
Program Slicing and Data Provenance

James Cheney
University of Edinburgh

Abstract

Provenance is information that aids understanding and troubleshooting database queries by explaining
the results in terms of the input. Slicing is a program analysis technique for debugging and understand-
ing programs that has been studied since the early 1980s, in which program results are explained in
terms of parts of the program that contributed to the results. This paper will briefly review ideas and
techniques from program slicing and show how they might be useful for improving our understanding of
provenance in databases.

1 Introduction

The result of a query could be considered “incorrect” in a number of ways: the input data might be erroneous; the
query might contain incorrect data values; or the query itself might be misleading or subject to misinterpretation.
For example, consider the queriesQ1, Q2, Q3:

Q1 SELECT Name, Height FROM People WHERE Name = ’James’
Q2 SELECT Name, ’200’ AS Height FROM People WHERE Name = ’James’
Q3 SELECT P.Name, Q.Weight AS Height

FROM People P, People Q
WHERE P.Name = ’James’ AND Q.Name = ’Bob’

Suppose that each of these queries returns the same record (Name:James, Height:200) when run against some
databaseDB, having a table with schema People(Name, Height, Weight). We might interpret this result as
saying that the person James has height 200cm; this happens to be incorrect if ‘James’ refers to the author of this
article. However, in the first case, the error is in theoriginal data; in the second case, the error is in thequery;
and in the third case, the error is the mismatch between the user’s interpretationof the query result and what the
query actually says. Of course, there are many other possible sources of error or misinterpretation, such as units
of measure (e.g. centimeters versus inches) which we will not consider here.

An expert user who is familiar with the semantics of the querylanguage and who has access to the database
can, with some effort, trace erroneous query results to the underlying data in the input, and perhaps “clean” or
repair the errors. A lot of recent research has been undertaken to automate the expensive process of correcting
errors (or reconciling inconsistencies) in databases, often calleddata cleaning[8]. Automatic data cleaning
works best when there is a clear, formal definition of “correct” or “consistent” data; in practice, correctness is

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



often taken to be consistency with keys, functional dependencies, or other database constraints. However, it is
usually left to the user to determine which constraints characterize “clean” data.

The other problems of misformulation or misinterpretationof a query are more difficult to detect and correct.
This problem is compounded by barriers between end-users and databases in typical systems. For example, in
a typical Web application, queries are generated by middleware based on user input from a form, so the user
who must interpret the results of the query is often not the author of the query, and may not have direct access
to either the query or database. Thus, from such a user’s point of view, the database (and the overall system) is
a “black box” that accepts form input and produces results, which are presented as bare assertions without any
supporting explanation orevidencethat could be used to decide whether the results are trustworthy or not or
whether the query accurately reflects the user’s interpretation of the results.

There are, of course, many possible ways to bridge this gap. Previous work onprovenancein databases
(see, for example, [9] for an overview) has sought to providesuch explanations, for example to answer questions
about a query result such as “Why was this record part of the result?” or “Where in the input database did this
value come from?” In this article, we consider provenance tobe any information that explains how the results
were obtained from the underlying database. However, this informal definition begs the questions: just whatis
an explanation, and what makes one explanation preferable to another?

A number of answers have been proposed in previous work on provenance. For example, in approaches
such as Cui, Widom and Wiener’slineage[6] and Buneman, Khanna and Tan’swhy-provenance, an explanation
(called “witness” in [4]) for the presence of a recordt in the output of a queryQ run on databaseDB is a subset
DB′ of the records inDB such thatt ∈ Q(DB′). Moreover, there is a “best” explanationDB′ is obtained by
combining all of theminimalexplanations. A related approach calledwhere-provenance[4] records the source
locations in the input from which output data were copied. Most of these definitions are sensitive to the syntax
of the query, thus the provenance may be altered by query rewriting. Minimal why-provenance is insensitive to
query rewriting, but it appears difficult to extend beyond monotone (SELECT-FROM-WHERE-UNION) queries.
In particular, features such as negation, grouping, and aggregation are problematic for these techniques.

However, databases are certainly not the only setting in which it is important to be able to explain the
behavior of a large system. This is a central issue in software engineering, security, and many other areas.
Therefore it may be worthwhile to consider whether ideas or techniques in these other branches of computer
science can be transferred to the database and data provenance settings.

Program slicingis a well-explored technique in software engineering. Intuitively, program slicing attempts
to provide a concise explanation of a bug or anomalous program behavior, in the form of a fragment of the
program that shows only those parts “relevant” to the bug or anomaly. There seems to be a compelling analogy
between program slicing and data provenance, since most approaches to the latter propose to explain part of the
result of a query using a “relevant” part of the input database. In this article, we explore this analogy and discuss
a form of provenance based on ideas from program slicing and related concepts such asdependency analysis.

In the rest of this article, we provide some background discussion of dependency analysis and program slic-
ing (Section 2), show how similar ideas can be used to developa fine-grained notion of dependency provenance
(Section 3), and conclude by discussing some research questions for future work (Section 4). We focus on
high-level exposition rather than technical details whichcan be found in a recent paper [5].

2 Program slicing background

Consider the straight-line program fragment shown in Figure 1(a). If we execute this program in a context where
initially x = 1, y = 2, z = 3, w = 4, then the finalw-value of the program will bew = 23. If we were expecting
a different result value forw, such as 17, then we might like to know what parts of the program are responsible.
To diagnose the problem, it would be helpful to highlight a subset of the statements which were relevant to the
final result ofw, and ignore the other statements. Informally, aslice is a subset of the statements of the program

2



x = y + 2*z;
y = z + 3*w;
z = w - 4*x;
w = x + y;
y = z + 3*w;
z = w - 4*x;

(a) Program

x = y + 2*z;
y = z + 3*w;
...
w = x + y;
...
...

(b) w-slice

x = y + 2*z;
...
...
...
...
...

(c) x-slice

x = y + 2*z;
y = z + 3*w;
z = w - 4*x;
w = x + y;
y = z + 3*w;
...

(d) y-slice

x = y + 2*z;
y = z + 3*w;
...
w = x + y;
...
z = w - 4*x;

(e)z-slice

Figure 1: Straight-line program and slices with respect tow, x, y, andz

if (x == 0) {
y = z + w;
x = 10;
w = y + 1;

} else {
y = x + w;
x = x - 1;
w = 5;

}

(a) Program

if (x == 0) {
y = z + w;
...
w = y + 1;

} else {
...
...
w = 5;

}

(b) Staticw-slice

if (x == 0) {
...
...
...

} else {
...
...
w = 5;

}

if (x == 0) {
y = z + w;
...
w = y + 1;

} else {
...
...
...

}

(c) Dynamicw-slices forx = 0, x 6= 0

Figure 2: Conditional program with static and dynamic slices with respect tow

that are relevant to some part of the output. Figure 1(b) shows a slice of the program with respect tow; we have
replaced the statements that do not “contribute” to the finalvalue ofw with ellipses. Similarly, Figure 1(c)–(e)
depict slices with respect tox, y, andz.

Conditional expressions make the slicing problem slightlymore interesting. For example, consider Fig-
ure 2(a). Since conditionals introduce the possibility of having code in the program that is not executed during a
particular run, we distinguish between static and dynamic slices; the former cannot take into account the values
actually encountered at run time. Astatic slicefor this program with respect tow includes statements in both
branches because we do not know which branch will be taken; see Figure 2(b). In a dynamic slice, we may omit
all of the code in the branch that is not taken; for example, depending on whether the initial value ofx is zero or
nonzero, the dynamic slice forw would be as shown in the left or right of Figure 2(c), respectively.

It is, of course, trivial to find at least one program slice: the program itself. However, the goal of slicing
is to aid understanding a large and complex program by identifying a small, and hopefully easy-to-understand,
subset of program points. As with most interesting program properties, computing minimal slices (whether static
or dynamic) is undecidable; it is intractable even if we restrict to programs with conditionals and assignment
but without while-loops or recursion. Thus, in practice, program slicing techniques attempt to conservatively
approximate the minimal slice.

Slicing captures an intuitive debugging process used by experienced programmers [12]. Since its introduc-
tion by Weiser [11], both static and dynamic program slicinghave been investigated extensively [10]. Subse-
quent research has identifieddependenceas a key concept in slicing and a number of related program analysis
techniques [1]. In program analysis, dependence information describes how parts of a program, such as vari-
ables or control flow points, affect other parts. This information is valuable because it can be used to predict
how the program will behave statically before execution or to understand how the program actually behaved

3



after execution. Dependences are often classified intodata dependences, or dependences on data from which an
object was computed, andcontrol dependences, or dependences on data that affected the flow of control leading
to the computation of an object.

While the majority of research on slicing has considered imperative (C) or object-oriented paradigms, slicing
techniques have also been adapted to declarative (functional or logic) programming paradigms which are closely
related to database query languages such as SQL.

3 A slicing approach to provenance

In databases, it is usually thedata that is large and poorly understood, while the query is relatively small.
Previous work on data provenance has often defined provenance as a set of “parts” of the input (e.g. fields or
records) that “explains” a part of the output. There is a compelling analogy between program slicing, which
uses part of a program as a concise “explanation” for part of the output, and data provenance, which uses part
of the database to explain part of the output. This analogy suggests that we may be able to transfer ideas and
techniques for program slicing into the database and data provenance setting. We explore this idea in the rest of
the article.

Recall the queriesQ1, Q2, Q3 from the introduction. Suppose we run each of them on the input database
consisting of the table People shown in Figure 3. This database contains just three entries. When run against
this table, queriesQ1–Q3 produce produces exactly one record, namely (James, 200).

We now might like to know: What parts of the input does the Height field in this record depend on? There
are many possible answers, depending on how we interpret theterm “depend”. One natural notion is to consider
the how a change to each part of the input affects the output. We say that a part of the outputdepends ona part
of the input if changing the input partmayresult in a change to the output part. Thus, as in program slicing, we
need to consider not just what actually did happen but also what might have happened: how would the output
change if the input were slightly different?

We consider three kinds of dependences: dependences of output relations, records, or fieldson field values
in the input. Consider a queryQ and input databaseI and records ∈ I with field B. We say that the output
relationdepends ons.B if changing the value ofs.B may cause the output to change in any way. We say that a
recordr ∈ Q(DB) depends ons.B if changing the value ofs.B may delete inr from the output. Finally, we
say that the field valuer.A in the outputdepends ons.B in the input if there is some way to change the value of
s.A that either deletesr from the output or changes the value ofr.A. Thedependency provenanceof r.A is the
set of all input fieldss.B on whichr.A depends on. Since the dependency provenance of a part of the input is a
subset of fields of the input, we can think of it as being adata sliceof the input in which irrelevant parts not in
the dependency provenance are elided.

We want to emphasize that this is only an informal definition but that it can be made precise and generalized;
however, here we will only illustrate the idea through examples. Recall the example from the introduction. Fig-
ures 4(a–c) show data slices of the input datau1.Height for queriesQ1–Q3. ForQ1, the dependency provenance
of u1.Height consists oft1.Name andt1.Height. The value ofu1.Height was copied fromt1.Height, and the
output also depends ont1.Name, because changing this value would makeu1 disappear from the output. For
Q2, however, as shown in Figure 4(b),u1 does not depend ont1.Height; the value 200 was provided by the
query, not copied from the input. It does still depend ont1.Name field for the same reason asQ1. For Q3, as
shown in Figure 4(c),t1.Height does not depend ont1.Height in the input, but itdoesdepend ont3.Name and
t3.Weight.

Dependency provenance is clearly similar in some respects to previous approaches such as why-provenance,
where-provenance and lineage. In particular, where-provenance (that is, the input field from which an output
field was “copied”) appears to be included in the dependency provenance. Moreover, for conjunctive queries like
the above, the lineage (that is, the input records that “contributed” in some way to an output record) appears to

4



People
id Name Height Weight
t1 James 200 190
t2 Alice 160 150
t3 Bob 204 200

=⇒
id Name Height
u1 James 200

Figure 3: Input data and result of running queriesQ1, Q2, andQ3

id Name Height Weight
t1 James 200 · · ·

...
(a)Q1

id Name Height Weight
t1 James · · · · · ·

...
(b) Q2

id Name Height Weight
t1 James · · · · · ·

t3 Bob · · · 200
...

(c) Q3

Figure 4: Data slices with respect tou1.Height and queriesQ1, Q2, andQ3

include all of the records mentioned in the dependency provenance. Finally, why-provenance seems very closely
related, but a direct comparison is difficult because the original paper [4] used a semi-structured, deterministic
tree model quite different from the relational model we use here. We are glossing over many details here;
characterizing the precise relationship between these approaches (and other recent proposals for data provenance
in queries [7] and updates [3, 2]) is beyond the scope of this article.

Now we consider a second example, a queryQ4 with grouping and aggregation:

SELECT Name, AVERAGE(Salary)
FROM Employees
WHERE Year >= 2005
GROUP BY Name

This query returns the names and average salaries since 2005of all employees; a sample input database and
result is shown in Figure 5. Note that Alice has no entries since 2004 so does not appear in the result.

In the previous example, we considered only dependences of output fields on input fields; the relation and
record dependences are not very interesting for this example. Relation and record dependences become more
important for queries such asQ4 involving grouping and aggregation.

Figures 6(a–c) show the data slices for the whole output, record u1 (andu1.Salary), and fieldu1.Name,
respectively. The whole output depends on everything in theinput except for Alice’s salary fields; changing
them cannot affect the output, but other changes may. The dependency provenance ofu1 is shown in Figure 6(b).
The presence of recordu1 clearly depends on all of the data int2 andt3; changing any of these fields may affect
the average, which would replaceu1 with some other record (James, avg′). Recordu1 also depends ont1.Year
andt6.Name. The reason is that changing ‘2004’ to ‘2008’ int1 or changing ‘Bob’ to ‘James’ int6 would affect
the average associated with James in the output. Coincidentally, the provenance ofu1.Salary turns out to be the
same as the provenance ofu1, and the reasoning is similar. Finally, in Figure 6(c), we see thatu1.Name does
not (directly) depend on anything in the input. Of course, the presence ofu1 does depends on several parts of
the input, sou1.Name depends “indirectly” on these parts as well, but thereis no single field in the input that we
can change that will changeu1.Name in the result.

5



Employees
id Name Salary Year
t1 James 1000 2004
t2 James 1100 2005
t3 James 1200 2006
t4 Alice 1900 2003
t5 Alice 2000 2004
t6 Bob 1000 2006

=⇒

id Name Salary
u1 James 1150
u2 Bob 1000

Figure 5: Input data and result of running queryQ4

id Name Salary Year
t1 James 1000 2004
t2 James 1100 2005
t3 James 1200 2006
t4 Alice · · · 2003
t5 Alice · · · 2004
t6 Bob 1000 2006

(a) For whole output

id Name Salary Year
t1 · · · · · · 2004
t2 James 1100 2005
t3 James 1200 2006
t6 Bob · · · · · ·

...
(b) Foru1 andu1.Salary

id Name Salary Year
...

(c) Foru1.Name

Figure 6: Data slices forQ4

4 Conclusions

We believe that the key question any approach to provenance must answer is what the provenance information
explainsabout a query result in the context of the input data and querysemantics that is not conveyed by
the query result value itself. Previous approaches, such aswhy-provenance, where-provenance, and lineage
have been based on intuitive notions of explanations such asidentifying the source data that “influenced” or
“contributed to” a part of the output or from which a part of the output was “copied”. However, corresponding
semantic correctness properties relating these forms of provenance to the actual semantics of a query have proven
elusive or hard to generalize beyond monotone queries.

We have outlined one approach, dependency provenance, which is based on well-understood techniques
from programming languages such as dependency analysis andprogram slicing. We believe this approach
captures intuitions similar to those motivating other provenance techniques, but may be easier to generalize to
the full range of features found in databases, including grouping, aggregation and stored procedures. However,
this work is still relatively speculative and more researchis needed to determine the feasibility of computing (or
conservatively approximating) dependency provenance in practice and scale. Nevertheless, there appears to be
a deep connection between program slicing and data provenance that we may be able to exploit by transferring
ideas, tools, and techniques from programming languages research.

6



References

[1] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and JonG. Riecke. A core calculus of dependency. In
POPL, pages 147–160, New York, NY, USA, 1999. ACM Press.

[2] Peter Buneman, Adriane P. Chapman, and James Cheney. Provenance management in curated databases.
In Proceedings of the 2006 SIGMOD Conference on Management of Data, pages 539–550, Chicago, IL,
2006. ACM Press.

[3] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit provenance in
query and update languages. InICDT 2007, number 4353 in Lecture Notes in Computer Science, pages
209–223. Springer, 2007.

[4] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization of data
provenance. InProc. 2001 International Conference on Database Theory, number 1973 in LNCS, pages
316–330. Springer-Verlag, 2001.

[5] James Cheney, Amal Ahmed, and Umut A. Acar. Provenance asdependency analysis. In M. Arenas and
M. I. Schwartzbach, editors,Proceedings of the 11th International Symposium on Database Programming
Languages (DBPL 2007), number 4797 in LNCS, pages 139–153. Springer-Verlag, 2007.

[6] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data in a warehousing
environment.ACM Trans. Database Syst., 25(2):179–227, 2000.

[7] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. InPODS, pages 31–40,
New York, NY, USA, 2007. ACM Press.

[8] Erhard Rahm and Hong-Hai Do. Data cleaning: Problems andcurrent approaches.IEEE Bulletin of the
Technical Committee on Data Engineering, 23(4), December 2000.

[9] Wang-Chiew Tan. Provenance in databases: Past, current, future. This issue.

[10] F. Tip. A survey of program slicing techniques.Journal of programming languages, 3:121–189, 1995.

[11] Mark Weiser. Program slicing. InICSE, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[12] Mark Weiser. Programmers use slices when debugging.Commun. ACM, 25(7):446–452, 1982.

7


