Program Slicing and Data Provenance

James Cheney
University of Edinburgh

Abstract

Provenance is information that aids understanding andltfeshooting database queries by explaining
the results in terms of the input. Slicing is a program anialyschnique for debugging and understand-
ing programs that has been studied since the early 1980s hinhaprogram results are explained in
terms of parts of the program that contributed to the resulhis paper will briefly review ideas and
techniques from program slicing and show how they might bé&ulifor improving our understanding of
provenance in databases.

1 Introduction

The result of a query could be considered “incorrect” in a hanof ways: the input data might be erroneous; the
guery might contain incorrect data values; or the queryfitsight be misleading or subject to misinterpretation.
For example, consider the queri@s, 2, Qs:

Q1 | SELECT Narme, Hei ght FROM Peopl e WHERE Nane = ' Janes’

Q2 | SELECT Nane, ' 200" AS Hei ght FROM Peopl e WHERE Nane = ' Janes’
Q3 | SELECT P. Nane, Q Wi ght AS Hei ght

FROM Peopl e P, People Q

VWHERE P. Nane = ’'Janes’ AND Q Nane = ' Bob’

Suppose that each of these queries returns the same recmtke(lames, Height:200) when run against some
databaseD B, having a table with schema People(Name, Height, Weighte nvight interpret this result as
saying that the person James has height 200cm; this hapgpkeasricorrect if ‘James’ refers to the author of this
article. However, in the first case, the error is in trginal datg in the second case, the error is in tingery;

and in the third case, the error is the mismatch between #rwsirgterpretationof the query result and what the
query actually says. Of course, there are many other pessthirces of error or misinterpretation, such as units
of measure (e.g. centimeters versus inches) which we wilkkoasider here.

An expert user who is familiar with the semantics of the quanguage and who has access to the database
can, with some effort, trace erroneous query results to tigenlying data in the input, and perhaps “clean” or
repair the errors. A lot of recent research has been undgrtimkautomate the expensive process of correcting
errors (or reconciling inconsistencies) in databasegnofalleddata cleaning[8]. Automatic data cleaning
works best when there is a clear, formal definition of “corfer “consistent” data; in practice, correctness is

Copyright 2007 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

often taken to be consistency with keys, functional depeaids, or other database constraints. However, it is
usually left to the user to determine which constraints ati&rize “clean” data.

The other problems of misformulation or misinterpretatidma query are more difficult to detect and correct.
This problem is compounded by barriers between end-userglaabases in typical systems. For example, in
a typical Web application, queries are generated by midallevwased on user input from a form, so the user
who must interpret the results of the query is often not thtbaof the query, and may not have direct access
to either the query or database. Thus, from such a user’s pbutew, the database (and the overall system) is
a “black box” that accepts form input and produces resultschvare presented as bare assertions without any
supporting explanation avidencethat could be used to decide whether the results are trustyvor not or
whether the query accurately reflects the user’s interfioetaf the results.

There are, of course, many possible ways to bridge this gagvidds work onprovenancean databases
(see, for example, [9] for an overview) has sought to progigieh explanations, for example to answer questions
about a query result such as “Why was this record part of thaltf® or “Where in the input database did this
value come from?” In this article, we consider provenancee@ny information that explains how the results
were obtained from the underlying database. However, tifiisrnal definition begs the questions: just wisat
an explanation, and what makes one explanation preferalaledther?

A number of answers have been proposed in previous work orepamce. For example, in approaches
such as Cui, Widom and Wienetiseage[6] and Buneman, Khanna and Tamfy-provenancean explanation
(called “witness” in [4]) for the presence of a recarth the output of a query) run on databas® B is a subset
DB’ of the records inD B such that € Q(DB’). Moreover, there is a “best” explanatidnB’ is obtained by
combining all of theminimal explanations. A related approach calledere-provenancgt] records the source
locations in the input from which output data were copied.sMaf these definitions are sensitive to the syntax
of the query, thus the provenance may be altered by querytirmgvrMinimal why-provenance is insensitive to
guery rewriting, but it appears difficult to extend beyondnotmne SELECT-FROMWHERE-UNI ON) queries.

In particular, features such as negation, grouping, andceggtjon are problematic for these techniques.

However, databases are certainly not the only setting irchwktiis important to be able to explain the
behavior of a large system. This is a central issue in soéivesrgineering, security, and many other areas.
Therefore it may be worthwhile to consider whether ideaseohniques in these other branches of computer
science can be transferred to the database and data proees®itings.

Program slicingis a well-explored technigue in software engineering. itively, program slicing attempts
to provide a concise explanation of a bug or anomalous pnodrahavior, in the form of a fragment of the
program that shows only those parts “relevant” to the bughonzaly. There seems to be a compelling analogy
between program slicing and data provenance, since mosiages to the latter propose to explain part of the
result of a query using a “relevant” part of the input data&bas this article, we explore this analogy and discuss
a form of provenance based on ideas from program slicing @lated concepts such dspendency analysis

In the rest of this article, we provide some background disitun of dependency analysis and program slic-
ing (Section 2), show how similar ideas can be used to dewefope-grained notion of dependency provenance
(Section 3), and conclude by discussing some researchiguegor future work (Section 4). We focus on
high-level exposition rather than technical details whiah be found in a recent paper [5].

2 Program dlicing background

Consider the straight-line program fragment shown in Fadi(g). If we execute this program in a context where
initially = 1,y = 2, 2 = 3, w = 4, then the finalv-value of the program will bay = 23. If we were expecting
a different result value fow, such as 17, then we might like to know what parts of the progaee responsible.
To diagnose the problem, it would be helpful to highlight bset of the statements which were relevant to the
final result ofw, and ignore the other statements. Informallglieeis a subset of the statements of the program

X =y + 2xz; X =y + 2x7; X =y + 2x7; X =y + 2xz; X =y + 2%z,
y:z+3*v\f, y:z+3*W; y:z+3*w" y:z+3*w;
Z = W - 4xx; . Z = W - 4xx; .
w=X +V; w =X +Y; w=X +Yy; w=X +Yy;
y =2z + 3*xw, .. y =z + 3*w, ..
Z = W - 4xx; Z = W - 4xx;
(a) Program (b) w-slice (c) z-slice (d) y-slice (e) z-slice
Figure 1: Straight-line program and slices with respeat ta@, y, andz
if (x ==0) { if (x ==0) { if (x == 0) { if (x == 0) {
y =z +w, y =z +w, y =z + W
x = 10;
w=1y + 1 w=y + 1; w=1y + 1;
} else { } else { } else { } else {
y =X +Ww
X =x - 1;
w = 5; w = 5; w = 5;
} } } }
(a) Program (b) Staticw-slice (c) Dynamicw-slices forx =0,z # 0

Figure 2: Conditional program with static and dynamic slieeth respect tav

that are relevant to some part of the output. Figure 1(b) steoslice of the program with respect:to we have
replaced the statements that do not “contribute” to the fiahle ofw with ellipses. Similarly, Figure 1(c)—(e)
depict slices with respect to, y, andz.

Conditional expressions make the slicing problem slightiyre interesting. For example, consider Fig-
ure 2(a). Since conditionals introduce the possibility @fihg code in the program that is not executed during a
particular run, we distinguish between static and dynatices the former cannot take into account the values
actually encountered at run time. shatic slicefor this program with respect t@ includes statements in both
branches because we do not know which branch will be takerfiggire 2(b). In a dynamic slice, we may omit
all of the code in the branch that is not taken; for examplpedding on whether the initial value ofis zero or
nonzero, the dynamic slice far would be as shown in the left or right of Figure 2(c), respedyi

It is, of course, trivial to find at least one program slicee irogram itself. However, the goal of slicing
is to aid understanding a large and complex program by ifyémgi a small, and hopefully easy-to-understand,
subset of program points. As with most interesting prograoperties, computing minimal slices (whether static
or dynamic) is undecidable; it is intractable even if weniesto programs with conditionals and assignment
but without while-loops or recursion. Thus, in practicepgnam slicing techniques attempt to conservatively
approximate the minimal slice.

Slicing captures an intuitive debugging process used bgrexpced programmers [12]. Since its introduc-
tion by Weiser [11], both static and dynamic program slichaye been investigated extensively [10]. Subse-
guent research has identifidépendencas a key concept in slicing and a number of related prografysisa
techniques [1]. In program analysis, dependence infoonadescribes how parts of a program, such as vari-
ables or control flow points, affect other parts. This infation is valuable because it can be used to predict
how the program will behave statically before executioncoumderstand how the program actually behaved

after execution. Dependences are often classifieddata dependencesr dependences on data from which an
object was computed, amtntrol dependencesr dependences on data that affected the flow of controingad
to the computation of an object.

While the majority of research on slicing has considerederafive (C) or object-oriented paradigms, slicing
techniques have also been adapted to declarative (fuattotogic) programming paradigms which are closely
related to database query languages such as SQL.

3 A dlicing approach to provenance

In databases, it is usually trgata that is large and poorly understood, while the query is iradbt small.
Previous work on data provenance has often defined proverama set of “parts” of the input (e.g. fields or
records) that “explains” a part of the output. There is a celfimyg analogy between program slicing, which
uses part of a program as a concise “explanation” for pati@butput, and data provenance, which uses part
of the database to explain part of the output. This analoggesis that we may be able to transfer ideas and
techniques for program slicing into the database and datagepance setting. We explore this idea in the rest of
the article.

Recall the querie§):, Q2, Q3 from the introduction. Suppose we run each of them on thetidptabase
consisting of the table People shown in Figure 3. This daltantains just three entries. When run against
this table, querie§)1—Q3 produce produces exactly one record, namely (James, 200).

We now might like to know: What parts of the input does the Heigeld in this record depend on? There
are many possible answers, depending on how we interprégriing’depend”. One natural notion is to consider
the how a change to each part of the input affects the outpatsady/ that a part of the outpdépends o part
of the input if changing the input pamayresult in a change to the output part. Thus, as in progranmgligve
need to consider not just what actually did happen but alsat wihight have happened: how would the output
change if the input were slightly different?

We consider three kinds of dependences: dependences oft ceigions records or fieldson field values
in the input. Consider a query and input databasé and records € I with field B. We say that the output
relationdepends oni. B if changing the value of. B may cause the output to change in any way. We say that a
recordr € Q(DB) depends on.B if changing the value of. B may delete in- from the output. Finally, we
say that the field value A in the outputdepends or.B in the input if there is some way to change the value of
s.A that either deletes from the output or changes the valuerafi. Thedependency provenanoér. A is the
set of all input fieldss. B on whichr.A depends on. Since the dependency provenance of a part ofptiieis a
subset of fields of the input, we can think of it as beindgsa sliceof the input in which irrelevant parts not in
the dependency provenance are elided.

We want to emphasize that this is only an informal definitiahtbat it can be made precise and generalized,;
however, here we will only illustrate the idea through exéapRecall the example from the introduction. Fig-
ures 4(a—c) show data slices of the input datadeight for queries);—Q3. ForQ, the dependency provenance
of u1.Height consists of;.Name and;.Height. The value oti;.Height was copied from;.Height, and the
output also depends an.Name, because changing this value would makelisappear from the output. For
Q2, however, as shown in Figure 4(h); does not depend on .Height; the value 200 was provided by the
guery, not copied from the input. It does still dependtpMName field for the same reason@s. For(Qs, as
shown in Figure 4(c)t;.Height does not depend @n.Height in the input, but iloesdepend orts.Name and
t3.Weight.

Dependency provenance is clearly similar in some respegistious approaches such as why-provenance,
where-provenance and lineage. In particular, where-prawvee (that is, the input field from which an output
field was “copied”) appears to be included in the dependemoygmance. Moreover, for conjunctive queries like
the above, the lineage (that is, the input records that fimried” in some way to an output record) appears to

People
id | Name | Height | Weight
t1 | James| 200 190 ==
ty | Alice | 160 150
t3 | Bob | 204 200

id | Name | Height
uy | James| 200

Figure 3: Input data and result of running querigs (02, andQs

id | Name | Height | Weight | [id | Name | Height | Weight 'td T;r?:s Height | Weight
:
t; | James 290 t1 | James) --- t3 | Bob | --- 200
= b
@ Q1 (b) Q2 © 05

Figure 4. Data slices with respectdg.Height and querie®, @2, andQs

include all of the records mentioned in the dependency manvee. Finally, why-provenance seems very closely
related, but a direct comparison is difficult because thgimai paper [4] used a semi-structured, deterministic
tree model quite different from the relational model we useeh We are glossing over many details here;
characterizing the precise relationship between thes@apipes (and other recent proposals for data provenance
in queries [7] and updates [3, 2]) is beyond the scope of thicle

Now we consider a second example, a guepywith grouping and aggregation:

SELECT Nane, AVERAGE(Sal ary)
FROM Enpl oyees

WHERE Year >= 2005

GROUP BY Nane

This query returns the names and average salaries sincea2@lsemployees; a sample input database and
result is shown in Figure 5. Note that Alice has no entriesesZ004 so does not appear in the result.

In the previous example, we considered only dependencestpfiofields on input fields; the relation and
record dependences are not very interesting for this exanfpélation and record dependences become more
important for queries such &g, involving grouping and aggregation.

Figures 6(a—c) show the data slices for the whole outpugrdee, (andu;.Salary), and field:;.Name,
respectively. The whole output depends on everything inrthat except for Alice’s salary fields; changing
them cannot affect the output, but other changes may. Thendieimcy provenance af is shown in Figure 6(b).
The presence of recorg clearly depends on all of the datatinandts; changing any of these fields may affect
the average, which would replaeg with some other record (James, gvdRecordu; also depends oh .Year
andtg.Name. The reason is that changing ‘2004’ to ‘2008 iror changing ‘Bob’ to ‘James’ itg would affect
the average associated with James in the output. Coineitierthe provenance af;.Salary turns out to be the
same as the provenancef, and the reasoning is similar. Finally, in Figure 6(c), we Heatu,.Name does
not (directly) depend on anything in the input. Of course, pinesence ofi; does depends on several parts of
the input, sau;.Name depends “indirectly” on these parts as well, but tlen® single field in the input that we
can change that will changg .Name in the result.

Employees
id | Name | Salary| Year
t1 | James| 1000 | 2004
ta | James| 1100 | 2005
tg | James| 1200 | 2006
ty | Alice | 1900 | 2003
t5 | Alice | 2000 | 2004
ts | Bob | 1000 | 2006

id | Name | Salary
= up | James| 1150
ug | Bob | 1000

Figure 5: Input data and result of running quéry

id | Name | Salary| Year id | Name| Salary| Year
t1 | James| 1000 | 2004 t 2004

to | James) 1100 | 2005 | = ™" james[1100 | 2005| [id [Name] Salary] Year
t3 | James| 1200 2006 t3 | James| 1200 2006 .

ts | Alice 2003 — — :
ts | Alice | --- 2004 ts | Bob . (c) Foru;.Name
ts | Bob 1000 | 2006 :

(@) For whole output (b) Foru; andu;.Salary

Figure 6: Data slices fof),4

4 Conclusions

We believe that the key question any approach to provenamst answer is what the provenance information
explainsabout a query result in the context of the input data and gaemantics that is not conveyed by
the query result value itself. Previous approaches, suahhgsprovenance, where-provenance, and lineage
have been based on intuitive notions of explanations sudteagifying the source data that “influenced” or
“contributed to” a part of the output or from which a part oéthutput was “copied”. However, corresponding
semantic correctness properties relating these formswépance to the actual semantics of a query have proven
elusive or hard to generalize beyond monotone queries.

We have outlined one approach, dependency provenanceh whizased on well-understood techniques
from programming languages such as dependency analysipragdam slicing. We believe this approach
captures intuitions similar to those motivating other mmance techniques, but may be easier to generalize to
the full range of features found in databases, includingigirtg, aggregation and stored procedures. However,
this work is still relatively speculative and more reseadascheeded to determine the feasibility of computing (or
conservatively approximating) dependency provenanceadatice and scale. Nevertheless, there appears to be
a deep connection between program slicing and data progerthat we may be able to exploit by transferring
ideas, tools, and techniques from programming languagesureh.

References

[1] Martin Abadi, Anindya Banerjee, Nevin Heintze, and J&nRiecke. A core calculus of dependency. In
POPL, pages 147-160, New York, NY, USA, 1999. ACM Press.

[2] Peter Buneman, Adriane P. Chapman, and James Cheneyer@rce management in curated databases.
In Proceedings of the 2006 SIGMOD Conference on Managemenataf pages 539-550, Chicago, IL,
2006. ACM Press.

[3] Peter Buneman, James Cheney, and Stijn VansummererheQaxpressiveness of implicit provenance in
query and update languages. IGDT 2007 number 4353 in Lecture Notes in Computer Science, pages
209-223. Springer, 2007.

[4] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Whywdrere: A characterization of data
provenance. IProc. 2001 International Conference on Database Theomnber 1973 in LNCS, pages
316-330. Springer-Verlag, 2001.

[5] James Cheney, Amal Ahmed, and Umut A. Acar. Provenancepsndency analysis. In M. Arenas and
M. I. Schwartzbach, editor®roceedings of the 11th International Symposium on DatPasgramming
Languages (DBPL 2007humber 4797 in LNCS, pages 139-153. Springer-Verlag, 2007

[6] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tragite lineage of view data in a warehousing
environment. ACM Trans. Database Sysp5(2):179-227, 2000.

[7] Todd J. Green, Grigoris Karvounarakis, and Val Tannerovenance semirings. IRODS pages 31-40,
New York, NY, USA, 2007. ACM Press.

[8] Erhard Rahm and Hong-Hai Do. Data cleaning: Problemsaamcent approachedEEE Bulletin of the
Technical Committee on Data Engineerjr&3(4), December 2000.

[9] Wang-Chiew Tan. Provenance in databases: Past, cufoéunte. This issue.
[10] F. Tip. A survey of program slicing technigue¥ournal of programming language8:121-189, 1995.
[11] Mark Weiser. Program slicing. INCSE pages 439-449, Piscataway, NJ, USA, 1981. IEEE Press.

[12] Mark Weiser. Programmers use slices when debugdgdmmmun. ACM25(7):446-452, 1982.

