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1 Introduction

Replication increases the availability of data in mobile and distributed systems. For example, if we copy calendar
data from a web service onto a mobile device, the calendar canbe accessed even when the network cannot. In
peer-based data sharing systems, maintaining a copy of the shared data on a local node enables query answering
when remote peers are offline, guarantees privacy, and improves performance. But along with these advantages,
replication brings complications: whenever one replica isupdated, the others also need to be refreshed to keep
the whole system consistent. Therefore, in systems built onreplication, synchronization mechanisms are critical.

In simple applications, the replicas are just that—carbon copies of each other. But often the copied data needs
to be transformed in different ways on each replica. For example, web services and mobile devices represent
calendars in different formats (iCal vs. Palm Datebook). Likewise, in data sharing systems for scientific data,
the peers usually have heterogeneous schemas. In these morecomplicated systems, the replicas behave like
views, and so mechanisms for updating and maintaining viewsare also important.

The mapping between sources and views defined by a query is notgenerally one-to-one. This loss of infor-
mation is what makes view update and view maintenance difficult. It has often been observed thatprovenance—
i.e., metadata that tracks the origins of values as they flow through a query—could be used to cope with this loss
of information and help with these problems [5, 6, 4, 24], butonly a few existing systems (e.g., AutoMed [12])
use provenance in this way, and only for limited classes of views.

This article presents a pair of case studies illustrating how provenance can be incorporated into systems
for handling replicated data. The first describes how provenance is used inlensesfor ordered data [2]. Lenses
define updatable views, which are used to handle heterogeneous replicas in the Harmony synchronization frame-
work [23, 13]. They track a simple, implicit form of provenance and use it to express the complex update policies
needed to correctly handle ordered data. The second case study describes ORCHESTRA[17, 19], a collaborative
data sharing system [22]. In ORCHESTRA, data is distributed across tables located on many different peers, and
the relationship between connected peers is specified usingGLAV [16] schema mappings. Every node coalesces
data from remote peers and uses its own copy of the data to answer queries over the distributed dataset. Prove-
nance is used to perform incremental maintenance of each peer as updates are applied to remote peers, and to
filter “incoming” updates according totrust conditions.
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Figure 1: (a) Synchronization architecture for heterogeneous replicas. (b) Correspondence induced by keys.

2 Lenses

A lensis a bidirectional program. When read from left to right it denotes an ordinary function that maps sources
to views. When read from right to left, the same lens denotes an “update translator” that takes a source together
with an updated view and produces a new source that reflects the update.

In the context of data synchronization, lenses are used to bridge the gap between heterogeneous replicas.
To synchronize two replicas represented in different formats, we first define lenses that transform each source
format into a common “abstract” format, and then synchronize the abstract views. For example, to synchro-
nize iCal and Palm Datebook calendars, we use the forward direction of two lenses to transform the files into
abstract calendars, discarding the low-level formatting details and any other data specific to each replica. After
synchronization, we then propagate the changes induced by the synchronizer back to the original formats using
the reverse direction of the same lenses. The architecture of a synchronizer for heterogeneous data assembled in
this way is depicted in Figure 1(a).

Semantically, a lensl is just a pair of functions, which we callgetandput. Thegetcomponent maps sources
to views. It may, in general, discard some of the informationfrom the source while computing the view. The
putcomponent therefore takes as arguments not only an updated view, but also the original source; it weaves the
data from the view together with the information from the source that was discarded by thegetcomponent, and
yields an updated source. (Note that lenses are agnostic to how the view update is expressed—theput function
works on the entire state of the updated view.)

The two components of a lens are required to fit together in a reasonable way: theput function must restore
all of the information discarded byget when the view update is a no-op, and theput function must propagate
all of the information in the view back to the updated source (see [14] for a comparison of these requirements
to classical conditions on view update translators in the literature.) In a lens language, these requirements are
guaranteed by the type system; in implementations, they arechecked automatically [14, 15, 3, 2].

2.1 Ordered Data

Recent work on lenses has focused on the special challenges that arise when the source and view are ordered [2].
The main issue is that since the update to the view can involvea reordering, accurately reflecting updates back
to source requires locating, for each piece of the view, the corresponding piece of the source that contains
the information discarded byget. Our solution to this problem is to enrich lenses with a simple mechanism
for tracking provenance: programmers describe how to divide the source intochunksand generate akey for
each chunk. These induce an association between pieces of the source and view that is used byput during the
translation of updates—i.e., theput function aligns each piece of the view with a chunk that has the same key.

To illustrate the problem and our solution, let us consider asimple example from the string domain. Suppose
that the source is a newline-separated list of records, eachwith three comma-separated fields representing the
name, dates, and nationality of a classical composer, and the view contains just names and nationalities:
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"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

get
−→

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English"

Here is a lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA
let comps = copy "" | comp . (copy "\n" . comp) *

The first two lines define regular expressions describing alphabetical data and year ranges using standard POSIX
notation for character sets ([A-Za-z ] and [0-9] ) and repetition (+ and{4} ). Single composers are pro-
cessed bycomp; lists of composers are processed bycomps. In thegetdirection, these lenses can be read as
string transducers, written in regular expression style:copy ALPHA matchesALPHAin the source and copies
it to the view, andcopy ", " matches and copies a literal comma-space, whiledel YEARS matchesYEARS
in the source but adds nothing to the view. The union (| ), concatenation (. ), and iteration (* ) operators work
as usual. Theget of comps either matches and copies an empty string or processes a eachcomposer in a
newline-separated list usingcomp. (For formal definitions see [2].)

Theput component ofcomps restores the dates to each entry positionally: the name and nationality from
thenth line in the abstract structure are combined with the yearsfrom thenth line in the concrete structure (using
a default year range to handle cases where the view has more lines than the source.) For some simple updates
this policy does a good job. For example, suppose that the update changes Britten’s nationality, and adds a new
composer to the end of the list. Theput function combines

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

with
"Jean Sibelius, 1865-1957, Finnish

Aaron Copland, 1910-1990, English
Benjamin Britten, 1913-1976, English"

and yields an updated source

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(The year range0000-0000 is the default; it is generated from the regular expressionYEARS.) On other
examples, however, the behavior of thisput function is highly unsatisfactory. For example, suppose instead that
the update to the abstract string swaps the order of the second and third lines. Then theput function takes the
following view (and the same source as above)

"Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American"

and yields
"Jean Sibelius, 1865-1957, Finnish

Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Copland and inserted into into Britten’s, and vice versa!
What we want, of course, is for theput to align the entries in the concrete and abstract strings bymatchinglines
with identical name components, as depicted in Figure 1(b).On the same inputs, thisput function yields

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

where the year ranges are correctly restored to each composer.
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2.2 Provenance for Chunks

To achieve this behavior, the composers lens needs to be ableto keep track of the association between lines in
the source and view even when the update involves a reordering—i.e., it need to trackprovenance.

One way to do this would be using explicitprovenance tokens. On this approach, each line of the source
would be annotated with a unique identifier, and thegetfunction would propagate these annotations from source
to view. The disadvantage of this approach is that the view isno longer an ordinary string, but a string with
annotations. This means that applications that take views as input, such as the data synchronizer described
above, need to operate on annotated structures, which can becumbersome.

Lenses use a simpler mechanism that eliminates the need to handle annotated structures. The set of lenses
is enhanced with two new primitives for specifying thechunksof the source and akeyfor each chunk, andput
functions are retooled to work on structures where the source is organized as a dictionary of chunks indexed by
key, rather than the strings themselves. We call thesedictionary lenses. Here is a dictionary lens that has the
desired behavior for the composers example:

let comp = key ALPHA . copy ", "
. del (YEARS . ", ")
. copy ALPHA

let comps = "" | <comp> . ("\n" . <comp>) *

Compared to the previous version, the two occurrences ofcomp are marked with angle brackets, indicating that
these subexpressions are the reorderable chunks, and the firstcopy at the beginning ofcomp has been replaced
by the special primitivekey . The lenskey ALPHA copies strings just likecopy ALPHA, but also specifies
that the matched substring is to be used as the key of the chunkin which it appears—i.e., in this case, that the
key of each composer’s entry is their name.

The association induced by keys approximates the association that would be obtained using explicit prove-
nance tokens. Indeed, when the keys are unique and when the view update does not modify the names, the two
coincide. The idea of using keys to guide view update is not new: similar approaches have been studied in the
relational setting [?]. However note that the “keys” used in dictionary lenses arenot required to be keys in the
strict database sense. When several pieces of the view have the same key, theput function pulls chunks out of
the dictionary in the order that they originally appeared inthe source. This gives the option of obtaining other
useful update policies via the choice of key. For example, ifa put function that operates by position is desired,
it can be programmed as a lens whose key component returns a constant.

Another way to control the update policy embodied in a dictionary lens is via the definition of chunks. Many
examples can be processed using one level of chunking, as in the composer lens. But chunks may also be nested,
which has the effect of stratifying matching into levels: top-level chunks are matched globally across the entire
string, subchunks are aligned locally within each chunk, and so on. This is useful in cases where the source has
nested structure—e.g., it is used in a lens for LaTeX sources.

We have used dictionary lenses to build lenses for a variety of textual formats including vCard, CSV, and
XML address books, iCal and ASCII calendars, BibTeX and RIS bibliographic databases, LaTeX documents,
iTunes libraries, and protein sequence data represented inthe SwissProt format and XML. These examples
demonstrate that a simple notion of implicit provenance formulated using keys is capable of expressing many
useful update policies. Current work is focused on an extension to key matching that uses “fuzzy” metrics such
as edit distance to align chunks. This relaxed form of matching is useful when processing data with no clear key
such as documents, and for handling cases where the update changes a key. We are also studying primitives that
incorporate explicit metadata (e.g., source string locations) into the keys, and on developing dictionary lenses
for richer structures such as trees and graphs.
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m2 : G(i, c, n) → U(n, c)
m3 : B(i, n) → ∃c U(n, c)
m4 : B(i, c) ∧ U(n, c) → B(i, n)

Figure 2: Example collaborative data sharing system for bioinformatics sources. For simplicity, each peer
(PGUS , PBioSQL, PuBio) has one relation. Schema mappings, given at the right, are indicated by labeled arcs.

3 ORCHESTRA

ORCHESTRA is a collaborative data sharing system(abbreviated CDSS) [22], i.e., a system for data sharing
among heterogeneous peers related by a network of schema mappings. Each peer has a locally controlled and
edited database instance, but wants to ask queries over related data from other peers as well. To achieve this,
every peer’s updates are translated and propagated along the mappings to the other peers. However, thisupdate
exchangeis filtered by trust conditions, expressing what data and sources a peer judges to be authoritative,
which may cause a peer to reject another’s updates. In order to support such filtering, updates carryprovenance
information. ORCHESTRA targets scientific data sharing, but it can also be used for other applications with
similar requirements and characteristics.

Figure 2 illustrates an example bioinformatics CDSS, basedon a real application and databases of interest
to affiliates of the Penn Center for Bioinformatics. GUS, theGenomics Unified Schema, contains gene ex-
pression, protein, and taxon (organism) information; BioSQL, affiliated with the BioPerl project, contains very
similar concepts; and a third schema, uBio, establishes synonyms and canonical names for taxa. Instances of
these databases contain taxon information that is autonomously maintained but of mutual interest to the others.
Suppose that a BioSQL peer,PBioSQL, wants to import data from peerPGUS , as shown by the arc labeledm1,
but the converse is not true. Similarly, peerPuBio wants to import data fromPGUS , along arcm2. Addition-
ally, PBioSQL andPuBio agree to mutually share some of their data: e.g.,PuBio imports taxon synonyms from
PBioSQL (via m3) andPBioSQL uses transitivity to infer new entries in its database, via mappingm4. Finally,
each peer may have a certaintrust policyabout what data it wishes to incorporate: e.g.,PBioSQL may only trust
data fromPuBio if it was derived fromPGUS entries. The CDSS facilitates dataflow among these systems,using
mappings and policies developed by the independent peers’ administrators.

The arcs between peers are sets oftuple-generating dependencies(tgds). Tgds are a popular means of
specifying constraints and mappings [11, 10] in data sharing, and they are equivalent to so-calledglobal-local-
as-viewor GLAV mappings [16, 21]. Some examples are shown in the right part of Figure 2. For instance,m1

says that, if there is a tuple inG about an organism with idi, canonical namec and namen, then an entry(i, n)
should be inserted inB. Another mapping,m4, ensures that, if there is an entry inB associating idi with a
namec, and - according toU - n is a synonym ofc, then there is also an entry(i, n) in B. Observe thatm3 has
an existential variable. For such mappings, update exchange, also involves inventing new “placeholder” values,
called labeled nulls. Figure 3(a) illustrates update exchange on our running example: assuming that the peers
have the local updates shown on the top, (where ‘+’ signifies insertion), the update translation constructs the
instances shown on the bottom (wherec1, c2, c3 are labeled nulls).

3.1 Using Provenance for Trust Policies

In addition to schema mappings, which specify the relationships between data elements in different instances,
a CDSS supportstrust policies. These express, for each peerP , what data from update translation should be
trusted and hence accepted. Some possible trust conditionsin our CDSS example are:

• PeerPBioSQL distrusts any tupleB(i, n) if the data came fromPGUS , and trusts any tuple fromPuBio.
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Figure 3: Example of update exchange and resulting provenance graph

• PeerPBioSQL distrusts any tupleB(i, n) that came from mapping(m4) if n 6= 2.

Since the trust conditions refer to other peers and to the schema mappings, the CDSS needs a precise description
of how these peers and mappings have contributed to a given tuple produced by update translation, i.e.,data
provenance. Trust conditions need a more detailed provenance model than why-provenance [6] and lineage [9,
1], as explained in [17]. Informally, we need to know not justfrom which tuples a tuple is derived, but alsohow
it is derived, including separate alternative derivationsthrough different mappings.

Figure 3(b) illustrates the main features of our provenancemodel with a graphical representation of the
provenance of tuples in our running example (a more formal description can be found in [17, 18]). The graph
has two kinds of nodes: tuple nodes (rectangles), and mapping nodes (ellipses). Arcs connect tuple nodes to
mappings that apply to them, and mapping nodes to tuples theyproduce. In addition, we have nodes for the
insertions from the local databases. This “source” data is annotated with its own id (unique in the system)
p1, p2, . . . etc. (called aprovenance token), and is connected by an arc to the corresponding tuple entered in the
local instance.

Note that, when the mappings form cycles, it is possible for atuple to have infinitely many derivations,
as well as for the derivations to be arbitrarily large; nonetheless, this graph is a finite representation of such
provenance. From the graph we can analyze the provenance of,say,B(3, 2) by tracing back paths to source
data nodes — in this case through(m4) to p1 andp2 and through(m1) to p3. This way, we can detect when
the derivation of a tuple is “tainted” by a peer or by a mapping, i.e., if all its derivations involve them, or not, if
there are alternative derivations from trusted tuples and mappings. For example, distrustingp2 andm1 leads to
rejectingB(3, 2) but distrustingp1 andp2 does not.

3.2 Using Provenance for Incremental Update Exchange

One of the major motivating factors in our choice of provenance formalisms has been the ability toincrementally
maintainboth the data instances at every peer and the provenance associated with the data. Similarly to the case
of trust conditions, the provenance model of ORCHESTRAis detailed enough for incremental maintenance, while
lineage [9, 1] andwhy-provenance[6] are not, intuitively because they don’t identify alternative derivations of
tuples. We represent the provenance graphtogetherwith the data instances, using additional relations (see [17]
for details). Schema mappings are then translated to a set ofdatalog-like rules (the main difference from standard
datalog being thatSkolem functions are used to invent new values for the labeled nulls). As a result, incremental
maintenance of peer instances is closely related to incremental maintenance of recursive datalog views, and
some techniques from that area can be used. Following [20] weconvert each mapping rule (after the relational
encoding of provenance) into a series ofdelta rules.
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For the case of incremental insertion, the algorithm is simple and analogous to the incremental view main-
tenance algorithms of [20]. Incremental deletion is more complex: when a tuple is deleted, we need to decide
whether other tuples that were derived from it need to be deleted; this is the case if and only if these derived
tuples have no alternative derivations from base tuples. Here, ORCHESTRA’s provenance model is useful in
order to identify tuples that have no derivations and need tobe deleted. A small complication comes from the
fact that there may be “loops” in the provenance graph, such that several tuples are mutually derivable from one
another, yet none are derivable from base tuples. In order to“garbage collect” these no-longer-derivable tuples,
we can also use provenance, to test whether they are derivable from trusted base data; those tuples that are not
must be recursively deleted following the same procedure.

Revisiting the provenance graph of Figure 3(b), suppose that we wish to propagate the deletion of the tuple
B(3, 5). This leads to the invalidation of mapping nodes labeledm3 andm4. Then, for the tuples that have
incoming edges from the deleted mapping nodes,U(5, c1) has to be deleted, because there is no other incoming
edge, while forB(3, 2) there is an alternative derivation, fromG(3, 5, 2) through(m1), and thus it is not deleted.
We note that a prior approach to incremental view maintenance, theDRed algorithm [20], has a similar “flavor”
but takes a more pessimistic approach. Upon the deletion of aset of tuples,DRed will pessimistically remove
all tuples that can be transitively derived from the initially deleted tuples. Then it will attempt to re-derive the
tuples it had deleted. Intuitively, we should be able to be more efficient thanDRed on average, because we can
exploit the provenance trace to test derivability in a goal-directed way. Moreover,DRed’s re-derivation should
typically be more expensive than our test for derivability,because insertion is more expensive than querying,
since the latter can useonly the keys of tuples, whereas the former needs to use the complete tuples; when these
tuples are large, this can have a significant impact on performance. Experimental results in [17] validate this
hypothesis.

In the future, we plan to add support for bidirectional propagation of updates over mappings. In this case,
we have to deal with a variation of the view update problem, and we expect provenance information to be useful
in order to identify possible update policies for the sources anddynamicallycheck if they have side-effects on
the target of the mappings.

4 Discussion

These case studies describe some first steps towards applying provenance to problems related to data replica-
tion. In particular, they demonstrate how tracking provenance, either implicitly as in lenses or explicitly as
in ORCHESTRA, can improve solutions to traditionally challenging problems such as view update and view
maintenance.

There is burgeoning interest in provenance, and more sophisticated models are being actively developed.
Whereas early notions such aslineage[9] and why-provenance[6] only identified which source values “con-
tribute to” the appearance of a value in the result of a query,more recent models [7, 18] also describehow
those source values contributes to the value in the result. We believe that as these richer models are developed,
they will increasingly be applied at all levels of systems including in mechanisms for creating, maintaining, and
updating views, for debugging schema mappings [7], and for curating and synchronizing replicated data.
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