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1 Introduction

Replication increases the availability of data in mobild distributed systems. For example, if we copy calendar
data from a web service onto a mobile device, the calendabeatcessed even when the network cannot. In
peer-based data sharing systems, maintaining a copy dfilnedsdata on a local node enables query answering
when remote peers are offline, guarantees privacy, and rapierformance. But along with these advantages,
replication brings complications: whenever one replicafgdated, the others also need to be refreshed to keep
the whole system consistent. Therefore, in systems burplication, synchronization mechanisms are critical.

In simple applications, the replicas are just that—carkapias of each other. But often the copied data needs
to be transformed in different ways on each replica. For @lapweb services and mobile devices represent
calendars in different formats (iCal vs. Palm Datebookkeluise, in data sharing systems for scientific data,
the peers usually have heterogeneous schemas. In thesecomopdicated systems, the replicas behave like
views, and so mechanisms for updating and maintaining vae/slso important.

The mapping between sources and views defined by a query ggenetally one-to-one. This loss of infor-
mation is what makes view update and view maintenance diffitinas often been observed thmbvenance-
i.e., metadata that tracks the origins of values as they fiowugh a query—could be used to cope with this loss
of information and help with these problems [5, 6, 4, 24], dnilly a few existing systems (e.g., AutoMed [12])
use provenance in this way, and only for limited classes @#si

This article presents a pair of case studies illustratingg poovenance can be incorporated into systems
for handling replicated data. The first describes how prawen is used itensedfor ordered data [2]. Lenses
define updatable views, which are used to handle heterogemeplicas in the Harmony synchronization frame-
work [23, 13]. They track a simple, implicit form of prover@nand use it to express the complex update policies
needed to correctly handle ordered data. The second cagedsscribes @CHESTRA[17, 19], a collaborative
data sharing system [22]. INnKEHESTRA data is distributed across tables located on many diffqreers, and
the relationship between connected peers is specified GiAY [16] schema mappings. Every node coalesces
data from remote peers and uses its own copy of the data tceagigries over the distributed dataset. Prove-
nance is used to perform incremental maintenance of eachapagdates are applied to remote peers, and to
filter “incoming” updates according toust conditions
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Figure 1: (a) Synchronization architecture for heterogeseeplicas. (b) Correspondence induced by keys.

Lens

2 Lenses

A lensis a bidirectional program. When read from left to right ihdées an ordinary function that maps sources
to views. When read from right to left, the same lens denatésipdate translator” that takes a source together
with an updated view and produces a new source that reflectgoiifate.

In the context of data synchronization, lenses are usedidgédithe gap between heterogeneous replicas.
To synchronize two replicas represented in different fasmnae first define lenses that transform each source
format into a common “abstract” format, and then synchrertlze abstract views. For example, to synchro-
nize iCal and Palm Datebook calendars, we use the forwaedtdn of two lenses to transform the files into
abstract calendars, discarding the low-level formattiatpits and any other data specific to each replica. After
synchronization, we then propagate the changes inducedukelsynchronizer back to the original formats using
the reverse direction of the same lenses. The architect@symchronizer for heterogeneous data assembled in
this way is depicted in Figure 1(a).

Semantically, a lenais just a pair of functions, which we caletandput Thegetcomponent maps sources
to views. It may, in general, discard some of the informafimm the source while computing the view. The
putcomponent therefore takes as arguments not only an updatedout also the original source; it weaves the
data from the view together with the information from therseuthat was discarded by tigetcomponent, and
yields an updated source. (Note that lenses are agnostatdhe view update is expressed—imeat function
works on the entire state of the updated view.)

The two components of a lens are required to fit together imsomable way: thput function must restore
all of the information discarded bgetwhen the view update is a no-op, and {h function must propagate
all of the information in the view back to the updated sousme([14] for a comparison of these requirements
to classical conditions on view update translators in ttegdiure.) In a lens language, these requirements are
guaranteed by the type system; in implementations, theghareked automatically [14, 15, 3, 2].

2.1 Ordered Data

Recent work on lenses has focused on the special challdmgiesrise when the source and view are ordered [2].
The main issue is that since the update to the view can inahemrdering, accurately reflecting updates back
to source requires locating, for each piece of the view, treesponding piece of the source that contains
the information discarded bget Our solution to this problem is to enrich lenses with a samplechanism
for tracking provenance: programmers describe how to ditiee source int@hunksand generate &ey for
each chunk. These induce an association between pieces sbtince and view that is used pyt during the
translation of updates—i.e., tipait function aligns each piece of the view with a chunk that hasstime key.

To illustrate the problem and our solution, let us considgingle example from the string domain. Suppose
that the source is a newline-separated list of records, w#bhthree comma-separated fields representing the
name, dates, and nationality of a classical composer, andékv contains just names and nationalities:



"Jean Sibelius, 1865-1957, Finnish "Jean Sibelius, Finnish

et
Aaron Copland, 1910-1990, American g_) Aaron Copland, American
Benjamin Britten, 1913-1976, English" Benjamin Britten, English"
Here is a lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA
let comps = copy "™ | comp . (copy "\n" . comp) *

The first two lines define regular expressions describinigadiptical data and year ranges using standard POSIX
notation for character setfAtZa-z | and[0-9] ) and repetition £ and{4} ). Single composers are pro-
cessed byomp; lists of composers are processeddoymps. In the getdirection, these lenses can be read as
string transducers, written in regular expression stgtgoy ALPHA matchesALPHAIn the source and copies
it to the view, anccopy ", " matches and copies a literal comma-space, vetgle YEARS matchesyEARS
in the source but adds nothing to the view. The unio)) ¢oncatenation. (), and iteration {) operators work
as usual. Theet of comps either matches and copies an empty string or processes aceagoser in a
newline-separated list usirepmp. (For formal definitions see [2].)

The put component otomps restores the dates to each entry positionally: the name atohality from
thenth line in the abstract structure are combined with the yiears thenth line in the concrete structure (using
a default year range to handle cases where the view has meeethian the source.) For some simple updates
this policy does a good job. For example, suppose that thatemihanges Britten’s nationality, and adds a new
composer to the end of the list. Thatfunction combines

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

"Jean Sibelius, 1865-1957, Finnish
with Aaron Copland, 1910-1990, English
Benjamin Britten, 1913-1976, English"

and yields an updated source

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(The year rang®000-0000 is the default; it is generated from the regular expresM&ARS) On other
examples, however, the behavior of thigt function is highly unsatisfactory. For example, supposteiad that
the update to the abstract string swaps the order of the demmhthird lines. Then thput function takes the
following view (and the same source as above)

"Jean Sibelius, Finnish "Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, English and yields Benjamin Britten, 1910-1990, English
Aaron Copland, American" Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Coplashihaerted into into Britten’s, and vice versa!
What we want, of course, is for thptto align the entries in the concrete and abstract stringsdtghinglines
with identical name components, as depicted in Figure Ifn)the same inputs, thput function yields

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

where the year ranges are correctly restored to each compose
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2.2 Provenancefor Chunks

To achieve this behavior, the composers lens needs to beakdep track of the association between lines in
the source and view even when the update involves a reogdedin., it need to trackrovenance

One way to do this would be using expligtovenance tokensOn this approach, each line of the source
would be annotated with a unique identifier, andge&function would propagate these annotations from source
to view. The disadvantage of this approach is that the viemoisonger an ordinary string, but a string with
annotations. This means that applications that take vienis@ut, such as the data synchronizer described
above, need to operate on annotated structures, which camid@ersome.

Lenses use a simpler mechanism that eliminates the needdiehannotated structures. The set of lenses
is enhanced with two new primitives for specifying ttleunksof the source and keyfor each chunk, angut
functions are retooled to work on structures where the goigrorganized as a dictionary of chunks indexed by
key, rather than the strings themselves. We call tlitstonary lenses Here is a dictionary lens that has the
desired behavior for the composers example:

let comp = key ALPHA . copy ", "

. del (YEARS . ", ")
. copy ALPHA
let comps = "™ | <comp> . ("\n" . <comp>) *

Compared to the previous version, the two occurrencesiwip are marked with angle brackets, indicating that
these subexpressions are the reorderable chunks, andstioefiy at the beginning ofomp has been replaced
by the special primitivikey . The lenskey ALPHA copies strings just likeopy ALPHA, but also specifies
that the matched substring is to be used as the key of the chuakich it appears—i.e., in this case, that the
key of each composer’s entry is their name.

The association induced by keys approximates the assotidiat would be obtained using explicit prove-
nance tokens. Indeed, when the keys are unique and wherethaupdate does not modify the names, the two
coincide. The idea of using keys to guide view update is not regmilar approaches have been studied in the
relational setting?]. However note that the “keys” used in dictionary lensesraerequired to be keys in the
strict database sense. When several pieces of the view hegaine key, thput function pulls chunks out of
the dictionary in the order that they originally appearedhi® source. This gives the option of obtaining other
useful update policies via the choice of key. For exampla it function that operates by position is desired,
it can be programmed as a lens whose key component returmstant

Another way to control the update policy embodied in a di@iy lens is via the definition of chunks. Many
examples can be processed using one level of chunking, las gotnposer lens. But chunks may also be nested,
which has the effect of stratifying matching into levelspdevel chunks are matched globally across the entire
string, subchunks are aligned locally within each chunkl, smon. This is useful in cases where the source has
nested structure—e.g., it is used in a lens for LaTeX sources

We have used dictionary lenses to build lenses for a varietgxtual formats including vCard, CSV, and
XML address books, iCal and ASCII calendars, BibTeX and Riffidgraphic databases, LaTeX documents,
iTunes libraries, and protein sequence data representdte iBSwissProt format and XML. These examples
demonstrate that a simple notion of implicit provenancenfdated using keys is capable of expressing many
useful update policies. Current work is focused on an eidart® key matching that uses “fuzzy” metrics such
as edit distance to align chunks. This relaxed form of maghs useful when processing data with no clear key
such as documents, and for handling cases where the updatgesha key. We are also studying primitives that
incorporate explicit metadata (e.g., source string loced into the keys, and on developing dictionary lenses
for richer structures such as trees and graphs.
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Figure 2: Example collaborative data sharing system for bioinfoiosatsources. For simplicity, each peer
(Pcus, Priosqr, Puio) has one relation. Schema mappings, given at the rightndredted by labeled arcs.

3 ORCHESTRA

ORCHESTRAIs acollaborative data sharing systefabbreviated CDSS) [22], i.e., a system for data sharing
among heterogeneous peers related by a network of schenmngspEach peer has a locally controlled and
edited database instance, but wants to ask queries ovedalata from other peers as well. To achieve this,
every peer’s updates are translated and propagated alemgappings to the other peers. However, tipdate
exchangeis filtered bytrust conditions expressing what data and sources a peer judges to be #atilieri
which may cause a peer to reject another’s updates. In ardripport such filtering, updates capnpvenance
information. QRCHESTRA targets scientific data sharing, but it can also be used f@rapplications with
similar requirements and characteristics.

Figure 2 illustrates an example bioinformatics CDSS, based real application and databases of interest
to affiliates of the Penn Center for Bioinformatics. GUS, denomics Unified Schema, contains gene ex-
pression, protein, and taxon (organism) information; B)aSaffiliated with the BioPerl project, contains very
similar concepts; and a third schema, uBio, establishesrgyns and canonical names for taxa. Instances of
these databases contain taxon information that is autonsisnmaintained but of mutual interest to the others.
Suppose that a BioSQL peéfp;,sgr, wants to import data from peéicy s, as shown by the arc labeleal,
but the converse is not true. Similarly, pe€rz;, wants to import data fronP;; g, along arcms. Addition-
ally, Pgiosqr, and P, g;, agree to mutually share some of their data: &3)z;, imports taxon synonyms from
Pgiosor (Viamg) and Pg;,s01, Uses transitivity to infer new entries in its database, vappingm,. Finally,
each peer may have a certainst policyabout what data it wishes to incorporate: eRg;,sqr, may only trust
data fromP, ;, if it was derived fromP;¢ entries. The CDSS facilitates dataflow among these systasimg
mappings and policies developed by the independent padirshastrators.

The arcs between peers are setdupfle-generating dependenciégds). Tgds are a popular means of
specifying constraints and mappings [11, 10] in data sgaand they are equivalent to so-callgidbal-local-
as-viewor GLAV mappings [16, 21]. Some examples are shown in the right p&igore 2. For instancepn;
says that, if there is a tuple {& about an organism with it} canonical name and namez, then an entryi, n)
should be inserted if. Another mappingm,, ensures that, if there is an entry fhassociating id with a
namec, and - according t&/ - n is a synonym oft; then there is also an ent(y, n) in B. Observe thatn; has
an existential variable. For such mappings, update exe&haigo involves inventing new “placeholder” values,
calledlabeled nulls Figure 3(a) illustrates update exchange on our runningnpl& assuming that the peers
have the local updates shown on the top, (wheresignifies insertion), the update translation construbts t
instances shown on the bottom (wheyec,, c3 are labeled nulls).

3.1 Using Provenance for Trust Policies

In addition to schema mappings, which specify the relahgsbetween data elements in different instances,
a CDSS supporttrust policies These express, for each pderwhat data from update translation should be
trusted and hence accepted. Some possible trust conditions CDSS example are:

e PeerPg;,s¢1, distrusts any tuplé3(i, n) if the data came fronP;r g, and trusts any tuple from?, io.
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Figure 3: Example of update exchange and resulting prowengraph

e PeerPg;,s¢r, distrusts any tuplé3 (i, n) that came from mappingn,) if n # 2.

Since the trust conditions refer to other peers and to thensatmappings, the CDSS needs a precise description
of how these peers and mappings have contributed to a giyda pwoduced by update translation, idata
provenance Trust conditions need a more detailed provenance modehtthig-provenance [6] and lineage [9,
1], as explained in [17]. Informally, we need to know not jirstm which tuples a tuple is derived, but alsow

it is derived, including separate alternative derivatitmeugh different mappings.

Figure 3(b) illustrates the main features of our provenamoelel with a graphical representation of the
provenance of tuples in our running example (a more formstigtion can be found in [17, 18]). The graph
has two kinds of nodes: tuple nodes (rectangles), and mgpmdes (ellipses). Arcs connect tuple nodes to
mappings that apply to them, and mapping nodes to tuplesptmuce. In addition, we have nodes for the
insertions from the local databases. This “source” datani®tated with its own id (unique in the system)
1, P2, ... etc. (called grovenance tokgnand is connected by an arc to the corresponding tupleezhterthe
local instance.

Note that, when the mappings form cycles, it is possible ftupe to have infinitely many derivations,
as well as for the derivations to be arbitrarily large; nbedtss, this graph is a finite representation of such
provenance. From the graph we can analyze the provenansayf3(3,2) by tracing back paths to source
data nodes — in this case througi,) to p; andp, and through(m) to ps. This way, we can detect when
the derivation of a tuple is “tainted” by a peer or by a mappirgy, if all its derivations involve them, or not, if
there are alternative derivations from trusted tuples aadpimgs. For example, distrustipg andm; leads to
rejectingB(3, 2) but distrustingp; andp, does not.

3.2 Using Provenance for Incremental Update Exchange

One of the major motivating factors in our choice of provar@aformalisms has been the abilityiterementally
maintainboth the data instances at every peer and the provenanazadsdavith the data. Similarly to the case
of trust conditions, the provenance model (i €@HESTRAIs detailed enough for incremental maintenance, while
lineage [9, 1] andwhy-provenancé6] are not, intuitively because they don’t identify altative derivations of
tuples. We represent the provenance graggietherwith the data instances, using additional relations (s&g [1
for details). Schema mappings are then translated to a dataibg-like rules (the main difference from standard
datalog being tha$ kolem functions are used to invent new values for the labeled nidls a result, incremental
maintenance of peer instances is closely related to iner&henaintenance of recursive datalog views, and
some techniques from that area can be used. Following [2@omeert each mapping rule (after the relational
encoding of provenance) into a seriedefta rules



For the case of incremental insertion, the algorithm is namd analogous to the incremental view main-
tenance algorithms of [20]. Incremental deletion is mommplex: when a tuple is deleted, we need to decide
whether other tuples that were derived from it need to betel@lahis is the case if and only if these derived
tuples have no alternative derivations from base tuplesie HBRCHESTRAS provenance model is useful in
order to identify tuples that have no derivations and nedgktdeleted. A small complication comes from the
fact that there may be “loops” in the provenance graph, suahseveral tuples are mutually derivable from one
another, yet none are derivable from base tuples. In ordgaidage collect” these no-longer-derivable tuples,
we can also use provenance, to test whether they are derifrabh trusted base data; those tuples that are not
must be recursively deleted following the same procedure.

Revisiting the provenance graph of Figure 3(b), supposenbavish to propagate the deletion of the tuple
B(3,5). This leads to the invalidation of mapping nodes labetedandm,4. Then, for the tuples that have
incoming edges from the deleted mapping nod&s, ¢, ) has to be deleted, because there is no other incoming
edge, while forB(3, 2) there is an alternative derivation, fraf(3, 5,2) through(m; ), and thus it is not deleted.
We note that a prior approach to incremental view maintemaiheDRed algorithm [20], has a similar “flavor”
but takes a more pessimistic approach. Upon the deletiorsef af tuplesDRed will pessimistically remove
all tuples that can be transitively derived from the inljiadeleted tuples. Then it will attempt to re-derive the
tuples it had deleted. Intuitively, we should be able to beaafficient tharDRed on average, because we can
exploit the provenance trace to test derivability in a gtiekcted way. MoreovebRed’s re-derivation should
typically be more expensive than our test for derivabiliigcause insertion is more expensive than querying,
since the latter can usmly the keys of tuples, whereas the former needs to use the ctantpjdes; when these
tuples are large, this can have a significant impact on pedoce. Experimental results in [17] validate this
hypothesis.

In the future, we plan to add support for bidirectional prggtgon of updates over mappings. In this case,
we have to deal with a variation of the view update problerd,\aa expect provenance information to be useful
in order to identify possible update policies for the soaraaddynamicallycheck if they have side-effects on
the target of the mappings.

4 Discussion

These case studies describe some first steps towards applgimenance to problems related to data replica-
tion. In particular, they demonstrate how tracking provera either implicitly as in lenses or explicitly as

in ORCHESTRA can improve solutions to traditionally challenging peabk such as view update and view
maintenance.

There is burgeoning interest in provenance, and more dapiesd models are being actively developed.
Whereas early notions such liseage[9] and why-provenancg6] only identified which source values “con-
tribute to” the appearance of a value in the result of a queiyte recent models [7, 18] also descrit@w
those source values contributes to the value in the resdtb&lfeve that as these richer models are developed,
they will increasingly be applied at all levels of systemduding in mechanisms for creating, maintaining, and
updating views, for debugging schema mappings [7], anddcating and synchronizing replicated data.
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