
Recording Provenance for SQL Queries and Updates

Stijn Vansummeren∗

Hasselt University and
Transnational University of Limburg, Belgium

James Cheney
University of Edinburgh

UK

Abstract

Knowing the origin of data (i.e., where the data was copied orcreated from)—itsprovenance—is vital
for assessing the trustworthiness of contemporary scientific databases such as UniProt [16] and SWISS-
PROT [14]. Unfortunately, provenance information must currently be recorded manually, by added
effort of the database maintainer. Since such maintenance is tedious and error-prone, it is desirable to
provide support for recording provenance in the database system itself. We review a recent proposal for
incorporating such support, as well as its theoretical properties.

1 Introduction

Chris, a fan of foreign and domestic beers, constructs a databaseR(beer, kind, origin) listing beers, their kind,
and their origin. He proceeds by manually inserting tuples,as well as by copying from the existing general beer
databaseS(beer, kind, origin), and fromT (beer, origin), a database that specializes in lagers.

insert into R values (’Duvel’, ’Strong ale’, ’Belgium’); (1)

insert into R (select ∗ from S where origin = ’USA’); (2)

insert into R (select T.beer, ’Lager’ as kind, T .origin from T); (3)

When inspecting the result, Chris notices thatR reportsStella Artois as an American beer, while it is in fact a
Belgian one. A friend tells Chris that this error is probablydue to databaseT , which is known for its poor data
quality. Perhaps Chris should check the other records inserted fromT for their correctness?

Although the scenario above is clearly a simplification for the purpose of illustration, many contemporary
scientific databases—sometimes referred to ascurated databases—are constructed in a similar manner by a
labor-intensive process of copying, correcting, and annotating data from other sources. The value of curated
databases lies in their organization and in the trustworthiness of their data. As illustrated above, knowing where
data was copied or created from—itsprovenance—is particularly important in assessing the latter.

In hindsight, Chris could simply have recorded provenance by adding an extra attributeprov to R and by
issuing slightly different update statements. For instance, update (3) would have become

insert into R (select T.beer, ’Lager’ as kind, T .origin, ’db T’ as prov from T). (4)

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Stijn Vansummeren is a Postdoctoral Fellow of the Research Foundation–Flanders (FWO).

1

This only records provenance of whole tuples, however, and afiner granularity is often required. For in-
stance, the presence of(Stella Artois, lager,USA, db T) in R would designateT as the provenance of the tuple
(Stella Artois, lager,USA) even though this tuple does not literally occur inT . After all, only Stella Artois and
USA were copied fromT , but lager was inserted by Chris. On the other hand, recording only the provenance of
data values (likeStella Artois, lager, . . .) is often not sufficient either. For instance, knowing that all data values
in (McChouffe,Scottish ale,Belgium) were copied fromS does not necessarily imply that all of these data val-
ues came from the same record inS. As such, it is desirable to record provenance at all levels in a database (data
values, tuples, and even whole tables). While it is possibleto do so manually by adding enough extra attributes
to R and by suitably rewriting the original updates (1), (2), and(3), this approach quickly becomes very tedious,
time-consuming, and error-prone, especially whenR contains many attributes. Also, the importance of retaining
detailed provenance information is often not appreciated until it is too late—perhaps months or years after the
data was originally copied into the database. In this respect, it seems preferable to let the user write queries and
updates as before, and to let the database system record provenanceautomatically.

Before provenance recording can be automated, however, it is imperative to have a good explanation of the
meaning of queries and updates with regard to provenance. This meaning may be obvious for the examples
given so far, but what about updates such as the following?

insert into R (select S.beer, ’stout’ as kind, S.origin from S where S.kind = ’stout’) (5)

Is stout created by Chris or copied fromS? Both explanations seem reasonable due to the condition that
S.kind = ’stout’. A similar situation occurs for updates involving joins:

insert into R (select S.beer, S.kind, T.origin from S, T where S.beer = T.beer and S.origin = T.origin;) (6)

Are thebeer andorigin attributes copied fromS or fromT? Again, both explanations seem reasonable, but it is
unclear which explanation is to be preferred.

In this article, we will follow Wang and Madnick [17] and Bhagwat et al. [2] and definestout to be created
by Chris in update (5) becausestout appears as a constant in the select clause instead ofS.kind. Moreover, we
definebeer to be copied fromS in update (6) because the select clause listsS.beer and notT.beer. Similarly,
origin is taken to be copied fromT because the select clause listsT.origin and notS.origin.

While this provenance semantics is simple and natural, it may not be the particular provenance that a database
curator had in mind for the above updates. Nevertheless, this simple provenance semantics has been shown
expressively complete: for every query or updateO that manually records provenance (like (4) above) there
exists a normal query or update (like (1), (2), and (3) above)for which the provenance semantics is equivalent
to O, provided thatO satisfies certain soundness criteria discussed in Sections2 and 3. As such, if we use this
semantics to record provenance automatically, we do not lose flexibility with regard to recording provenance
manually. We feel that this property strongly argues in favor of the proposed provenance semantics as the
“right” basis for recording provenance automatically.

We should note that although we will restrict ourselves in what follows to the provenance semantics for (a
fragment of) SQL queries and updates operating on classicalflat relations and only consider provenance at the
data value and tuple level, the topic was originally studiedfor queries and updates operating onnestedrelations,
where provenance is recorded at all levels (data values, tuples, and tables) [5]. We refer the interested reader to
Buneman et al. [6] for a full exposition.

To put this article in the right context, we should also mention the other forms of provenance recently studied
in databases. First, while we are interested in recordingwheredata is copied or created from, thewhy-provenance
approach of Cui et al. [?] and Buneman et al. [?] wishes to identify, for each output tuplet of a query, the set of
input tuples that causedt to be output. More recently, why-provenance has been refinedusing program slicing
techniques by Cheney et al. [8]. Thehow-provenance approach of Green et al. [?] is interested in recording how
t was computed from the input (e.g.,t could be the result of joining two input tuples). Finally, there has also
been interest onqueryingprovenance and other forms of annotations rather than recording it [12, 11].

2

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois USA c4 c5 c6

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois Belgium c4 ⊥ ⊥

Figure 1: Color propagation for query (7). On the left isclr(T), the colored version of tableT , and on the right
is the colored result.

2 Provenance Recording for Queries

Let us first consider provenance recording for queries. Updates will be considered in Section 3. For ease of
exposition we restrict ourselves to simple SQL queries of the following form, excluding subqueries; grouping;
and aggregation.

Q ::= select ri.∗ from R r, . . . , Rm rm where ϕ

| select a as A, . . . , an as An from R r, . . . , Rm rm where ϕ

| Q union Q

Here,ϕ is any valid where-clause without subqueries and everyai is either a constant data value or an expression
such asri.C that refers to an attribute of one of the tuple variables. Ourapproach can be generalized to deal
with subqueries, grouping, and the connectivesintersect andexcept, but aggregation presents some problems,
as we will see. Note that we only allow the wildcard∗ to be applied to a single tuple variable; selections such
asselect ∗ from R, S that return all attributes of a cartesian product can alwaysbe rewritten to mention these
attributes explicitly in theselect clause.

The provenance semantics. Let us collectively refer to the individual data values and tuples in a database
as the database’sitems. To define the provenance semantics, we use a formalization based on the “tagging” or
“annotation propagation” approach of Wang and Madnick [17]and Bhagwat et al. [2]. In this approach, each
input item is assumed to have an identifying “color” which serves as an abstraction of a system identifier or
some other means of referring to part of a database. We can then describe how queries and updates manipulate
provenance by means of functions mapping such colored databases to colored databases in which colors are
propagated along with their item during computation of the output. The provenance of an item in the output
is simply the item in the input with the same color. To illustrate, consider the tableT (beer, origin) from the
Introduction with tuples{(Leinenkugel,USA), (Stella Artois,USA)} in which the data values and the tuples are
annotated with colorsc1, c2, . . . as shown at the left of Fig. 1. There,beerc andoriginc store the colors of the
data values in thebeer andorigin attributes, andtupc stores the colors of the tuples. As such,Leinenkugel is
colored byc1, the first occurrence ofUSA is colored byc2, the first tuple is colored byc3, and so on. We could
then define the colored semantics of the SQL query

(select t.∗ from T t where t.beer <> ’Stella Artois’)

union (select t.beer, ’Belgium’ as origin from T t where t.beer = ’Stella Artois’)
(7)

to mapT to the colored table at the right of Fig. 1. This defines the provenance ofLeinenkugel in the output to
be the corresponding data value inT , the provenance of the tuple(Leinenkugel,USA) to be the provenance of
the first tuple inT , and so on. The “empty” or “blank” color⊥ indicates that an item is introduced by the query
itself. Hence, this particular colored semantics takes theview that the secondselect subquery constructs a new
tuple rather than copying an existing one.

Intuitively, we will take the view that queries either construct new items or copy complete items from the
input. As such, all data values resulting from constant construction as inselect ’USA’ as origin from T t are
colored⊥, as are the tuples returned by queries such asselect A, B from R whose select clause constructs new

3

tuples. All other items, such as the tuples returned byselect t. ∗ from T t, retain their color. This is essentially
the same provenance semantics as that of Wang and Madnick [17] and Bhagwat et al. [2], although they only
consider provenance for data values, not tuples.

In order to elegantly formalize this intuition, notice that, by storing colors as in Fig. 1, it becomes possible
to define functions mapping colored databases to colored tables in SQL itself. For example, if we letclr(T)
denote the colored version of tableT (beer, origin) then the particular colored semantics of query (7) illustrated
in Fig. 1 is defined by

(select t.∗ from clr(T) t where t.beer <> ’Stella Artois’)

union (select t.beer as beer, ’Belgium’ as origin, t.beerc as beerc, ⊥ as originc, ⊥ as tupc

from clr(T) t where t.beer = ’Stella Artois’)

(8)

To define our provenance semantics it hence suffices to assign, to each queryQ, a queryP[Q] mapping col-
ored databases to colored tables. It is important to remark that Q andP[Q] operate on different views of the
database:Q operates on the tables without colors (like (7) above), whileP[Q] operates on colored tables (like
(8)). To avoid confusion between the two views, we will rangeover uncolored tables byR,S, andT , and over
their colored versions byclr(R), clr(S), andclr(T). We refer to the attributes that store normal data values in
clr(R), clr(S), andclr(T) (like beer andorigin) as thenormal attributesand to the attributes that store colors
(like beerc, originc, andtupc) as thecolor attributes.

Definition 1: The provenance semanticsP[Q] of a queryQ operating on uncolored tables is inductively defined
as follows. LetP[a] denote the blank color⊥whena is a constant, and letP[a] denotet.Ac whena is an attribute
referencet.A with t a tuple variable.

• P[select ri.∗ from R r, . . . , Rm rm where ϕ] :=

select ri.∗ from clr(R) r, . . . , clr(Rm) rm where ϕ;

• P[select a as A, . . . , an as An from R r, . . . , Rm rm where ϕ] :=

select a as A, . . . , an as An, P[a] as Ac

, . . . , P[an] as Ac

n, ⊥ as tupc

from clr(R) r, . . . , clr(Rm) rm where ϕ;

• P[Q1 union Q2] := P[Q1] union P[Q2].

Example 1: To illustrate,P[Q] with Q = select s.beer, ’stout’ as kind, s.origin from S s where s.kind = ’stout’
as in example (5) from the Introduction yields

select s.beer, ’stout’ as kind, s.origin, s.beerc as beerc, ⊥ as kindc, s.originc as originc, ⊥ as tupc (9)

from clr(S) s where s.kind = ’stout’.

Also,P[Q] with Q as in query (7) yields query (8).

Inherent to definition ofP[Q] is that queries that are equivalent under the normal semantics need not be
equivalent under the provenance semantics. For exampleQ1 := select r.∗ from R r is equivalent toQ2 :=
select r.A as A, r.B as B from R r whenR consists only of attributesA andB, butP[Q1] is not equivalent to
P[Q2] as the former retains the tuple colors from the input, while the latter colors all tuples⊥.

4

Expressive completeness Let us now see how this provenance semantics compares with the manual approach
to recording provenance. In this respect, note that queriesmapping colored databases to colored tables, such as
(8) above, can also be viewed as beingmanually constructedto record provenance. In other words, we want to
compare the class of queries{P[Q] | Q a query on uncolored databases} with the class of queriesP mapping
colored databases to colored tables. Since we are interested in recordingprovenance, however, we will exclude
from our discussion queriesP such as

select t.∗ from clr(T) t where t.beerc = c1 (10)

thatqueryprovnenance rather than record it.

Definition 2: A provenance recordingquery is a queryP mapping colored databases to colored tables in which
every where-clauseϕ mentions only normal attributes.

Clearly, (10) is hence not provenance recording. In contrast, P[Q] is always provenance-recording since the
where-clause of a queryQ operating on uncolored tables only mentions normal attributes and sinceP[Q] does
not affect where-clauses.

Can every provenance-recording query be defined in terms ofP[Q] for someQ? The answer is no, for
two reasons. First, due to our view of queries as either constructing new items or copying whole items, it is
impossible forP[Q] to yield something like

select t.beer as beer, t.beerc as beerc, t.tupc as tupc from clr(T) t (11)

that returns tuples which do not literally occur inT , yet have the same colors as tuples inT . Similarly, it is
impossible forP[Q] to yield something like

select ’USA’ as origin, t.originc as originc, ⊥ as tupc from clr(T) t (12)

in which data values are given the provenance of data values fromT although the data value itself need not occur
in T . We refer to provenance recording queries that only color output itemsi by color c if i also occurs in the
input as ‘copying’. (See [5, 6] for a full formal definition of this concept).

Second, due to our view that only data values constructed by aconstant expression are colored⊥, it is
impossible forP[Q] to yield something like

select t.beer as beer, ⊥ as beerc, ⊥ as tupc from clr(T) t (13)

that colors every possiblebeer data value by⊥. Indeed, to simulate (13) by means ofP[Q], Q would have to
mention every possiblebeer value as a constant, of which there are unboundedly many. We call queries that can
color only a finite, bounded number of atoms by⊥ ‘bounded inventing’.

We view the fact thatP[Q] can only define provenance recording queries that are ‘copying’ and ‘bounded
inventing’ as a desirable property: it ensures that the provenance relationship between input and output described
by P[Q] is not arbitrary, but meaningful. After all, one could hardly argue that the provenance relationships
described by (11) and (12) above correspond to the intuitivenotion “is copied fromT ”. Similarly, queries
without aggregation are typically considered as “domain-preserving” in database theory, with limited ability to
create new data values. The bounded inventing property merely ensures that the provenance semantics respects
this view. With regard to the copying and bounded inventing queries, our provenance semantics can be shown
expressively complete:

Proposition 3 (Buneman et al. [5, 6]): For every provenance recording queryP that is copying and bounded
inventing there exists a queryQ mapping uncolored databases to uncolored tables such thatP ≡ P[Q].

5

As such, we are ensured that we do not lose flexibility when usingP[Q] to record provenance automatically
instead of recording provenance manually. Of course, in practice we also would like to record provenance for
queries involving aggregation such asselect A, sum(B) from R group by A that fall outside the current frame-
work. Indeed, although we could in principle simply define the provenance of all atomic data values resulting
from sum to be created by the query itself, this causes the provenancesemantics to becomeunbounded invent-
ing. A more satisfying approach than simply defining the results of an aggregation operator to be created by the
query itself could be to recordhowthis result was computed. For example, we could color a data value resulting
from the abovesum aggregation bysum(c1, c2, c3) indicating that it was obtained by applying sum to the set
of data values from the input colored byc1, c2, andc3, respectively. This use ofexpressionsas provenance is
similar to the approach of Green et al. [?], who use semi-ring expressions to describe the provenanceof rela-
tional algebra queries without aggregation. It is also analogous to certain techniques forworkflowprovenance,
as known from the geospatial and Grid computing communities[3, 10, 15]. It is not clear, however, whether and
how our expressive completeness results transfer to this setting.

3 Provenance Recording for Updates

Our discussion of provenance for queries is straightforwardly extended to updates like (2) and (3) from the
Introduction of the forminsert into R Q: the provenance of the inserted items is simply given byP[Q].

Definition 4 (Provenance of query insertion): P[insert into R Q] := insert into clr(R) P[Q].

For instance, for update (3) from the Introduction this yields

insert into clr(R) select t.beer, ’Lager’ as kind, t.origin, (14)

t.beerc as beerc, ⊥ as kindc, t.originc as originc,⊥ as tupc from clr(T) t.

Updates of the forminsert into R(A, . . . , B) values (d, . . . , d′) like (1) from the Introduction clearly add
newly constructed items toR. We hence define:

Definition 5 (Provenance of value insertion):

P[insert into R(A, . . . , B) values (d, . . . , d′)] :=insert into clr(R)(A, . . . , B,Ac, . . . , Bc, tupc)

values (d, . . . , d′,⊥, . . . ,⊥),

where we assume for ease of exposition thatA, . . . , B comprise all attributes ofR.

The provenance semantics ofdelete statements is also straight-forward, as deleting a tuple also deletes its
provenance.

Definition 6 (Provenance of deletion):P[delete from R where ϕ] := delete from clr(R) where ϕ.

Observe that for the updates considered so far,P[U] is still ‘copying’ and ‘bounded inventing’. Moreover,
the provenance semantics is still expressively complete with regard to the class of updates from colored databases
to colored databases that manually record provenance, in the following sense. Similar to the case for queries,
we exclude from our discussion updates such asdelete from clr(T) t where t.beerc = c1 thatqueryprovenance
rather than record it.

Definition 7: A provenance recordingupdate is an update mapping colored databases to colored tables in which
every where-clauseϕ mentions only normal attributes.

6

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois USA c4 c5 c6

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois Belgium c4 ⊥ c6

Figure 2: Color propagation for update (15). On the left isclr(T), the colored version of tableT , and on the
right is the colored result.

Proposition 8: Let V be a provenance recording update of the following form.

U ::= insert into R Q | insert into R(A, . . . , B) values (d, . . . , d′) | delete from R where ϕ.

If V is copying and bounded inventing, then there exists an update U operating on uncolored databases, also of
the above form, such thatV ≡ P[U].

Let us now considerupdate statements. In this respect, note that updates such as the following intuitively
do not construct new tuples but modify existing ones “in-place”.

update T set origin = ’Belgium’ where beer = ’Stella Artois’ (15)

It hence seems reasonable to define their provenance semantics in a way that agrees with how system identifiers
are preserved in practical database management systems.

Definition 9 (Provenance of updates):P[update R set (A, . . . , B) = (d, . . . , e) where ϕ] := update clr(R)
set (A, . . . , B,Ac, . . . , Bc) = (d, . . . , e,⊥, . . . ,⊥) where ϕ.

For instance, for update (15) above this yields

update clr(T) set (origin, originc) = (’Belgium’, ⊥) where beer = ’Stella Artois’. (16)

Note that although update (15) and query (7) essentially express the same database transformation on uncolored
tables, their provenance semantics differs significantly.Indeed the query maps the colored table at the left of
Fig. 1 to the colored table at the right of Fig. 1, while the update maps that same table to the colored table at the
right of Fig. 2. In particular, the provenance semantics of the update isnot copying, as the first output tuple is
not identical to the first input tuple, although they are colored the same. The provenance semantics of the update
statement is ‘kind preserving’ however: it will only color an output atom by colorc if the atom also occurs in
the input with colorc; and it will only color an output tuple by colorc if there is a tuple in the input with color
c. We refer to Buneman et al. [5, 6] for a full definition of this concept.

Every copyingV is also kind preserving. As such, the provenance semanticsP[U] of all updatesU consid-
ered in this article is kind preserving. The provenance semantics isnot expressively complete with regard to the
class of kind preserving and bounded inventing provenance recording updates, however. To see why, suppose
thatR consists only of the attributeorigin, and further suppose that we want to simulate the update

insert into clr(R) (select ’Belgium’ as origin, t.originc as originc, ⊥ as tupc from clr(T) t), (17)

which is kind preserving, but not copying. (The inserted tuples are colored the same as tuples ofT , but are not
identical.) To simulate this update in terms ofP[U] for someU , U clearly needs to be aninsert statement itself.
We already know, however, that this implies thatP[U] is copying; as such it cannot express (17). Nevertheless,
by adding extra update operators it is possible to regain expressive completeness; see Buneman et al [5, 6].

7

4 Conclusion

In order to assess the trustworthiness of a database it is vital to know the provenance of its data. Since manually
recording such provenance quickly becomes very tedious, time-consuming, and error-prone, is preferable to let
the user write queries and updates as before, and to let the database system record provenance automatically. In
this respect, it is imperative to have a good explanation of the meaning of queries and updates with regard to
provenance. Fortunately, the intuitive view of queries as either constructing new items or copying whole items
from the input, as well as the intuitive view of updates as modifying items in-place, yields an automatic prove-
nance recording semantics that is guaranteed to be as flexible as recording provenance manually. We conclude
this article by remarking that, while the full provenance semantics presented here remains to be implemented
in practice, preliminary experiments by Bhagwat et al. [2] and Buneman et al. [4] suggest that the overhead
incurred by recording provenance as opposed to not recording it is reasonable.

Acknowledgement We are grateful to Peter Buneman for introducing us to provenance in databases, and for
the very enjoyable collaboration that led to the expressivecompleteness results presented here.

References

[1] Marcelo Arenas and Michael I. Schwartzbach, editors.Database Programming Languages, 11th Interna-
tional Symposium, DBPL 2007, Vienna, Austria, September 23-24, 2007, Revised Selected Papers, volume
4797 ofLecture Notes in Computer Science. Springer, 2007.

[2] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An annotation man-
agement system for relational databases.VLDB Journal, 14(4):373–396, 2005.

[3] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey.ACM Comput.
Surv., 37(1):1–28, 2005.

[4] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in curated databases.
In SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international conference on Management of
data, pages 539–550, Chicago, IL, 2006. ACM.

[5] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit provenance in
query and update languages. In Thomas Schwentick and Dan Suciu, editors,ICDT 2007: Proceedings
of the 11th International Conference on Database Theory, volume 4353 ofLecture Notes in Computer
Science, pages 209–223, Barcelona, Spain, 2007. Springer.

[6] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit provenance in
query and update languages. Technical report, 2007.

[7] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization of data
provenance. InICDT 2001: Proceedings of the 8th International Conference, on Database Theory, volume
1973 ofLNCS, pages 316–330, London, UK, 2001. Springer.

[8] James Cheney, Amal Ahmed, and Umut A. Acar. Provenance asdependency analysis. In Arenas and
Schwartzbach [1], pages 138–152.

[9] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data in a warehousing
environment.ACM Trans. Database Syst., 25(2):179–227, 2000.

8

[10] Ian Foster and Luc Moreau, editors.Proceedings of the 2006 International Provenance and Annotation
Workshop (IPAW 2006), number 4145 in LNCS. Springer-Verlag, 2006.

[11] Floris Geerts and Jan Van den Bussche. Relational completeness of query languages for annotated
databases. In Arenas and Schwartzbach [1], pages 127–137.

[12] Floris Geerts, Anastasios Kementsietsidis, and DiegoMilano. MONDRIAN: Annotating and querying
databases through colors and blocks. InICDE 2006: Proceedings of the 22nd International Conference on
Data Engineering, page 82, Atlanta, Georgia, 2006. IEEE Computer Society.

[13] Todd J. Green, Grigoris Karvounarakis, and Val Tannen.Provenance semirings. InPODS 2007: Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 31–40, New York, NY, USA, 2007. ACM Press.

[14] European Molecular Biology Laboratory. Swiss-prot database.

[15] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A surveyof data provenance in e-science.SIGMOD
Record, 34(3):31–36, 2005.

[16] Universal Protein Resource.http://www.ebi.uniprot.org/.

[17] Y. Richard Wang and Stuart E. Madnick. A polygen model for heterogeneous database systems: The source
tagging perspective. In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors,Proceedings
of the 16th International Conference on Very Large Data Bases, pages 519–538, Brisbane, Queensland,
Australia, 1990. Morgan Kaufmann.

9

