is called Relation Borrowing ( [[SR06]]). Described below are the different kinds of Relation
Borrowing from HWN to MWN:

1. When the meaning is found in both Hindi and Marathi: This is the most common case, since Hindi and
Marathi are sister languages and exist in almost identical cultural settings. The relations are established in
MWN for that meaning, using the procedure explained in Figure 5.

2. When the meaning is found in Hindi but not in Marathi: Relation borrowing is not possible. For
instance, {daadaa, baabaa, aajaa, daddaa, pitaamaha, prapitaa} is a synset in Hindi for
‘paternal grandfather’. There are no equivalents in Marathi.

3. When the meaning is found in Marathi, but not in Hindi: The relations must be set up manually. For
example, {gudhipaadvaa, varshpratipadaa} is a synset in Marathi for ‘New Year’ which does
not have any equivalent in Hindi.

The algorithm for Relation Borrowing is given in Figure 5.
Following data structures are used for the linking purpose:

1. A table called tbl all words, which, for each word, stores the part of speech (PoS) and an array of ids for
synsets in which the word participates. Table 9 illustrates this for the Hindi word kara (meaning to do).

2. A table called tbl all synsets which stores the synset ids, the synsets, and the glosses for the various
meanings.

3. A table tbl <PoS> <Relation> for each PoS and Relation combination. For example, tbl noun hypernymy
is the table for the hypernymy semantic relation.
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Figure 4: Block Diagram for English to Hindi synset Mapping
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for each synset identity marathi synset id in Marathi WordNet do
if (marathi synset id == hindi synset id) do

for each relation r pointed by hindi synset id do
if (relation type of r is semantic) do

clamp the synset identity linked by relation r into marathi synset id
end if
else

clamp the synset identity linked by relation r in hindi synset id to marathi synset id
AND manually insert corresponding lexical elements

end else
end for

end if
end for

Figure 5: Algorithm for Relation Borrowing between HWN and MWN

hindi synset id word category
491 kara noun

3295 kara verb
3529 kara noun

Table 9: Example of tbl all words entries

Using the basic ideas outlined above, the synsets of MWN are completely linked with semantic and lexical
relations. This saves a lot of manual labour. An interface has been designed to facilitate the simultaneous
browsing of HWN and MWN. The input to this browser is a search string in any of the two languages. The
search results for both the languages are displayed simultaneously.

6.2 Results on HWN and MWN linking

The Marathi wordnet obtained after establishment of relations using the above methodology was evaluated man-
ually by lexicographers. Out of more than 12500 synsets created for Marathi wordnet, the program established
relations for around 9000 synsets. The number of synsets for which relations were established is less because
of the third case explained in section 6.1. Out of this number, the lexicographers qualitatively evaluated sets of
15% synsets sampled from each part of speech. We find that on an average, about 75% of the synsets of the
Marathi wordnet are linked correctly. Considering only the case where synsets are aligned in both the wordnets,
the average accuracy is 93%. The inaccuracy is a reflection of the incorrect links between synsets in the Hindi
wordnet which is induced in the Marathi wordnet. The incorrect links are due to human error in the development
of the wordnet. A huge dataset of more than 25,000 synsets cannot be checked manually. Only an application
or a tool scanning the whole wordnet for a specific task reveals such errors. The error-cum-incomplete cases are
mainly due to the absence of a complete repository of synsets in the Marathi wordnet which is still growing.

7 Conclusions and Future Work

We have presented our work on statistical measurements on wordnet structures in a trilingual setting – English,
Hindi and Marathi. Many kinds of observations on EWN, HWN and MWN have been tabulated, graphically
depicted and interpreted. These observations draw attention to the close correspondence and largely similar
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structural properties of different wordnets. It is interesting to note that just like the English wordnet, wordnets
in Hindi and Marathi also exhibit the small-world nature. We plan to use this kind of information for evaluating
wordnets. This can have implications for design choices in database implementations of such lexicons since an
overwhelming majority of nodes have very low out-degrees. For instance, [[KH05]] use degree distribution data
to optimise the schema of a multi-lingual database to improve performance.

Addressing the problem of matching of English and Hindi synsets revealed the challenges in such linking,
the most significant of which is the disparity in the sizes of the wordnets. We would like to improve upon the
algorithm presented for the task. The heuristic function used produces promising but not very good results. We
would like to improve upon the matching quality by keeping the basic approach same and changing the heuristic
function to not just depend on the levels of the synsets where the match was found, but also on the difference
between the levels. This might lead to a better heuristic since the closely related synsets across the languages
should have matches between the synsets which are at nearly the same levels.

The creation of the Marathi wordnet is being led by the wordnet of its sister language, viz. Hindi. The
programmatic borrowing of semantic relations has dramatically cut down on the manual efforts of constructing
this valuable resource. The method will prove more and more effective as the coverage of the Marathi wordnet
increases.

All these issues as described above are – to our mind – valuable steps towards (i) wordnet evaluation and (ii)
creation of the multi-lingual Indo wordnet linked with the global wordnet grid.

Acknowledgements: We thank the lexicographers at the Centre for Indian Language Technology (CFILT),
IIT Bombay, for their evaluation of results and for their valuable suggestions.
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Abstract

The volume of information in natural languages in electronic format is increasing exponentially. The
demographics of users of information management systems are becoming increasingly multilingual. To-
gether these trends create a requirement for information management systems to support processing of
information in multiple natural languages seamlessly. Database systems, the backbones of information
management, should support this requirement effectively and efficiently. Earlier research in this area
had proposed multilingual operators [[7, 8]] for relational database systems, and discussed their imple-
mentation using existing database features.

In this paper, we specifically focus on the SemEQUAL operator [[8]], implementing a multilingual
semantic matching predicate using WordNet [[12]]. We explore the implementation of SemEQUAL using
OrdPath [[10]], a positional representation for nodes of a hierarchy that is used successfully for support-
ing XML documents in relational systems. We propose the use of OrdPath to represent position within the
Wordnet hierarchy, leveraging its ability to compute transitive closures efficiently. We show theoretically
that an implementation using OrdPath will outperform those implementations proposed previously. Our
initial experimental results confirm this analysis, and show that the OrdPath implementation performs
significantly better. Further, since our technique is not specifically rooted to linguistic hierarchies, the
same approach may benefit other applications that utilize alternative hierarchical ontologies.

1 Introduction

The volume of information in natural languages in electronic format is increasing exponentially [[9]] and the
demographics of users of information management systems are becoming increasingly multilingual [[2, 11]]. To-
gether these trends create a requirement for information management systems to support processing of informa-
tion in multiple natural languages seamlessly. Database systems, the backbones of information management,
should support this requirement effectively and efficiently. The minimal requirement is that the underlying
database engines (typically relational), provide similar functionality and efficiency for multilingual data as that
associated with processing unilingual data, for which they are well-known. Earlier research in this area had pro-
posed multilingual functions [[7, 8]] for relational database systems, and discussed ways of implementing them
using existing features provided by the database systems. We specifically focus on the SemEQUAL function,
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as defined in [[8]], implementing a boolean predicate SemEQUAL(word1,word2), which is true if word1, or any
of its synonyms, when translated into the language of word2, are in the semantic transitive closure of word2 or
its synonyms. In order to implement this operator, the WordNet [[12]] ontological hierarchy is used, along with
the semantic relationships between its component multilingual word forms.

In this paper, we explore the implementation of SemEQUAL using OrdPath [[10]], a representation of posi-
tion in a hierarchy that is used successfully for supporting XML documents in relational systems. We propose
the use of OrdPath to represent position within the Wordnet hierarchy, leveraging its ability to compute tran-
sitive closures efficiently. We show theoretically that an implementation using OrdPath will outperform those
implementations proposed previously. Our initial experimental results confirm this analysis, and show that the
OrdPath implementation performs significantly better. Further, since our technique is not specifically rooted
to linguistic hierarchies, the same approach may benefit other applications that utilize alternative hierarchical
ontologies.

1.1 Organization of the Paper

The paper is organized as follows: Section 2 outlines the semantic matching problem and provides a brief
overview of WordNet lexical resources and OrdPath. Section 3 outlines the implementation approaches con-
sidered. Sections 4 and 5 theoretically and experimentally compare the various approaches and Section 6
concludes the paper, outlining our future research directions.

2 Multilingual Semantic Matching Problem

In this section, we state the problem of multilingual semantic matching of word-forms in different languages.
We then provide a brief introduction to the resources used: a standard linguistic resource – the WordNet [[4, 12]],
an ontological operator as defined in [[8]], and OrdPath, a hierarchy-numbering scheme [[10]]. Finally we outline
simplifications to the problem for purposes of analysis and implementation.

2.1 Problem Definition

Consider a hypothetical multilingual portal, Books.com, with a sample product catalog [[10]] as shown in Fig-
ure 10, where the Category attribute stores the classification of the book in the original language of publication.

Table 10: Sample Books.com Catalog

Author Author FN Title Price Category Language

Durant Will History of Civilization $ 149.95 History English
Descartes Renè Les Méditations Metaphysiques €49,00 Philosophie French
Franklin Benjamin Ein Amerikanischer Autobiography €19,95 Autobiography German
Gilderhus Mark History & Historians $ 19.95 Historiography English
Nero Bicci Il Coronation del Virgin €99,00 Arti Fini Italian
Nehru Jawaharlal Letters to My Daughter £15.00 Journal English
Σαρρη κατερυα ΠαχυδαστσΠαυo €12,00 Moυσκη Greek
Lebrun François L’Histoire De La France €75,00 Histoire French
Franklin Benjamin Un Américain Autobiographie €19,95 Autobiographie French

In today’s database systems, a query with a selection condition of (Category = ‘History’), would return only
those books that have Category as History in English, although the catalog also contains history books in
French, Greek and German. A multilingual user may be better served, however, if all the history books in all
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languages (or in a specified set of languages) are returned. A query using the SemEQUAL function of [[8]] as
given below,

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL ‘History’
InLanguages {English, French}

and a result set, as given in Table 11, would therefore be desirable.

Table 11: Multilingual Semantic Selection

Author Title Category

Durant History of Civilization History
Lebrun L’Histoire De La France Histoire
Franklin Un Américain Autobiographie Autobiographie
Gilderhus History & Historians Historiography

It should be noted that the SemEQUAL function shown here is generalized to return not just the tuples that
are equivalent in meaning, but also with respect to specializations, as in the last two tuples that are reported
in the output. Historiography (the science of history making) and Autobiography are specialized
branches of History. To determine semantic equivalence of word-forms across languages and to characterize
the SemEQUAL functionality, we take recourse to WordNet [[12]], a standard linguistic resource that is available
in multiple languages and, very importantly from our perspective, features interlingual semantic linkages.

2.2 A Brief Introduction to WordNet

In this section, we provide a brief introduction to WordNet [[4,12]]. WordNet arranges the concepts of a language
using psycho-linguistic principles, using word-forms as a canonical representation.

2.2.1 Word Form and Word Sense

A word may be thought of as a lexicalized concept; simply, it is the written form of a mental concept that may
be an object, action, description, relationship, etc. Formally, it is referred to as a Word-form. The concept that it
stands for is referred to as Word-sense, or in WordNet parlance, Synset. The defining philosophy in the design
of WordNet is that a synset is sufficient to identify a concept for the user. For example, the word-form bird
corresponds to several different synsets, two of which are {a vertebrate animal that can typically fly} and {an
aircraft}; each of these two synsets is denoted differently with subscripts in Figure 1. Two words are said to be
synonymous, or semantically the same, if they have the same synset and hence map to the same mental concept.
The synsets are divided into five distinct categories and we explore below only the Nouns category. WordNet
contains a lexical matrix that converts a word form (lexicographic representation) to a word sense (the semantic
atom of the language, namely, the Synset).

2.2.2 Noun Taxonomical Hierarchy

WordNet organizes all relationships between the concepts of a language as a semantic network between synsets.
In particular, the nouns in English WordNet are grouped under approximately twenty-five distinct Semantic
Primes [[4]], covering distinct conceptual domains, such as Animal, Artifact, etc. Under each of the semantic
primes, the nouns are organized in a taxonomic hierarchy, as shown in Figure 1, with Hyponyms links signifying
the is-a relationships (shown in solid arrows). Efforts similar to the English WordNet are underway [[4]] in
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several languages, including Indian, Chinese and European languages. A common feature among such efforts is
that they all strive for a taxonomic hierarchy in a respective language that has synsets that may be mapped to a
set of English synsets. Further, inter-linking of semantically equivalent synsets between WordNets of different
languages are being designed in some languages. Figure 1 shows a simplified interlinked hierarchy (shown as
dotted arrows) in English and German.
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Figure 1: Sample Interlinked WordNet Noun Hierarchy

2.3 Implementing SemEQUAL using WordNet

WordNet enables mapping word forms to synsets in other languages and comparing them. Denoting an in-
terlinked taxonomic hierarchy of the multilingual strings by HML, the SemEQUAL operator is formally de-
fined [[8]] as follows:

Definition: Given two multilingual noun strings wi and wj , and the interlinked multilingual taxonomical hier-
archy HML, (wiSemEQUALwj) ⇐⇒ (wi ∩ THML(wj) �= φ), where THML(x) computes the transitive
closure of x inHML.

The basic skeleton of the algorithm to semantically match a pair of multilingual strings is outlined in Figure 2.
Here, the SemEQUAL function takes two multilingual strings w1 and w2 as input. It returns true if the string
w2 is a member of the transitive closure of w1 in the multilingual taxonomic hierarchy HML. Note that the w2

could be the values from the column Category in the Catalog table, and w1 could be the user specified category,
say History.

SemEQUAL (w1, w2)
Input: Multilingual Strings w1, w2, Taxonomic Hierarchy HML ( as a resource)
Output: true or false
1. T CQ← TransitiveClosure(w2,HML);
2. if ({w1} ∩ T CQ) return true else return false;

Figure 2: The SemEQUAL Operator Algorithm
SemEQUAL as defined in Figure 2 may be implemented with the following 3 steps:

1. All synonyms of word1 in the language of word2, yielding a set of words,W1.

2. Find the semantic transitive closure of word2 in the taxonomic hierarchy, HML, yieldingW2.

3. Output true ifW1 ∩ W2 �= φ.
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Though WordNet hierarchies are directed acyclic graphs, we simplified them into trees, by duplicating all shared
nodes and their descendants, with multiple parents. Since the number of such shared nodes is not high [[3]], the
additional storage overhead is not significant.

2.4 A Brief Introduction to Ordpath

OrdPath is a tree numbering schema designed for storage and query of XML data [[10]]. It is one of a number of
novel tree numbering schemes devised in recent years [[6]]. Ordpaths are formed by concatenating bitstrings, each
bitstring representing the position of that Ordpath at one level of the tree. Each bitstring is Huffman encoded
so small values (and thus tree nodes with small fanout) take less space than large values. For example, using
integers to represent the bitstring for each level and delimiting them by periods, an OrdPath 1.5.3 represents
the 3rd child of the 5th child of the root node. An interested reader is referred to [[10]], for details on Ordpath.
Ordpath encoding of hierarchies has the following three key properties:

1. Encoding of position in the hierarchy If a and b are two OrdPaths, and the binary comparison a < b
is true, then a precedes b in a depth-first traversal in the tree represented by the OrdPaths. This prop-
erty allows us to test easily whether one OrdPath is in the transitive closure of another: namely, if
a = prefix(b), then b exists in the closure of a. This can be easily encapsulated in a function Is-
Descendant(path1,path2) which is true if path2 is in the closure of path1. IsDescendant(path1,path2)
can be expressed as the conjunctive predicate (path2 >= path1 and path2 < DescendantLimit(path1)),
where DescendantLimit(path1) is the largest possible value a descendant of path1 can have. Descen-
dantLimit(path1) can be computed easily.

2. Small size Each level of each node in the hierarchy is represented by a variable-length bit string. This
results in OrdPaths being quite compact. For instance, WordNet has about 75, 000 nodes, with a maximum
depth of 19, a maximum fanout of 398, an average depth of 9.2 and an average fanout of 1. The average
Ordpath value representing a node in such a tree will take 30 bits.

3. Support insert and delete OrdPaths numbering allow additions and deletions of nodes in the hierarchy,
while maintaining the other properties. While we do not anticipate frequent updates to the noun hierarchy,
this property allows any domain-specific local updates to the hierarchy to be done efficiently.

3 Implementation Approaches Considered

In this section, we discuss alternative approaches for implementing SemEQUAL in relational database systems.
Some of these approaches have been tried in the research literature [[8]], but are presented here for comparison
with the proposed method. Specifically, the following four ways of implementing SemEqual are analyzed. They
primarily differ in the representation of the WordNet hierarchy in the relational system, and how the transitive
closure is computed.

Parent-child In this representation, the hierarchy relationships are represented as Parent-Child relations. Hence,
each row in the table represents a link in the hierarchy. For a given node n, there may be npc rows in the
hierarchy table, each representing a child relationship with n as the parent.

Pre-computed All the transitive ancestor-descendent relationships associated with a node are represented as a
set of rows explicitly. Hence, every node n will have a set of nad relationships, with each row representing
one ancestor-descendent relationship between n and a node in its transitive closure.

Inlined pre-computed All the ancestor-descendent relationships associated with a node are represented as one
row in the inlined table (assuming that the number of descendents for the node n does not exceed a
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specified large limit). The inlined descendents are stored in a variable array, associated with the root of
the transitive closure.

WordPath The position of a node in the hierarchy is represented by an OrdPath. This representation stores the
WordNet hierarchy implicitly.

3.1 Schema Representation for Analysis

In this paper, for the analysis and comparison of different transitive closure computing methodologies, we use
a standard Information Retrieval (IR) scenario, where a collection of documents is searched for occurrences of
a user-specified specific search term. While a standard search considers an inverted index (or equivalently a
standard B+ index structure), SemEQUAL searches the specified search term, and also all elements in its tran-
sitive closure with respect to WordNet noun hierarchy. In addition, by appropriate use of multilingual WordNet
hierarchies, a query term may be searched across languages, as outlined in [[8]]. Note that the analysis outlined in
this paper applies to other scenarios as well; for instance, SemEQUAL may be used as a join condition between
two document collections. However, for clarity of explanation, we restrict our discussion to the simple scenario
of searching in a single document collection.

We define the following four tables in this scenario, as explained in detail below. The primary key of a table
is indicated with underlining of the appropriate key columns, and the order in which they are defined.

• Words(Language int, Word string, WordId int) This table maps words to integers, providing a reference
key to be used in other tables, thus reducing storage space. WordId is unique across all languages. A
secondary index on WordId enables translating from WordId back to string representation efficiently.

• Corpus(WordId int, DocumentIdList binary) This table represents the document collection (referred
to as corpus) being searched. Corpus is stored as an inverted index; with a WordId as the primary key,
accompanied by a compact list of documents that it occurs in. Here we assume that the list of DocIds is
represented as a list of deltas from one docid to the next, as described in [[1]].

• Synset(SourceLanguage int, SourceWordId int, TargetLanguage int, TargetWordId int) This table
stores the set of synonyms of a word, irrespective of the languages, thereby extending the traditional
definition of synsets in WordNet, to include the interlingual links between synsets in the languages. This
table contains all inter- and intra-language synonyms of words, where intra-language synonyms have the
same source and target languages, and inter-language synonyms have different ones.

• TcWordNet(WordId int, ClosureId int) This view stores the transitive closure of all of WordNet. Each
row of this table contains a WordId and one node its closure, represented by ClosureId. This is a view
because the storage of the transitive closure varies between the approaches.

3.2 Common Query

We use a common IR query of searching a corpus for a given word, for our analysis. The common search query
will use SemEQUAL, thus including multilingual semantic search based on the taxonomic hierarchy defined by
the interlinked WordNets. It has been shown in [[8]] that the complexity of SemEQUAL(w1, w2) is linearly pro-
portional to the number of languages used in the hierarchy. It is reasonable to assume that the set of languages
in which the documents in the Corpus table occur is known, or the languages of interest are specified by the
user. Therefore, we add a third argument to SemEQUAL, namely SearchLanguageList, that specifies the list of
languages in which to consider semantic matches in. Such an assumption greatly reduces the effort to generate
the transitive closure of the query terms in all languages. The query examined is thus:
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Select C.DocumentIdList from Corpus C
where SemEqual(C.WordId, @SearchWord, @SearchLanguageList)

The parameter @SearchWord indicates the search term and @SearchLanguageList provides the list of
languages in which to look for semantic matches. This query has an algebraic, non-cost-based, rewrite against
the above schema, to:

Select C.DocumentIdList from Words W where W.Word=@SearchWord
Inner join Synset S

where S.SourceLanguage = W.Language
and S.SourceWordId = W.WordId
and TargetLanguage IN @SearchLanguageList

Inner join TcWordNet T where S.TargetWordId = T.WordId
Inner join Corpus C where C.WordId = T.ClosureId

The generated query is used in subsequent analysis, to compare the efficiency of each of the proposed methods
to compute the transitive closure.

3.3 Detailed Overview of Approaches

3.3.1 Parent-Child: WordNet(WordId int, ParentWordId int)

In this approach WordNet is stored as a row per parent-child relationship. The transitive closure is computed via
a standard SQL:1999 recursive query. Table 12 shows a sample portion of the table.

Table 12: Parent-Child Hierarchy Table

WordId ParentWordId

Mammal Animal
Aquatic Mammal Animal
Dog Mammal
Tiger Mammal
Dolphin Aquatic Mammal

3.3.2 Pre-Computed Closure (PreComputed): WordNetPC (WordId int, ClosureWordId int)

In this approach WordNet is stored with the pre-computed transitive closure in the hierarchy. Each element in a
word’s transitive closure requires one row. Table 13 shows a sample portion of the table.

Table 13: Pre-Computed Closure

WordId ClosureWordId

Animal Mammal
Animal Aquatic Mammal
Animal Dog
Animal Tiger
Animal Dolphin
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3.3.3 Inlined Pre-Computed Closure (Inlined): WordNetIL (WordId int,ClosureIdList array(int))

Assuming an efficient implementation of variable arrays is available in the database system, the duplication of
WordId in the pre-computed closure can be eliminated. Alternatively, in database systems that support prefix
compression on keys, this methodology may be viewed as the pre-computed closure with prefix compression on
WordId. Either way, ordering the closure list on WordId maximizes the efficiency of subsequent processing, in
particular searching the closure for a particular word. Table 14 shows a sample portion of the table.

Table 14: Inlined Closure

WordId ClosureIdList

Animal {Mammal, Aquatic Mammal, Dog, Tiger, Dolphin, . . . }
Mammal {Dog, Tiger, . . . }
Aquatic Mammal {Dolphin, . . . }

With variable array the in-lined table is unrolled to compute the transitive closure, as follows:
Create view TcWordNet as

Select * from WordNetIL W cross apply unnest(W.ClosureIdList)

3.3.4 WordPath

Under this approach, the position of a word in the WordNet hierarchy is encoded by an OrdPath, called a
WordPath subsequently in this paper. The WordId used in other approaches is replaced by WordPath. This does
not cause an increase in storage size. The key advantage is the elimination of any table representing the WordNet
hierarchy. This is possible because the only operation the WordNet table is used for is to enable determining,
for any pair of words, whether the first is in the transitive closure of the second. The information necessary
to determine this is encoded in the WordPath itself. Another advantage is that with the Corpus table having a
primary key of WordPath, all words in the transitive closure of a given word are co-located. Assuming a type
path that encapsulates OrdPath functionality, the resulting schema is as follows:

• Words (Language int, Word string, WordPath path)

• Corpus (WordPath path, DocumentIdList binary)

• Synset (SourceLanguage int, SourceWordPath path, TargetLanguage int, TargetWordPath path)

Using the above schema, the standard IR query is rewritten as:

Select C.DocumentIdList from Words W where W.Word=@SearchWord
Inner join Synset S

on S.SourceLanguage=W.Language
and S.SourceWordPath=W.WordPath
and TargetLanguage IN @SearchLanguageList

Inner join Corpus C on IsDescendant(C.WordPath, S.TargetWordPath)

Comparing this to the query in Section 3.2, the WordPath query eliminates the join with TcWordNet. In addi-
tion, the final join between Synset and Corpus is on the IsDescendant(column,path2) predicate; as outlined in
Section 2.4 this is a conjunctive predicate and the join condition becomes a range seek.

51



4 Theoretical Analysis

In this section, we present a theoretical analysis of the performance of the WordPath approach in comparison to
the other approaches outlined in Section 3. Specifically, we compare key parameters affecting relational query
performance: the storage size, logical IO, and CPU usage.

4.1 Definitions and Assumptions

First, we define the following symbols and terms that are used in subsequent analysis:

• W - Number of words in WordNet noun hierarchy. For English WordNet, this is 75,000, and it is assumed
to be of similar order in other WordNets [[4]].

• A - Average number of words in the transitive closure for a given word. For the noun hierarchy of English
WordNet, this is 9.2.

• S - Average number of synsets for a given word. For English WordNet, s is 1.23, and it is expected to be
similar in other WordNets [[4]].

• M - Average number of corpus documents with a given WordId.

• L - Number of languages for which WordNets are stored and used for processing. Currently, approxi-
mately 30 WordNets exist at various stages of completion. [[5]]

• l - Number of languages involved in a SemEQUAL query. Here assumed to be 3, the average number of
languages a user may be interested in (per query).

• C - Average length of a word. For English Wordnet this is 11 characters.

• PageSize - Number of bytes per database page. This number varies from 4K to 64K in various commer-
cial DBMS systems. We assumed 8K for our analysis.

Next, the following simplifying assumptions are made, to make the analysis easier. The first two assumptions
affect all approaches proportionately, and hence will not affect the comparisons. The last two assumptions affect
WordPath negatively compared to the other approaches, and hence the results provide a lower bound on the
relative benefit of WordPath.

• Non-leaf B-tree page costs are assumed to be 0. In most schemas the non-leaf tree pages are a small
percentage of the database size. Navigation of these pages usually takes a small percentage of the IO and
CPU for a given query.

• Per-row overhead costs are assumed to be 0. In most database systems the per-row storage overheads
are relatively low, typically, 1-2 bytes per row.

• It is assumed that all IO - Sequential and Random IO - has the same cost. Clearly, for logical IO
this is true, while for physical IO, this assumption is not. However, sequential IO is only possible in the
WordPath case or when the storage required for the DocIds for a given word exceed a page - in other
words, for extremely large Corpus sizes.

• The average Wordpath size is assumed to be 4 bytes, the same as that for WordId. Note that the actual
average WordPath size for WordNet is less than this.

Given the above definitions, M, the number of documents with a given word, determines the scope of a
scenario. In the following table, we present some scenarios to indicate approximately the scope of the databases
involved. We consider in our analysis document collections up to that corresponding to M = 100, 000.
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Table 15: Values of M and associated scenarios

M Scenario Notes

10 Company Product Catalog 105 products, 10 words/title
100 Large County Library 106 book titles, 10 words/title

1,000 U.S. Library of Congress 107 book titles
10,000 PubMed abstract index 107 abstracts, 1000 words/abstract

100,000 PubMed article index 107 article texts, 10000 words/article

4.2 Storage Size Comparison

Based on the tables described in Sections 3.1 and 3.3, the total storage size of each table, is as shown in Table
16.

Table 16: Table Storage Sizes

Table Size Other Structures

Words (8 + C) ∗W ∗ 2 2 indices
Synsets 16 ∗W ∗ S ∗ l

WordNet, Parent-Child 8 ∗W

WordNet, Pre-computed 8 ∗ A ∗W

WordNet, Inlined (4 ∗ A + 4) ∗W

Corpus W ∗M

Using the above formulae, the total schema storage size for each of the approaches, and for different scenarios,
are computed and shown in Table 17.

Table 17: Storage Sizes (MB)

M ParentChild PreComputed Inlined WordPath

10 45.4 54.1 49.7 44.8
100 51.8 60.5 56.2 51.2

1, 000 116.2 124.9 120.5 115.6
10, 000 759.9 768.6 764.3 759.3

100, 000 7, 197.2 7, 205.9 7, 201.6 7, 196.6

The corpus size eventually becomes the most dominant factor. Since in all approaches the corpus table has
the same number rows (though not in the same order in each approach), the storage size for all approaches
eventually converges. For smaller collections, the Parent-Child and WordPath approaches have approximately
equal storage, and have a slight advantage, space-wise.

4.3 Logical IO

For cold queries, defined as those that are run when pages needed for answering the queries are not in-memory,
all unique logical IOs become physical IOs and dominate response time. For warm queries, logical IO is still,
in general, the leading factor in response time of a query. However, how much logical IO an approach takes
depends on the query plan followed. In all scenarios considered here, the best plan is to first lookup relevant
synsets, compute their respective closures and then lookup each closure member in the corpus. In the WordPath
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approach, the best plan is to compute the synsets and lookup each synset in the corpus. Table 4.3 outlines for-
mulas for the IO required at each stage for every approach.

Approach GetId Get Synsets Get Closures Corpus Lookup

ParentChild 1 16 ∗ SL/PageSize ASl + 	4 ∗ASl/PageSize
 ASl ∗ 	M/PageSize

PreComputed 1 16 ∗ SL/PageSize Sl ∗ 	8A/PS
 ASl ∗ 	M/PageSize

Inlined 1 16 ∗ SL/PageSize Sl ∗ 	(4A + 4)/PS
 ASl ∗ 	M/PageSize

WordPath 1 16 ∗ SL/PageSize 0 Sl ∗ 	AM/PageSize


Below, we present a detailed examination of each of the stages presented in Table 4.3:

• GetId: In all alternatives, this is a single IO to translate from string to WordId or WordPath, as appropriate
in an approach.

• Get Synsets: In all alternatives, this is a lookup of the query language and word Id/Path, followed by a
scan of the synsets in each relevant target language. We assume that the l/L ratio (languages of interest
to the query vs total languages represented in the system) can vary and all L languages are fixed and
co-located. Further, it is assumed that the l languages are distributed such that all pages for a given path
are touched. Note that since S=̃1 and L < 30, this is usually a single IO.

• Get Closures: Basic Parent-Child Assuming no co-location due to lack of correlation between WordId
and position in the hierarchy, each word in the transitive closure will be a separate logical IO. There are
S ∗ l closures to compute and A words in the average closure, resulting in A ∗ S ∗ l co-located rows, each
4 bytes long. In addition, there is IO associated with temporary storage of intermediate/final closures.

• Get Closures: Pre-Computed These are all co-located for a given synset, but not across synsets or
languages. Each closure takes 8 ∗A bytes of space.

• Get Closures: Inlined The analysis is same as that of Pre-Computed approach, other than each closure
takes 4A + 4 bytes of space.

• Get Closures: WordPath No closure computation is required.

• Corpus Lookup: (Basic, PreComputed and Inlined) With no co-location, each of the A ∗ S ∗ l closure
elements can be assumed to require separate IO. Each of these lookups requires M/PageSize IOs.

• Corpus Lookup: WordPath Synsets and languages are not necessarily co-located, but the A elements of
each of these closures are. Hence, each closure takes A ∗M/PageSize bytes of space.

Using the above formulae, Table 18 shows the total logical IOs required by each approach for different sce-
narios, and for different implementation methodologies.

Table 18: Logical IO for each Approach in each Scenario

M ParentChild PreComputed Inlined WordPath

10 27 15 15 4
100 27 15 15 4

1, 000 27 15 15 5
10, 000 38 26 26 20

100, 000 159 151 151 143

It may be observed that the WordPath approach shows a significant IO advantage in most of the modeled sce-
narios for the given set of parameters and assuming frequency of words in the corpus follows a continuous
distribution.
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4.4 CPU Complexity

Beyond logical IO, CPU complexity is most strongly tied to rows processed and relational operators selected in
the execution tree. In Table 19, we compare these factors for each approach.

Table 19: Rows Processed and Relational Operators for each Approach

Approach Rows Processed(formula) Rows Processed(number) Operators

ParentChild 1 + 2 ∗ Sl + 2 ∗ ASl 73 3 + A

PreComputed 1 + 2 ∗ Sl + 2 ∗ ASl 73 4
Inlined 1 + 2 ∗ Sl + 2 ∗ ASl 73 4
WordPath 1 + Sl + ASl 39 3

We note that the WordPath approach processes only about 50% of the rows, compared with that of other
approaches. This is because rows processed is dominated by the A∗S ∗l term, for which WordPath has a leading
coefficient of 1 while the others have a 2. We also note that rows processed is independent of Corpus size. Other
than Parent-Child which requires several scans of the hierarchy table, the differences in plan complexity are not
significant among the other approaches.

5 Experimental Results

We implemented the ParentChild, PreComputed and WordPath approaches as outlined in this paper in SQL
Server 2005 using the noun hierarchy of Wordnet Version 1.5. Two simplifications were made to ease imple-
mentation: First, the ordpath type in SQL Server is under development, so a static depth-first numbering scheme
was used as a substitute. Second, it was assumed that S=1 rather than 1.23. Neither simplification is expected to
affect results significantly. Tables 20 and 21 show the results for small corpus sizes M=10 and M=100. In both,
search terms were picked so that transitive closure size was equal to the Wordnet average of 9.

Table 20: Performance Comparison (M=10)

Approach CPU time Logical IO Physical IO Elapsed time(cold)

Parent-Child 107413 2442 16 291050
Pre-Computed 1764 26 11 140625
WordPath 1209 8 7 88320

Table 21: Performance Comparison (M=100)

Approach CPU time Logical IO Physical IO Elapsed time(cold)

Parent-Child 108643 2451 19 331926
Pre-Computed 2088 35 14 189983
WordPath 1397 10 8 139406

The above figures indicate that the actual performance is in line with that expected from the theoretical anal-
ysis, confirming our claim that OrdPath methodology significantly outperforms earlier implementation method-
ologies. OrdPath’s efficient encoding scheme eliminates the need for explicit computation of transitive closures,
and thus exhibits superior performance for SemEQUAL query. We are currently experimenting with larger
database sizes (M values up to 100,000) and with a variety of hierarchies. We hope to report a full study in due
course.
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6 Conclusion & Future Directions

In this paper, we explored the implementation of a multilingual semantic matching function, SemEQUAL, us-
ing OrdPath [[10]] to represent position in the WordNet [[12]] hierarchy. OrdPath enables efficient determination
of membership in transitive closures, a key step in implementing SemEQUAL. We analyzed theoretically the
performance of existing implementations, and with proposed OrdPath methodology, and showed that our im-
plementation would incur significantly less IO and CPU costs, resulting in more efficient processing of SemE-
QUAL. We implemented the various approaches in SQL Server, and the performance figures for small database
sizes confirm that the performance of OrdPath is in line with that predicted by our analysis, and significantly
better than the exisitng implementations. We are currently undertaking a through study of OrdPath for different
sizes of hierarchies, query types and database sizes, and we hope to report the results in due course. Further,
since our technique is not specifically rooted to linguistic hierarchies, the same approach may benefit other
applications that utilize alternative hierarchical ontologies.

References

[[ 1 ]] Brewer, E. Combining Systems and Databases: A Search Engine Retrospective. Readings in Database
Systems: Fourth Edition. Joseph M. Hellerstein and Michael Stonebreaker (eds., MIT Press, Cambridge,
MA. 2005). http://www.cs.berkeley.edu/ brewer/papers/SearchDB.pdf.

[[ 2 ]] The Computer Scope Ltd. http://www.NUA.ie/Surveys.

[[ 3 ]] Devitt A. and Vogel, C. The Topology of WordNet: Some Metrics. Proceedings of the Second Global
WordNet Conference, 2004. http://www.fi.muni.cz/gwc2004/proc/119.pdf.

[[ 4 ]] Fellbaum, C. and Miller, G. A. WordNet: An electronic lexical database (language, speech and commu-
nication). MIT Press, Cambridge, MA, 1998.

[[ 5 ]] Global WordNets in the World. http://www.globalwordnet.org/gwa/wordnet table.htm.

[[ 6 ]] Koch, C., Processing queries on tree-structured data efficiently. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, Chicago, IL. http://www-
dbs.cs.uni-sb.de/ koch/download/pods2006.pdf.

[[ 7 ]] Kumaran, A. and Haritsa, J. R. LexEQUAL: Multilexical Matching Operator in SQL. Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, 2004.
http://portal.acm.org/citation.cfm?id=1007715.

[[ 8 ]] Kumaran, A. and Haritsa, J. R. SemEQUAL: Multilingual Semantic Matching in Relational Systems.
Proceedings of the 10th International Conference on Database Systems for Advanced Applications,
2005. http://www.springerlink.com/index/YKKAWFYBB22CGBPF.pdf.

[[ 9 ]] Lyman, P. and Varian, H. R. How Much Information. http://www.sims.berkeley.edu/research/projects/how-
much-info/.

[[ 10 ]] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G. and Westbury, N. ORDPATHs: insert-friendly XML
node labels. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2004.
http://portal.acm.org/citation.cfm?id=1007686#references.

[[ 11 ]] The WebFountain Project. http://www.almaden.ibm.com/WebFountain.

[[ 12 ]] The WordNet. http://www.cogsci.princeton.edu/w̃n.

56



Multilingual Indexing Support for CLIR
using Language Modeling

Prasad Pingali, Vasudeva Varma
{pvvpr, vv}@iiit.ac.in

International Institute of Information Technology
Hyderabad, India.

Abstract

An indexing model is the heart of an Information Retrieval (IR) system. Data structures such as term
based inverted indices have proved to be very effective for IR using vector space retrieval models. How-
ever, when functional aspects of such models were tested, it was soon felt that better relevance models
were required to more accurately compute the relevance of a document towards a query. It was shown
that language modeling approaches [[1]] in monolingual IR tasks improve the quality of search results in
comparison with TFIDF [[2]] algorithm. The disadvantage of language modeling approaches when used
in monolingual IR task as suggested in [[1]] is that they would require both the inverted index (term-to-
document) and the forward index (document-to-term) to be able to compute the rank of document for a
given query. This calls for an additional space and computation overhead when compared to inverted
index models. Such a cost may be acceptable if the quality of search results are significantly improved.
In a Cross-lingual IR (CLIR) task, we have previously shown in [[3]] that using a bilingual dictionary
along with term co-occurrence statistics and language modeling approach helps improve the functional
IR performance. However, no studies exist on the performance overhead in a CLIR task due to language
modeling. In this paper we present an augmented index model which can be used for fast retrieval
while having the benefits of language modeling in a CLIR task. The model is capable of retrieval and
ranking with or without query expansion techniques using term collocation statistics of the indexed cor-
pus. Finally we conduct performance related experiments on our indexing model to determine the cost
overheads on space and time.

1 Introduction

Information retrieval (IR) is the science of searching for information in documents, searching for documents
themselves, searching for metadata which describe documents, or searching within databases, whether relational
stand-alone databases or hypertext networked databases such as the Internet or World Wide Web or intranets,
for text, sound, images or data. Searching for the relevant information also may involve the notion of a ranking
function, which denotes the relevance of a retrieved item for the given query. It should be noted that ranking
the search results in the order of their relevance to query is an important aspect in most of the IR systems that
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Figure 1: A Typical Information Access Framework

deal with text document retrieval. Boolean IR systems are an exception to this observation, where all the search
results that satisfy the boolean constraints of the query are presented to the user in the same order as found in
the database. However, boolean retrieval systems were found to be insufficient in building usable applications
in many domains. In this paper we deal with the problem of text document retrieval and more specifically
Cross-lingual Information Retrieval (CLIR).

CLIR has been an important area of research in the IR community and the need is felt to extend today’s
monolingual techniques to be able to simultaneously handle content of multiple languages. Assume a query Qs

in user’s language (also known as a source language). The core cross-lingual IR problem is defined as retrieving
and ranking of relevant documents which may occur in the same source language as that of Qs and each of a set
of target languages TL1, TL2....TLk. This problem can be first viewed in terms of a single target language (say
the cross language document collection is Dt) and then scaled to multiple languages using the same technique.
However, such a solution will not try to exploit the availability of same or similar (comparable) information in
multiple languages. In CLIR and Multi-lingual IR (MLIR) research, studies exist which address the translingual
IR problem by considering a single target language [[4–7]], and also by exploiting similar information in multiple
target languages [[8,9]]. In this study we consider solutions for one target language and then scale such a solution
for other languages. This would enable us not to assume any comparable data or resources available in multiple
target languages and at the same we would not try to do anything special in the ranking function when multiple
target languages exist. If both the query and documents were in the same language, all the standard IR techniques
(such as weighted keywords, vector space models, probabilistic IR models) can be directly applied to retrieve
and rank the documents with slight adaptations to Indian language content. However these techniques may
not be directly applicable for the cross-language retrieval problem. In order to achieve the CLIR, some of the
possible approaches could be:
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• Translate the document collection - Manually or automatically translate all the documents in Dt into the
source language document set, say D

′
s and retrieve and rank the documents using the same language query

Qs using any of the monolingual IR techniques

• Translate the query - Convert the source language query Qs into the target language either manually,
automatically or semi-automatically with user interaction (say as Q

′
t) and retrieve and rank the documents

present in the same language (i.e. Dt) using any of the monolingual IR techniques

• cross-lingual relevance feedback - If a parallel corpus exists between the query and document languages,
i.e., for every source language document in Ds there exists an equivalent target language translated docu-
ment in Dt which is identifiably annotated. In such a setup, the source language query Qs can be used to
query documents of the same language first, and the retrieved documents from source language are used
to obtain their equivalent target language documents from Dt. The terms collected from these documents
are then used to retrieve target language documents.

While these different approaches have been studied to address CLIR problem, each of them has its own
disadvantages. Translating the entire document collection might work if the document collection is static and
is locally available. However these may be unrealistic assumptions if a CLIR system were to be built for an
environment like web where the document collection is very huge and is always changing at a very rapid rate.
On the other hand translating the query seems promising, but queries are typically too short to provide enough
context to precisely translate into a different language. Despite this drawback, CLIR researchers have argued
and demonstrated that a precise translation may not be required, since the translated query is not for human
consumption and is meant to obtain the gist of the information need. The third approach of relevance feedback
has been shown to perform very well [[6]] but it requires a parallel corpus which is a difficult resource to obtain
for many language pairs. Since we are looking at Indian languages as the query language, it is difficult to find
any such resources. Therefore we limit our scope to using dictionary based translation of the query, with query
expansion using monolingual corpus (i.e. the second approach).

2 System Overview

Having defined the cross-lingual IR problem in general, let us now look at each of the sub-problems to achieve
the stated larger goal. This understanding is essential to appreciate some of the decisions made in designing
the structure of the index. In order to illustrate some of the major problem areas within CLIR we provide a
typical system overview as shown in Figure 1 and use an example information need represented as a query.
Consider a user trying to locate documents discussing about various “Nestle’s products”. This query would
be written as “����� �� u�����” in Hindi and as “�� ��� �� u�a
 vu�a�ua� �u ” in Telugu 1. As evident from the
Figure 1, there are two broad logical divisions in this CLIR sub-problems. The first logical division consists of
offline processing modules to collect and index the document collections. The second logical division deals with
runtime processing of query processing, retrieval, ranking and presentation of information to the user. Some of
the modules in the shown in Figure 1 are not in the scope of this paper and hence will not be discussed in
detail. Let us now look at the functions of various sub-problems or modules that are part of the above mentioned
framework that would be dependent on the underlying design of database. The following sections 2.1 to 2.4
discuss offline processing mainly involving data collection and indexing. Sections 2.5 to 2.10 discuss online
processing of the IR system at the time of issue of a query by the user.

1Hindi and Telugu are two major Indian languages geographically corresponding to Northern and South-Eastern India, respectively.
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2.1 Language / Encoding Identifier

As mentioned in the previous example query, our system is expected to accept queries from multiple Indian
languages. Similarly, the document collections that are to be retrieved can be present in multiple languages and
multiple encodings in each language. A number of language encodings are in usage on the world wide web and
other document repositories. Especially in Indian language document repositories, these document collections
are available in a set of national and international standards for Indian language character set encodings, while a
number of publishers use proprietary non-standard encodings. In order to be able to index such content, it is very
important to identify the language and such encodings in order to achieve a better recall in retrieval by having
much broader coverage. For language identification a set of statistical and non-statistical (rule based) techniques
can be used to identify the language of a document with a certain precision. Script based recognition for Unicode
character sets works to an extent, but still ambiguities might exist. For example, while most of the major Indian
languages have a script of their own, Marathi, Hindi, Nepali and Sanskrit all occur in the Devanagari script, in
which case script based heuristics may not work. Therefore for ambiguous scripts a better set of heuristics are
required or statistical language identification techniques can help. In our work, we use a set of heuristic based
techniques using fonts and character ranges to recognize character encodings such as UTF-8, ISCII or other
proprietary encodings from HTML and PDF documents [[10]].

2.2 Encoding Converter

Once languages and character encodings are identified for a particular document or a particular piece of text
within a document, such content needs to be converted into a standard encoding so that it can be indexed and
retrieved. Unless all the character encodings of a single language are converted into a single encoding, it will
not be possible to compare strings and match queries for retrieval. Therefore an automatic encoding converter
is essential to enable information access. Again similar to language identification, a set of heuristic based, or
statistical methods can be used to convert content of one encoding into another. For example, one could come
up with a mapping table of various glyphs or glyph sequences of one encoding into another which can be then
used to automatically convert one character encoding into another. Since Indian languages are syllabic in nature
most of these are rarely one to one glyph mappings and end up being one to many or many to one. An example
implementation of such encoding conversion into UTF-8 is discussed in [[10]].

2.3 Language Analyzer

A language analyzer program performs a set of natural language tasks on the indexable content and queries
before passing it to the indexer or retrieval engine. Some of the standard and broad tasks of a language analyzer
w.r.t IR would be to tokenize the input text and identify valid tokens of language, identify which of the valid
tokens are worth indexing and which are not (also known as stop word identification) and performing some level
of morphological processing on these tokens such as stemming. For instance, the example queries of “�����
�� u�����” and “�� ��� �� u�a
 vu�a�ua� �u ” may be converted into “����� u����” and “�� ��� vu�a ” after stop-word
elimination and stemming. In order to perform these tasks, a language analyzer specific to each language may be
needed to be built or on the other hand a generic solution can be devised which may work for all the languages.
Tokenization of string into tokens is a fairly standard heuristic based process, however stop word identification
and stemming may have to be language specific if heuristics or word lists were used [[11,12]]. Some research has
been done on this problem using statistical stemming techniques [[13, 14]].

2.4 Indexer

An indexer program builds an index database. This index could be an inverted index or some other data struc-
ture suitable for IR with some meta-data useful for ranking and presentation of information to the user. Each of

60



the indexable tokens obtained after stop-word removal and stemming are used by the indexer module to store
information such as the documents in which the token has occurred and frequencies and position of such occur-
rences in these documents etc. Advanced indexers also have capabilities to store fielded indices. A fielded index
would store the index information per field per document. For example a search engine application may want
to provide ability to search a particular portion or meta-data of a document, such as the title of the document
or the body text or web-based fields such as search within a given website etc. An indexer module should be
capable of building data structures which enable fast retrieval of relevant documents and also enable ranking of
these documents. The design of data-structure for index should also be sensitive to transaction aspects such as
locking of indices for writes, updatability of index without difficulty etc.

2.5 Query Expansion

A query expansion module is an optional module for a search engine, which is used to add/rephrase/refine
some keywords to the query. A query is viewed as user’s expression of information need in the form of a
set of keywords. For the user to express information need as keywords, the user has to guess the language
model (keywords) occurring in the documents relevant to his/her information n.eed. Usually the users may
not be able to guess the right keywords that may be found in the relevant documents thereby resulting in a
poor user satisfaction. A query expansion module would automatically try to add more keywords to the user’s
query resulting in better user satisfaction. Query expansion could be achieved by adding synonymous words or
semantically related words from a thesaurus or by using collocation statistics from a monolingual corpus. For
example, a few terms can be added to the example query previous mentioned using co-occurrence statistics to
add terms such as “������� , ����”(Milkmaid, Maggi) which co-occur with “�����” (Nestle) in a large Hindi
corpus.

2.6 Query Translation

A query translation module is required to achieve CLIR. Query translation can be achieved using a bilingual
lexicon or translation models built using parallel corpus. Bilingual lexicon can be obtained by digitizing and
converting human readable dictionaries or can be obtained by manually building them with the help of linguists.
Two types of bilingual lexica exist, one which just lists all the possible translations for a given source language
word, the second one which not only lists the possible translations, but also comes with some meta-data for the
translation, such as the synonyms, the probability of translation etc. Lexicon with translation probabilities are
sometimes referred to as statistical lexicon. Statistical lexicon can be automatically built using parallel corpora.
In some cases the direction of translation may be different from the direction of the CLIR task. For example,
bilingual lexicon may provide translations for words of language L1 into L2, while the CLIR system might take
in queries of L2 to retrieve documents of L1. In such situations proper set of heuristics need to be used in order
to translate queries using a reverse lookup of the dictionary. In case of a statistical lexicon, a likelihood estimate
for the translations needs to be computed. In the previous example query, “u����” would get translated as
“product, produce, production, producer” etc., since we store only the stems and hence translate stems. Storing
the complete words may result in higher translation precision, but would lead to lower recall since most of the
word formations may not be found in the dictionary.

2.7 Query Transliteration

Not all queries can be translated into the target language using a bilingual lexicon. One of the important issues
for query translation in CLIR systems is the handling of out of vocabulary words (or OOVs). Words such
as proper nouns, words borrowed from a foreign language fall under this category. Such words are directly
transliterated into the script of the target language. Such transliterations are not always exact transliterations and
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result in being influenced by the dialect and morphology of the target language. It is very common to find such
keywords in the queries of CLIR systems where the source and target languages share a high number of cognates.
Handling OOVs for CLIR systems across various Indian languages becomes very important since various Indian
languages share higher proportion of cognates when compared with English. Heuristic based approaches using
phoneme mappings or probabilistic transliteration models [[15]] can be used to address the problem of OOVs.
This module is responsible to convert “�����” (written as Neslay in Roman script) and “�� ��� ” (written as Neslay
in Roman script) as “Nestle”.

2.8 Post-translation Query Expansion/Refinement

We differentiate post-translation query expansion from the previous query expansion module, since this module
not only adds more keywords to the translated query, but also performs query refinement by eliminating noisy
translations from the previous modules. Query refinement can be achieved by disambiguation from any context
information during the query translation process or using techniques such as pseudo relevance feedback.

2.9 Document Retrieval

Document retrieval forms the central problem of IR. The problem of document retrieval is to retrieve documents
relevant to the user’s information need from a given document collection. The concept of relevance is very
difficult to define. In naive terms, all the documents containing the keywords from the user’s queries may be
treated as relevant, however, such a definition will always have exceptions. A number of relevance definitions
exist which not only are a function of queries and documents but a number of other parameters such as the user
and the context in which the query was issued. However, most of the IR research ignores these other dimensions
and largely tries to define relevance as a function of user’s query and the documents from which a relevant subset
needs to be identified.

2.10 Document Ranking

Document ranking problem is a function performed after retrieval of relevant documents. The goal of document
ranking module is to find the best way to order the set of retrieved documents such that the items/documents
are ordered in the decreasing order of their relevance. In many IR models ranking is achieved using the same
relevance function as mentioned in the previous module. However in some relevance models such as boolean IR
model [[16]] such a ranking is not inherent in the relevance function.

While each of the above mentioned sub-problems in a typical CLIR framework is a research worthy problem
in itself, a set of frameworks / solutions can be defined in such a way that they solve more than one of the above
sub-problems. Such frameworks could be, for example, a vector space framework, probabilistic framework or
ontology based frameworks. In other words this entire problem of information retrieval can be viewed in two
dimensions. One is the vertical dimension which is that of each of the sub-problems mentioned above. The other
is a horizontal dimension of an approach or framework within which generalized solutions to an extent can be
achieved which address more than one of the above mentioned sub-problems.

Traditionally, the language modeling technique for IR as described in [[1]] addresses only document retrieval
and ranking modules. We extend the scope of our problem to also include query translation and query expansion
modules.

3 Problem Definition

The problem being addressed in this paper is to design an underlying indexing mechanism that can support
easy retrieval and ranking of documents for a cross-lingual query using the language modeling based ranking
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functions mentioned in this section. Before looking at the indexing solution, we need to look at the document
retrieval and ranking functions in order to understand the computation that is required during the retrieval time
for a cross-lingual query. This would in turn lead to the requirements for the indexing module.

We propose a language modeling (horizontal) approach to CLIR as shown in Figure 1 which cuts across a
number of information access sub-problems (verticals). Statistical language models are probability distributions
defined on sequences of elementary units, P (u1...un). Language modeling has been used in many NLP applica-
tions such as part-of-speech tagging, parsing, speech recognition, machine translation and information retrieval.
Estimating sequences can become expensive in corpora where phrases or sentences can be arbitrarily long (data
sparseness problem), and so these models are most often approximated using smoothed N-gram models based
on unigrams, bigrams and/or trigrams.

In speech recognition and in most of the other applications of language modeling, these models refer to a
probabilistic distribution capturing the statistics of the generation of a language, and attempt to predict the next
word in a speech or text or state sequence. However the language models used in information retrieval may be
viewed in a slightly different way. When used in information retrieval, a language model is associated with a
document in a collection. With query Q as input, retrieved documents are ranked based on the probability that
the document’s language model (Md) would generate the terms of the query, P (Q|Md). And such a language
need not be sensitive to term sequence most of the times, since IR applications typically assume bag-of-words
model for documents and queries.

The elementary unit in our IR models is a term. We define a term to be a sequence of characters which are
either words or conflated words (stems). We propose to build and apply term based language models to various
CLIR functions such as query enrichment, query translation, document retrieval and ranking. The language
models being proposed here are trying to model semantically related words and unigram language models rather
than actually modelling the sequences of terms as in other NLP applications such as speech recognition or part-
of-speech tagging. In next few sub-sections we present term based language models which need to be supported
by the underlying indexing mechanism.

3.1 Query Expansion

To achieve query expansion, it is required to automatically predict the keywords in the relevant documents to
the given information need of the user. In order to achieve this in the absence of any further user context, one
can add semantically related keywords to the query to enable retrieval of relevant documents with high precision
and recall. Motivated by the fact that the meaning of a new concept can be learned from its usage with other
concepts within the same concept [[17]], we automatically compute the dependencies of a word w on other words
based on their lexical co-occurrence in the context of w in a sufficiently large corpus. A term collocation matrix
is constructed by taking a window of length k words and moving it across the corpus at one term increments.
All words in the window are said to co-occur with the first word with a given weight. Such a weight can be
determined to be a function of the distance between the co-occurring words or can be assumed to be of equal
weight. The weights assigned to each co-occurrence of terms are accumulated over the entire corpus. That is, if
n(w, k,w′) denote the number of times word w′ occurs k distance away from w when considered in a window
of length K, then

P(w′, w) =
∑K

k=0 n(w, k,w′)
|C|

where |C| is the size of the corpus. This equation is equal to bigram probability distribution if the window length
K = 1.

Once such term-by-term language models are built, it becomes very easy to expand given queries or docu-
ments using such language models.
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3.2 Query Translation

Query translation functionality for the purpose of cross-language retrieval can be achieved in multiple ways. In
this paper our focus is on using bilingual lexicon for this task and we describe how a bilingual lexicon can be
used to build a probabilistic component which can be embedded into a retrieval model. The embedding of this
translation component becomes easier since we assume the process of translation is independent of the actual
retrieval and ranking and we perform translations at the term level.

We define translation probability of a target language term tk from source language term si as P (tk|si).
This model works well for CLIR since the system need not zero down onto a single possible translation for
a given query. Therefore we compute the translation distribution for a given query and only refine the noisy
translations with whatever evidence is available. In essence, this probabilistic translation model results in a
probabilistic graphical model, where each source language term can get translated to multiple target language
terms with different probabilities. This essentially gives us the graphical structure of dependencies (source/target
dependencies) and the conditional probability distribution which constitutes our model.

Calculation of such a model can be again achieved in different ways. Ideally, the use of a bilingual parallel
corpus would provide the best way to estimate the conditional probabilities and enables building of a statistical
bilingual lexicon. However in [[18]] it was shown that, even in the absence of a bilingual parallel corpus, a
conditional probability distribution can be achieved by assuming uniform probabilities of all possible translations
to a given term. Apart from these we also propose assuming some underlying distribution based on the position
of a given meaning in the lexicon, such as picking only one translation or assume the ordering of translations
in the lexicon to bear an importance. Therefore, the query translation model should be capable of handling all
possible term translations with weights associated with the translation.

3.3 Document Retrieval and Ranking

In [[1]], a language modeling framework was defined to retrieve and rank documents for the given information
needs (queries). The model is non-parametric and does not assume any underlying classes such as relevance or
irrelevance for the items to be retrieved. Every document/item is retrieved by computing the probability of its
language model emitting the given query.

Therefore, the ranking function R(Q, d) is defined as

R(Q, d) = P (Q|Md) (1)

=
∏

wj∈Q

P (wj |Md) ·
∏

wj �∈Q

(1− P (wj |Md))

where, Q is the user’s query containing a sequence of terms qi and Md is the document’s language model which
can emit a set of terms wj .

Inspired by this model we extend this model to serve the various functions of CLIR. To include query
expansion as part of the retrieval and ranking function, we obtain an expanded query Q

′
and rewrite the ranking

function as

R(Q, d) = P (Q
′ |Q).P (Q

′ |Md) (2)

=
∏

wj∈Q′
P (wj , Q).P (wj |Md) ·

∏

wj �∈Q′
(1− P (wj |Md))

where P (wj , Q) gives the weight of the expanded term wj in the context of the given query Q. Similarly
query translation probabilities can be included as part of the ranking function, where Q

′
becomes the translated

query or translated and expanded query as the sequence of the modules are plugged in. The actual ranking of
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documents happens on the probability that the document’s language model emits the transformed query, while
accounting for the joint probability of the transformation itself.

4 Multilingual Index Implementation

Given the language modeling framework described in the previous section, our task is to design an indexing
mechanism to support such a CLIR system. For this purpose, we use a traditional inverted index concept and
see how it can be extended for this task. We use Lucene’s 2 inverted index mechanism and modify it to suit our
model. Before analyzing Lucene’s index file structure, we should understand the inverted index concept. An
inverted index is an inside-out arrangement of documents in which terms take center stage. Each term points
to a list of documents that contain it. On the contrary, in a forward index, documents take the center stage, and
each document refers to a list of terms it contains. You can use an inverted index to easily find which documents
contain certain terms. Lucene uses an inverted index as its index structure while a forward index facility also
exists which can be optionally created. From Equations 2 and 3 it can be observed that, not only the query terms,
but also all the terms contained in a document are required to be accessible while computing the rank of a given
document. Therefore we will be using both inverted and forward index as our core index model as depicted
in the Figure 1. The description of this Lucene core index model is given in the Section 4.1, followed by our
modifications to it in Section 4.4.

4.1 Lucene Index Structure Overview

The fundamental concepts in Lucene are index, segments, document, field and term.
An index contains a sequence of segments which contain documents. Each document is a sequence of fields.

A field is a named sequence of terms and a term is a string. The same string in two different fields is considered
a different term. Thus terms are represented as a pair of strings, the first naming the field, and the second naming
text within the field.

Segments: Lucene indexes may be composed of multiple sub-indexes, or segments. Each segment is a fully
independent index, which could be searched separately. Indexes evolve by creating new segments for newly
added documents or by merging existing segments. Searches may involve multiple segments and/or multiple
indexes, each index potentially composed of a set of segments.

Each segment index maintains the following:

• Field names. This contains the set of field names used in the index.

• Stored Field values. This contains, for each document, a list of attribute-value pairs, where the attributes
are field names. These are used to store auxiliary information about the document, such as its title, url, or
an identifier to access a database. The set of stored fields are what is returned for each hit when searching.
This is keyed by document number.

• Term dictionary. A dictionary containing all of the terms used in all of the indexed fields of all of the
documents. The dictionary also contains the number of documents which contain the term, and pointers
to the term’s frequency and proximity data.

• Term Frequency data. For each term in the dictionary, the numbers of all the documents that contain that
term, and the frequency of the term in that document.

• Term Proximity data. For each term in the dictionary, the positions that the term occurs in each document.

2http://Lucene.apache.org
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Value First byte Second byte Third byte
0 00000000
1 00000001
2 00000010
...
127 01111111
128 10000000 00000001
129 10000001 00000001
130 10000010 00000001
...
16,383 11111111 01111111
16,384 10000000 10000000 00000001
16,385 10000001 10000000 00000001
...

Table 22: VInt Encoding Example

• Normalization factors. For each field in each document, a value is stored that is multiplied into the score
for hits on that field.

• Term Vectors. For each field in each document, the term vector (sometimes called document vector or the
forward index) is stored. A term vector consists of term text and term frequency.

• Deleted documents. An optional file indicating which documents are deleted.

4.2 Primitive Data Types

Lucene uses Byte, UInt32 (4 bytes), UInt64 (8 bytes), VInt and Chars as primitive data types. The UInt data
types are used based on the address space requirements of 32-bits or 64-bits. A variable-length format for
positive integers (VInt) is defined where the high-order bit of each byte indicates whether more bytes remain
to be read. The low-order seven bits are appended as increasingly more significant bits in the resulting integer
value. Thus values from zero to 127 may be stored in a single byte, values from 128 to 16,383 may be stored in
two bytes, and so on.

It can be observed from Table 22 that the VInt datatype provides compression while still being efficient to
decode, by using only required number of bytes to encode an integer address. Lucene writes unicode character
sequences using Java’s “modified UTF-8 encoding”. A complete string is written as a VInt representing the
length, followed by the actual character data.

4.3 Lucene Index Storage

The following describes the main index files in Lucene. Some of the file structures described below might not
include all of the columns, but it won’t affect the reader’s understanding of the index file.

Segments file: A single file contains the active segments information for each index. This file lists the
segments by name, and it contains the size of each segment. Table 23 describes the structure of this file.

Fields information file: Documents in the index are composed of fields, and this file contains the fields
information in the segment. Tables 24 shows the master field structure. The fields master file has two slave files,
namely field index file (structure described in Table 25) and field data file (described in Table 26).

Fields are numbered by their order in this file. Thus field zero is the first field in the file, field one the next,
and so on. Note that, like document numbers, field numbers are segment relative.
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Column name Data type Description
Version UInt64 Contains the version information of the index files.
SegCount UInt32 The number of segments in the index.
NameCounter UInt32 Generates names for new segment files.
SegName String The name of one segment. If the index contains more than one segment, this column will

appear more than once.
SegSize UInt32 The size of one segment. If the index contains more than one segment, this column will

appear more than once.

Table 23: Structure of Segments file

Column name Data type Description
FieldsCount VInt The number of fields.
FieldName String The name of one field.
FieldBits Byte Contains various flags. For example, if the lowest bit is 1, it means this is an indexed field;

if 0, it’s a non-indexed field. The second lowest-order bit is one for fields that have term
vectors stored, and zero for fields without term vectors.

Table 24: Structure of Fields information file

Column name Data type Description
FieldValuesPosition UInt64 This is used to find the location within the field data file of the fields of a particular docu-

ment. Because it contains fixed-length data, this file may be easily randomly accessed. The
position of document n’s field data is the Uint64 at n*8 in this file.

Table 25: Structure of Fields Index file

Column name Data type Description
FieldCount VInt
FieldNum VInt
Bits Byte Only the low-order bit of Bits is used. It is one for tokenized fields, and zero for non-

tokenized fields.
Value String

Table 26: Structure of Fields Data file

Column name Data type Description
TIVersion UInt32 Names the version of this file’s format.
TermCount UInt64 The number of terms in this segment.
Term Structure This column is composed of three subcolumns: PrefixLength, Suffix, and FieldNum. It

represents the contents in this term.
DocFreq VInt The number of documents that contain the term.
FreqDelta VInt Points to the frequency file.
ProxDelta VInt Points to the position file.

Table 27: Structure of Term information file

Column name Data type Description
DocDelta VInt It determines both the document number and term frequency. If the value is odd, the term

frequency is 1; otherwise, the Freq column determines the term frequency.
Freq VInt If the value of DocDelta is even, this column determines the term frequency.

Table 28: Structure of the Frequency file

Column name Data type Description
PositionDelta VInt The position at which each term occurs within the documents

Table 29: Structure of the Position file
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Column name Data type Description
TermDelta VInt It determines both the term number and joint frequency. If the value is odd, the joint

frequency is 1; otherwise, the Freq column determines the joint frequency.
Freq VInt If the value of TermDelta is even, this column determines the joint frequency.

Table 30: Structure of the Collocation file

Column name Data type Description
TermDelta VInt It determines both the term number and conditional probability of translation.
TransProbability VInt

Table 31: Structure of the Term Translation file per language pair

Stored fields are represented by two files, one is field index and the other is field data.
Text information file: This core index file stores all of the terms and related information in the index, sorted

by term. Table 27 shows the structure of this file. The pointers to term expansion file are stored in this file.
This file is sorted by Term. Terms are ordered first lexicographically by the term’s field name, and within

that lexicographically by the term’s text.
Term text prefixes are shared. The PrefixLength is the number of initial characters from the previous term

which must be pre-pended to a term’s suffix in order to form the term’s text. Thus, if the previous term’s text
was ”bone” and the term is ”boy”, the PrefixLength is two and the suffix is ”y”.

Frequency file: This file contains the list of documents that contain the terms, along with the term frequency
in each document. If Lucene finds a term that matches the search word in the term information file, it will visit
the list in the frequency file to find which documents contain the term. Table 28 shows the primary fields of this
file. TermFreq entries are ordered by increasing document number.

DocDelta determines both the document number and the frequency. In particular, DocDelta/2 is the differ-
ence between this document number and the previous document number (or zero when this is the first document
in a TermFreqs). When DocDelta is odd, the frequency is one. When DocDelta is even, the frequency is read as
another VInt.

For example, the TermFreqs for a term which occurs once in document seven and three times in document
eleven would be the following sequence of VInts: 15, 10, 3.

Position file: This file contains the list of positions at which the term occurs within each document. You can
use this information to rank the search results. Table 29 shows the structure of this file.

For example, the TermPositions for a term which occurs as the fourth term in one document, and as the fifth
and ninth term in a subsequent document, would be the following sequence of VInts: 4, 5, 4

4.4 Additional Meta-Index Files

We create three additional meta-index files, namely a collocation file to store co-occurrence frequencies of two
terms (structure described in Table 30), a query translation file to store weighted term-based translations between
languages (shown in Table 31) and a modified text information file to provide pointers to the first two meta-index

Column name Data type Description
TIVersion UInt32 Names the version of this file’s format.
TermCount UInt64 The number of terms in this segment.
Term Structure This column is composed of three subcolumns: PrefixLength, Suffix, SuffixLength and

FieldNum. It represents the contents in this term.
DocFreq VInt The number of documents that contain the term.
FreqDelta VInt Points to the frequency file.
ProxDelta VInt Points to the position file.
CollocationDelta VInt Points to the collocation file.

Table 32: Structure of modified Term information file
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files. The text information file mentioned in the core Lucene index model is overridden to accommodate CLIR
functions such as stemming and query translation. We first of all modify the term structure to include the
SuffixLength to determine the length of the suffix that needs to be stemmed. Storing the suffix as part of the
term data structure instead of actually indexing the conflated variants allows the CLIR system to be able to
search with or without stemming at the same time. These modifications to the term datastructure can be seen
from Table 32. Having customized the underlying index structure, we conducted CLIR experiments for Indian
language - English language pairs which are discussed in the next section.

5 Index Performance Evaluation

The modified Lucene indexer was evaluated for indexing time and retrieval time. It is compared against the
core Lucene index model which forms our baseline. The evaluations were conducted for 3 runs for both core
Lucene model and language model based index. An average of the 3-runs is being reported. Table 33 shows the
times taken by the indexer to index 100,000 documents belonging to Hindi and Telugu in UTF-8 format. For
the baseline run we used the Lucene’s standard analyzer by modifying it to accept UTF-8 content, while for the
modified Lucene index we used our own language analyzer which has an Indian language rule based stemmer.
In both these runs the JVM was given a runtime memory of 1GB. Similarly, Table 34 shows the times taken
for document retrieval for both the runs. We issued a set of 25 Hindi and 25 Telugu queries in a sequence with
a single thread and show the average time for retrieval and ranking. In the case of monolingual retrieval runs,
only same language documents are retrieved while for cross-lingual run, the queries were also translated into
the other language and both the language documents were retrieved. The results of our indexer with and without
query expansion module for monolingual and cross-lingual tasks are being reported in Table 34.

5.1 Evaluation Setup

An Intel Xeon 3.0 GHz machine with 4GB RAM and an IDE disk with 7,200 RPM speed was used for our
experiments. We used Lucene’s version 1.4 as our baseline and extended it as described in Section 4.4. The
programming was done using Sun’s Java 1.4.2 on a Fedora Core 3 operating system. We indexed a set of 50,000
Hindi and 50,000 Telugu news article HTML documents which were encoded in UTF-8. The total size of the
document collection was approximately 700MB, with an average file size of 7.14KB.

We also performed a load-test on our language modeling based indexer for monolingual retrieval, by sim-
ulating load with 200, 300, and 400 simultaneous users with a ramp-up time of 1 second. It can be seen from
Figure 2 that the index is able to provide a good throughput. The load test for 200 users showed 0% drop rate3,
while the drop rates for 300 and 400 users were 1% and 2.75% respectively.

It can be observed from Tables 33 and 34 that the language modeling based index is slower than the ordinary
TF.IDF based indexing model both during indexing and retrieval. However, functionally the language modeling
based index provides superior search results than the vector space model both for monolingual retrieval [[1]] as
well as cross-lingual retrieval [[3]]. This improvement is even higher in languages where resources are difficult
to obtain. To give a perspective of the kind of functional improvement, we present the evaluation results of
the experiments mentioned in [[3]] in Table 35. These experiments were conducted using CLEF 20064 dataset
for CLIR evaluation of Hindi-English and Telugu-English tasks where the queries are in Hindi, Telugu and
the information is in English. HNTD and TETD runs represent the baseline experiments using the TF.IDF
based retrieval using dictionary based translation, while HNLM and TELM runs represent language modeling
based retrieval for Hindi and Telugu queries respectively. Measures such as Mean Average Precision (MAP),

3A HTTP request which could not be served due to load is treated as a dropped request. Drop rate determines the frequency of failure
of the system for a given load.

4Cross Language Evaluation Forum. http://www.clef-campaign.org
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Figure 2: Load Testing on Our Index Model using 300 simultaneous users with a rampup of 1 second

Run Index time/1000 docs Memory
Baseline 89 sec 1024MB given to JVM
Lang. Model 359.71 sec 1024MB given to JVM

Table 33: Indexing Statistics

R-Precision and Geometric Average Precision (GAP) clearly show significant improvement. The performances
of HNLM and TELM runs are comparable with the top performing systems at CLEF 2006.

6 Conclusion

In this paper we presented an indexing model for cross language information retrieval using language modeling
technique. We used Lucene’s inverted index model as our base model and extended it to support language
modeling based CLIR. We conducted a set of experiments to test the performance of the new index model during
index time as well as retrieval time. We found that consistently the new index model takes longer time to index
and retrieve documents when compared to the vector space models. However, it has been shown in information

Run Retrieval type Avg. Retrieval Time/Query
Baseline monolingual 667ms
LM monolingual 941ms
LM + query expansion monolingual 1009ms
LM cross-lingual 1156ms
LM + query expansion cross-lingual 1521ms

Table 34: Retrieval Statistics
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Run-Id total Relevant Relevant-Retrieved MAP (%) R-Prec.(%) GAP (%) B-Pref.(%)
HNTD 1,258 650 12.52 13.16 2.41 10.91
TETD 1,258 554 8.16 8.42 0.36 7.84
HNLM 1,258 1051 26.82 26.33 9.41 25.19
TELM 1,258 1018 23.72 25.50 9.17 24.35

Table 35: Summary of average results for various CLIR runs

retrieval research that the language modeling based techniques have shown considerable improvement in the
quality of search results provided in comparison to TFIDF algorithm. Therefore, we conclude that while there is
an increase in time taken by the new index, it can provide better search results when compared to the traditional
vector space based IR models.
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