Recording Provenance for SQL Queries and Updates

Stijn Vansummeren James Cheney
Hasselt University and University of Edinburgh
Transnational University of Limburg, Belgium UK
Abstract

Knowing the origin of data (i.e., where the data was copie¢mated from)—itgrovenance-is vital

for assessing the trustworthiness of contemporary sdieni@tabases such as UniProt [16] and SWISS-
PROT [14]. Unfortunately, provenance information mustreatly be recorded manually, by added
effort of the database maintainer. Since such maintenamtedious and error-prone, it is desirable to
provide support for recording provenance in the databastesy itself. We review a recent proposal for
incorporating such support, as well as its theoretical pedges.

1 Introduction

Chris, a fan of foreign and domestic beers, constructs ddsaéR (beer, kind, origin) listing beers, their kind,
and their origin. He proceeds by manually inserting tupdasyell as by copying from the existing general beer
databases (beer, kind, origin), and fromT (beer, origin), a database that specializes in lagers.

insert into R values ('Duvel’, 'Strong ale’,'Belgium’); Q)
insert into R (select * from S where origin = "USA’); (2
insert into R (select T.beer, 'Lager’ as kind, T.origin from T'); 3)

When inspecting the result, Chris notices tiateportsStella Artois as an American beer, while it is in fact a
Belgian one. A friend tells Chris that this error is probablye to databasg, which is known for its poor data
quality. Perhaps Chris should check the other recordstetémom1 for their correctness?

Although the scenario above is clearly a simplification fog purpose of illustration, many contemporary
scientific databases—sometimes referred tewated databasesare constructed in a similar manner by a
labor-intensive process of copying, correcting, and aatimay data from other sources. The value of curated
databases lies in their organization and in the trustwoes of their data. As illustrated above, knowing where
data was copied or created from—jovenance-is particularly important in assessing the latter.

In hindsight, Chris could simply have recorded provenancadiing an extra attributgrov to R and by
issuing slightly different update statements. For insgtanpdate (3) would have become

insert into R (select T'.beer, 'Lager’ as kind, T".origin, 'db T’ as prov from T'). 4)

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Stijn Vansummeren is a Postdoctoral Fellow of the Reseancindfation—Flanders (FWO).

This only records provenance of whole tuples, however, afidea granularity is often required. For in-
stance, the presence @tella Artois, lager, USA,db T) in R would designatd as the provenance of the tuple
(Stella Artois, lager, USA) even though this tuple does not literally occurlin After all, only Stella Artois and
USA were copied fron¥", butlager was inserted by Chris. On the other hand, recording only tbegmance of
data values (lik&tella Artois, lager, .. .) is often not sufficient either. For instance, knowihgttall data values
in (McChouffe, Scottish ale, Belgium) were copied fromt does not necessarily imply that all of these data val-
ues came from the same recordSinAs such, it is desirable to record provenance at all levetésdatabase (data
values, tuples, and even whole tables). While it is possibio so manually by adding enough extra attributes
to R and by suitably rewriting the original updates (1), (2), &8 this approach quickly becomes very tedious,
time-consuming, and error-prone, especially wiRerontains many attributes. Also, the importance of retainin
detailed provenance information is often not appreciated it is too late—perhaps months or years after the
data was originally copied into the database. In this rasfieseems preferable to let the user write queries and
updates as before, and to let the database system recomhprmeautomatically

Before provenance recording can be automated, howevsiinifderative to have a good explanation of the
meaning of queries and updates with regard to provenance niéaning may be obvious for the examples
given so far, but what about updates such as the following?

insert into R (select S.beer, 'stout’ as kind, S.origin from S where S.kind = 'stout’))

Is stout created by Chris or copied frori? Both explanations seem reasonable due to the conditidn tha
S.kind = 'stout’. A similar situation occurs for updates involving joins:

insert into R (select S.beer, S.kind, T.origin from S, T where S.beer = T'.beer and S.origin = T'.origin;) (6)

Are thebeer andorigin attributes copied fron$ or from7"? Again, both explanations seem reasonable, but it is
unclear which explanation is to be preferred.

In this article, we will follow Wang and Madnick [17] and Bhagt et al. [2] and definstout to be created
by Chris in update (5) becauseut appears as a constant in the select clause insteddiatl. Moreover, we
definebeer to be copied fromS in update (6) because the select clause sbeer and not7'.beer. Similarly,
origin is taken to be copied frofi because the select clause litsrigin and notS.origin.

While this provenance semantics is simple and natural, ytmoabe the particular provenance that a database
curator had in mind for the above updates. Nevertheless,sihiple provenance semantics has been shown
expressively completdor every query or updat® that manually records provenance (like (4) above) there
exists a normal query or update (like (1), (2), and (3) abdeejvhich the provenance semantics is equivalent
to O, provided that) satisfies certain soundness criteria discussed in Se@iand 3. As such, if we use this
semantics to record provenance automatically, we do netflesibility with regard to recording provenance
manually. We feel that this property strongly argues in fawbthe proposed provenance semantics as the
“right” basis for recording provenance automatically.

We should note that although we will restrict ourselves iratviollows to the provenance semantics for (a
fragment of) SQL queries and updates operating on clagéataklations and only consider provenance at the
data value and tuple level, the topic was originally stud@djueries and updates operatingrastedrelations,
where provenance is recorded at all levels (data valuekesuand tables) [5]. We refer the interested reader to
Buneman et al. [6] for a full exposition.

To put this article in the right context, we should also mamthe other forms of provenance recently studied
in databases. First, while we are interested in recordimeredata is copied or created from, tiway-provenance
approach of Cui et al] and Buneman et al?] wishes to identify, for each output tupteof a query, the set of
input tuples that causedto be output. More recently, why-provenance has been refisgd) program slicing
techniques by Cheney et al. [8]. Thewprovenance approach of Green et @.i§ interested in recording how
t was computed from the input (e.g.could be the result of joining two input tuples). Finallyetk has also
been interest oqueryingprovenance and other forms of annotations rather thandigpit [12, 11].

2

beer origin | beer® | origin® | tup® beer origin beer® | origin® | tup®
Leinenkugel | USA | ¢; co c3 Leinenkugel | USA c1 Co c3
Stella Artois | USA | ¢4 cs cg Stella Artois | Belgium | ¢4 1 1L

Figure 1: Color propagation for query (7). On the leftligT"), the colored version of tabl&, and on the right
is the colored result.

2 Provenance Recording for Queries

Let us first consider provenance recording for queries. tfzdaill be considered in Section 3. For ease of
exposition we restrict ourselves to simple SQL queries efftiiowing form, excluding subqueries; grouping;
and aggregation.

Q == selectr;.xfrom R, ry, ..., Ry rm where @
| selecta, as Ay, ..., a,as A, from Ry vy, ..., Ry, 7y where @
| @ union @

Here,p is any valid where-clause without subqueries and ewgiyeither a constant data value or an expression
such as;.C that refers to an attribute of one of the tuple variables. &pproach can be generalized to deal
with subqueries, grouping, and the connectivesrsect andexcept, but aggregation presents some problems,
as we will see. Note that we only allow the wildcardo be applied to a single tuple variable; selections such
asselect x from R, S that return all attributes of a cartesian product can alvimysewritten to mention these
attributes explicitly in theelect clause.

The provenance semantics. Let us collectively refer to the individual data values aogl¢s in a database
as the databaseitems To define the provenance semantics, we use a formalizasisadoon the “tagging” or
“annotation propagation” approach of Wang and Madnick [A7d Bhagwat et al. [2]. In this approach, each
input item is assumed to have an identifying “color” whichnves as an abstraction of a system identifier or
some other means of referring to part of a database. We carddseribe how queries and updates manipulate
provenance by means of functions mapping such colored asg¢alto colored databases in which colors are
propagated along with their item during computation of tigpat. The provenance of an item in the output
is simply the item in the input with the same color. To illasé, consider the tabl€(beer, origin) from the
Introduction with tupleq (Leinenkugel, USA), (Stella Artois, USA)} in which the data values and the tuples are
annotated with colorsy, co, ... as shown at the left of Fig. 1. Thereger® andorigin® store the colors of the
data values in théeer andorigin attributes, andup® stores the colors of the tuples. As suthinenkugel is
colored byc,, the first occurrence diSA is colored byes, the first tuple is colored bys, and so on. We could
then define the colored semantics of the SQL query

(select t.x from T" t where t.beer <> 'Stella Artois’)

union (select t.beer, 'Belgium’ as origin from T t where t.beer = 'Stella Artois’)

(7)

to mapT to the colored table at the right of Fig. 1. This defines thes@nance ot einenkugel in the output to
be the corresponding data valueZinthe provenance of the tup(eeinenkugel, USA) to be the provenance of
the first tuple inl’, and so on. The “empty” or “blank” colat. indicates that an item is introduced by the query
itself. Hence, this particular colored semantics takes/ibe that the seconsklect subquery constructs a new
tuple rather than copying an existing one.

Intuitively, we will take the view that queries either cangtt new items or copy complete items from the
input. As such, all data values resulting from constant wanog8on as inselect 'USA’ as origin from T' ¢ are
colored L, as are the tuples returned by queries sudelast A, B from R whose select clause constructs new

3

tuples. All other items, such as the tuples returneddct t. « from T t, retain their color. This is essentially
the same provenance semantics as that of Wang and Madnickrid/Bhagwat et al. [2], although they only
consider provenance for data values, not tuples.

In order to elegantly formalize this intuition, notice thby storing colors as in Fig. 1, it becomes possible
to define functions mapping colored databases to colorddstab SQL itself. For example, if we letr(T)
denote the colored version of talii&beer, origin) then the particular colored semantics of query (7) illustla
in Fig. 1 is defined by

(select t.x from clr(7T") t where t.beer <> ’Stella Artois’)
union (select t.beer as beer, 'Belgium’ as origin, t.beer® as beer®, | as origin®, L as tup® (8)
from clr(T') t where t.beer = 'Stella Artois’)

To define our provenance semantics it hence suffices to agsigach queryy, a queryP[(] mapping col-
ored databases to colored tables. It is important to rentet<} and P[] operate on different views of the
database() operates on the tables without colors (like (7) above), Bil)] operates on colored tables (like
(8)). To avoid confusion between the two views, we will ramger uncolored tables bi, S, andT’, and over
their colored versions byir(R), clr(S), andclr(T"). We refer to the attributes that store normal data values in
clr(R),clr(S), andclr(T') (like beer andorigin) as thenormal attributesand to the attributes that store colors
(like beer®, origin®, andtup®) as thecolor attributes

Definition 1. The provenance semanti£$()] of a query() operating on uncolored tables is inductively defined
as follows. LetP[a] denote the blank colat whena is a constant, and I&[a] denotet. A° whena is an attribute
reference. A with ¢ a tuple variable.

e Plselect r;.x from R, ry, ..., Ry, rm where ¢] :=

select 7;.% from clr(R,) 7y, ..., clr(Ry,) rm where ¢;

e Plselecta, as A,, ..., ap as A, from R, r,, ..., Ry, rm where] :=
select a, as A,, ..., ap as A, Pla,]as AS, ..., Pla,] as AS,, L astup®
fromclr(R,) ry, ..., clr(Ry,) rm where ¢;

e P[Q1 union Q2] := P[Q1] union P[Q2].

Example 1: Toillustrate,P[Q] with Q = select s.beer, 'stout’ as kind, s.origin from S s where s.kind = ’stout’
as in example (5) from the Introduction yields

select s.beer, 'stout’ as kind, s.origin, s.beer® as beer®, L as kind®, s.origin® as origin®, L astup® (9)
from clr(.S) s where s.kind = stout’.

Also, P[Q] with @ as in query (7) yields query (8).

Inherent to definition ofP[Q)] is that queries that are equivalent under the normal seosanged not be
equivalent under the provenance semantics. For exa@ple= select r.x from R r is equivalent toQs :=
select 7. A as A, r.B as B from R r when R consists only of attributed and B, but P[Q+] is not equivalent to
‘P[Q2] as the former retains the tuple colors from the input, wiikelatter colors all tuples..

Expressive completeness Let us now see how this provenance semantics compares withahual approach

to recording provenance. In this respect, note that queragping colored databases to colored tables, such as
(8) above, can also be viewed as bemgnually constructetb record provenance. In other words, we want to
compare the class of queri¢®[Q] | @ a query on uncolored databasesith the class of querie® mapping
colored databases to colored tables. Since we are inténestecordingprovenance, however, we will exclude
from our discussion queried such as

select t.x from clr(T") t where t.beer® = ¢; (10)

thatqueryprovnenance rather than record it.

Definition 2: A provenance recordinguery is a query® mapping colored databases to colored tables in which
every where-clausg mentions only normal attributes.

Clearly, (10) is hence not provenance recording. In contf$)] is always provenance-recording since the
where-clause of a quei§) operating on uncolored tables only mentions normal atiegband sincé[()] does
not affect where-clauses.

Can every provenance-recording query be defined in ternB[@] for some@? The answer is no, for
two reasons. First, due to our view of queries as either oactitig new items or copying whole items, it is
impossible forP[Q] to yield something like

select t.beer as beer, t.beer® as beer®, t.tup® as tup® from clr(7') t (12)

that returns tuples which do not literally occurdh yet have the same colors as tupleslin Similarly, it is
impossible forP[Q] to yield something like

select "USA’ as origin, t.origin® as origin®, L as tup® from clr(T') t (12)

in which data values are given the provenance of data vataesF although the data value itself need not occur
in T'. We refer to provenance recording queries that only colgpuiutems: by color ¢ if 4 also occurs in the
input as topying. (See [5, 6] for a full formal definition of this concept).

Second, due to our view that only data values constructed ¢ynatant expression are colored it is
impossible forP[Q] to yield something like

select t.beer as beer, L as beer®, L as tup® from clr(T') t (13)

that colors every possibleeer data value byl . Indeed, to simulate (13) by means®f(Q], @ would have to
mention every possibleeer value as a constant, of which there are unboundedly many.aivgueries that can
color only a finite, bounded number of atoms_bybounded inventirig

We view the fact thaP[@] can only define provenance recording queries that are ‘ogpgind ‘bounded
inventing’ as a desirable property: it ensures that thegmance relationship between input and output described
by P[Q)] is not arbitrary, but meaningful. After all, one could hardirgue that the provenance relationships
described by (11) and (12) above correspond to the intuiidon “is copied fromZ™. Similarly, queries
without aggregation are typically considered as “domagserving” in database theory, with limited ability to
create new data values. The bounded inventing propertylynemsures that the provenance semantics respects
this view. With regard to the copying and bounded inventingregs, our provenance semantics can be shown
expressively complete:

Proposition 3 (Buneman et al. [5, 6]): For every provenance recording qudfythat is copying and bounded
inventing there exists a quety mapping uncolored databases to uncolored tables suciPtEaP[(].

5

As such, we are ensured that we do not lose flexibility whengB{(] to record provenance automatically
instead of recording provenance manually. Of course, intim@we also would like to record provenance for
queries involving aggregation suchsetect A, sum(B) from R group by A that fall outside the current frame-
work. Indeed, although we could in principle simply define firovenance of all atomic data values resulting
from sum to be created by the query itself, this causes the proverseroantics to becomabounded invent-
ing. A more satisfying approach than simply defining the ltesaf an aggregation operator to be created by the
query itself could be to recorabowthis result was computed. For example, we could color a dateevesulting
from the abovesum aggregation byum(cy, c2, ¢3) indicating that it was obtained by applying sum to the set
of data values from the input colored by, co, andcs, respectively. This use @xpression®s provenance is
similar to the approach of Green et &],[who use semi-ring expressions to describe the provenahsa-
tional algebra queries without aggregation. It is also @galis to certain techniques faorkflowprovenance,
as known from the geospatial and Grid computing communifig$0, 15]. It is not clear, however, whether and
how our expressive completeness results transfer to ttiinge

3 Provenance Recording for Updates

Our discussion of provenance for queries is straightfamlyaextended to updates like (2) and (3) from the
Introduction of the forminsert into R): the provenance of the inserted items is simply giverPpg].

Definition 4 (Provenance of query insertion): P[insert into R @] := insert into clr(R) P[Q].

For instance, for update (3) from the Introduction this gsel

insert into clr(R) select t.beer, 'Lager’ as kind, t.origin, (14)

t.beer® as beer®, 1 askind®, t.origin® as origin®, L as tup® from clr(7T) t.

Updates of the forninsert into R(A, ..., B) values (d,...,d") like (1) from the Introduction clearly add
newly constructed items tB. We hence define:

Definition 5 (Provenance of value insertion):

Plinsert into R(A, ..., B) values (d,...,d")] :=insert into clr(R)(A, ..., B, A°, ..., B tup®)
values (d,...,d', L,..., 1),

where we assume for ease of exposition that. . , B comprise all attributes aR.

The provenance semantics diflete statements is also straight-forward, as deleting a tugle é¢letes its
provenance.

Definition 6 (Provenance of deletion): P[delete from R where ¢] := delete from clr(R) where .

Observe that for the updates considered sofl] is still ‘copying’ and ‘bounded inventing’. Moreover,
the provenance semantics is still expressively completensgard to the class of updates from colored databases
to colored databases that manually record provenanceeifollowing sense. Similar to the case for queries,
we exclude from our discussion updates suchedste from clr(7") t where t.beer® = ¢; thatqueryprovenance
rather than record it.

Definition 7: A provenance recordingpdate is an update mapping colored databases to colofled talwhich
every where-claus@ mentions only normal attributes.

beer origin | beer® | origin® | tup® beer origin beer® | origin® | tup
Leinenkugel | USA | ¢; co c3 Leinenkugel | USA c1 Co c3
Stella Artois | USA | ¢4 cs cg Stella Artois | Belgium | ¢4 1 Co

Figure 2: Color propagation for update (15). On the leftli$T), the colored version of tabl&, and on the
right is the colored result.

Proposition 8: Let V' be a provenance recording update of the following form.
U == insertinto RQ |insertinto R(A4,...,B) values (d,...,d") | delete from R where .

If V is copying and bounded inventing, then there exists an egdatperating on uncolored databases, also of
the above form, such th&t = P[U].

Let us now considetpdate statements. In this respect, note that updates such asliwifg intuitively
do not construct new tuples but modify existing ones “inepla

update T set origin = 'Belgium’ where beer = "Stella Artois’ (15)

It hence seems reasonable to define their provenance semiardi way that agrees with how system identifiers
are preserved in practical database management systems.

Definition 9 (Provenance of updates):Plupdate R set (4, ..., B) = (d,...,e) where] := update clr(R)
set (A,...,B, A% ...,B°) =(d,...,e, L,..., L) where ¢.

For instance, for update (15) above this yields
update clr(7") set (origin, origin®) = ('Belgium’, L) where beer = 'Stella Artois’. (16)

Note that although update (15) and query (7) essentiallyesgihe same database transformation on uncolored
tables, their provenance semantics differs significaritideed the query maps the colored table at the left of
Fig. 1 to the colored table at the right of Fig. 1, while the afgdmaps that same table to the colored table at the
right of Fig. 2. In particular, the provenance semanticsheftpdate isiot copying, as the first output tuple is
not identical to the first input tuple, although they are cetbthe same. The provenance semantics of the update
statement iskind preservinghowever: it will only color an output atom by colarif the atom also occurs in

the input with colore; and it will only color an output tuple by colarif there is a tuple in the input with color

c. We refer to Buneman et al. [5, 6] for a full definition of thisrzept.

Every copyingV is also kind preserving. As such, the provenance semaRiic$ of all updated/ consid-
ered in this article is kind preserving. The provenance sgicgisnot expressively complete with regard to the
class of kind preserving and bounded inventing provenaacerding updates, however. To see why, suppose
that R consists only of the attributerigin, and further suppose that we want to simulate the update

insert into clr(R) (select 'Belgium’ as origin, t.origin® as origin®, L as tup® from clr(T') t), (17)

which is kind preserving, but not copying. (The inserteddgamre colored the same as tupleg¢but are not
identical.) To simulate this update in termsJefii] for someU, U clearly needs to be ansert statement itself.
We already know, however, that this implies ti§{/] is copying; as such it cannot express (17). Nevertheless,
by adding extra update operators it is possible to regairesgjve completeness; see Buneman et al [5, 6].

4 Conclusion

In order to assess the trustworthiness of a database inlgd@iknow the provenance of its data. Since manually
recording such provenance quickly becomes very tedioug-tionsuming, and error-prone, is preferable to let
the user write queries and updates as before, and to let thiead® system record provenance automatically. In
this respect, it is imperative to have a good explanatiorhefrheaning of queries and updates with regard to
provenance. Fortunately, the intuitive view of queriesidsee constructing new items or copying whole items
from the input, as well as the intuitive view of updates as ifyat items in-place, yields an automatic prove-
nance recording semantics that is guaranteed to be as fleshiecording provenance manually. We conclude
this article by remarking that, while the full provenancensatics presented here remains to be implemented
in practice, preliminary experiments by Bhagwat et al. [@fl Buneman et al. [4] suggest that the overhead
incurred by recording provenance as opposed to not reagpitisi reasonable.

Acknowledgement We are grateful to Peter Buneman for introducing us to pramea in databases, and for
the very enjoyable collaboration that led to the expressorapleteness results presented here.

References

[1] Marcelo Arenas and Michael I. Schwartzbach, edit@atabase Programming Languages, 11th Interna-
tional Symposium, DBPL 2007, Vienna, Austria, Septemb@422007, Revised Selected Papemume
4797 ofLecture Notes in Computer Scien&pringer, 2007.

[2] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tamg &aurav Vijayvargiya. An annotation man-
agement system for relational databaséisDB Journal 14(4):373-396, 2005.

[3] Rajendra Bose and James Frew. Lineage retrieval fonsfieedata processing: a survepCM Comput.
Surv, 37(1):1-28, 2005.

[4] Peter Buneman, Adriane Chapman, and James Cheney. narm& management in curated databases.
In SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD internatiaonference on Management of
data pages 539-550, Chicago, IL, 2006. ACM.

[5] Peter Buneman, James Cheney, and Stijn Vansummererhedaxpressiveness of implicit provenance in
query and update languages. In Thomas Schwentick and Dan, Sulitors,ICDT 2007: Proceedings
of the 11th International Conference on Database Thewojume 4353 ofLecture Notes in Computer
Sciencepages 209-223, Barcelona, Spain, 2007. Springetr.

[6] Peter Buneman, James Cheney, and Stijn Vansummererhedaxpressiveness of implicit provenance in
query and update languages. Technical report, 2007.

[7] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Whywdrere: A characterization of data
provenance. IRCDT 2001: Proceedings of the 8th International ConferermeDatabase Theoryolume
1973 of LNCS pages 316-330, London, UK, 2001. Springer.

[8] James Cheney, Amal Ahmed, and Umut A. Acar. Provenanaepsendency analysis. In Arenas and
Schwartzbach [1], pages 138-152.

[9] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tragite lineage of view data in a warehousing
environment. ACM Trans. Database Sysp5(2):179-227, 2000.

[10] lan Foster and Luc Moreau, editor®roceedings of the 2006 International Provenance and Aatrot
Workshop (IPAW 2006humber 4145 in LNCS. Springer-Verlag, 2006.

[11] Floris Geerts and Jan Van den Bussche. Relational asempss of query languages for annotated
databases. In Arenas and Schwartzbach [1], pages 127-137.

[12] Floris Geerts, Anastasios Kementsietsidis, and Dikljano. MONDRIAN: Annotating and querying
databases through colors and blocksIGDE 2006: Proceedings of the 22nd International Confeesan
Data Engineeringpage 82, Atlanta, Georgia, 2006. IEEE Computer Society.

[13] Todd J. Green, Grigoris Karvounarakis, and Val Tanrferovenance semirings. PODS 2007: Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposin Principles of database systems
pages 31-40, New York, NY, USA, 2007. ACM Press.

[14] European Molecular Biology Laboratory. Swiss-protatmse.

[15] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A sup¥elata provenance in e-scienc8lGMOD
Record 34(3):31-36, 2005.

[16] Universal Protein Resourcét t p: // www. ebi . uni prot. org/.

[17] Y. Richard Wang and Stuart E. Madnick. A polygen modeHeterogeneous database systems: The source
tagging perspective. In Dennis McLeod, Ron Sacks-David, ldans-Jorg Schek, editorBroceedings
of the 16th International Conference on Very Large Data Bapages 519-538, Brisbane, Queensland,
Australia, 1990. Morgan Kaufmann.

