Bulletin of the Technical Committee on

Data |
Engineering

December 2007 Vol. 32 No. 4 @ IEEE Computer Society
®
Letters
Letter from the Editor-in-Chief. e David Lomet 1
Letter from the Special Issue EdItors.t e Peter Buneman and Dan Suciu 2

Special Issue on Data Provenance

Provenance in Databases: Past, Current, and Future. S . . Wang-Chiew Tan 3
Provenance and Data Synchronization. J Nathan Foster and Grlgorls Karvounarakisl3
Program Slicing and Data Provenance.t James Cheney 22
Recording Provenance for SQL Queries and Updates.Stijn Vansummeren and James Chen@@
Issues in Building Practical Provenance Systems. Adriane Chapman, H.V. Jagadish38
Provenance in Scientific Workflow Systems.Susan Davidson, Sarah Cohen-Boulakia,
Anat Eyal, Bertram Ludascher, Timothy McPhllllps ShawrwBrs Manish Kumar Anand, Juliana Freire44
Copyright and Provenance: Some Practical Problems.John Mark Ockerbloom 51

Conference and Journal Notices

ICDE CONEIENCE ot e e e back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
lomet@microsoft.com

Associate Editors
Anastassia Ailamaki
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Jayant Haritsa

Supercomputer Education & Research Center
Indian Institute of Science

Bangalore-560012, India

Nick Koudas

Department of Computer Science
University of Toronto

Toronto, ON, M5S 2E4 Canada

Dan Suciu

Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

The Bulletin of the Technical Committee on Data
Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

Membership in the TC on Data Engineering is open
to all current members of the IEEE Computer Society
who are interested in database systems.

There are two Data Engineering Bulletin web sites:
http://www.research.microsoft.com /research/db/debull
and http://sites.computer.org/debull/.

The TC on Data Engineering web page is
http://www.ipsi.fraunhofer.de/tcde/.

TC Executive Committee

Chair
Paul Larson
Microsoft Research
One Microsoft Way
Redmond WA 98052, USA
palarson@microsoft.com

Vice-Chair
Calton Pu
Georgia Tech
266 Ferst Drive
Atlanta, GA 30332, USA

Secretary/Treasurer
Thomas Risse
L3S Research Center
Appelstrasse 9a
D-30167 Hannover, Germany

Past Chair
Erich Neuhold
University of Vienna
Liebiggasse 4
A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.
Sam Lightstone
IBM Toronto Lab
Markham, ON, Canada

Geographic Coordinators
Karl Aberer (Europe)
EPFL
Batiment BC, Station 14
CH-1015 Lausanne, Switzerland

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
Tokyo 106, Japan

SIGMOD Liason
Yannis Toannidis
Department of Informatics
University Of Athens
157 84 Ilissia, Athens, Greece

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

Letter from the Editor-in-Chief

Bulletin Announcement

| take great pleasure in announcing that all issues of tha Bagineering Bulletin, dating back to 1977, are now
available in pdf format via the Bulletin web sitd%tip://sites.computer.org/debull/

andhttp://research.microsoft.com/research/db/debull/de fault.htm).
Further, these issues are now also referenced via the DBbRieeas well at
http://www.informatik.uni-trier.de/"ley/db/journals /debu/index.html

| believe you will find many articles that are of great intérédome of these articles have continued to be cited
many years after their publication but have been hard toiezgutil now.

Many people contributed in this effort. | want first to thatie tMicrosoft Corporation through which the
scanning of the issues was accomplished. Next, | must thenkany people who generously contributed issues
of the Bulletin from their “archives” so that we can bring touya complete set of issues. These folks are Phil
Bernstein, Umesh Dayal, Stavros Christodoulakis, Mikenklia, Hank Korth, Guy Lohman, Amihai Motro,
Timos Sellis, Gio Wiederhold, and Antoni Wolski. | want tangie out for special thanks Sylvia Osborn, who
provided many of the very early issues that were particulaard to find.

Finally, | want to mention that all issues of the Bulletin a@v included in and accessible via DBLP. | want
to thank Michael Ley for making this happen, and in an amdyisgort time so that this information can be
included in the announcement.

I would urge you all to visit the Bulletin web site and browke tarlier issues. | think you will be impressed
by how interesting and relevant many of the papers contiouet

The Current Issue

Database provenance is a topic that has more or less esdégeitba by our field historically. We were, as a
field, pre-occupied with providing the basic data storage ratrieval functionality, ensuring that performance
was adequate, and generalizing to deal with issues suclddmadl data models, distribution, etc. One might
characterize this as needing to crawl before one can walk.oBuusers want us now to walk. They need to
know how reliable the data is, who is vouching for it, what #e uncertainties, how precise it is, whether it is
under copyright, etc. To deal with this, we need to know whkeedata has come from and how it was derived.
That is, we need to know its provenance.

Dan Suciu together with Peter Buneman have assembled trentissue of the Bulletin on the subject of
“Data Provenance”. The papers in this issue were carefalgcted, some coming from a recent workshop on
data provenance principles. | want to thank Dan and Petéhéarfine job as editors of this issue, which makes
data provenance much more accessible to our communityrviés@s a great introduction to an important and
suprisingly subtle area.

David Lomet
Microsoft Corporation

Letter from the Special Issue Editors

As the Web makes it increasingly easy to exchange, copy andform data, the issue pfovenance- where
data had come from and how it was derived — has rapidly becolaading research issue. Provenance has
always been important in scholarship, and it is now becorimgprtant to scientists who deal with large and
complex data sets; but we do not need scholars or sciertitah tis of its importance. Go to the Web and search
for the population of some country. You may well find that imgossible to find out where a figure came from
or how it was derived. derived.

The importance of provenance has been recently been reeoynihe International Annotation and Prove-
nance Workshop is devoted largelyvmrkflowprovenance; there is also a growing body of database résearc
into data provenance The first paper in this issue by Wang-Chiew Tawjges an accessible and comprehen-
sive introduction to these two aspects of provenance. Dateepance has recently emerged as being important
to a number of areas of computer science such as annotasitanintiegration, probabilistic databases, file syn-
chronization, data archiving and program debugging. In 2@7, James Cheney, Nathan Foster and Bertram
Ludascher organized an informal workshop on the PrinsipleProvenance at the University of Pennsylvania
in May 2007. Its purpose was to bring together people workirthese areas in order to elicit some underlying
principles and models. This issue is based on some of the aalthat workshop.

Provenance and Data Synchronizatidoy Nathan Foster and Grigoris Karvounarakis, describesap+
plications involving data replication: the data synchration system Harmony where provenance tagging is
needed to provide independence from order and the datangl®stem Orchestra where provenance is impor-
tant both for trust and for incremental updates. Followimg tmusical demonstration, rogram slicing and
data provenancdames Cheney shows a connection between program slicing wiier debugging purposes —
one wants to focus on that part of the program that influengzbeific variable and data provenance where one
is interested in that part of the evolution of a databaseabedunts for the current state of a specific data item.

Update languages, especially the update fragment of S@Lgften dismissed by database researchers be-
cause, when measured by their ability to effect transfaonatof the database, they are less expressive than
qguery languages. IRecording Provenance for SQL Queries and Upda$#gn Vansummeren and James Ch-
eney point out that when provenance is taken into accounatepgdanguages can become interesting because
they can express more than query languages. This papeil#dssboth an implicit and explicit semantics for
provenance for both query and updates in SQL-like languages

Although the focus of this issue is more on data provenarae Workflow provenance, two of our papers
argue forcefully that these two topics should not be divordehe first,Issues in Building Practical Provenance
Systemdy Adriane Chapman and H.V. Jagadish, provides a set of eéleséd for provenance recording and
describes how simply recording workflow execution may notabdequate for understanding the evolution of
data, especially when this has been heavily manipulated s€ébondProvenance in Scientific Workflow Systems
by Susan Davidsoast al describes an an approach to summarizing workflows and therouagh a collection-
oriented model of data — analyzing the effect of the indigidprocesses through a stream-based model of
processing. In our opinion, connecting workflow and data@nance is the most interesting research challenge
in the general field of provenance models.

Finally, in Copyright and Provenance: Some Practical Probledwhn Ockerbloom shows how, even in the
world of fixed digital documents, provenance in is importemtletermining intellectual property. Traditional
copyright law is based on the fact that copying a work (pnigntit) was a non-trivial task. While traditional law
may not have been ideal, it was at least workable. How we atlpelectronic data sets in which many small
pieces of data have been derived and assembled from a langgenof other sources is a major challenge; and
it is one in which a good model of provenance may be of sigmfitenefit.

Peter Buneman and Dan Suciu
University Edinburgh and University of of Washington

Provenance in Databases: Past, Current, and Future

Wang-Chiew Tah
UC Santa Cruz
wctan@cs.ucsc.edu

Abstract

The need to understand and manage provenance arises intaévey scientific application. In many
cases, information about provenance constitutes the mbodrrectness of results that are generated by
scientific applications. It also determines the quality @mdount of trust one places on the results. For
these reasons, the knowledge of provenance of a scientfitt ie typically regarded to be as important
as the result itself. In this paper, we provide an overvieweséarch in provenance in databases and dis-
cuss some future research directions. The content of tlueria largely based on the tutorial presented
at SIGMOD 2007 [11].

1 Overview of Provenance

The wordprovenancds used synonymously with the wolideagein the database community. It is also some-
times referred to asource attributionor source tagging Provenance mearwmwigin or source It also means
the history of ownership of a valued object or work of art ¢edature[26]. The knowledge of provenance is
especially important for works of art, as it directly detémes the value of the artwork. The same applies to
digital artifacts or results that are generated by scierdifiplications. Information about provenance constitutes
the proof of correctness of scientific results and in turehines the quality and amount of trust one places on
the results. For these reasons, the provenance of a scieesiilt is typically regarded to be as important as the
result itself. There are two granularities of provenancesaered in literatureworkflow (or coarse-grained)
provenanceanddata (or fine-grained) provenancén what follows, we provide an overview of workflow and
data provenance. However, the focus of this paper is on dateepance, which is described in the rest of this
paper (Sections 2 to 4).

Workflow (or coarse-grained) provenance In the scientific domain, a workflow is typically used to e
complex data processing tasks. workflow can be thought of as a program which is an interconnection of
computation steps and human-machine interaction sWpekflow provenanceefers to the record of the entire
history of the derivation of the final output of the workflowhd amount of information recorded for workflow
provenance varies. It may include a complete record of theesgce of steps taken in a workflow to arrive
at some dataset. In some cases, this entails a detailedirettite versions of softwares used, as well as the
models and makes of hardware equipments used in the workfiaddition to providing a proof of correctness

Copyright 2007 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Supported in part by NSF CAREER Award 11S-0347065 and NSRtgi&-0430994.

Tree
Repository

GenBank If output is unsatisfactory, repeat

(S1) Download (SZ) Create (83.) Refine
Sequences Alignment Alignment

—> (S4) Infer Tree

Figure 1: An example of a workflow from [16].

to the final workflow output, workflow provenance can also befuisfor avoiding duplication of efforts; With
appropriate bookkeeping of inputs taken by parts of the flmsk it is possible to identify parts of the workflow
that need not be repeated across different execution runs.

Example 1: A simple example of a workflow from [16] is depicted in FigureAtrows denote the flow of data,
while boxes are used to indicate data processing steps. widnidlow describes the steps taken to construct
a phylogenetic tree from a set of DNA sequences. The workftawsswith step (S1) which downloads a set
of DNA sequences from the GenBank repository. The secom(St2) takes the DNA sequences and runs an
external sequence alignment program to generate a seqakgioment. Details of how a sequence alignment
is constructed from multiple DNA sequences are “hidden” Hiy éxternal program (i.e., the external program
is a blackbox). Step S3 involves interaction with a biolagiEhe biologist examines the sequence alignment
obtained from (S2) and may improve on the quality of the segeelignment output by manually adjusting
gaps inserted by the alignment program. The last step (843 the edited alignment as input and produces a
phylogenetic tree as output. There are in fact many stepdvien in (S4) (see [16] for a detailed explanation).
However, step (S4) abstracts the process of constructingylagenetic tree from the sequence alignment as
another blackbox. The provenance of an execution of thikfleev may include a record of the version of the
GenBank repository used, the DNA sequences used, the sefawd version of the software used for sequence
alignment, as well as the decisions made by the biologistiting the alignment. L]

As described in Example 1, an external process in step (%)dtved in the workflow. In general, external
processes do not possess good properties for a detailegsianaf the transformation since such details are
typically hidden. Hence, the workflow provenance for thispsis usuallycoarse-grained That is, only the
input, output and the software used by an external processeorded.

Data (or fine-grained) provenance:In contrast,data (or fine-grained) provenanagves a relatively detailed
account of the derivation of a piece of data that is in theltega transformation step. A particular case of data
provenance that is of interest to the database communityaanghich there have been considerable research
efforts is when the transformation is specified by a dataasey. More precisely, suppose a transformation on
a databasé® is specified by quer, the provenance of a piece of datia the output of (D) is the answer to
the following questionWhich parts of the source databagecontribute tot according toQ)?

This is the subject of research of [18], where the authorsrideesd algorithms for computing data provenance
in the relational framework. We give an example of data pnavee in the relational setting next.

Source database: Department

Employee [deptid | budget] QueryQ: Outpl{goféj(Dt)- e
[empid] dept | [BME [1200K] SELECT c.empid.e.deptdbudget omPid] dept | budget]
e977 | CS CS 670K FROM Employeer, Department | €657 | BME | 1200K
el32 | EE EE 890K WHERE e.dept =d.deptid e977 | CS | 670K
e657 | BME MATH | 230K el32 | EE | 890K

Figure 2: An example of a data transformation with SQL.

[T90] ... [97] ... [00}01['02['03] ... [0506]07]

Al31] ... [10][30] ... [[41[17][7]
Input Output [21][13]
Q> e Ext [22][20]
Input o o”tp“ Ej @ 3~»»-—»5/infor)r(11;iion [23]
Ej T —— [29]
L Q :
I ES NA~ | - [32] - [28][] 4]

(a) (b) ©)

Figure 3: (a) Non-AnnotationNA) approach, (b) AnnotatiorA) approach, (c) a timeline for data provenance
research efforts using eithiBiA or A approach.

Example 2: SupposeD and () are the database and query, respectively, shown in Figuréh2. result of
executing againstD is also shown on the right of the same figure. The source t p&s7, BME) and
(BME,1200K) contribute to the output tuple (e657,BME,1Rp@ccording taQ. In particular, observe that some
source tuples, such as (e132,EE), play no role in contrigut the output tuple (e657,BME,1200K) according
to Q. The basic idea behind the algorithms proposed in [18] isotopute data provenance by analyzing the
underlying algebraic structure of relational queries. vermance is computed and aggregated according to the
underlying algebraic operators used in query on an opebgtaperator basis. U]

Data provenance is the focus of this paper and we shall elsbanore on data provenance in subsequent
sections. Readers who are interested in workflow provenawageind the following references useful: A survey
of provenance research related to scientific data proaeasid scientific workflow systems [5, 19] and a survey
on provenance research in E-science [28].

All of the existing research efforts on data provenance tadop of two contrasting approaches for com-
puting data provenance: (Non-annotation approactis. (2) Annotation approachTechniques for computing
data provenance that use the non-annotation approach tiéowxecution of a transformation functién as
it is. See Figure 3(a), which shows a normal executiolq)ofThat is, () is executed on an input database to
generate an output database. In order to compute the pruseiéa piece of output data, it is typically the case
that the input and output database, as well as the definifiagp, @are analyzed to arrive at an answer. In con-
trast, techniques for computing provenance that use thetainon approach (see Figure 3(b)) carry additional
information to the output database. In order to compute xiv@ énformation, the original transformatiap is
usually modified to another transformatigh so that whenQ’ is applied on the input database, it generates an
output database that is identical to that generated lapplied on the input database, as well as the additional
information. With this approach, the provenance of a pidaautput data can typically be derived by analyzing
the extra information.

A timeline where the research efforts are classified acogrth the two approaches is tabulated in Figure
3(c). We shall discuss past research efforts (i.e., maigdgarch efforts prior to 2005) and current research
efforts (i.e., mainly research efforts between 2005 and@?00 data provenance in Sections 2 and 3 respectively.
We conclude with some future research directions in Sedtion

2 Data Provenance: Past

As described in Section 1, the problem of computing datagaxce in the relational framework was studied
in [18]. It is easy to see that the need to compute data promenapplies not only to tuples of relations, but
also to data that occur at different levels of granularitiea hierarchical or tree-like structure. This observation
was made in [9], where the authors described a hierarchaial miodel and an associated query language for
manipulating data in this hierarchical model. The proveeant a piece of data, at any granularity, in the result

of a monotone query can be obtained by analyzing the syntdixeofuery. In [9], the authors also made a
distinction betweerwhy andwhere-provenance The type of provenance studied by [18] is essentially why-
provenance. Where-provenance, on the other hand, is aptestiof the locations in the input database which
contain values where a piece of output data is copied fromsebothe difference between why and where-
provenance, consider Example 2 again. The why-provendrtbe output tuple (e657,BME,1200K) according
to Q consists of the two source tuples as described in Exampleo@elkr, the where-provenance of the value
“BME” in the output tuple (e657,BME,1200K) is the locationipted by thedept attribute in the source tuple
(e657,BME). In other words, the “BME” value of the output leis copied from the “BME” value of the source
tuple (e657,BME) and not from the “BME” value of the sourcpleu(BME,1200K). This is because the query
Q extracts "BME” frome.dept (and notd.deptid). Observe that in contrast to the why-provenance of theubutp
tuple (e657,BME,1200K), the where-provenance of “BME”loé same output tuple completely disregards the
source Department relation.

Prior to [9] and [18], there has been a few similar researébrtsf[31, 32] targeted at resolving the data
provenance problem. The authors of [32] proposed to budduhctionality of computing data provenance into
a database system using the non-annotation approach. nibgvation for using the non-annotation approach
was to support provenance tracing in a database visualizativironment, where large datasets are usually
involved. It is therefore infeasible to associate addalomformation to every datum in these datasets for
computing provenance. The main idea in [32] was to allow a izseegister data processing functions and their
corresponding inverse functions in a database system. \§flien a specific piece of output data to invert, an
inversion planner module within the database system waoué ivhich inverse function to apply and construct
an execution plan by invoking the appropriate functionhadatabase system. However, since not all functions
are invertible, a user is also allowed to registerak inverseistead. Intuitively, a weak inverse is an inverse
function that approximates provenance; It may only retusal@set of the desired provenance or more than what
is required. A separate verification function is requiredxamine that the answers returned by the weak inverse
are indeed answers to provenance. A fundamental drawbattksofechnique is that the user is required to
provide (weak) inverse functions and their correspondieigfication functions. Subsequent research efforts by
[9] and, respectively, [18] that were described earliegrosme this limitation by computing data provenance
through analyzing the syntax and, respectively, algetstaicture of the queries.

The work of [31] first made the idea of using an annotation @ggn to compute provenance explicit. They
proposed a polygen model (“poly” for “multiple” and “gen”rftsource”) that is able to track which originating
data sources and intermediate data sources were used taigeae output data of interest. In [31], operational
definitions on how one can compute the originating sourcesrgermediate sources of an attribute value over
basic relational algebra operators were given.

The polygen idea was followed up by [10], where a similar $ejperational definitions (callepropagation
rulesin [10]) for basic relational operators were givein [10], however, the authors made clear that annotations
(and not only originating sources) associated with souata dan be propagated from source to output based
on the propagation rules. Furthermore, the propagatiogs ralere designed to propagate annotations based
on where data is copied from (i.e., where-provenance). ftiqodar, the relationships betwedocations of
data in the input and output database were formalized thrélug propagation rules given in [10]. One of the
problems studied in [10] is thannotation placement problenGiven a query), source databas®, a view
V = Q(D), and an annotation, denoted asplaced in the view’, decide whether there is location to place
the annotationx in D so thatx propagates to the desired location ¥h and nowhere elsdf such a placement
of x in D exists, it is called a “side-effect-free annotation”. Thedy of the annotation placement problem is
important for understanding the bidirectional transpddrmotations between the source database and the view.
The authors showed a dichotomy in the complexity of the atiost placement problem for Select-Project-Join-
Union (SPJU) queries: It is NP-hard to decide if there is a-gflect-free annotation for a project-join relational

1In [10], the authors had natural join instead of cartesianpct in the set of basic relational algebra operators.

query even in the special case where the join is always peedibefore projection. On the other hand, there is
a polynomial-time algorithm for deciding whether there sde-effect-free annotation for SPJU queries which
do not simultaneously contain both project and join opegatin fact, the annotation placement problem was
later shown to be DP-hard in [30]. In [17], the authors shotiad many of the complexity issues disappear for
key-preserving operations, which are operations thairréte keys of the input relations.

3 Data Provenance: Current

In this section, we describe research efforts that mainfuobetween 2005 and 2007, as shown in Figure
3(c). Our discussion will center around two research ptsjegdBNotes [4, 15] and SPIDER [1, 14], recently
developed at UC Santa Cruz.

3.1 DBNotes

The work of DBNotes builds upon ideas developed in [10, 3@NDtes is an annotation management system
for relational database systems. In DBNotes, every at&ilalue in a relation can be tagged with multiple an-

notations. When a query is executed against the databas#ations of relevant attribute values in the database
are automatically propagated to attribute values in theltre$ the query execution. The queries supported by
DBNotes for automatic annotation propagation belong tagrfrent of SQL queries that corresponds roughly to
select-project-join-union queries. In defaultexecution mode, annotations are propagated based on wdttere d

is copied from (i.e., where-provenance). As a consequeheeery attribute value in the database is annotated
with its address, the provenance of data is propagated dfiamy input to output, as data is transformed by the

query. An example of annotations propagated in the defaaftnar is shown below:

Source databasl: Department

. QueryQ: Output of Q(D):
|Err:11§ilgye|3ept | deptid _pudget] SELECT e.empid,e.dept,d.budget [empid |dept budget |
BME (b1) |1200K (2) FROM Employeee, Department! 6657 5 JBME (ag)1200K (2)
€977 1)CS (@2) CS (3) |670K (bs) WHERE e.dept =d.deptid 977 (1)CS @2) 670K (b4)
132 (13)EE (a4) EE (b5) ~ 890K (o) PROPAGATE default 0132 (5)EE (a1) 890K (bo)
€657 (5)BME (ag) [MATH (b7)230K (bs)

In this example, every attribute value in the source ratasticcmployee and Department, is annotated with
a unique identifier. For instance, the attribute value 679Knnotated with the identifiéy. The queryQ has
an additional PROPAGATE default” clause, which means that we are using the defaeitidgion mode as
explained earlier. By analyzing the annotations that aopggated ta) (D), we can conclude that the value
“BME”in Q(D) was copied from “BME” in the Employee relation (and not theMB” in Department relation).
If the SELECT clause ofQ had been é.empid,d.deptid,d.budget” instead, then the annotation associated with
“BME” in Q(D) would beb; instead ofag. Hence, equivalent queries may propagate annotatioreretifly.
This presents a serious difficulty as it means that the atinoga(or provenance answers) that one obtains in the
result is dependent on the query plan chosen by the databgsee DBNotes resolves this problem through a
novel propagation scheme, called thefault-all propagation scheme. In this scheme, all annotations of/ever
equivalent formulation of a query are collected togetheansequently, propagated annotations are invariant
across equivalent queries. This scheme can thus be viewthd a®st general way of propagating annotations.
In our example, the “BME” value irQ(D) will consist of both annotationsg and b, under the default-all
scheme. At first sight, the default-all scheme seems iffEabecause the set of all equivalent queries is infinite
in general. In [4], a practical and novel implementationt #aids the enumeration of every equivalent query
is described. The key insight is that for monotone relali@aneeries, all relevant annotations can in fact be
determined by evaluating every query in a finite set of qger&uich a finite set can always be obtained, and is
not too big in general. DBNotes also allows one to definstompropagation schemes. In this scheme, the user
can specify where annotations should be retrieved fromtirglations. The custom scheme is especially useful
when the user is, for example, only interested in retriexdngotations from a particular database, perhaps due

to its authority, over other databases. In [15], the quemnglmage of DBNotes was extended to allow querying
of annotations. Techniques were also developed to exptairptovenance and flow of data through query
transformations via the analysis of annotations.

Extensions to DBNotes.In DBNotes, as well as [10], annotations can only be placed oalumn of a tuple

of a relatiorf. In other words, annotations can only be associated wittbai# values only, and not tuples or
relations. In [21], an extension is made so that annotatiamnmsbe placed on any subset of attributes of a tuple
in a relation. Acolor algebrathat can query both values and annotations is also descrildegly showed that
for unions of conjunctive queries, the color algebra is clatepwith respect taolor relational algebra queries

A color relational algebra querys a query that when applied on an color database (i.e. joetatvith extra
columns for storing annotations) returns another coloalukzdée. They also showed that every operator in the
color algebra is necessary for the completeness resultlto ho[20], a similar completeness result is proven
for full relational algebra instead of unions of conjunetigueries; The color algebra of [20] is shown to be
complete with respect to color relational algebra queries.

In [29], the idea of associating annotations with data isherr extended to allow annotations to be placed
on an arbitrary collection of data in a database. A query é&lus capture the collection of data of interest
and the query is then associated with the desired annaotaitioa separate table. Similarly, one can associate
a collection of data with another collection of data by usiwg queries that capture the collections of data of
interest respectively, and then associating the quergettier in a separate table.

Expressivity of languages that propagate annotationsSince many languages that manipulate annotations (or
provenance) were proposed, a natural question is the cathgaexpressive power of these query languages.
For example, one natural question is the following: How dixespropagation scheme for originating sources
as proposed in [31] compare with the default propagatioemmehof DBNotes? Is one more expressive than the
other? The work of [7] addressed this question. They showaithe default propagation scheme of DBNotes
is as expressive as the propagation scheme for originatimgas proposed in [31]. To show this result, they
defined a query language that manipulates annotations sisclass citizens”, and showed that the propagation
schemes of [31] and DBNotes are equivalent in expressiveptma certain class of queries in their language.

3.2 SPIDER

In this section, we describe a recent work on computing pramee over schema mappings that uses the non-
annotation approach.

Schema mappingare logical assertions of the relationships between aangstof a source schema and an
instance of the target schema. They are primary buildingkslidor the specification of data integration, data
exchange and peer data management systems. A fundametikdmprin integration systems is the design and
specification of schema mappings, which typically taked afldime and effort to get it right [3, 24].

SPIDER [1, 14] is a system that facilitates the design of nraypby allowing mapping designers to un-
derstand, debug, and refine schema mappings at the levelpglimgs, through the use of examples. The idea
behind SPIDER is very much like debuggers for programmimguages which allow programmers to under-
stand, debug, and refine their programs by running theirrprog on some test cases. The main approach that
SPIDER uses to explain the semantics of mappings is throaegbrigitions of the provenance (resp. flow) of
data in the target instance (resp. source instance) thrchaihs of possibly recursive mappings. These descrip-
tions are calledoutesand intuitively, they describe how data in the source argetanstances are related and
constrained via mappings. In SPIDER, a mapping designeeither display routes ending at selected target
data (i.e., trace the provenance of target data) or disgaies starting at selected source data (i.e., trace the
flow of source data). We describe an example of routes next.

2The same applies to [31], where originating sources arecited with attribute values.

Mappings:

.) . . Target instancd'
Source instancé: for ¢ in CardHolders=- existsa in Accounts_anctl in

- Accounts

CardHolders Clients wherea.AccNo = c.AccNo ana.accHolder = [TaceNo | creditLine | accHolder |
| accNo | limit | ssn | name | c.ssn ancal.ssn = c.ssn and.name = c.name nf:) 123 I D1

123 $15K | ID1 | Alice A L ID2
|Depende|nts | | | for d in Dependents=- existscl in Clients Clienlts 2
| accNo | ssn | name | wherecl.ssn = d.ssn cl.name = d.name m)
| 123 | ID2 | Bob | for cl in Clients= existsa in Accounts D1 Alice

ID2 | Bob
wherea.accHolder = cl.ssn n{s)

The source schema consists of two relational schemas, Ghlateltd and Dependents, and the target schema
consists of two relational schemas, Accounts and Clienterd are three mappingsi;, mo andms, written
in a query-like notation as shown in the middle of the figurevah Intuitively, the first mappingn, asserts
that for every tuple in the CardHolders relation, there tsxastuple in the target Accounts relation and a tuple
in Clients whose correspondiragcNo, accHolder, ssn andname values are equal to theccNo, ssn, ssn,
andname values, respectively, of the Cardholders tuple. The mappin asserts that every Dependents tuple
has a corresponding Clients tuple whase values coincide. The last mapping; is a constraint on the target
instance that says that the existence of a Clients tupldempiie existence of an Accounts tuple whereshe
value of the former is equal to tlecHolder value of the latter tuple.

Given the schemas and the mappings, a mapping designer slayoninderstand the mappings by executing
them against a source instantshown on the left of the figure above. A target instariddat conforms to the
target schema and also satisfies the mappings is shown oigltte $uch a target instance may be obtained
by executing the schemas and mappings on a data exchangmsststh as Clio [25] or, by directly reasoning
about the semantics of the mappingsJirthe valued., L, and A, represent possibly distinct unknown values
for credit limits and account number. Since an account daomaoreated without an account number, a mapping
designer may probe oA, to understand howd; was formed in the exchange process. In response to the probe,
SPIDER displays a route (shown below), starting from a sotuple in/ that ultimately leads to the target tuple
in J that contains the probed,.

Dependents(123,1D2,BoB¥2 Clients(ID2,Bob)=% Accounts@ds,Ls,1D2)

Intuitively, the route explains that the Dependents tupée,([Bob) inl leads to the Clients tuple (i.e., Bob) in
J via mappingns, which in turn leads to the ID2 Accounts tuple.divia mappingmns. Although not illustrated
here, SPIDER also displays the bindings of variables:inandmg that were used to derive each tuple in the
route. By analyzing the route, a mapping designer may reé#tat the account number 123 in the Dependents
tuple was somehow not copied over to the target and may hefioe or correct the mappings in the process.
The example above was kept simple for ease of expositionedlity, mappings are usually not as simple
as those shown in this example. They are usually larger gridatyy more complex. A major difficulty in
computing routes is to reason about chains of possibly sa@imappings among schemas. Furthermore, the
number of routes to illustrate to a mapping designer in nespdo a single probe may be overwhelming. In [14],
an algorithm for computing routes that overcomes thesediffes has been developed. Their algorithm encodes
the set of all routes, even when there may be exponentiallyymaa compact polynomial-size representation.
A demonstration of SPIDER is described in [1].
How-Provenance.Routes are different from why-provenance in that they ndt daescribe which input tuples
contribute to the existence of an output tuple, but &lse the input tuples lead to the existence of the output
tuple. Thus, compared to why-provenance, it is a more @eta&kplanation of the existence of an output tuple.
In a recent paper [23], the authors described a method whe@relvenance can be described usingeairing
of polynomialdn the context of datalog queries and introduced the teom-provenanceSemirings are similar
to routes of SPIDER in that they capture the input tuples toatribute to an output tuple, as well hew
they contribute to that output tuple. For example, it A, B) be a binary relation with three tuples, t,
andts, wheret; = (1,2), to = (1,3) andts = (2,3) and letRy(B, C) be another binary relation with three

tuplesty, t5 andts, wherety = (2,3), t5 = (3,3) andtg = (3,4). The result of the queryls ¢ (R: > Ry)
consists of three tuple€l, 3), (1,4), (2, 3),(2,4). The provenance polynomial for the output tuple3) is

tity + tots, which describes that the output tugle 3) is witnessed by, andt, or, t2 andts. On the other
hand, the why-provenance (f, 3) according to the query is simply the set of tup{es, 2, t4, t5}. Algorithms

for calculating provenance semirings for datalog queriesewdescribed in [23]. In [22], an application of
provenance semirings is described in collaborative datdrgl Updates that are propagated along peers carry
along provenance semirings. These propagated semiriegsuasequently utilized to trace the derivations of
an update in order to determine whether an update shouldtié@edilbased on the trust conditions specified by
participants of the data sharing system.

4 Data Provenance: Future

We have described some major research efforts in data paneerin the past two decades. In this section, we
describe some possible future research directions.

Most research efforts on data provenance have focused soniag about the behavior of provenance and
keeping track of annotations or metadata through SQL gslieli¢hile SQL queries are fundamental building
blocks of many database applications, knowing how to reabaut the provenance and flow of data through
SQL queries alone is still insufficient for a complete engkiwl tracking of the provenance and flow of data in
many database applications. For example, a Web applicd#nis powered by a database backend may only use
SQL queries to retrieve data from (or store data into) theetgithg database system. Data that is retrieved may
still undergo various transformations (e.g., cleansindoomatting transformations) before they are displayed
on a Web page. To make matters worse, many Web applicatiday {e.g., mashups) are based on other Web
applications where information is extracted and integr#teugh public application programming interfaces and
appropriate programming languages. In particular, thegs® by which information is extracted and integrated
is typically not described by SQL queries. Therefore, a majsolved challenge for data provenance research
is to provide a uniform and seamless framework for reasoabayt the provenance (and flow) of data through
different data transformation paradigms. We list threeeatspof research on data provenance next that would
make progress towards resolving this challenge.

Web applications and many other systems such as data waeshaxtract-transform-load systems behave
very much like workflows, where data typically undergoesqus@ece of transformations in different paradigms
(e.g., SQL queries, C programs or Perl scripts.). Henceappeoach towards a solution for the above mentioned
unsolved challenge is to examine whether one can combirresiearch efforts of workflow provenance and data
provenance in a uniform manner. So far, the research effartgorkflow provenance and data provenance have
been somewhat independent and disconnected. For the teadthof research to converge, extensions to the
formalism for workflow provenance are needed so that nodasrédpresent external processes in a workflow
need not be treated as a blackbox. In other words, whenewsilj®, one should be able to drill down and
analyze the provenance of data generated by external pnegrahich are commonly used in workflows and
typically abstracted as blackboxes by current technigoresdmputing workflow provenance. On the other front,
techniques for computing data provenance need to be exteadimndle constructs of more powerful languages
(e.g., aggregates, iterators, and side-effects etc.).céntepromising research effort [12, 13] uses dependency
analysis techniques, similar to program slicing and pnogaaalysis techniques from the programming language
community, to analyze provenance over more complex datafyasries that includes relational queries with
grouping and aggregates. Another approach towards a onifi@mework for analyzing data provenance is
to abstract different data transformation paradigms ukigger-level declarative formalisms such as schema
mappings. However, similar to the discussion earlier, nraggowill need to be enriched to model constructs of
more powerful languages such as aggregates, iteratoesefeLts etc.

Another research direction that would make progress toswelunsolved challenge is to develop techniques
for reasoning about or approximating the provenance ofttiatas generated by programs through the analysis

10

of the "blackbox behavior” of programs. In other words, ewdren the details of a program may not be available,
one should still be able to derive the provenance of datarg@tkby the program to a certain extent. Methods
for resolving this challenge will be extremely useful in gifee because in many cases, even when the details of
an external program are available, they are typically taomex to be amenable to a systematic analysis.

The last research direction concerns archiving. This ipi& thhat bears close relationship to provenance and
has not been discussed so far in this paper. Databases armdakvolve over time. Necessarily, a complete
record of provenance entails archiving all past states @feffolving database so that it becomes possible to
trace the provenance of data to the correct version of thebdae or trace the flow of data in a version of
the database that is not necessarily the most recent. Amghis especially crucial for scientific data, where
scientific breakthroughs are typically based on infornmatibtained from a particular version of the database.
Hence, all changes or all versions of the database must lyedotumented for scientific results to remain
verifiable. There have been some research efforts on anghsgientific datasets [6, 8]. However, two major
challenges remain: (i) The first is to provide techniquesefificiently archiving versions of databases whose
schema may also evolve over time. At the same time, the atriof the archive should still retain the semantics
of data and relationships between entities across diffeensions of data as far as possible so that the archive
can be meaningfully analyzed later. (ii) The second is toidecompanion techniques to efficiently recover a
version of the database from the archive obtained fromn@rementally update the archive with a new version
of data, as well as provide techniques to discover or andgm@oral-related properties in the archive and how
entities evolve over time.

Recently, a number of applications of provenance have exdargthe context of probabilistic databases [2],
schema mappings [14], and updates [22]. These applicatimpsre extensions to prior techniques for comput-
ing provenance. An interesting research direction woultbbdiscover whether there are other applications of
provenance that would require significant extensions tstiexj techniques or a completely new framework for
computing provenance. For example, a recent workshop omepamce [27] suggests that security, information
retrieval, dataflow or extract-transform-load scenarios &e some potential applications to investigate.

References

[1] B. Alexe, L. Chiticariu, and W.-C. Tan. SPIDER: a SchemaaRRing DEbuggeR. IWery Large Data Bases (VLDB)
pages 1179-1182, 2006. (Demonstration Track).

[2] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. UBB: Databases with Uncertainty and LineageVémny
Large Data Bases (VLDBpages 953-964, 2006.

[3] P. Bernstein and S. Melnik. Model Management 2.0: Malditing Richer Mappings. IiProceedings of the ACM
SIGMOD International Conference on Management of Data (#0®), pages 1-12, 2007.

[4] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargly An Annotation Management System for Relational
Databases.Very Large Data Bases (VLDB) Journdl4(4):373—-396, 2005. A preliminary version of this paper
appeared in the VLDB 2004 proceedings.

[5] R. Bose and J. Frew. Lineage Retrieval for Scientific DRtacessing: A SurveyACM Computing Survey7(1):1-
28, 2005.

[6] P. Buneman, A. Chapman, and J. Cheney. Provenance Mamgsjén Curated Databases. Pmoceedings of the
ACM SIGMOD International Conference on Management of D&81&MOD) pages 539-550, 2006.

[7] P. Buneman, J. Cheney, and S. VanSummeren. On the Exmesss of Implicit Provenance in Query and Update
Languages. Iinternational Conference on Database Theory (ICDJgges 209-223, 2007.

[8] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan. Archgv8tientific Data. ACM Transactions on Database
Systems (TODSP9(1):2—42, 2004. A preliminary version of this paper aope in the ACM SIGMOD 2002
proceedings.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A &terization of Data Provenance. Iternational
Conference on Database Theory (ICDpages 316-330, 2001.

11

[10] P. Buneman, S. Khanna, and W.-C. Tan. On Propagatioretd#ti®dns and Annotations Through Views. RPrnoceed-
ings of the ACM SIGMOD-SIGACT-SIGART Symposium on Prieeipi database systems (POD&ges 150-158,
2002.

[11] P.Bunemanand W.-C. Tan. Provenance in Databas@&oteedings of the ACM SIGMOD International Conference
on Management of Data (SIGMO[jages 1171-1173, 2007. (Tutorial Track).

[12] J. Cheney. Program Slicing and Data Provenalt€EE Data Bulletin Engineeringddecember 2007.

[13] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as DegranydAnalysis. IrDatabase Programming Languages
(DBPL), pages 138-152, 2007.

[14] L. Chiticariu and W.-C. Tan. Debugging Schema Mappinith Routes. InVery Large Data Bases (VLDBpages
79-90, 2006.

[15] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNote#\ Post-It System for Relational Databases based on
Provenance. IProceedings of the ACM SIGMOD International Conference @nadgjement of Data (SIGMOD)
pages 942-944, 2005. (Demonstration Track).

[16] S. Cohen, S. Cohen-Boulakia, and S. B. Davidson. TosvartModel of Provenance and User Views in Scientific
Workflows. InWorkshop on Data and Integration in Life Sciences (Dllf@ges 264—279, 2006.

[17] G.Cong, W. Fan, and F. Geerts. Annotation PropagatioKéy Preserving Views. IACM International Conference
on Information and Knowledge Management (ClKIgages 632—-641, 2006.

[18] Y. Cui, J. Widom, and J. L. Wiener. Tracing the LineageMidéw Data in a Warehousing EnvironmenACM
Transactions on Database Syste@5(2):179-227, 2000.

[19] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. LudascfierMcPhilips, S. Bowers, M. K. Anand, and J. Freire.
Provenance in Scientific Workflow SystemiEEE Data Bulletin Engineeringdecember 2007.

[20] F. Geerts and J. V. den Bussche. Relational Complesasféduery Languages for Annotated DatabaseBdtabase
Programming Languages (DBPLpages 127-137, 2007.

[21] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIARNnotating and Querying Databases through Colors
and Blocks. Innternational Conference on Data Engineering (ICDBRage 82, 2006.

[22] T.J. Green, G. Karvounarakis, Z. G. lves, and V. Tanégpdate Exchange with Mappings and Provenanc&ehy
Large Data Bases (VLDBpages 675686, 2007.

[23] T.J.Green, G. Karvounarakis, and V. Tannen. Provea&eenirings. IiProceedings of the ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of database systems (R@&g®s 675-686, 2007.

[24] L. Haas. Beauty and the Beast: The Theory and Practit&@fmation Integration. Innternational Conference on
Database Theory (ICDTpages 28—-43, 2007.

[25] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and M. RothioGrows Up: From Research Prototype to Industrial
Tool. In Proceedings of the ACM SIGMOD International Conference anafjement of Data (SIGMODpages
805-810, 2005.

[26] Merriam-Webster OnLine. http://www.m-w.com.
[27] Workshop on Principles of Provenance (PrOPr), Novar2B87. http://homepages.inf.ed.ac.uk/jcheney/propr/.

[28] Y. Simmhan, B. Plale, and D. Gannon. A Survey of Data Brance in E-ScienceSIGMOD Recorgd34:31-36,
2005.

[29] D. Srivastava and Y. Velegrakis. Intensional Assdoizg Between Data and Metadata. Rroceedings of the ACM
SIGMOD International Conference on Management of Data (#0®), pages 401-412, 2007.

[30] W.-C. Tan. Containment of Relational Queries with Atatmn Propagation. |IDatabase Programming Languages
(DBPL), pages 37-53, 2003.

[31] Y. R. Wang and S. E. Madnick. A Polygen Model for Hetenogeus Database Systems: The Source Tagging
Perspective. IVery Large Data Bases (VLDBpages 519-538, 1990.

[32] A. Woodruff and M. Stonebraker. Supporting Fine-geadrData Lineage in a Database Visualization Environment.
In International Conference on Data Engineering (ICDBxges 91-102, 1997.

12

Provenance and Data Synchronization

J. Nathan Foster Grigoris Karvounarakis
University of Pennsylvania University of Pennsylvania
jnfoster@cis.upenn.edu gkarvoun@cis.upenn.edu

1 Introduction

Replication increases the availability of data in mobild distributed systems. For example, if we copy calendar
data from a web service onto a mobile device, the calendabeatcessed even when the network cannot. In
peer-based data sharing systems, maintaining a copy ofilnedsdata on a local node enables query answering
when remote peers are offline, guarantees privacy, and rapierformance. But along with these advantages,
replication brings complications: whenever one replicafgdated, the others also need to be refreshed to keep
the whole system consistent. Therefore, in systems burplication, synchronization mechanisms are critical.

In simple applications, the replicas are just that—carlapias of each other. But often the copied data needs
to be transformed in different ways on each replica. For @lapweb services and mobile devices represent
calendars in different formats (iCal vs. Palm Datebookkeluise, in data sharing systems for scientific data,
the peers usually have heterogeneous schemas. In thesecomopdicated systems, the replicas behave like
views, and so mechanisms for updating and maintaining vae/slso important.

The mapping between sources and views defined by a query ggenetally one-to-one. This loss of infor-
mation is what makes view update and view maintenance diffitdnas often been observed thmbvenance-
i.e., metadata that tracks the origins of values as they fiowugh a query—could be used to cope with this loss
of information and help with these problems [5, 6, 4, 24], dnily a few existing systems (e.g., AutoMed [12])
use provenance in this way, and only for limited classes @i

This article presents a pair of case studies illustratingg poovenance can be incorporated into systems
for handling replicated data. The first describes how prawes is used itensesfor ordered data [2]. Lenses
define updatable views, which are used to handle heterogemeplicas in the Harmony synchronization frame-
work [23, 13]. They track a simple, implicit form of prover@nand use it to express the complex update policies
needed to correctly handle ordered data. The second caed&scribes @CHESTRA[17, 19], a collaborative
data sharing system [22]. INnKEHESTRA data is distributed across tables located on many diffqreers, and
the relationship between connected peers is specified GiAY [16] schema mappings. Every node coalesces
data from remote peers and uses its own copy of the data tceamgieries over the distributed dataset. Prove-
nance is used to perform incremental maintenance of eachapagdates are applied to remote peers, and to
filter “incoming” updates according toust conditions

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

13

1 o~ 1

Replica
MO (®)
Lens

o~ s

3 -><,(f 2
Synchronized
Replica Source Updated View
S~

(@) (b)

Figure 1: (a) Synchronization architecture for heterogeseeplicas. (b) Correspondence induced by keys.

99§

2 Lenses

A lensis a bidirectional program. When read from left to right indées an ordinary function that maps sources
to views. When read from right to left, the same lens denatésipdate translator” that takes a source together
with an updated view and produces a new source that reflectgoiifate.

In the context of data synchronization, lenses are usedidgédithe gap between heterogeneous replicas.
To synchronize two replicas represented in different faasnae first define lenses that transform each source
format into a common “abstract” format, and then synchrertlze abstract views. For example, to synchro-
nize iCal and Palm Datebook calendars, we use the forwaedtdn of two lenses to transform the files into
abstract calendars, discarding the low-level formattiatpils and any other data specific to each replica. After
synchronization, we then propagate the changes inducdukelsynchronizer back to the original formats using
the reverse direction of the same lenses. The architect@symchronizer for heterogeneous data assembled in
this way is depicted in Figure 1(a).

Semantically, a lenkis just a pair of functions, which we caletandput Thegetcomponent maps sources
to views. It may, in general, discard some of the informafimm the source while computing the view. The
putcomponent therefore takes as arguments not only an updatedout also the original source; it weaves the
data from the view together with the information from therseuthat was discarded by tigetcomponent, and
yields an updated source. (Note that lenses are agnostatdhe view update is expressed—imeat function
works on the entire state of the updated view.)

The two components of a lens are required to fit together imsomable way: thputfunction must restore
all of the information discarded bgetwhen the view update is a no-op, and {h function must propagate
all of the information in the view back to the updated sousme([14] for a comparison of these requirements
to classical conditions on view update translators in ttegdiure.) In a lens language, these requirements are
guaranteed by the type system; in implementations, theghareked automatically [14, 15, 3, 2].

2.1 Ordered Data

Recent work on lenses has focused on the special challemgiesrise when the source and view are ordered [2].
The main issue is that since the update to the view can inahemrdering, accurately reflecting updates back
to source requires locating, for each piece of the view, threesponding piece of the source that contains
the information discarded bget Our solution to this problem is to enrich lenses with a semplechanism
for tracking provenance: programmers describe how to ditite source int@hunksand generate &ey for
each chunk. These induce an association between pieces sbtince and view that is used pyt during the
translation of updates—i.e., tipeit function aligns each piece of the view with a chunk that hasstime key.

To illustrate the problem and our solution, let us considgingle example from the string domain. Suppose
that the source is a newline-separated list of records, w#@bhthree comma-separated fields representing the
name, dates, and nationality of a classical composer, andékv contains just names and nationalities:

14

"Jean Sibelius, 1865-1957, Finnish "Jean Sibelius, Finnish

et
Aaron Copland, 1910-1990, American g_) Aaron Copland, American
Benjamin Britten, 1913-1976, English" Benjamin Britten, English"
Here is a lens that implements this transformation:

let ALPHA = [A-Za-z]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA
let comps = copy "™ | comp . (copy "\n" . comp) *

The first two lines define regular expressions describinigadiptical data and year ranges using standard POSIX
notation for character setfAtZa-z | and[0-9]) and repetition { and{4}). Single composers are pro-
cessed byomp; lists of composers are processeddmoymps. In the getdirection, these lenses can be read as
string transducers, written in regular expression stygtgoy ALPHA matchesALPHAINn the source and copies
it to the view, anccopy ", " matches and copies a literal comma-space, vegle YEARS matchesyEARS
in the source but adds nothing to the view. The unio)) ¢oncatenation. (), and iteration {) operators work
as usual. Theet of comps either matches and copies an empty string or processes aceagoser in a
newline-separated list usirgpmp. (For formal definitions see [2].)

The put component otomps restores the dates to each entry positionally: the name atohality from
thenth line in the abstract structure are combined with the yigars thenth line in the concrete structure (using
a default year range to handle cases where the view has meeethian the source.) For some simple updates
this policy does a good job. For example, suppose that thatemihanges Britten’s nationality, and adds a new
composer to the end of the list. Thatfunction combines

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

"Jean Sibelius, 1865-1957, Finnish
with Aaron Copland, 1910-1990, English
Benjamin Britten, 1913-1976, English"

and yields an updated source

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(The year rang®000-0000 is the default; it is generated from the regular expresM&ARS) On other
examples, however, the behavior of thigt function is highly unsatisfactory. For example, supposteiad that
the update to the abstract string swaps the order of the demwhthird lines. Then thput function takes the
following view (and the same source as above)

"Jean Sibelius, Finnish "Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, English and yields Benjamin Britten, 1910-1990, English
Aaron Copland, American" Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Coplashihaerted into into Britten’s, and vice versa!
What we want, of course, is for thptto align the entries in the concrete and abstract stringsditghinglines
with identical name components, as depicted in Figure Ifn)the same inputs, thmut function yields

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

where the year ranges are correctly restored to each compose

15

2.2 Provenance for Chunks

To achieve this behavior, the composers lens needs to becakdéep track of the association between lines in
the source and view even when the update involves a reogdedin., it need to trackrovenance

One way to do this would be using expligtovenance tokensOn this approach, each line of the source
would be annotated with a unique identifier, andgeé&function would propagate these annotations from source
to view. The disadvantage of this approach is that the viemoisonger an ordinary string, but a string with
annotations. This means that applications that take vienis@ut, such as the data synchronizer described
above, need to operate on annotated structures, which camid@ersome.

Lenses use a simpler mechanism that eliminates the needdbehannotated structures. The set of lenses
is enhanced with two new primitives for specifying ttleunksof the source and keyfor each chunk, angut
functions are retooled to work on structures where the goigrorganized as a dictionary of chunks indexed by
key, rather than the strings themselves. We call tligstgonary lenses Here is a dictionary lens that has the
desired behavior for the composers example:

let comp = key ALPHA . copy ", "

. del (YEARS . ", ")
. copy ALPHA
let comps = "™ | <comp> . ("\n" . <comp>) *

Compared to the previous version, the two occurrencesioip are marked with angle brackets, indicating that
these subexpressions are the reorderable chunks, andstioefiy at the beginning ofomp has been replaced
by the special primitivikey . The lenskey ALPHA copies strings just likeopy ALPHA, but also specifies
that the matched substring is to be used as the key of the éhwakich it appears—i.e., in this case, that the
key of each composer’s entry is their name.

The association induced by keys approximates the asswotidiat would be obtained using explicit prove-
nance tokens. Indeed, when the keys are unique and wherethaupdate does not modify the names, the two
coincide. The idea of using keys to guide view update is not regmilar approaches have been studied in the
relational setting [17]. However note that the “keys” usedlictionary lenses are not required to be keys in the
strict database sense. When several pieces of the view hengine key, thput function pulls chunks out of
the dictionary in the order that they originally appearedhi@ source. This gives the option of obtaining other
useful update policies via the choice of key. For example piit function that operates by position is desired,
it can be programmed as a lens whose key component returmstaot

Another way to control the update policy embodied in a diwiy lens is via the definition of chunks. Many
examples can be processed using one level of chunking, las gotnposer lens. But chunks may also be nested,
which has the effect of stratifying matching into levelspdevel chunks are matched globally across the entire
string, subchunks are aligned locally within each chunkl, smon. This is useful in cases where the source has
nested structure—e.g., it is used in a lens for LaTeX sources

We have used dictionary lenses to build lenses for a varietgxtual formats including vCard, CSV, and
XML address books, iCal and ASCII calendars, BibTeX and Riffidgraphic databases, LaTeX documents,
iTunes libraries, and protein sequence data representdte iSwissProt format and XML. These examples
demonstrate that a simple notion of implicit provenancenfdated using keys is capable of expressing many
useful update policies. Current work is focused on an eidart® key matching that uses “fuzzy” metrics such
as edit distance to align chunks. This relaxed form of mags useful when processing data with no clear key
such as documents, and for handling cases where the updatgesha key. We are also studying primitives that
incorporate explicit metadata (e.g., source string loced into the keys, and on developing dictionary lenses
for richer structures such as trees and graphs.

16

GUS I:,BioSQL

mi: G(i,e,n) — B(i,n)
G(id,can,nam)) mo G(i,ey,n) — U(n,c)
= ms: B(i,n) — 3eU(n,c)
my: B(i,¢) NU(n,c) — B(i,n)

PuBit:

Figure 2: Example collaborative data sharing system for bioinfoiosatsources. For simplicity, each peer
(Peus, Priosqr, Pupio) has one relation. Schema mappings, given at the rightndredted by labeled arcs.

3 ORCHESTRA

ORCHESTRAIs acollaborative data sharing systefabbreviated CDSS) [22], i.e., a system for data sharing
among heterogeneous peers related by a network of schenmngspEach peer has a locally controlled and
edited database instance, but wants to ask queries ovedalata from other peers as well. To achieve this,
every peer’s updates are translated and propagated alemgabpings to the other peers. However, tipdate
exchangeis filtered bytrust conditions expressing what data and sources a peer judges to be #atilieri
which may cause a peer to reject another’s updates. In ardripport such filtering, updates capnpvenance
information. QRCHESTRA targets scientific data sharing, but it can also be used f@rapplications with
similar requirements and characteristics.

Figure 2 illustrates an example bioinformatics CDSS, based real application and databases of interest
to affiliates of the Penn Center for Bioinformatics. GUS, enomics Unified Schema, contains gene ex-
pression, protein, and taxon (organism) information; B)aSaffiliated with the BioPerl project, contains very
similar concepts; and a third schema, uBio, establishesrgyns and canonical names for taxa. Instances of
these databases contain taxon information that is autonsignmaintained but of mutual interest to the others.
Suppose that a BioSQL peétp;,sgr, wants to import data from peéicy s, as shown by the arc labeleal
but the converse is not true. Similarly, perz;, wants to import data fronf;;g, along arcms. Addition-
ally, Pgiosqr, and P, g, agree to mutually share some of their data: &3)z;, imports taxon synonyms from
Pgiosor (Viamg) and Pg;,s01, Uses transitivity to infer new entries in its database, vappingm,. Finally,
each peer may have a certainst policyabout what data it wishes to incorporate: eRg;,sqr, may only trust
data fromP, ;, if it was derived fromPg;¢ entries. The CDSS facilitates dataflow among these systesimg
mappings and policies developed by the independent padirshéstrators.

The arcs between peers are setdupfle-generating dependenciégds). Tgds are a popular means of
specifying constraints and mappings [11, 10] in data sgaand they are equivalent to so-callgidbal-local-
as-viewor GLAV mappings [16, 21]. Some examples are shown in the right p&igore 2. For instancey;
says that, if there is a tuple {& about an organism with if] canonical name and namez, then an entryi, n)
should be inserted if. Another mappingm,, ensures that, if there is an entry fhassociating id with a
namec, and - according t&/ - n is a synonym of;, then there is also an ent(y, n) in B. Observe thatns has
an existential variable. For such mappings, update exe&haigo involves inventing new “placeholder” values,
calledlabeled nulls Figure 3(a) illustrates update exchange on our runningnpl& assuming that the peers
have the local updates shown on the top, (wheresignifies insertion), the update translation construbts t
instances shown on the bottom (wheyec,, c3 are labeled nulls).

3.1 Using Provenance for Trust Policies

In addition to schema mappings, which specify the relahgssbetween data elements in different instances,
a CDSS supporttrust policies These express, for each pderwhat data from update translation should be
trusted and hence accepted. Some possible trust conditians CDSS example are:

e PeerPg;,s¢1, distrusts any tuple3(i, n) if the data came fronP;7 5, and trusts any tuple from?, io.

17

+11 2 3| [+]3 5] [+]2 5] (:6G52)] (0BG B [22029
+{3 5 2 G B L (5.c1)
(3,5,2) i (3,5) m (2,5)
e B U (1,2,3) - (3,2) m (2.c) |
1 2 3 3 5 2 5 (515 0 (3.ca)
35 2 3 2 3 2 PECZE) Lo = (32)
1 3 5 ¢ 0
3 3 2 e
3 C3

(@) (b)

Figure 3: Example of update exchange and resulting prowengraph

e PeerPg;,s¢r, distrusts any tuplé3 (i, n) that came from mappingn.) if n # 2.

Since the trust conditions refer to other peers and to thensatmappings, the CDSS needs a precise description
of how these peers and mappings have contributed to a giyda puoduced by update translation, i@ata
provenance Trust conditions need a more detailed provenance modehtihg-provenance [6] and lineage [9,
1], as explained in [17]. Informally, we need to know not jfrstm which tuples a tuple is derived, but alsow

it is derived, including separate alternative derivatitmeugh different mappings.

Figure 3(b) illustrates the main features of our provenamoelel with a graphical representation of the
provenance of tuples in our running example (a more formsatigtion can be found in [17, 18]). The graph
has two kinds of nodes: tuple nodes (rectangles), and mgpmdes (ellipses). Arcs connect tuple nodes to
mappings that apply to them, and mapping nodes to tuplesptauce. In addition, we have nodes for the
insertions from the local databases. This “source” datanistated with its own id (unique in the system)
1, P2, - .. etc. (called grovenance tokgnand is connected by an arc to the corresponding tupleezhterthe
local instance.

Note that, when the mappings form cycles, it is possible fetupe to have infinitely many derivations,
as well as for the derivations to be arbitrarily large; nbedtss, this graph is a finite representation of such
provenance. From the graph we can analyze the provenansayf3(3,2) by tracing back paths to source
data nodes — in this case througi,) to p; andp, and through(m) to ps. This way, we can detect when
the derivation of a tuple is “tainted” by a peer or by a mappirgy, if all its derivations involve them, or not, if
there are alternative derivations from trusted tuples aagdpimgs. For example, distrustipg andm; leads to
rejectingB(3, 2) but distrustingp; andp, does not.

3.2 Using Provenance for Incremental Update Exchange

One of the major motivating factors in our choice of provar@aformalisms has been the abilityitmrementally
maintainboth the data instances at every peer and the provenanaadsdavith the data. Similarly to the case
of trust conditions, the provenance model (#@HESTRAIs detailed enough for incremental maintenance, while
lineage [9, 1] andwhy-provenanc¢6] are not, intuitively because they don’t identify altative derivations of
tuples. We represent the provenance graggietherwith the data instances, using additional relations (s&g [1
for details). Schema mappings are then translated to a dataibg-like rules (the main difference from standard
datalog being that kolem functions are used to invent new values for the labeled nudls a result, incremental
maintenance of peer instances is closely related to iner&henaintenance of recursive datalog views, and
some techniques from that area can be used. Following [2@omeert each mapping rule (after the relational
encoding of provenance) into a seriedefta rules

18

For the case of incremental insertion, the algorithm is &namd analogous to the incremental view main-
tenance algorithms of [20]. Incremental deletion is mommplex: when a tuple is deleted, we need to decide
whether other tuples that were derived from it need to betel@lehis is the case if and only if these derived
tuples have no alternative derivations from base tuplesie HBRCHESTRAS provenance model is useful in
order to identify tuples that have no derivations and nedektdeleted. A small complication comes from the
fact that there may be “loops” in the provenance graph, suahseveral tuples are mutually derivable from one
another, yet none are derivable from base tuples. In ordgaidage collect” these no-longer-derivable tuples,
we can also use provenance, to test whether they are derifrabh trusted base data; those tuples that are not
must be recursively deleted following the same procedure.

Revisiting the provenance graph of Figure 3(b), supposentbavish to propagate the deletion of the tuple
B(3,5). This leads to the invalidation of mapping nodes labetedandm,4. Then, for the tuples that have
incoming edges from the deleted mapping nod&s, c;) has to be deleted, because there is no other incoming
edge, while forB(3, 2) there is an alternative derivation, fraf(3, 5,2) through(m;), and thus it is not deleted.
We note that a prior approach to incremental view maintesaiheDRed algorithm [20], has a similar “flavor”
but takes a more pessimistic approach. Upon the deletiorsef af tuplesDRed will pessimistically remove
all tuples that can be transitively derived from the inljiadeleted tuples. Then it will attempt to re-derive the
tuples it had deleted. Intuitively, we should be able to beeafficient tharDRed on average, because we can
exploit the provenance trace to test derivability in a gtiedcted way. Moreoveb)Red’s re-derivation should
typically be more expensive than our test for derivabiliigcause insertion is more expensive than querying,
since the latter can usmly the keys of tuples, whereas the former needs to use the cantpfges; when these
tuples are large, this can have a significant impact on pedace. Experimental results in [17] validate this
hypothesis.

In the future, we plan to add support for bidirectional prggigon of updates over mappings. In this case,
we have to deal with a variation of the view update problerd,\aa expect provenance information to be useful
in order to identify possible update policies for the soaraaddynamicallycheck if they have side-effects on
the target of the mappings.

4 Discussion

These case studies describe some first steps towards applgimenance to problems related to data replica-
tion. In particular, they demonstrate how tracking provera either implicitly as in lenses or explicitly as

in ORCHESTRA can improve solutions to traditionally challenging peabks such as view update and view
maintenance.

There is burgeoning interest in provenance, and more dapiesd models are being actively developed.
Whereas early notions such lseage[9] and why-provenancg6] only identified which source values “con-
tribute to” the appearance of a value in the result of a queiyte recent models [7, 18] also descrit@w
those source values contributes to the value in the resudtb&lieve that as these richer models are developed,
they will increasingly be applied at all levels of systemduding in mechanisms for creating, maintaining, and
updating views, for debugging schema mappings [7], anddoating and synchronizing replicated data.

Acknowledgements The systems described in this article were developed iralbothtion with members
of the Harmony (Aaron Bohannon, Benjamin Pierce, AlexarRitkiewicz, Alan Schmitt) and @CHESTRA
(Olivier Biton, Todd Green, Zachary Ives, Val Tannen, NiesoTaylor) projects; the case studies are based
on papers co-authored with them. We wish to thank Peter Bandior helpful comments on an early draft.
Our work has been supported by NSF grant 11S-0534592 (Fosted NSF grants 11S-0477972, 0513778, and
0415810, and DARPA grant HR0011-06-1-0016 (Karvounajakis

19

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. UBB: Databases with uncertainty and lineage.
In VLDB 2006, Proceedings of 31st International Conferenc®eny Large Data Bases, September 12-15,
2006, Seoul, Koregages 953-964, 2006.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewiczdak Schmitt. Boomerang: Resourceful lenses for
string data. IPACM SIGPLAN-SIGACT Symposium on Principles of Programramgguages (POPL),
San Francisco, CaliforniaJan. 2008. To appear.

A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relatioaakés: A language for updateable views. In
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Ra@aBystems, Chicago, lllinpR006.
Extended version available as University of Pennsylvagianical report MS-CIS-05-27.

P. Buneman, A. Chapman, J. Cheney, and S. Vansummererrovemance model for manually curated
data. Ininternational Provenance and Annotation Workshop (IPAB¥icago, IL, volume 4145 ot ecture
Notes in Computer Sciengeages 162—-170. Springer, 2006.

P. Buneman, S. Khanna, and W. C. Tan. Data provenancee ®asic issues. IRoundations of Software
Technology and Theoretical Computer Science (FSTTCS)Dé#vi, India, volume 1974 of_ecture Notes
in Computer Scienggpages 87-93. Springer, 2000.

P. Buneman, S. Khanna, and W. C. Tan. Why and where: A cteaation of data provenance. In J. V.
den Bussche and V. Vianu, editoBatabase Theory — ICDT 2001, 8th International Conferehoedon,
UK, January 4-6, 2001, Proceedingsages 316—-330. Springer, 2001.

L. Chiticariu and W.-C. Tan. Debugging schema mappings woutes. InVLDB 2006, Proceedings of
31st International Conference on Very Large Data Bases{e®dper 12-15, 2006, Seoul, KoreaCM
Press, 2006.

G. Cong, W. Fan, and F. Geerts. Annotation propagatiatisited for key preserving views. IACM
International Conference on Information and Knowledge Eiggment (CIKM), Arlington, VAbages 632—
641, 2006.

Y. Cui. Lineage Tracing in Data WarehouseBhD thesis, Stanford University, 2001.

A. Deutsch, L.Popa, and V. Tannen. Query reformulatigth constraints SIGMOD Record35(1):65-73,
2006.

R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Dataleange: Semantics and query answeriFigeoretical
Computer Scien¢eg36:89—-124, 2005.

H. Fan and A. Poulovassilis. Using schema transforomgpiathways for data lineage tracing.BNCOD,
volume 1, pages 133-144, 2005.

J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pegrand A. Schmitt. Exploiting schemas in data
synchronizationJournal of Computer and System Sciend&4).669-689, June 2007. Extended abstract
in Database Programming Languages (DBR005.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce] A. Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to the viewatedoroblem.ACM Transactions on Program-
ming Languages and Systen29(3):17, May 2007. Extended abstractRninciples of Programming
LanguagegPOPL), 2005.

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

J. N. Foster, B. C. Pierce, and A. Schmitt. A logic youpdéghecker can count on: Unordered tree types
in practice. InWorkshop on Programming Language Technologies for XML (#X3, Nice, France,
informal proceedingsJan. 2007.

M. Friedman, A. Y. Levy, and T. D. Millstein. Navigatiahplans for data integration. IAroceedings of
the AAAI Sixteenth National Conference on Atrtificial In¢gdhce, Orlando, FL USApages 6773, 1999.

T. J. Green, G. Karvounarakis, Z. G. lves, and V. Tantgdate exchange with mappings and provenance.
In VLDB 2007, Proceedings of 32nd International Conferenc&eny Large Data Bases, September 25-
27,2007, Vienna, Austrj2007.

T. J. Green, G. Karvounarakis, and V. Tannen. Provemaamnirings. InProceedings of the Twenty-
sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principl@atdbase Systems, June 11-13, 2007,
Beijing, Ching 2007.

T. J. Green, N. Taylor, G. Karvounarakis, O. Biton, Zesy and V. Tannen. ORCHESTRA: Facilitat-
ing collaborative data sharing. BIGMOD 2007, Proceedings of the ACM International Confegean
Management of Data, June 11-14, 2007, Beijing, Ch2@07. Demonstration description.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintanviews incrementally. In P. Buneman and
S. Jajodia, editorRroceedings of the 1993 ACM SIGMOD International Confegemic Management of
Data, Washington, D.C., May 26-28, 19%#ges 157-166. ACM Press, 1993.

A.Y. Halevy, Z. G. Ives, D. Suciu, and |. Tatarinov. Saofeemediation in peer data management systems.
In Proceedings of the 19th International Conference on Datgi&ering, March 5-8, 2003, Bangalore,
India, pages 505-516. IEEE Computer Society, March 2003.

Z.lves, N. Khandelwal, A. Kapur, and M. Cakir. ORCHE SARRapid, collaborative sharing of dynamic
data. InCIDR 2005: Second Biennial Conference on Innovative Datde®ys Research, Asilomar, CA
pages 107-118, January 2005.

B. C. Pierce et al. Harmony: A synchronization framekvior heterogeneous tree-structured data, 2006.
http://www.seas.upenn.edu/ ~harmony/ .

L. Wang, E. A. Rundensteiner, and M. Mani. U-filter. A tigveight XML view update checker. In
Proceedings of the 22nd International Conference on Datgiigering (ICDE), Atlanta, GApage 126.
IEEE Computer Society, 2006.

21

Program Slicing and Data Provenance

James Cheney
University of Edinburgh

Abstract

Provenance is information that aids understanding andltfeshooting database queries by explaining
the results in terms of the input. Slicing is a program anialyschnique for debugging and understand-
ing programs that has been studied since the early 1980s hinhaprogram results are explained in
terms of parts of the program that contributed to the resulthis paper will briefly review ideas and
techniques from program slicing and show how they might b&ulifor improving our understanding of
provenance in databases.

1 Introduction

The result of a query could be considered “incorrect” in a hanof ways: the input data might be erroneous; the
guery might contain incorrect data values; or the queryfitsight be misleading or subject to misinterpretation.
For example, consider the queri@s, 2, Qs:

Q1 | SELECT Name, Height FROM People WHERE Name = ’'James’

()2 | SELECT Name, 200" AS Height FROM People WHERE Name = ’'James’
QX3 | SELECT P.Name, Q.Weight AS Height

FROM People P, People Q

WHERE P.Name = 'James’ AND Q.Name = 'Bob’

Suppose that each of these queries returns the same recmtke(lames, Height:200) when run against some
databaseD B, having a table with schema People(Name, Height, Weighte nvight interpret this result as
saying that the person James has height 200cm; this hagpkeasricorrect if ‘James’ refers to the author of this
article. However, in the first case, the error is in trginal datg in the second case, the error is in tingery;

and in the third case, the error is the mismatch between #wsirgterpretationof the query result and what the
query actually says. Of course, there are many other pessthirces of error or misinterpretation, such as units
of measure (e.g. centimeters versus inches) which we wilkkosider here.

An expert user who is familiar with the semantics of the quanguage and who has access to the database
can, with some effort, trace erroneous query results to tigenlying data in the input, and perhaps “clean” or
repair the errors. A lot of recent research has been undgrtikautomate the expensive process of correcting
errors (or reconciling inconsistencies) in databasegnofalleddata cleaning[8]. Automatic data cleaning
works best when there is a clear, formal definition of “cofter “consistent” data; in practice, correctness is

Copyright 2007 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

22

often taken to be consistency with keys, functional depecids, or other database constraints. However, it is
usually left to the user to determine which constraints atiarize “clean” data.

The other problems of misformulation or misinterpretatidma query are more difficult to detect and correct.
This problem is compounded by barriers between end-usersl@abases in typical systems. For example, in
a typical Web application, queries are generated by midallevwased on user input from a form, so the user
who must interpret the results of the query is often not thtba@wof the query, and may not have direct access
to either the query or database. Thus, from such a user’s pbutew, the database (and the overall system) is
a “black box” that accepts form input and produces resultichvare presented as bare assertions without any
supporting explanation avidencethat could be used to decide whether the results are trustyvor not or
whether the query accurately reflects the user’s interfioetaf the results.

There are, of course, many possible ways to bridge this gagvidds work onprovenancen databases
(see, for example, [9] for an overview) has sought to progigieh explanations, for example to answer questions
about a query result such as “Why was this record part of thaltf® or “Where in the input database did this
value come from?” In this article, we consider provenancee@ny information that explains how the results
were obtained from the underlying database. However, tifiisrnal definition begs the questions: just wisat
an explanation, and what makes one explanation preferalaledther?

A number of answers have been proposed in previous work orepamce. For example, in approaches
such as Cui, Widom and Wienetiseage[6] and Buneman, Khanna and Tamfy-provenangean explanation
(called “witness” in [4]) for the presence of a recarth the output of a query) run on databas® B is a subset
DB’ of the records inD B such that € Q(DB’). Moreover, there is a “best” explanatidnB’ is obtained by
combining all of theminimal explanations. A related approach calledere-provenancgt] records the source
locations in the input from which output data were copied.sMaf these definitions are sensitive to the syntax
of the query, thus the provenance may be altered by querytirgvrMinimal why-provenance is insensitive to
query rewriting, but it appears difficult to extend beyondnotmne SELECTFFROMWHEREBEINION) queries.

In particular, features such as negation, grouping, andeggtjon are problematic for these techniques.

However, databases are certainly not the only setting irchwktiis important to be able to explain the
behavior of a large system. This is a central issue in soéivesngineering, security, and many other areas.
Therefore it may be worthwhile to consider whether ideaseohniques in these other branches of computer
science can be transferred to the database and data proees&itings.

Program slicingis a well-explored technigue in software engineering. itively, program slicing attempts
to provide a concise explanation of a bug or anomalous pnodrehavior, in the form of a fragment of the
program that shows only those parts “relevant” to the bughonzaly. There seems to be a compelling analogy
between program slicing and data provenance, since mosiages to the latter propose to explain part of the
result of a query using a “relevant” part of the input data&bas this article, we explore this analogy and discuss
a form of provenance based on ideas from program slicing elated concepts such dspendency analysis

In the rest of this article, we provide some background disimun of dependency analysis and program slic-
ing (Section 2), show how similar ideas can be used to dewefope-grained notion of dependency provenance
(Section 3), and conclude by discussing some researchiguegor future work (Section 4). We focus on
high-level exposition rather than technical details whiah be found in a recent paper [5].

2 Program slicing background

Consider the straight-line program fragment shown in Fadi(g). If we execute this program in a context where
initially = = 1,y = 2, 2 = 3, w = 4, then the finalv-value of the program will by = 23. If we were expecting
a different result value fow, such as 17, then we might like to know what parts of the prmogaee responsible.
To diagnose the problem, it would be helpful to highlight bset of the statements which were relevant to the
final result ofw, and ignore the other statements. Informallglieeis a subset of the statements of the program

23

X =Yy + 2xz X =y + 2%z X =y + 2%z X =y + 2%z X =Yy + 2%z
y =z + 3*w,; y =z + 3*w y =z + 3*w; y =2z + 3*w
Z =W - 4xx; Z =W - 4xX;
w =X +Yy, W =X + vV, w =X +Y; W =X tY,
y =2z + 3*w; y =z + 3*w;
Z =W - 4xXx; Z =W - 4xx;
(a) Program (b) w-slice (c) z-slice (d) y-slice (e) z-slice
Figure 1: Straight-line program and slices with respeat @, y, andz
if (x == 0) { if (x ==0) { if (x == 0) { if (x == 0) {
y =z + w; y =z + W y =2z +w;
x = 10;
w =y + 1; w =y + 1; w =y + 1;
} else { } else { } else { } else {
y = X + w;
X =X -1,
w = 5; w = 5; w = 5;
} } } }
(a) Program (b) Staticw-slice (c) Dynamicw-slices forz = 0, z # 0

Figure 2: Conditional program with static and dynamic slieath respect tav

that are relevant to some part of the output. Figure 1(b) steoslice of the program with respect:to we have
replaced the statements that do not “contribute” to the fiahle ofw with ellipses. Similarly, Figure 1(c)—(e)
depict slices with respect to, y, andz.

Conditional expressions make the slicing problem slightlyre interesting. For example, consider Fig-
ure 2(a). Since conditionals introduce the possibility @fihg code in the program that is not executed during a
particular run, we distinguish between static and dynatices the former cannot take into account the values
actually encountered at run time. shatic slicefor this program with respect t@ includes statements in both
branches because we do not know which branch will be takerFiggire 2(b). In a dynamic slice, we may omit
all of the code in the branch that is not taken; for examplpedding on whether the initial value ofis zero or
nonzero, the dynamic slice far would be as shown in the left or right of Figure 2(c), respetyi

It is, of course, trivial to find at least one program slicee firogram itself. However, the goal of slicing
is to aid understanding a large and complex program by ifyémdi a small, and hopefully easy-to-understand,
subset of program points. As with most interesting prograoperties, computing minimal slices (whether static
or dynamic) is undecidable; it is intractable even if weniesto programs with conditionals and assignment
but without while-loops or recursion. Thus, in practicepgnmam slicing techniques attempt to conservatively
approximate the minimal slice.

Slicing captures an intuitive debugging process used bgrexpced programmers [12]. Since its introduc-
tion by Weiser [11], both static and dynamic program sliciraye been investigated extensively [10]. Subse-
guent research has identifidépendencas a key concept in slicing and a number of related prografysisa
techniques [1]. In program analysis, dependence infoomadescribes how parts of a program, such as vari-
ables or control flow points, affect other parts. This infation is valuable because it can be used to predict
how the program will behave statically before executioncoumderstand how the program actually behaved

24

after execution. Dependences are often classifieddata dependencesr dependences on data from which an
object was computed, amntrol dependencesr dependences on data that affected the flow of controingad
to the computation of an object.

While the majority of research on slicing has considerederafive (C) or object-oriented paradigms, slicing
techniques have also been adapted to declarative (fuattoiogic) programming paradigms which are closely
related to database query languages such as SQL.

3 Aslicing approach to provenance

In databases, it is usually trgata that is large and poorly understood, while the query is iradbt small.
Previous work on data provenance has often defined proverasa set of “parts” of the input (e.g. fields or
records) that “explains” a part of the output. There is a celfimy analogy between program slicing, which
uses part of a program as a concise “explanation” for pati@butput, and data provenance, which uses part
of the database to explain part of the output. This analoggesis that we may be able to transfer ideas and
techniques for program slicing into the database and data&epance setting. We explore this idea in the rest of
the article.

Recall the querie§):, Q2, Q3 from the introduction. Suppose we run each of them on thetidptabase
consisting of the table People shown in Figure 3. This daltantains just three entries. When run against
this table, querie§);—(Q3 produce produces exactly one record, namely (James, 200).

We now might like to know: What parts of the input does the Heifgeld in this record depend on? There
are many possible answers, depending on how we interprégrting’depend”. One natural notion is to consider
the how a change to each part of the input affects the outpatsad/ that a part of the outpdépends o part
of the input if changing the input pamayresult in a change to the output part. Thus, as in progranmgligve
need to consider not just what actually did happen but alsat whight have happened: how would the output
change if the input were slightly different?

We consider three kinds of dependences: dependences oft celggions records or fieldson field values
in the input. Consider a query and input databasé and records € I with field B. We say that the output
relationdepends on. B if changing the value of. B may cause the output to change in any way. We say that a
recordr € Q(DB) depends on.B if changing the value of. B may delete in- from the output. Finally, we
say that the field value A in the outputdepends or.B in the input if there is some way to change the value of
s.A that either deletes from the output or changes the valuerafi. Thedependency provenanoér. A is the
set of all input fieldss. B on whichr. A depends on. Since the dependency provenance of a part ofptiieis a
subset of fields of the input, we can think of it as beindgsa sliceof the input in which irrelevant parts not in
the dependency provenance are elided.

We want to emphasize that this is only an informal definitiahtbat it can be made precise and generalized;
however, here we will only illustrate the idea through exéapRecall the example from the introduction. Fig-
ures 4(a—c) show data slices of the input datadeight for queries)—Q3. For(, the dependency provenance
of u;.Height consists of;.Name and,.Height. The value oti;.Height was copied from;.Height, and the
output also depends an.Name, because changing this value would makelisappear from the output. For
Q2, however, as shown in Figure 4(h); does not depend on .Height; the value 200 was provided by the
query, not copied from the input. It does still dependtpName field for the same reason@s. For(Qs, as
shown in Figure 4(c)t;.Height does not depend @p.Height in the input, but iloesdepend orts.Name and
t3.Weight.

Dependency provenance is clearly similar in some respegistious approaches such as why-provenance,
where-provenance and lineage. In particular, where-pravee (that is, the input field from which an output
field was “copied”) appears to be included in the dependenoygmance. Moreover, for conjunctive queries like
the above, the lineage (that is, the input records that fdmried” in some way to an output record) appears to

25

People
id | Name | Height | Weight
t1 | James| 200 190 ==
ty | Alice | 160 150
t3 | Bob | 204 200

id | Name | Height
uy | James| 200

Figure 3: Input data and result of running querigs 2, andQs

@ | Name| Height | Weight | [id | Name] Height | Weight | || >are | Helght| Weight
i

t; | James 290 t1 | James) --- t3 | Bob | --- 200

3 b

@@ (b) @2 © Qs

Figure 4: Data slices with respectdg.Height and querie®, @2, andQs

include all of the records mentioned in the dependency mavee. Finally, why-provenance seems very closely
related, but a direct comparison is difficult because thegimai paper [4] used a semi-structured, deterministic
tree model quite different from the relational model we useeh We are glossing over many details here;
characterizing the precise relationship between thes@apipes (and other recent proposals for data provenance
in queries [7] and updates [3, 2]) is beyond the scope of thicle

Now we consider a second example, a guenpywith grouping and aggregation:

SELECT Name, AVERAGE(Salary)
FROM Employees

WHERE Year >= 2005

GROUP BY Name

This query returns the names and average salaries sinceda?@dsemployees; a sample input database and
result is shown in Figure 5. Note that Alice has no entrieses2004 so does not appear in the result.

In the previous example, we considered only dependencestpfiofields on input fields; the relation and
record dependences are not very interesting for this exantpélation and record dependences become more
important for queries such &g, involving grouping and aggregation.

Figures 6(a—c) show the data slices for the whole outpugrdee, (andu;.Salary), and field:;.Name,
respectively. The whole output depends on everything inrthat except for Alice’s salary fields; changing
them cannot affect the output, but other changes may. Thendiemcy provenance af is shown in Figure 6(b).
The presence of recorg clearly depends on all of the datatinandts; changing any of these fields may affect
the average, which would replacg with some other record (James, gvdRecordu; also depends oh .Year
andtg.Name. The reason is that changing ‘2004’ to ‘2008 imor changing ‘Bob’ to ‘James’ ig would affect
the average associated with James in the output. Coineitierthe provenance af;.Salary turns out to be the
same as the provenancef, and the reasoning is similar. Finally, in Figure 6(c), we Heatu,.Name does
not (directly) depend on anything in the input. Of course, presence ofi; does depends on several parts of
the input, sa:;.Name depends “indirectly” on these parts as well, but tlen® single field in the input that we
can change that will changg .Name in the result.

26

Employees
id | Name | Salary| Year
t1 | James| 1000 | 2004
ty | James| 1100 | 2005
ts | James| 1200 | 2006
ty | Alice | 1900 | 2003
t5 | Alice | 2000 | 2004
ts | Bob | 1000 | 2006

id | Name | Salary
== up | James| 1150
ug | Bob | 1000

Figure 5: Input data and result of running quéry

id | Name | Salary| Year id | Name| Salary| Year
t1 | James| 1000 | 2004 t 2004

to | James) 1100 | 2005 | = ™" james[1100 | 2005| [id [Name] Salary] Year
t3 | James| 1200 2006 t3 | James| 1200 2006 .

ts | Alice 2003 . . :
i | Alice | --- 2004 ts | Bob : (c) Foru;.Name
t¢ | Bob | 1000 | 2006 :

(@) For whole output (b) Foru; andu;.Salary

Figure 6: Data slices faf),4

4 Conclusions

We believe that the key question any approach to provenamst answer is what the provenance information
explainsabout a query result in the context of the input data and gaemantics that is not conveyed by
the query result value itself. Previous approaches, suahhgsprovenance, where-provenance, and lineage
have been based on intuitive notions of explanations sudteagifying the source data that “influenced” or
“contributed to” a part of the output or from which a part oéthutput was “copied”. However, corresponding
semantic correctness properties relating these formswépance to the actual semantics of a query have proven
elusive or hard to generalize beyond monotone queries.

We have outlined one approach, dependency provenanceh whlzased on well-understood techniques
from programming languages such as dependency analysipragdam slicing. We believe this approach
captures intuitions similar to those motivating other mmance techniques, but may be easier to generalize to
the full range of features found in databases, includingigirtg, aggregation and stored procedures. However,
this work is still relatively speculative and more reseadascheeded to determine the feasibility of computing (or
conservatively approximating) dependency provenanceaatice and scale. Nevertheless, there appears to be
a deep connection between program slicing and data progerthat we may be able to exploit by transferring
ideas, tools, and techniques from programming languagesureh.

27

References

[1] Martin Abadi, Anindya Banerjee, Nevin Heintze, and J&nRiecke. A core calculus of dependency. In
POPL, pages 147-160, New York, NY, USA, 1999. ACM Press.

[2] Peter Buneman, Adriane P. Chapman, and James Cheneyer@rece management in curated databases.
In Proceedings of the 2006 SIGMOD Conference on Managemenataf pages 539-550, Chicago, IL,
2006. ACM Press.

[3] Peter Buneman, James Cheney, and Stijn VansummererheQaxpressiveness of implicit provenance in
query and update languages. IGDT 2007 number 4353 in Lecture Notes in Computer Science, pages
209-223. Springer, 2007.

[4] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Whywdiere: A characterization of data
provenance. IProc. 2001 International Conference on Database Theoonber 1973 in LNCS, pages
316-330. Springer-Verlag, 2001.

[5] James Cheney, Amal Ahmed, and Umut A. Acar. Provenancepsndency analysis. In M. Arenas and
M. I. Schwartzbach, editor®roceedings of the 11th International Symposium on DatlPasgramming
Languages (DBPL 2007humber 4797 in LNCS, pages 139-153. Springer-Verlag, 2007

[6] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tragite lineage of view data in a warehousing
environment ACM Trans. Database Sysp5(2):179-227, 2000.

[7] Todd J. Green, Grigoris Karvounarakis, and Val Tannerovenance semirings. IRODS pages 31-40,
New York, NY, USA, 2007. ACM Press.

[8] Erhard Rahm and Hong-Hai Do. Data cleaning: Problemsamcent approachedEEE Bulletin of the
Technical Committee on Data Engineerjr&3(4), December 2000.

[9] Wang-Chiew Tan. Provenance in databases: Past, cufoéunte. This issue.
[10] F. Tip. A survey of program slicing technigue¥ournal of programming language3:121-189, 1995.
[11] Mark Weiser. Program slicing. INCSE pages 439-449, Piscataway, NJ, USA, 1981. IEEE Press.

[12] Mark Weiser. Programmers use slices when debugdgdmmmun. ACM25(7):446-452, 1982.

28

Recording Provenance for SQL Queries and Updates

Stijn Vansummeren James Cheney
Hasselt University and University of Edinburgh
Transnational University of Limburg, Belgium UK
Abstract

Knowing the origin of data (i.e., where the data was copiedmated from)—itprovenance-is vital

for assessing the trustworthiness of contemporary séieni@tabases such as UniProt [16] and SWISS-
PROT [14]. Unfortunately, provenance information mustreatly be recorded manually, by added
effort of the database maintainer. Since such maintenamtedious and error-prone, it is desirable to
provide support for recording provenance in the databasgesy itself. We review a recent proposal for
incorporating such support, as well as its theoretical prdges.

1 Introduction

Chris, a fan of foreign and domestic beers, constructs ddsaéR (beer, kind, origin) listing beers, their kind,
and their origin. He proceeds by manually inserting tupdasyell as by copying from the existing general beer
databases (beer, kind, origin), and fromT (beer, origin), a database that specializes in lagers.

insert into R values ('Duvel’, 'Strong ale’,'Belgium’); Q)
insert into R (select * from S where origin = "USA’); (2)
insert into R (select T.beer, 'Lager’ as kind, T".origin from T'); 3)

When inspecting the result, Chris notices tiateportsStella Artois as an American beer, while it is in fact a
Belgian one. A friend tells Chris that this error is probablye to databasé, which is known for its poor data
quality. Perhaps Chris should check the other recordstetséom for their correctness?

Although the scenario above is clearly a simplification fog purpose of illustration, many contemporary
scientific databases—sometimes referred tewaated databasesare constructed in a similar manner by a
labor-intensive process of copying, correcting, and aatiay data from other sources. The value of curated
databases lies in their organization and in the trustwoegs of their data. As illustrated above, knowing where
data was copied or created from—jivenance-is particularly important in assessing the latter.

In hindsight, Chris could simply have recorded provenancadiing an extra attributgrov to R and by
issuing slightly different update statements. For instanpdate (3) would have become

insert into R (select T'.beer, 'Lager’ as kind, T".origin, 'db T’ as prov from T'). (4)

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Stijn Vansummeren is a Postdoctoral Fellow of the Reseancindfation—Flanders (FWO).

29

This only records provenance of whole tuples, however, afidea granularity is often required. For in-
stance, the presence @tella Artois, lager, USA,db T) in R would designatd” as the provenance of the tuple
(Stella Artois, lager, USA) even though this tuple does not literally occurlin After all, only Stella Artois and
USA were copied fron¥", butlager was inserted by Chris. On the other hand, recording only tbeemance of
data values (lik&tella Artois, lager, .. .) is often not sufficient either. For instance, knowihgttall data values
in (McChouffe, Scottish ale, Belgium) were copied fromt does not necessarily imply that all of these data val-
ues came from the same recordSinAs such, it is desirable to record provenance at all levetésdatabase (data
values, tuples, and even whole tables). While it is possio so manually by adding enough extra attributes
to R and by suitably rewriting the original updates (1), (2), B this approach quickly becomes very tedious,
time-consuming, and error-prone, especially wiRtontains many attributes. Also, the importance of retajinin
detailed provenance information is often not appreciated it is too late—perhaps months or years after the
data was originally copied into the database. In this rasjieseems preferable to let the user write queries and
updates as before, and to let the database system recoehprmeautomatically

Before provenance recording can be automated, howevsiinifderative to have a good explanation of the
meaning of queries and updates with regard to provenance niéaning may be obvious for the examples
given so far, but what about updates such as the following?

insert into R (select S.beer, 'stout’ as kind, S.origin from S where S.kind = "stout’))

Is stout created by Chris or copied frorfi? Both explanations seem reasonable due to the conditidn tha
S.kind = 'stout’. A similar situation occurs for updates involving joins:

insert into R (select S.beer, S.kind, T.origin from S, T" where S.beer = T'.beer and S.origin = T'.origin;) (6)

Are thebeer andorigin attributes copied fron$ or from7"? Again, both explanations seem reasonable, but it is
unclear which explanation is to be preferred.

In this article, we will follow Wang and Madnick [17] and Bhagt et al. [2] and definstout to be created
by Chris in update (5) becauseut appears as a constant in the select clause insteddiatl. Moreover, we
definebeer to be copied fromS in update (6) because the select clause sbeer and not7’.beer. Similarly,
origin is taken to be copied frof because the select clause litsrigin and notS.origin.

While this provenance semantics is simple and natural, ytmoabe the particular provenance that a database
curator had in mind for the above updates. Nevertheless,sihiple provenance semantics has been shown
expressively completdor every query or updat® that manually records provenance (like (4) above) there
exists a normal query or update (like (1), (2), and (3) abdeejvhich the provenance semantics is equivalent
to O, provided thatD satisfies certain soundness criteria discussed in Se@iand 3. As such, if we use this
semantics to record provenance automatically, we do netflesibility with regard to recording provenance
manually. We feel that this property strongly argues in fawbthe proposed provenance semantics as the
“right” basis for recording provenance automatically.

We should note that although we will restrict ourselves iratviollows to the provenance semantics for (a
fragment of) SQL queries and updates operating on clagéataklations and only consider provenance at the
data value and tuple level, the topic was originally stud@djueries and updates operatingrastedrelations,
where provenance is recorded at all levels (data valuelkesuand tables) [5]. We refer the interested reader to
Buneman et al. [6] for a full exposition.

To put this article in the right context, we should also mamthe other forms of provenance recently studied
in databases. First, while we are interested in recordimeredata is copied or created from, tivy-provenance
approach of Cui et al. [6] and Buneman et al. [4] wishes totifierior each output tuple of a query, the set of
input tuples that causedto be output. More recently, why-provenance has been refisgd) program slicing
techniques by Cheney et al. [8]. Thewprovenance approach of Green et al. [7] is interested iordéng how
t was computed from the input (e.g.could be the result of joining two input tuples). Finallyetk has also
been interest oqueryingprovenance and other forms of annotations rather thandiggpit [12, 11].

30

beer origin | beer® | origin® | tup® beer origin beer® | origin® | tup®
Leinenkugel | USA | ¢; Co c3 Leinenkugel | USA c1 Co c3
Stella Artois | USA | ¢4 cs cg Stella Artois | Belgium | ¢4 1 1

Figure 1: Color propagation for query (7). On the leftligT"), the colored version of tabl&, and on the right
is the colored result.

2 Provenance Recording for Queries

Let us first consider provenance recording for queries. t{zdaill be considered in Section 3. For ease of
exposition we restrict ourselves to simple SQL queries efftilowing form, excluding subqueries; grouping;
and aggregation.

Q == selectr;.xfrom R, ry, ..., Ry y where ¢
| selecta, as Ay, ..., a,as A, from R, vy, ..., Ry, 1y where @
| @ union @

Here,p is any valid where-clause without subqueries and ewgiyeither a constant data value or an expression
such as;.C that refers to an attribute of one of the tuple variables. &pproach can be generalized to deal
with subqueries, grouping, and the connectivesrsect andexcept, but aggregation presents some problems,
as we will see. Note that we only allow the wildcardo be applied to a single tuple variable; selections such
asselect x from R, S that return all attributes of a cartesian product can alvimysewritten to mention these
attributes explicitly in theelect clause.

The provenance semantics. Let us collectively refer to the individual data values aogdl¢s in a database
as the databaseitems To define the provenance semantics, we use a formalizagisedoon the “tagging” or
“annotation propagation” approach of Wang and Madnick [A7d Bhagwat et al. [2]. In this approach, each
input item is assumed to have an identifying “color” whichnvgs as an abstraction of a system identifier or
some other means of referring to part of a database. We carddseribe how queries and updates manipulate
provenance by means of functions mapping such colored asg¢alto colored databases in which colors are
propagated along with their item during computation of thépat. The provenance of an item in the output
is simply the item in the input with the same color. To illasé, consider the tabl€(beer, origin) from the
Introduction with tupleq (Leinenkugel, USA), (Stella Artois, USA)} in which the data values and the tuples are
annotated with colorsy, ¢, ... as shown at the left of Fig. 1. Thereger® andorigin® store the colors of the
data values in théeer andorigin attributes, andup® stores the colors of the tuples. As suthinenkugel is
colored bycy, the first occurrence diiSA is colored byes, the first tuple is colored bys, and so on. We could
then define the colored semantics of the SQL query

(select t.x from T" t where t.beer <> 'Stella Artois’)

union (select t.beer, 'Belgium’ as origin from Tt where t.beer = 'Stella Artois’)

(7)

to mapT to the colored table at the right of Fig. 1. This defines thev@nance ot einenkugel in the output to
be the corresponding data valueZinthe provenance of the tup(eeinenkugel, USA) to be the provenance of
the first tuple inl’, and so on. The “empty” or “blank” colat indicates that an item is introduced by the query
itself. Hence, this particular colored semantics takes/tbe that the seconsklect subquery constructs a new
tuple rather than copying an existing one.

Intuitively, we will take the view that queries either cangtt new items or copy complete items from the
input. As such, all data values resulting from constant wanog8on as inselect 'USA’ as origin from T' ¢ are
colored L, as are the tuples returned by queries sudelast A, B from R whose select clause constructs new

31

tuples. All other items, such as the tuples returneddct t. « from 7 t, retain their color. This is essentially
the same provenance semantics as that of Wang and Madnickrid/Bhagwat et al. [2], although they only
consider provenance for data values, not tuples.

In order to elegantly formalize this intuition, notice thby storing colors as in Fig. 1, it becomes possible
to define functions mapping colored databases to colorddstab SQL itself. For example, if we letr(7T)
denote the colored version of talii&beer, origin) then the particular colored semantics of query (7) illustla
in Fig. 1 is defined by

(select t.x from clr(T") t where t.beer <> 'Stella Artois’)
union (select t.beer as beer, 'Belgium’ as origin, t.beer® as beer®, L as origin®, L as tup® (8)
from clr(T') t where t.beer = 'Stella Artois’)

To define our provenance semantics it hence suffices to agsigach queryy, a queryP[(] mapping col-
ored databases to colored tables. It is important to renfet<} and P[] operate on different views of the
database() operates on the tables without colors (like (7) above), &hBil()] operates on colored tables (like
(8)). To avoid confusion between the two views, we will ramger uncolored tables bi, S, andT’, and over
their colored versions byir(R), clr(S), andclr(T"). We refer to the attributes that store normal data values in
cr(R),clr(S), andclr(T') (like beer andorigin) as thenormal attributesand to the attributes that store colors
(like beer®, origin®, andtup®) as thecolor attributes

Definition 1. The provenance semanti£$()] of a query() operating on uncolored tables is inductively defined
as follows. LetP[a] denote the blank colat whena is a constant, and |&[a] denotet. A° whena is an attribute
reference. A with ¢ a tuple variable.

e Plselect r;.x from R, ry, ..., Ry rm where ¢] :=

select 7;.% from clr(R,) 7y, ..., clr(Ry,) rm where ¢;

e Plselecta, as A,, ..., ap as A, from R, r,, ..., Ry, rm where] :=

selecta, as A,, ..., ap as A,, Pla,]as AS, ..., Pla,] as AS,, L astup®

fromclr(R,) ry, ..., clr(Ry,) rm where ¢;

e P[Q1 union Q5] := P[Q1] union P[Q2].

Example 1: Toillustrate,P[Q] with Q = select s.beer, 'stout’ as kind, s.origin from S s where s.kind = ’stout’
as in example (5) from the Introduction yields

select s.beer, 'stout’ as kind, s.origin, s.beer® as beer®, L as kind®, s.origin® as origin®, L astup® (9)
from clr(.S) s where s.kind = stout’.

Also, P[Q] with @ as in query (7) yields query (8).

Inherent to definition ofP[Q] is that queries that are equivalent under the normal seosanged not be
equivalent under the provenance semantics. For exa@ple= select r.x from R r is equivalent toQs :=
select 7. A as A, r.B as B from R r when R consists only of attributed and B, but P[Q+] is not equivalent to
‘P[Q2] as the former retains the tuple colors from the input, wiikelatter colors all tuples..

32

Expressive completeness Let us now see how this provenance semantics compares withahual approach

to recording provenance. In this respect, note that querasping colored databases to colored tables, such as
(8) above, can also be viewed as bemgnually constructetb record provenance. In other words, we want to
compare the class of queri¢®[Q] | @ a query on uncolored databasesith the class of querie® mapping
colored databases to colored tables. Since we are inténestecordingprovenance, however, we will exclude
from our discussion querigd such as

select t.x from clr(T") t where t.beer® = ¢; (10)

thatqueryprovnenance rather than record it.

Definition 2. A provenance recordinguery is a query® mapping colored databases to colored tables in which
every where-clausg mentions only normal attributes.

Clearly, (10) is hence not provenance recording. In coptfg)] is always provenance-recording since the
where-clause of a quei§) operating on uncolored tables only mentions normal atiegband sincé[()] does
not affect where-clauses.

Can every provenance-recording query be defined in ternB[@] for some@? The answer is no, for
two reasons. First, due to our view of queries as either oactitg new items or copying whole items, it is
impossible forP[Q] to yield something like

select t.beer as beer, t.beer® as beer®, t.tup® as tup® from clr(7') t (12)

that returns tuples which do not literally occurh yet have the same colors as tupleslin Similarly, it is
impossible forP[Q] to yield something like

select "USA’ as origin, t.origin® as origin®, L as tup® from clr(T') t (12)

in which data values are given the provenance of data vataes# although the data value itself need not occur
in T'. We refer to provenance recording queries that only colgpuiutems: by color ¢ if 4 also occurs in the
input as topying. (See [5, 6] for a full formal definition of this concept).

Second, due to our view that only data values constructed ¢cynatant expression are colored it is
impossible forP[Q] to yield something like

select t.beer as beer, L as beer®, L astup® from clr(T') t (13)

that colors every possibleeer data value byl . Indeed, to simulate (13) by means®f(Q], @ would have to
mention every possibleeer value as a constant, of which there are unboundedly many.aivgueries that can
color only a finite, bounded number of atoms_bybounded inventirig

We view the fact thaP[@)] can only define provenance recording queries that are ‘ogpgind ‘bounded
inventing’ as a desirable property: it ensures that thegmence relationship between input and output described
by P[Q] is not arbitrary, but meaningful. After all, one could hardirgue that the provenance relationships
described by (11) and (12) above correspond to the intuitid@on “is copied fromZ™. Similarly, queries
without aggregation are typically considered as “domagserving” in database theory, with limited ability to
create new data values. The bounded inventing propertylynemsures that the provenance semantics respects
this view. With regard to the copying and bounded inventingrggs, our provenance semantics can be shown
expressively complete:

Proposition 3 (Buneman et al. [5, 6]): For every provenance recording qudfythat is copying and bounded
inventing there exists a quety mapping uncolored databases to uncolored tables suclPtEaP[(].

33

As such, we are ensured that we do not lose flexibility whengB{(] to record provenance automatically
instead of recording provenance manually. Of course, intim@we also would like to record provenance for
queries involving aggregation suchseect A, sum(B) from R group by A that fall outside the current frame-
work. Indeed, although we could in principle simply define firovenance of all atomic data values resulting
from sum to be created by the query itself, this causes the proverseroantics to becomabounded invent-
ing. A more satisfying approach than simply defining the ltesaf an aggregation operator to be created by the
query itself could be to recortowthis result was computed. For example, we could color a dateevesulting
from the abovesum aggregation byum(cy, c2, ¢3) indicating that it was obtained by applying sum to the set
of data values from the input colored by, co, andcs, respectively. This use @xpression®s provenance is
similar to the approach of Green et al. [7], who use semi-érgressions to describe the provenance of rela-
tional algebra queries without aggregation. It is also @galis to certain techniques faorkflowprovenance,
as known from the geospatial and Grid computing communifig$0, 15]. It is not clear, however, whether and
how our expressive completeness results transfer to ttiinge

3 Provenance Recording for Updates

Our discussion of provenance for queries is straightfomlyaextended to updates like (2) and (3) from the
Introduction of the forminsert into R @): the provenance of the inserted items is simply giverPpg].

Definition 4 (Provenance of query insertion): P[insert into R @] := insert into clr(R) P[Q].

For instance, for update (3) from the Introduction this gsel

insert into clr(R) select t.beer, 'Lager’ as kind, t.origin, (14)

t.beer® as beer®, L askind®, t.origin® as origin®, L as tup® from clr(7T) t.

Updates of the forninsert into R(A, ..., B) values (d,...,d") like (1) from the Introduction clearly add
newly constructed items t&B. We hence define:

Definition 5 (Provenance of value insertion):

Plinsert into R(A, ..., B) values (d,...,d")] :=insert into clr(R)(A, ..., B, A%, ..., B tup®)
values (d,...,d', L,..., 1),

where we assume for ease of exposition that. . , B comprise all attributes aR.

The provenance semantics diflete statements is also straight-forward, as deleting a tugie étletes its
provenance.

Definition 6 (Provenance of deletion): P[delete from R where ¢] := delete from clr(R) where .

Observe that for the updates considered soRl] is still ‘copying’ and ‘bounded inventing’. Moreover,
the provenance semantics is still expressively completensgard to the class of updates from colored databases
to colored databases that manually record provenanceeifolfowing sense. Similar to the case for queries,
we exclude from our discussion updates suchedeste from clr(7") t where t.beer® = ¢; thatqueryprovenance
rather than record it.

Definition 7: A provenance recordingpdate is an update mapping colored databases to colofled talwhich
every where-clausg mentions only normal attributes.

34

beer origin | beer® | origin® | tup® beer origin beer® | origin® | tup
Leinenkugel | USA | ¢; Co c3 Leinenkugel | USA c1 Co c3
Stella Artois | USA | ¢4 cs cg Stella Artois | Belgium | ¢4 1 Co

Figure 2: Color propagation for update (15). On the leftli$7"), the colored version of tabl&, and on the
right is the colored result.

Proposition 8: Let V' be a provenance recording update of the following form.
U == insertinto RQ |insertinto R(A,...,B) values (d,...,d") | delete from R where .

If V' is copying and bounded inventing, then there exists an egdaiperating on uncolored databases, also of
the above form, such th&t = P[U].

Let us now considetpdate statements. In this respect, note that updates such asliwifg intuitively
do not construct new tuples but modify existing ones “inepla

update 7T set origin = 'Belgium’ where beer = 'Stella Artois’ (15)

It hence seems reasonable to define their provenance sesiardi way that agrees with how system identifiers
are preserved in practical database management systems.

Definition 9 (Provenance of updates):Plupdate R set (4,...,B) = (d,...,e) where] := update clr(R)
set (A,...,B, A% ...,B%) =(d,...,e, L,..., L) where ¢.

For instance, for update (15) above this yields
update clr(7") set (origin, origin®) = ('Belgium’, L) where beer = 'Stella Artois’. (16)

Note that although update (15) and query (7) essentiallyesgahe same database transformation on uncolored
tables, their provenance semantics differs significaritideed the query maps the colored table at the left of
Fig. 1 to the colored table at the right of Fig. 1, while the afgdmaps that same table to the colored table at the
right of Fig. 2. In particular, the provenance semanticsheftpdate isiot copying, as the first output tuple is
not identical to the first input tuple, although they are cetbthe same. The provenance semantics of the update
statement iskind preservinghowever: it will only color an output atom by colarif the atom also occurs in

the input with colore; and it will only color an output tuple by colarif there is a tuple in the input with color

c. We refer to Buneman et al. [5, 6] for a full definition of thisrzept.

Every copyingV is also kind preserving. As such, the provenance semaRfic$ of all updated/ consid-
ered in this article is kind preserving. The provenance sgicgisnot expressively complete with regard to the
class of kind preserving and bounded inventing provenaacerding updates, however. To see why, suppose
that R consists only of the attributerigin, and further suppose that we want to simulate the update

insert into clr(R) (select 'Belgium’ as origin, t.origin® as origin®, L as tup® from clr(T') t), (17)

which is kind preserving, but not copying. (The inserteddgare colored the same as tuple§¢but are not
identical.) To simulate this update in termsJefii/] for someU, U clearly needs to be ansert statement itself.
We already know, however, that this implies tig{/] is copying; as such it cannot express (17). Nevertheless,
by adding extra update operators it is possible to regairessfve completeness; see Buneman et al [5, 6].

35

4 Conclusion

In order to assess the trustworthiness of a database inis@iknow the provenance of its data. Since manually
recording such provenance quickly becomes very tedioug-tionsuming, and error-prone, is preferable to let
the user write queries and updates as before, and to let thiead® system record provenance automatically. In
this respect, it is imperative to have a good explanatiorhefrheaning of queries and updates with regard to
provenance. Fortunately, the intuitive view of queriesidsee constructing new items or copying whole items
from the input, as well as the intuitive view of updates as ifyat items in-place, yields an automatic prove-
nance recording semantics that is guaranteed to be as fleshiecording provenance manually. We conclude
this article by remarking that, while the full provenancensatics presented here remains to be implemented
in practice, preliminary experiments by Bhagwat et al. [@fl Buneman et al. [4] suggest that the overhead
incurred by recording provenance as opposed to not regpitisi reasonable.

Acknowledgement We are grateful to Peter Buneman for introducing us to pramea in databases, and for
the very enjoyable collaboration that led to the expressorapleteness results presented here.

References

[1] Marcelo Arenas and Michael I. Schwartzbach, edit@atabase Programming Languages, 11th Interna-
tional Symposium, DBPL 2007, Vienna, Austria, Septemb@422007, Revised Selected Papemume
4797 ofLecture Notes in Computer Scien&pringer, 2007.

[2] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tamg &aurav Vijayvargiya. An annotation man-
agement system for relational databaséisDB Journal 14(4):373-396, 2005.

[3] Rajendra Bose and James Frew. Lineage retrieval fonsfiedata processing: a survepCM Comput.
Surv, 37(1):1-28, 2005.

[4] Peter Buneman, Adriane Chapman, and James Cheney. narm& management in curated databases.
In SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD internatiaronference on Management of
data pages 539-550, Chicago, IL, 2006. ACM.

[5] Peter Buneman, James Cheney, and Stijn Vansummererhedaxpressiveness of implicit provenance in
query and update languages. In Thomas Schwentick and Dan, ®ulitors,ICDT 2007: Proceedings
of the 11th International Conference on Database Thewojume 4353 ofLecture Notes in Computer
Sciencepages 209-223, Barcelona, Spain, 2007. Springetr.

[6] Peter Buneman, James Cheney, and Stijn Vansummererhedaxpressiveness of implicit provenance in
query and update languages. Technical report, 2007.

[7] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Whywdiere: A characterization of data
provenance. IRCDT 2001: Proceedings of the 8th International ConferermeDatabase Theoryolume
1973 of LNCS pages 316-330, London, UK, 2001. Springer.

[8] James Cheney, Amal Ahmed, and Umut A. Acar. Provenanaepsndency analysis. In Arenas and
Schwartzbach [1], pages 138-152.

[9] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tragithe lineage of view data in a warehousing
environment ACM Trans. Database Sysp5(2):179-227, 2000.

36

[10] lan Foster and Luc Moreau, editor®roceedings of the 2006 International Provenance and Aairost
Workshop (IPAW 2006humber 4145 in LNCS. Springer-Verlag, 2006.

[11] Floris Geerts and Jan Van den Bussche. Relational asemss of query languages for annotated
databases. In Arenas and Schwartzbach [1], pages 127-137.

[12] Floris Geerts, Anastasios Kementsietsidis, and Dikljano. MONDRIAN: Annotating and querying
databases through colors and blocksIGDE 2006: Proceedings of the 22nd International Confeesan
Data Engineeringpage 82, Atlanta, Georgia, 2006. IEEE Computer Society.

[13] Todd J. Green, Grigoris Karvounarakis, and Val Tanrferovenance semirings. PODS 2007: Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposin Principles of database systems
pages 31-40, New York, NY, USA, 2007. ACM Press.

[14] European Molecular Biology Laboratory. Swiss-protatse.

[15] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A sup¥elata provenance in e-scienc8lGMOD
Record 34(3):31-36, 2005.

[16] Universal Protein Resourcéttp://www.ebi.uniprot.org/

[17] Y. Richard Wang and Stuart E. Madnick. A polygen modeHeterogeneous database systems: The source
tagging perspective. In Dennis McLeod, Ron Sacks-David, ldans-Jorg Schek, editorBroceedings
of the 16th International Conference on Very Large Data Bapages 519-538, Brisbane, Queensland,
Australia, 1990. Morgan Kaufmann.

37

Issues in Building Practical Provenance Systems

Adriane Chapman and H.V. Jagadish
University of Michigan
Ann Arbor, Ml 48109
{apchapma, jag@umich.edu

Abstract

The importance of maintaining provenance has been widaggmized, particularly with respect to
highly-manipulated data. However, there are few deployatdlohses that provide provenance informa-
tion with their data. We have constructed a database of pratgeractions (MiMlI), which is heavily
used by biomedical scientists, by manipulating and intiiggadata from several popular biological
sources. The provenance stored provides key informatioadsisting researchers in understanding
and trusting the data. In this paper, we describe severalddesta for a practical provenance system,
based on our experience from this system. We discuss thieraies that these requirements present,
and outline solutions to several of these challenges thatave implemented. Our list of a dozen or so
desiderata includes: efficiently capturing provenancenfexternal applications; managing provenance
size; and presenting provenance in a usable way. For exardate is often manipulated via provenance-
unaware processes, but the associated provenance mubestiaicked and stored. Additionally, prove-
nance information can grow to outrageous proportions ikitither very rich or fine-grained, or both.
Finally, when users view provenance data, they can usualfietstand a SELECT manipulation, but
“why did the bcgCoalesce [1] manipulation output that?”

1 Introduction

)

Chrer wpienn = sine there lived a beautiful (and highly intelligent) research8he had a sad life chained to her
lab bench day and night, slaving for her evil Principal Itigegor, collecting data and analyzing numbers. One
day a handsome Computer Scientist heard of the researgiigh$ and decided to save the damsel in distress.
First he built a program that would measure signal intengityer experiments. Many more programs followed,
each designed to reduce the tasks performed by the bedardlhighly intelligent) researcher. The handsome
Computer Scientist dazzled the evil Principal Investigatdh the power of his programs and rescued the fair
researcher from her lab bench. Just as they were about tantwléhe sunset, the evil Principal Investigator
popped her warty green face out of the tower and said, “| thokbetter come back in, | don’t understand how
or where you got these numbers, but they certainly can’t bect’

The handsome Computer Scientist laughed and cried, “Sjdkiie dragon will be easy. | maintained prove-
nance!” Unfortunately, the provenance the handsome Cam@aientist kept was coarse-grained and not easy

Copyright 2007 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

9Supported in part by NSF grant number 11S 0741620 and by N&signumber U54 DA021519.

38

Insert x into T/b2

Copy S/ally into T/blly
Insert y into T/b2

Copy S/a2 into T/b3
Copy S/al/x into T/b2/x

(@)

annotate

extract
InterPro

Sample Reduction of MiMI Provenance

extract
ProtoNet

extract
mIBLAST.

transform

Percentage of Origninal
Provenance Store
a
&

(@) XLy, VNN

Structural Inh.
Predicate Based Inh.
Structural-Predicate Inh.
Basic Fact.
Argument Fact.
Arg. Fact., Structural Inh.
Optional Fact.
OR Fact.

OR Fact., Structural-Predicate Inh.

Reduction
(b) Technique

Optional Fact., Structural-Predicate Inh.

PubmediD PubmediD PubmediD PubmediD
15064826 15064826 15964826 15064826

o s e g 3;;;;;5 »;;ggg Figure 2:2(a) The user’s actions @3 Figure 3: The storage savings for a

(b) andT. 2(b) The provenance links from set of reduction techniques applied to

T to S. Nodes originally inT are white; MiMI.
Figure 1: 1(a) The workflow used to inserted nodes are black and copied
generate MiMI. 1(b) A data item with nodes are grey to distinguish user ac-

provenance from MiMl. tions.

to query with the data itself. The handsome Computer Seieautid beautiful (and highly intelligent) researcher
spent the remainder of their lives toiling to understand itagopened to the dataZz .

The moral of this bedtime story: Don't just maintain proveog, maintairgoodprovenance. Knowing that
we should store provenance information doesn’t mean welkhgitan, or do, or do it correctly. Even outside of
fairy tales, researchers and scientists still have difffauhderstanding what happened to their data, particularly
when the data is heavily manipulated.

We have constructed a database of protein interactions,| Yli®], by manipulating and integrating data
from several popular biological sources. Figure 1(a) dostthe general workflow used to generate MiMI. As
scientists used the data in MiMI, it became apparent thatgorance was needed to assist them in understanding
and trusting the data presented. A snhapshot of provenafmeniation captured in MiMI is shown in Figure
1(b). While watching researchers use provenance infoomatve realized that their provenance information
needs more than just a simple capture-store-fileaway apiprol Section 2, we present both required and
recommended features for a database system incorporatmgnance information based upon our experience
with MiMI. Section 3 describes current provenance systamght of these desiderata. In Sections 4 and 5 we

discuss practical implementation options and conclude.

2 Desiderata

In this section, we will outline a set of features, requirad eecommended, needed for a database to incorporate
provenance.

39

2.1 How Much Provenance to Capture

I. Granularity Choice (Required)Allow provenance to be captured and stored at every gratwul@urrently
there are two main trends for attaching provenance infaomatcoarse and fine grained. Many workflow
systems that generate provenance records attach proeemdmignation at the coarse-grained file level [2, 12,
13, 14, 15]. Other specialized systems attach provenanite dine grain of attribute [4, 6, 7, 8, 11]. Often,
however, systems need a mix of usage. For example, in MiMerance is attached to files, data items and
attributes, as shown in Figure 1(b). When attributes, fites @data items are broken up or used out of context,
provenance is especially important at every granularity.

Il. Exact Execution Provenance (Required)Record the exact provenance for each specific data item, not
just the general provenance for a “class” of items. For exejrgitributes and data items within files behave
differently through a given workflow based on data/attriébtype, content, etc. The workflow to generate MiMI

is shown in Figure 1(a). If a scientist wishes to know whem\Wheel name attribute came from, pointing to
the workflow used is not enlightening, since via the workfltvat attribute could have come from any number
of external sources, e.g. BIND, HPRD, etc. Instead, we wadtnbw that theNeel name attribute came from
BIND and HPRD, while thd?30291 ID attribute came only from HPRD. Moreover, while the MiMI.xfile
went through a merge process, #@0291 ID attribute never merged with any other information.

lll. Provenance Information (Required)Permit variation of the form or content of the provenanceiimfa-
tion. Current provenance systems capture a huge rangeoofiafion from information about the files used and
produced and the scripts run [2, 12, 13, 14, 15] to user atiao&a[3, 19]. But what exactly is needed to allow
individuals to utilize the data? In MiMI, we found storing axnof provenance information the most successful.
For instance, HPRD describes each protein in an XML file, amdId provenance should reference the exact
XML file used. On the other hand, user annotations, such aBub&ledID (a unique identifier for biology re-
search articles) used to garner the original informaticukhalso be kept. In other words, a provenance system
should be flexible enough to store a large range of informa®determined by the application.

IV. Capturing Non-automated processes (Required)Provide the ability to capture manipulations that are
performed outside of automated workflows. While capturimg éxact execution for every file, data item and
attribute, it is imperative not to miss the actions perfadmeanually by a curator. For instance, in MiMI, because
the identity functions that dictate which proteins to meage generated automatically, an expert user will find
a mistake occasionally. The manual correction of this rkéstaust be reflected in the provenance records.
Automatic capture of workflows alone is not enough.

2.2 Systems Issues

V. Source Data Item Identity (Required)Keep track of your incoming data. No matter what informati®n
ultimately retained in the data set or provenance storee threist always be a firm, unbending representation
for data item identity. Consider the problem in MiMI: 23206Broteins from seven sources are merged into
117,549 proteins. When the merge process takes place, hgauddentify the original components and where
they came from? How do you go backwards to look at the origimadeins? Even specifying that a protein is
from BIND is not enough, since several proteins from BIND bammerged into one. You cannot trace back any
further without some notion of source data item identity.

VI. Provenance Storage Size (Required)Plan for large provenance store costs. Given the amountowEpr
nance material stored, provenance stores can grow to inarenss, and easily outstrip the size of the data.
MiMl is 270MB; the associated provenance store is 6GB beforapression.

40

VII. Manipulation Information (Recommendedylaintain detailed manipulation information. Most prove-
nance systems keep track of the scripts or manipulatiortshénge been applied to the data. Some, such as
[14], allow users to modify process order, and change agipdias to achieve the desired results. However, this
requires an innate knowledge of each process, su@EAECTor bcgCoalesd1]. An alternative approach
would be to maintain information to generate result expgiana. Thus, when a user asks, “Why d@0291
from HPRD merge witiNP_003381 from BIND?” no innate knowledge of the merge process is meglfor

the answer; it can be automatically derived based on infboman the provenance store.

VIII. Inter-system Provenance (Recommendeduild toward inter-operability of provenance systems. As
systems grow and become interconnected, provenance sheimterchangeable. As MiMI has grown in pop-
ularity, it has become a reference to other applications siscPubViz [22]. These systems also attempt to
maintain some notion of provenance. However, they shouthaaequired to store provenance information
found in MiMI. Instead, they should store the provenanceaased with their actions, then point to MiMI for
the provenance beyond their borders.

2.3 Usability

IX. User Interactions (Required)Allow users to actively utilize provenance information aamy levels. As
discussed previously, there can be a huge amount of progeriaiormation to trawl through. This information
should not be stored away out of sight in case there is magiiem, it should be available to end users. How
can an end user navigate this deluge of information? In Mt have noticed that user’s needs fall into several
categories: dataset generation overview, data item a@erand particular manipulation overview. Users should
be able to see provenance information at many levels.

X. Provenance Queriability with the Data (Required)Provide support for querying provenance and data
together. Provenance is an essential component in agsatih users in trusting and using the data. To this
end, the provenance information should be queriable wighdéta itself. In MiMI, queries often consist of
intersections of data and provenance. For instance, “Relumolecules located in the mitochond(@ata)that
were reported by HPRD or IntA¢provenance) Making the provenance records available, but forcing sise

do a processing step to join them with the data is an undueshurd

XI. Error Finding and Fixing (Recommended}nable easy provenance store maintenance. Consider the
following scenario: a user queries MiMI, and notices two atoles have been merged that should not have
been. The user reports it. What happens? Hopefully the wilidse corrected and the two mis-merged proteins
will be separated. But what about the provenance store? amésins must be in place to incrementally update
the provenance store to allow for error finding and fixing.

3 Current Provenance Systems

There are several provenance systems that have been appléad scientific data [5, 21], and espouse many of
the desiderata discussed above. The PASOA project [15 abfyéen applied to several real-world scientific en-
deavors. Itis concerned with the origins of a result or deieing when results are invalid and has paid specific
attention to desideraddll, VIIl andX. Chimera [12], is concerned with data derivation and shimegsideratd/,

VI andVIIl. Additionally, myGRID [13] is a collaborative environmefatr scientists with provenance handling;
myGRID handles desideratdll andIX. Other workflow systems have integrated provenance infaomauch

as VisTrails [14], Redux [2], and those patrticipating in thiernational Provenance and Annotation Workshop

41

Challenge [18]. In general these systems are thoughtfull @hdIX. However, workflow based systems so far
fail in desideratdl, Ill, andIV.

Outside of workflow-based systems, very few database pemansystems have been applied to real-world
scientific problems. However, we would like to highlight eesd systems that satisfy various desiderata. First,
Trio [19] fulfills the notions for desiderath, V and X very well. In [3], problems with desideratt, V and X
are explored. [20] are working on desiderativh Also, [7, 8] take an interesting look at desiderdtandV.
Finally, [11] and [10] are both tackling desideratu¥

4 Finding Practical Solutions

Each desideratum discussed above is a challenge to satighyis section, we suggest how two of these chal-
lenges can be met.

4.1 Capturing Non-automated Processes

Human curators are often responsible for the content ofiglmeed databases, or for “tweaks” in existing au-
tomated systems. The Uniprot consortium employs more theensy scientists for curation. In some curated
databases, the database designer augments the schemaowéhamce fields for the curator to populate; in
“tweaked” systems, the actions often go unrecorded.

Using an appropriate architecture, and a language to expigy actions, it is possible to capture these
non-automated processes. By forcing a user to manipulatdatabase through a program that can track his
movements, the user’s actions can be distilled into Comertrand Delete. Once we know (1) what action is
occurring, (2) where in the current database the actiongsroicig, and (3) where any incoming data is from,
we can effectively store provenance on the user’s editaureg2(a)-2(b) show an example series of user edits
and their record in the provenance store. For further detaliéase refer to [6].

4.2 Reducing the Provenance Store

As stated in Desideratul, provenance information can balloon to gargantuan sizébzibg features of the
provenance store, itis possible to perform some reducfdamily of Factorization algorithms and two distinct
Inheritance algorithms can reduce the provenance storp lyafactor of 20. Using Factorization, by breaking
provenance records down into smaller pieces, it is poswldecrease repeated information. Using Inheritance,
properties of the dataset are used to reduce the storagechgdhe provenance. Figure 3 shows the ability of
these algorithms to compress the provenance space needdiMb Details of the algorithms and experiments
can be found in [9].

5 Conclusions
The benefits of maintaining provenance are already appaBased on our experience with MiMI, we outline

several desiderata that the next generation of provengstenss should meet. We outline some of the challenges
in meeting these desiderata and suggest some directiomslta §olution.

42

References

[1] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and |.sker. Applying chimera virtual data concepts to cluster
finding in the Sloan Sky SurveyEEE, 2002.

[2] Roger S. Barga and Luciano A. Digiampietri. Automatipttae and efficient storage of escience experiment prove-
nance. InConcurrency and Computation: Practice and Experigrigo?7.

[3] Deepavali Bhagwat et al. An annotation management sy$be relational databases. Rroc. of the Intl. Conf. on
Very Large Data Bases (VLDB)ages 900-911, 2004.

[4] R. Bose and J. Frew. Composing lineage metadata with Xdflctistom satellite-derived data productsSIBDBM
pages 275-284, 2004.

[5] Rajendra Bose and James Frew. Lineage retrieval fonsfiiedata processing: a surveACM Comput. Sury.
37(1):1-28, 2005.

[6] Peter Buneman, Adriane Chapman, and James Cheney. rmmse management in curated databasesAdN!
SIGMOD, pages 539-550, June 2006.

[7] Peter Buneman, James Cheney, and Stijn VansummererheGaxpressiveness of implicit provenance in query and
update languages. I€DT, pages 209-223, 2007.

[8] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Wih¥\there: A characterization of data provenance. In
ICDT, pages 316-330, 2001.

[9] Adriane Chapman, H.V. Jagadish, and Prakash RamanéinieBf provenance storage. in submission, 2008.

[10] Kwok Cheung and Jane Hunter. Provenance Explorer emiged provenance views using semantic inferencing. In
International Semantic Web Conferenpages 215-227, 2006.

[11] Shirley Cohen, Sarah Cohen Boulakia, and Susan Danidsmwards a model of scientific workflows and user views.
In DILS, pages 264-279, 2006.

[12] lan Foster, Jens Vockler, Michael Eilde, and Yong Zh@himera: A virtual data system for representing, querying,
and automating data derivation. International Conference on Scientific and Statistical &kstse Management
pages 37-46, July 2002.

[13] lan Foster, Jens Vockler, M Wilde, and Yong Zhao. Theual data grid: a new model and architecture for data-
intensive collaboration. I€IDR, 2003.

[14] Juliana Freire, Claudio T. Silva, et al. Managing rdypievolving scientific workflows. IHPAW, 2006.

[15] Paul Groth, Simon Miles, and Luc Moreau. Preserv: Pnavee recording for services. Rroceedings of the UK
OST e-Science second All Hands Meeting 2005 (AHM23)5.

[16] Magesh Jayapandian, Adriane Chapman, et al. Michigafedular Interactions (MiMI): Putting the jigsaw puzzle
together.Nucleic Acids Researcpages D566—-D571, Jan 2007.

[17] Simon Miles, Paul Groth, Miguel Branco, and Luc Moredte requirements of recording and using provenance in
e-science experimentdournal of Grid Computings(1):1-25, 2007.

[18] Luc Moreau, Bertram Ludascher, et al. The First Prarere ChallengeConcurrency and Computation: Practice
and Experiencg2007.

[19] Michi Mutsuzaki, Martin Theobald, et al. Trio-One: Leing uncertainty and lineage on a conventional DBMS. In
CIDR, pages 269-274, 2007.

[20] M Seltzer, J Ledlie, C Ng, D Holland, K Muniswamy-Reddyd U Braun. Provenance aware sensor data storage.
In NetDB 2005.

[21] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A suo¥e&ata provenance in e-scienc6lGMOD Record
34(3):31-36, 2005.

[22] Weijian Xuan, Pinglang Wang, Stanley J. Watson, andW¥ang. Medline search engine for finding genetic markers
with biological significanceBioinformatics 23:2477-2484, 2007.

43

Provenance in Scientific Workflow Systems

Susan Davidson, Bertram Ludascher, Timothy McPhillips Juliana Freire
Sarah Cohen-Boulakia, Anat Eyall Shawn Bowers, Manish Kumar Anand University of Utah
University of Pennsylvania University of California, Davis juliana@cs.utah.edu

{susan, sarahch, angt@cis.upenn.edu {ludaesch, tmcphillips, showers, maanp@licdavis.edu

Abstract

The automated tracking and storage of provenance infoongbromises to be a major advantage
of scientific workflow systems. We discuss issues relateatacathd workflow provenance, and present
techniques for focusing user attention on meaningful pramee through “user views,” for managing
the provenance of nested scientific data, and for using mm&dion about the evolution of a workflow
specification to understand the difference in the proveaaisimilar data products.

1 Introduction

Scientific workflow management systenesg, myGrid/Taverna [18], Kepler [6], VisTrails [13], and Chara
[12]) have become increasingly popular as a way of spegjfgind executing data-intensive analyses. In such
systems, a workflow can be graphically designed by chairoggther taskse(g, for aligning biological se-
guences or building phylogenetic trees), where each tagktake input data from previous tasks, parameter
settings, and data coming from external data sources. lergema workflow specification can be thought of as a
graph, where nodes represembdulesof an analysis and edges capture flogv of databetween these modules.

For example, consider the workflow specification in Fig. 1{&)ich describes a common analysis in molec-
ular biology: Inference of phylogenetic (i.e., evolutionary) relatibips between biological sequenceghis
workflow first accepts a set of sequences selected by thenaseraf database (such as GenBank), and supplies
the data to module M1. M1 performs a multiple alignment ofsbquences, and M2 refines this alignment. The
product of M2 is then used to search for the most parsimorpbybogenetic tree relating the aligned sequences.
M3, M4, and M5 comprise a loop sampling the search space: @ges a random number seed to M4, which
uses the seed together with the refined alignment from M2datera set of phylogenetic trees. M5 determines
if the search space has been adequately sampled. FinallgpMputes the consensus of the trees output from
the loop. The dotted boxes M7, M8 and M9 represent the fattdtiaposite modulesmay be used to create
the workflow. That is, M7 is itself a workflow representing #léggnment process, which consists of modules
M1 and M2; M8 is a workflow representing the initial phylogéadree construction process, which consists
of modules M3, M4, and M5; and M9 is a composite module reprtasg the entire process of creating the
consensus tree, which consists of modules M3, M4, M5 and M6.

The result of executing a scientific workflow is calledua. As a workflow executes, data flows between
moduleinvocations(or step3. For example, a run of the phylogenetics workflow is showRig 1(b). Nodes

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

44

1

i

1

M6: Compute !
consensus ! El

1
1
[1
[1
III M1: Compute M2: Refine | | || M3: Iterate M4: Find M5: Check |
alignment alignment | |1} over seeds MP trees exit condition | |
! (R 1 1
: L 1 | | |
! AL [. | I
[M7: Align sequences 1 vy _______] M8: Infer trees | MO: Infer tree !
g §
(b) Alignment2,
Alignment2, Tree1 ... Tree3,
|I| Seq1 ... Seq10 - Alignment1 - Alignment2 - Seed1 - Seed1
Alignment2,
Alignment2, Alignment2, Tree1 ... Tree5 Tree6
Tree1 ... Tree3, Tree1 ... Tree5,
Seed2 Seed2

Figure 1: Phylogentics workflow specification, run, and dipendency graph.

in this run graph represent steps that are labeled by a usigpeidentifier and a corresponding module name
(e.g, S1:M1). Edges in this graph denote the flow of data betwesgssand are labeled accordingéd, data
objectsSeq1,....Seql0 flow from input | to the first step S1). Note that loops in the kftmw specification are
always unrolled in the run graph,g, two steps S4 and S7 of M4 are shown in the run of Fig. 1(b).

A given workflow may be executed multiple times in the conteki@ single project, generating a large
amount of final and intermediate data products of interesitéauser [9]. When such analyses are carried out
by hand or automated using general-purpose scripting &yeg) the means by which results are produced are
typically not recorded automatically, and often not evesorded manually. Managing such provenance infor-
mation is a major challenge for scientists, and the lack aistéor capturing such information makes the results
of data-intensive analyses difficult to interpret, to rém@mcurately, and to reproduce reliably. Scientific work-
flow systems, however, are ideally positioned to recordcatiprovenance information that can authoritatively
document the lineage of analytical results. Thus, thetghidi capture, query, and manage provenance informa-
tion promises to be a major advantage of using scientific flawksystems. Provenance support in scientific
workflows is consequently of paramount and increasing itapge, and the growing interest in this topic is
evidenced by recent workshops [4, 17] and surveys [5, 19jigdrea.

Data provenance in workflows is captured as a set of deperdebetween data objects. Fig. 1(c) graph-
ically illustrates a subset of the dependencies betweem algects for the workflow run shown in Fig. 1(b).
In such data-dependency graphs, nodes denote data olgegtSieed) and dependency edges are annotated
with the step that produced the data. For example, the depepddge fronAlignment2 to Alignmentl
is annotated with S2:M2 to indicate thatignment2 was produced fromilignmentl as a result of this
step.

Many scientific-workflow systemse(g, myGrid/Taverna) capture provenance information imp¥idn an
event log. For example, these logs record events relatdtetstart and end of particular steps in the run and
corresponding data read and write events. Using the (IDgicder of events, dependencies between data ob-
jects processed or created during the run can be inferrethus, determining data dependencies in scientific

The complexity of the inference procedure and type of logvesseequired depends on the specific model of computatiod tese

45

(a)

Figure 2: Provenance dfree6 in Joe’s (a) and Mary’s (b) user views.

workflow systems generally is performed using dynamic asigliie., modules are treated as “black boxes” and
dependency information is captured as a workflow executesoitrast, determining provenance information
from database views (or queries) can be performed usinig stalysis techniques [10]. In this case, database
gueries can be viewed as “white box” modules consistingg#ladaic operatorse(g, o, 7, <). Anintermediate
type of provenance can also be considered in which blackabocules are given additional annotations spec-
ifying input and output constraints, thus making them “gbexes” [6]. These additional specifications could
then be used to reconstruct provenance dependencies tadioggaalysis techniques, without requiring runtime
provenance recording.

The use of provenance in workflow systems also differs froat ith database systems. Provenance is not
only used for interpreting data and providing reproducii@sults, but also for troubleshooting and optimizing
efficiency. Furthermore, the application of a scientific kilmw specification to a particular data set may involve
tweaking parameter settings for the modules, and runniagvtbrkflow many times during this tuning process.
Thus, for efficiency, it is important to be able to revisit &aéckpoint” in a run, and re-execute the run from that
point with new parameter settings, re-using intermediate desults unaffected by the new settings. The same
information captured to infer data dependencies for a raratso be used to reset the state of a workflow system
to a checkpoint in the past or to optimize the execution of difreml version of a workflow in the future.

While the case for provenance management in scientific wawkélystems can easily be made, real-world
development and application of such support is challengBgjow we describe how we are addressing three
provenance-related challenges: First, we discuss how asitepmodules can be constructed to provide prove-
nance “views” relevant to a user [3]. Second, we discuss hmwvegmance for complex datad., nested data
collections) can be captured efficiently [7]. Third, we diss how the evolution of workflow specifications can
be captured and reasoned about together with data prowefEsic

2 Simplifying provenance information

Because a workflow run may comprise many steps and interteedéda objects, the amount of information
provided in response to a provenance query can be overwinglriven for the simple example of Fig. 1, the
provenance for the final data objéatee6 is extensivé. A user may therefore wish to indicate which modules
in the workflow specification arelevant and have provenance information presented with respebataiser
view. To do this, composite modules are used as an absmaotchanism [3].

For example, user Joe might indicate that the RR2fine alignmeniM4: Find MP trees and M6: Compute
consensusnodules are relevant to him. In this case, composite moddlésnd M8 would automatically be
constructed as shown in Fig. 1(a) (indicated by dotted Jin@sd Joe’s user view would bgvi7, M8, M6}.
When answering provenance queries with respect to a useratidy data passed between modules in the user

execute a workflone.g, see [8].
The graph shown in Fig. 1(c) is only partial, and omits thedsaesed in M4 as well as additional notations of S7:M4 on tlyesd
from Treel ,...,Tree3 to Alignment2

46

view would be visible; data internal to a composite moduléhim view would be hidden. The provenance for
Tree6 presented according to Joe’s user view is shown in Fig. 2¢te thatAlignmentl is no longer
visible.

More formally, auser viewis a partition of the workflow modules [3]. It induces a “highevel” workflow in
which nodes represent composite modules in the partigan M7 and M8) and edges are induced by dataflow
between modules in different composite moduleg(an edge between M7 and M8 is induced by the edge
from M2 to M3 in the original workflow). Provenance infornmatiis then seen by a user with respect to the flow
of data between modules in his view. In the Zoom*UserViewsteay [2], views are constructed automatically
given input on what modules the user finds relevant such t)ad Composite module contains at most one
relevant (atomic) module, thus assuming the “meaning” af thodule; (2) no data dependencies (either direct
or indirect) are introduced or removed between relevantutesg and (3) the view is minimal. In this way,
the meaning of the original workflow specification is presekvand only relevant provenance information is
provided to the user.

Note that user views may differ. Another user, Mary, may dmyinterested in the modules MRefine
alignmentand M6: Compute consensudlary’s user view would therefore be constructed{ ¥, M9}, and
her view for the provenance dfree6 (shown in Fig. 2(b)) would not expoSaeel ... Tree5 .

3 Representing provenance for nested data collections

Modules within scientific workflows frequently operate owetlections of data to produce new collections of
results. When carried out one after the other, these opagstian yield increasingly nested data collections,
where different modules potentially operate over différegsting levels. Theollection-oriented modeling and
design(COMAD) framework [16] in Kepler models this by permittingité to be grouped explicitly into nested
collections similar to the tree structure of XML documeni&hese trees of data are input, manipulated, and
output by collection-aware modules. However, unlike a ggnéML transformer, a COMAD module generally
preserves the structure and content of input data, acgegaiticular collections and data items of relevance to
it, and adding newly computed data and new collections tal#ta structure it received. COMAD workflow
designers declare thead scopeandwrite scopefor each module while composing the workflow specification.
A read scope specifies the type of data and collections m&iégaa module using an XPath-like expression to
match one or more nodes on each invocation; paths may bealfyespecified using wildcards and predicates. As
an example, the read scope for M1 could be giveRmag/Trial/Seqs , which would invoke M1 over each
collection of sequences in turn. A write scope specifies elaemodule should add new data and collections
to the stream. Data and collections that fall outside a mesluéad scope are automatically forwarded by the
system to succeeding modules, enabling an “assemblyity$& of data processing.

Similar to other dataflow process networks [15], modules @QMAD workflow work concurrentlyover
items in the data stream. That is, rather than supplyingritieegiree to each module in turn, COMAD streams
the data through modules as a sequence of tokens. Fig. Batles the state of a COMAD run of the example
workflow shown in Fig. 1 at a particular point in time, and gasts the logical organization of the data flowing
through the workflow in Fig. 3(a) with its tokenized realipatat the same point in time in Fig. 3(b). This figure
further illustrates the pipelining capabilities of COMAD ncluding two independent sets of sequences in a
single run. This pipeline concurrency is achieved in partdpresenting nested data collections at runtime as
“flat” token streams containing paired opening and closieljtketers to denote collection membership.

Fig. 3 also illustrates how data provenance is captured epebsented at runtime. As COMAD modules
insert new data and collections into the data stream, treyiabkert metadata tokens containing explicit data-
dependency information. For example, the fact tlegnment2 was computed fromilignmentl s stored
in the insertion-event metadata token immediately prexgpdie A2 data token in Fig. 3(b), and displayed
as the dashed arrow from A2 to Al in Fig. 3(a). The products GICGMAD workflow may be saved as an

a7

(a) Proj Key

. Data token

® Collection opening-delimiter token
(® Collection closing-delimiter token
O New data token produced by step

. Insertion-event metadata token

%’fgy Dependency relation

(b) M8: Infer trees M6: Compute Consensus

T5 Ty T3To Ty

<siuy> @

<sju|y/>
<sbag>
<|eup>
<loag>

Figure 3: An intermediate state of a COMAD run

XML-formatted trace file, in which provenance records ardedded directly within the file as XML elements
annotating data and collection elements. Detailed datardigmcies can be inferred from the trace file,
from the embedded provenance annotations together witetsted data collections output by the workflow run.
Note that COMAD can minimize the number and size of proveaamotations as described in [7, 9]. For
example, when a module inserts a node that is a collectiepribvenance information for that node implicitly
cascades to all descendant nodes. Similarly, if a node igediefrom a collection node, an insertion annotation
is created that refers just to the collection identifier eattman the various subnodes.

The current COMAD implementation includes a prototype gatesn for querying traces. The system pro-
vides basic operations for accessing trace nodes, cotisgutependency relations, and querying corresponding
dependency graphs over the XML trace files. Methods alsorardded to reconstruct parameter settings and
metadata annotations attributed to data and collectioes1f4.

4 \Workflow evolution

Scientific workflows dealing with data exploration and vigation are frequently exploratory in nature, and
entail the investigation of parameter spaces and altemédichniques. A large number of related workflows
are therefore created in a sequence of iterative refinenoétite initial specification, as a user formulates and
tests hypotheses. VisTrails [13] captures detailed in&diom about this refinement process: As a user modifies a
workflow, it transparently captures the change actions, #agaddition or deletion of a module, the modification
of a parameter, the addition of a connection between modw&s to a database transaction log. The history
of change actions between workflow refinements is referred tvisual trail, or aistrail.

The change-based representation of workflow evolutionngise and uses substantially less space than the
alternative of storing multiple versions of a workflow. Thedel is also extensible. The underlying algebra of
actions can be customized to support change actions atatitfgranularities (e.g. composite modules versus
atomic modules). In addition, it enables construction oframitive interface in which the evolution of a work-
flow is presented as a tree, allowing scientists to returnoegious version in an intuitive way, to undo bad
changes, and be reminded of the actions that led to a panticesult.

Vistrails and data provenance interact in a subtle but itambrway: The vistrail can be used to explain
the difference in process between the data provenance dasidata products. Returning to our example,

3Modules are connected by input/outpdrts, which carry the data type and meaning. Static type-chgckim be therefore per-
formed to help in debugging.

48

L VisTrails Builder - lung.vt -

ﬁ%ﬁv‘ﬁjﬁ'ﬁﬂav@@@m 3

lung.vt

N e N =

SO .
¢ Tag:
%,

User: juliana
Date: 28 Mar 2006 09:39:4(

z-space

e eging 1o 1101036 In g 3 025 hwas lost
4 Visual Diff - from z-space to good transferfunc

RGN T S
Figure 4: Visual difference interface for a radiation treant planning example.

suppose that two runs of the workflow in Fig. 1 took as inputghme set of sequences, but returned two
different final trees. Furthermore, suppose that the spatifin was modifed between the two runs, e.g. that a
different alignment algorithm was used in M1, or that thieeations of the loop were performed in M8 due to
different seeds being used. Rather than merely examinimgldlta provenance of each tree, the scientist may
wish to compare their provenance and better understdnadhe final data differed. However, computing the
differences between two workflows by considering their ulyiteg graph structure is impractical; the related
decision problem obkubgraph isomorphism (or matchingy known to be NP-complete [14]. By capturing
evolution explicitly in a vistrail, discovering the diffence in process is simplified: The two workflow nodes are
connected by a path in the vistrail, allowing the differehetween two workflows to be efficiently calculated
by comparing the sequences of change actions associatethes [11].

Figure 4 (right) shows the visual difference interface jmed by VisTrails. A visual difference is enacted
by dragging one node in the history tree onto another, whpEmne a new window with a difference workflow.
Modules unique to the first node are shown in orange, modulepie to the second node in blue, modules
that are the same in dark gray, and modules that have diffpggameter values in light gray. Using this in-
terface, users can correlate differences between two dadiaigts with differences between their corresponding
specifications.

5 Conclusion

Workflow systems are beginning to implement a “depends-oatiehof provenance, either by storing the in-
formation explicitly in a databases.q, VisTrails) or within the data itselfglg, COMAD). Several techniques
have also been proposed to reduce the amount of provendoomation either presented to the usery, user
views), or stored by the databased, by treating data as collections). Furthermore, since fimrkspecifica-
tions evolve over time, there is a need to understand nottbelyprovenance of a single data item but how the
provenance of related data items differ.

Although some workflow systems provide a query interfacérfmracting with the provenance information,
it is still an open problem as to what a provenance query laggwshould provide. For example, we might
wish to scope provenance information within a certain djgtportion of a workflow, or return all provenance
information that satisfies a certain execution pattern. duery language should also allow users to issue high

49

level queries using concepts that are familiar to them, aedgnt the results in an intuitive manner. Related
work in this area has been done in the context of businesegsong systems, in which runs are monitored by

querying logs €.g, [1]).

References

[1] C. Beeri, A. Pilberg, T. Milo, and A. Eyal. Monitoring biness processes with queries.MhDB, 2007.

[2] O. Biton, S. Cohen-Boulakia, and S. Davidson. Zoom*Wsews: Querying relevant provenance in workflow sys-
tems (demo). I'VLDB, 2007.

[3] O.Biton, S. Cohen-Boulakia, S. Davidson, and C. Haraeing and managing provenance through user views in
scientific workflows. INCDE, 2008 (to appear).

[4] R.Bose, I. Foster, and L. Moreau. Report on the Inteomati Provenance and Annotation Worksh§pGMOD Rec.
35(3), 2006.

[5] R. Bose and J. Frew. Lineage retrieval for scientific datacessing: a surveyACM Comp. Surveys7(1):1-28,
2005.

[6] S.Bowers and B. Ludascher. Actor-oriented design @rgdic workflows. InER, 2005.

[7]1 S. Bowers, T. M. McPhillips, and B. Ludascher. Provetam collection-oriented scientific workflows. @oncur-
rency and Computation: Practice and Experiendéley, 2007 (in press).

[8] S.Bowers, T. M. McPhillips, B. Ludascher, S. Cohen, &&. Davidson. A model for user-oriented data provenance
in pipelined scientific workflows. IHPAW, volume 4145 of NCS pages 133-147. Springer, 2006.

[9] S. Bowers, T. M. McPhillips, M. Wu, and B. Ludascher. f&a histories: Managing provenance across collection-
oriented scientific workflow runs. IBata Integration in the Life Science®007.

[10] P. Buneman and W.Tan. Provenance in databaseslGMOD pages 1171 — 1173, 2007.

[11] S.Callahan, J. Freire, E. Santos, C. Scheidegger)¥a,&ind H. Vo. Using provenance to streamline data exptorat
through visualization. Technical Report UUSCI-2006-036] Institute—University of Utah, 2006.

[12] I. Foster, J. Vockler, M. Woilde, and Y. Zhao. Chimera: viktual data system for representing, querying, and
automating data derivation. BSDBM pages 37-46, 2002.

[13] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. Befslegger, and H. T. Vo. Managing rapidly-evolving scifiti
workflows. InIPAW, 2006.

[14] J. Hastad. Clique is hard to approximate withilT¢. Acta Mathematical82:105-142, 1999.
[15] E. A. Lee and T. M. Parks. Dataflow process netwoikmceedings of the IEEB3(5):773—-801, 1995.

[16] T. M. McPhillips, S. Bowers, and B. Ludascher. Colleatoriented scientific workflows for integrating and areihg
biological data. IrData Integration in the Life Science®006.

[17] L. Moreau and B. Ludascher, editor€oncurrency and Computation: Practice and Experience -cBpéssue on
the First Provenance Challeng®Viley, 2007 (in press). (see also http://twiki.ipaw.ififm/view/Challenge/).

[18] T. Qinnet al. Taverna: a tool for the composition and enactment of bismttics workflows Bioinformatics 20(1),
2003.

[19] Y. Simmhan, B. Plale, and D. Gannon. A survey of data pmance in e-scienc&IGMOD Rec.34(3):31-36, 2005.

50

Copyright and Provenance: Some Practical Problems

John Mark Ockerbloom
University of Pennsylvania
ockerblo@pobox.upenn.edu

Abstract

Copyright clearance is an increasingly complex and expengnpediment to the digitization and reuse
of information. Clearing copyright issues in a reliable acdst-effective manner for works created in
the last 100 years can involve establishing complex praveaa&hains for the works, their copyrights,

and their licenses. This paper gives an overview of someeopthctical provenance-related issues
and challenges in clearing copyrights at large scale, arstdsses efforts to more efficiently gather and
share information and its copyright provenance.

1 Introduction

As information seekers increasingly move from print to @igmedia, print resources are being digitized at
an ever-accelerating rate. As of 2007, over a million volsrhave been digitized by libraries such as the
Library of Congress and the University of Michigan, for-fr@orporations like Google, and public-private
partnerships such as the Open Content Alliance [1]. Mad§zéigon is made possible by ever-lower costs for
large-scale scanning and storage. The Open Content Adfmiscanning projects for example, digitize books
nondestructively at a cost of 10 cents per page, or about@39300-page book [2].

The cost of clearing copyright, however, can be substigtidgher than the cost of digitization itself.
A 2003 study of attempts to obtain copyright permissionsafdrook digitization project at Carnegie Mellon
University found that it cost $78 per title to clear copytigbf the copyrighted books they sought to digitize [3].
This figure does not include any royalty costs, but only therlbgad cost in determining copyright status and
obtaining necessary permissions. Most of this cost wag,labmost that tends to increase over time.

Most books, particularly those by a single author, havetivelly few and simple copyrights. However,
periodicals, collective works, sound recordings, and ampictures often involve a large number of potential
copyrights and copyright owners in their various elemenoreover, different rights and permissions may
apply to these copyrights in different contexts and legasglictions.

There is widespread scientific, business, and culturataetdn disseminating, adapting, and reusing the
content of others, as seen in initiatives like the Internethive, Google Book Search, YouTube, and Arxiv.org.
Since copyright restrictions apply to most present-daytexan as well as historic content going as far back as
100 years, clearing copyright can be both an essential andtly part of these initiatives.

In order to legally publish and reuse content, one typica#fgds to determine the answers to several impor-
tant questions:

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

51

e What copyrights, if any, apply to this content? (And whick aurrently in force?)
e Who controls these copyrights, and how can they be contacted

e What permissions, if any, have been granted concerningdpyrighted content?

In projects that make large-scale reuse of content, it mapadeasible to have complete, certain answers to
these questions for all the content one may want to use. ttipeacontent reuse at scale may be best understood
as an optimization problem along multiple dimensions, ediog to these desires:

e Maximizing the value of the collection by including as many valuable resources as one can, with the
broadest rights possible.

e Maximizing throughput on rights-clearing, so a large collection can be built quickly.
e Minimizing the cost of rights-clearing, which as noted above can can be impractically high per item.

e Minimizing the risk of legal penalties, which in the worst case can be very large. Current copytayht
in the US authorizes statutory penalties (which are disfirmen penalties for actual damages) of up to
$150,000 per infringement. Penalties are lower if the mgfement is shown not to be willful, but proving
that in court can be uncertain and costly, and even nonukilifrigement statutory penalties can run into
the thousands of dollars [4].

Different projects may put different priorities on thesendnsions. For example, Google’s Library project
has to date been especially conservative with copyrighgrdehation in its “full view” book displays. In some
cases it presumes that US copyright is still in force for [mplblished as long ago as 1909, and that foreign
copyrights may subsist from as far back as 1865. (In a larggben of these cases, these copyrights have in fact
long since expired.) These conservative guidelines, dadrio minimize clearance cost and risk, enable them
to make visible a significant number of books with very litligort needed to clear titles, but suppresses much
content that could be usefully viewed and repurposed by tifsiqo In contrast, organizations like the Internet
Archive put a higher priority on maximizing collection valin the copyright clearance of their digitized texts,
and therefore expose many commercially published works fas late as 1963, and government-published
works up to the present day.

In order to control risk and cost of clearing copyright in egscale project, simply stating copyright
restrictions in binary terms (such as “this is in the publwrin” or “this is in copyright” is insufficient. To
understand the reliability and applicability of such deterations, one needs to know a variety of facts that
inform those determinations, and know how these facts wereeatl. Moreover, the same facts may lead to
different determinations in different places, times, aodtexts. What may be legal to reuse in a classroom in the
US in 2007 may not be legal to reuse in a commercial film in Jap@009, or vice versa, but the determination
in both of these contexts may depend on the same underlyingf $&cts about the work in question and its
copyrights.

Managing these facts involves several kinds of provenassges. To reliably determine the rights to a
work, one may have to understand and record the provenareevofk, the provenance of its rights, and the
provenance of the information used in rights determinationthe next sections, | survey some of the specific
provenance problems involved, and describe some of theadiens and uncertainties that are part of copyright
clearance. | then describe some methods to alleviate th@egons of provenance in copyright determinations,
and suggest ways in which copyright clearance can be a piieeland illuminating application domain for
provenance research.

52

2 Provenance issues

In this section, | describe some of the provenance-relasdes involved in determining a work’s copyright
status and the rights available for using the work. It is nithhivw the scope of this paper to provide a complete or
authoritative guide to copyright clearance; rather, Isiftate important aspects of clearance where provenance
is relevant. Useful detailed guides to copyright clearandde US, written by copyright attorneys, include [5]
and [6].

2.1 Provenance of works

Whether a work is copyrighted at all, what copyrights mighpls to it, and who initially owns the copyrights
to the work, depend on the provenance of the work itself. Relequestions include:

e Who authored the work? And when did they live? Copyrights are generally assigneduihors by
default, and in many cases last for a set period after theoesittheath.

e When was the work created, first published, first published wih a US-recognized copyright notice,
and first published in the US?In various cases, the time and place of these events detemiian a
copyright term starts and ends.

e Is this a work for hire? For whom? Works for hire may have different initial copyright ownensda
copyright term lengths. Works produced as work for hire far S government may not be copyrighted
at all.

e Does this work include or derive from other works? If so, the rights available for this work may depend
on the rights available for those other works.

e What is the work’s current commercial status? For example, if a book is sufficiently old, out of print,
and cannot be bought inexpensively, some US users may haeebkpghts to reuse the work without
permission under special provisions of US copyright lavgrew the work is still under copyright [7].

2.2 Provenance of rights

The rights available for the use of a work depend on a numbfrctdrs apart from the provenance of the work
itself. The provenance of the rights must also be consideénesbme jurisdictions, for instance, copyrights must
be explicitly asserted and maintained through various m@isins in order to remain in force. Rights to a work
can also be transferred, in whole or in part, from the origamahor to new agents. (This is commonly done
with articles submitted to scholarly journals, for examplEhe original or subsequent rightsholders can further
license the work under various terms and conditions. Thesesfers and licenses may be matters of public
record, or private agreement.

Under the Berne Convention, the dominant internationayight treaty, copyright automatically applies to
a new creation without any formal claims or registration. i/this principle may make it easier to determine
that a copyright has not prematurely expired, it may makeoitedifficult to determine when the copyright was
originally established, and who claimed it.

Many copyrights today, however, were originally estaldslunder different regimes than that of Berne. For
example, the United States was a latecomer to the Berng madtuntil the early 1990s made copyright status
dependent on notices, registration, and formal renewabpfright. Under US law, valid copyright notices
include an explicit claim of copyright, a year in which thepgaght was claimed, and the name of the claimant.
Registration and renewal involves providing certain ddtaud the work, including the author, title, and date of
claim. The US Copyright Office records, maintains and makeagable the data in these registrations.

Relevant questions of rights provenance, then, include:

53

e What copyright notices, if any, were distributed with the work? These notices may determine the
copyright status of a work, as well as noting the initial oward the start of the work’s copyright term.

e What registrations and renewals were made of the copyrightThese may also determine the copyright
status of a work and identify owners. Renewals may show astiigchanges since the initial registration.

e What assignments were made of the copyright or of subsidiaryights? These may involve full copy-
right transfers, or narrower assignment of rights for ¢gemides and jurisdictions. For example, a freelance
writer may assign US first serial rights to an article to aipalar magazine, but retain rights to republish
the work in other formats and markets. The exact terms of 6gbks assignments are typically governed
by contract language rather than by statute, though in s@ses¢ such as intestate or insolvent authors,
rights assignments may be determined by local inheritand@iokruptcy laws. Rights may be assigned
to a specific party, or in some cases to the world at large. @parce and Creative Commons licenses,
for example, specify that anyone has certain rights to userk under standard terms and conditions that
are typically published along with the work.

2.3 Provenance of information

Whlle provenance of the work and the rights are sufficienheoty to determine whether and how a work can
be used, in practice one cannot rely on perfect and comptaie/lkdge of this information. Therefore, those
who wish to make copyright determinations must also comgige provenance of the information they have
about the works and copyrights. What are the sources ofrirdtion? Are they reliable? Did they derive their
information from other sources? If so, which ones? Are thiemgortant sources of information that are not
being taken into account, and could these change one’sigbpgeterminations in important ways?

Many rights determination issues include or derive fromatieg as well as positive information. For exam-
ple, consider the judgment that a book first published in lif848e US is in the public domain in that country.
Positive information supporting this judgment may inclute imprint of a US publisher, and the notations
“first edition” and “copyright 1940” on the title and versoges of the book. Negative information may include
the lack of any prior editions of the book, the lack of any liert copyright notices in the book, the lack of a
copyright renewal, and the lack of any prior publicatior@rirwhich the book derives.

Some of these facts may be easier to establish than othéhsnegative information usually more difficult
to prove than positive information. The imprint and copftigiotice of a book, for instance, can be verified
with images of the pages on which they appear. The lack of athgyright notices might be established from
other pages on which copyright notices might appear, whichtie a larger page set. The lack of copyright
renewal can be verified against a complete data source ofigbpyenewals, which exists, but which is in turn
a much larger information set that is more difficult to acaassearch in full than the information sets discussed
to this point. The lack of previous editions or works from alnithe book might derive depends on yet larger,
and less well-defined, information domains. In practicescame point along the continuum of verifying these
facts, one will need to rely on the judgment of another pemosource, rather than including the complete set
of information needed to establish a particular fact.

The particular source of this information is important. Gmight trust the word of a publisher or a profes-
sional librarian about the copyright date or status of a boake than the word of an anonymous uploader to
a file-sharing site. However, sometimes unexpected infoomaan surprise even experts. In 2004, a popular
online animated political satire used, without permissitie tune and some of the words of Woody Guthrie’s
song “This Land is Your Land” The animators were sent a ceadelasist notice by Guthrie’s music publishers,
who had duly registered and renewed the copyright on thetrddition of the work. A complaint brought by the
Electronic Frontier Foundation on behalf of the producdthe animation initially relied on a fair use defense;
however, in the course of litigation, the Foundation disged that Guthrie had produced a hand-written song
book, complete with copyright notice and cover price, thalided an early version of the song, years before the

54

song was conventionally published. Only a few known copfdakie work are known to exist, and its copyright
was never renewed. The publisher and the animators setileklyjthereafter, with an agreement allowing the
online animation to continue [8].

In some cases, positive or negative information assertedtahe copyright of a work may need to be
discounted or overridden. It is not unheard of, for examiglea publisher to place a copyright notice, dated the
year of publication, on an unaltered reprint of a public domveork, even though under US law such reprints
are not entitled to a new copyright. Contributors to sham@atent sites like YouTube or Wikipedia may attach
liberal licenses to content, authored by others, that tleepat have the right to relicense or redistribute. For
some uses, such as the literal reproduction of works thay capyright notices, it may be important to retain
these assertions while at the same time noting that they dappdy, or do not apply in full.

3 Derivations and uncertainties

How far back one needs to trace and record the provenancepgfighbt information depends on the relative
importance of risk, cost, and productivity in the optimiaatproblem described earlier. Their importance, and
the degree of copyright provenance recording required, vagydepending on context and application. Project
Gutenberg, for instance, requires and stores title ana\erge images to establish original claims of copyright.
It also has produced, and uses, a text transcription of th& benewal sections of the US Copyright Office’s
Catalog of Copyright Entries, in order to determine whethbook copyright has been renewed. For other fact
determinations relevant to copyright, however, such asaitieof prior publications of the work, it relies on the
judgment and assertions of its contributors and volunteers

The transcription of the Catalog of Copyright Entries itselderived from earlier artifacts. The ultimate
source of a copyright renewal claim is the renewal form filgdalzopyright holder and deposited with the US
Copyright Office. These forms are included or reproduce@gistration books that are accessible to Copyright
Office staff. From 1978 onward, the information in these feimas been used to populate an online database
accessible worldwide. Before 1978, though, catalog cam®\wrepared from these forms to allow copyright
registrations and renewals to be looked up by name, titlgadous other criteria. These cards are accessible
to both the Copyright Office staff and to members of the gdnmrilic that can visit the copyright card catalog
in Washington, DC. From these cards, bound volumes of thal@abf Copyright Entries were printed and
distributed to libraries across the United States and bdywhere they are available to patrons of those libraries
(though in many libraries the volumes are kept in closedrvesgtacks). From this point, already some distance
down the provenance chain, independent third parties haderdigital images of some of the Catalog of
Copyright Entries pages and published them on the Intentedre the digital images have been used to produce
text transcriptions of the copyright registration infortioa that are used by Project Gutenberg and others.

The renewal records that can be quickly searched onling, ttan be information derived via several steps
from the original copyright holder filings. It is possibleatherrors or omissions exist in the derivations, and
that erroneous rights determinations may be made as a.r@itig back further brings one closer to the orig-
inal copyright filings, but is generally more difficult andstly. As mentioned above, the Catalog of Copyright
Entries have been patrtially digitized. The copyright caathtog has not, nor have the registration books. Digi-
tizing these resources would be more expensive than digjtthe summary Catalog, due to the larger number
of images and the rarity and vulnerability of the materidlsey would also be more cumbersome to search than
a database would be. Thus, we see that following provendraasfurther back involves a tradeoff of cost and
risk. Studies at Stanford suggest that the error rate ofjusanscriptions of the Catalog of Copyright Entries
is very low, and that errors in derivation were much less camthan errors and term mismatches in copyright
searches [9]. Many projects, then, may well find the morelyeasiarched derivative forms of the copyright
records a useful or even superior starting point for re¢earc

In many cases, simply searching copyright records will msiweer the question of what can be done with

55

a work. If the records indicate that a work is still under caglyt, or there is not sufficient information to
determine with sufficient certainty that a work is no longader copyright, then one may be legally liable if
one reuses the work. To avoid this liability, one must obfrmission (or assurances of public domain status)
from the presumed rightsholder. Unfortunately, for manyksdhe rightsholder can be difficult or impossible to
determine or contact. Copyright claimants at the time oistegfion may be listed in the Catalog of Copyright
Entries, but their addresses are not (though they may ajppdiae registration books). Copyrights may have
been transferred, assigned or willed to others since thgrigthp was registered or renewed, and this is more
likely the longer that the copyright term has run. While caglgt transfers may be registered with the Copyright
Office, there is no requirement that transfers be registidnre@ or anywhere else.

Hence, there is now a large and growing set of “orphan works"which copyright cannot be reliably
cleared, due to the inability to determine or locate the erapyright owners. Orphan works come in all va-
rieties: “abandonware” developed by defunct software camgs; articles and monographs from long-dead au-
thors with obscure heirs; images of great historic or actistportance whose original creator cannot be traced;
documentary productions and compilations that featureragisted material from a wide variety of creators,
not all of whom can be determined or found. As US law stands ngghan works are effectively impossible to
reuse legally (beyond the usual rights of fair use and rsalee Copyright Office has acknowledged the orphan
works problem as a serious one, and has held public heanmhsuggested legislation to alleviate it.

Uncertainties can also exist with rights to data. In manyolgaan countries, factual data can have copyright-
like restrictions associated with it. (In the US, facts ieniselves are in the public domain, though an original
selection, expression, or arrangement of the facts cangigbted.) Also, in many legal jurisdictions, privacy
laws or confidentiality agreements may limit the disclosnireertain data. Keeping track of rights and restric-
tions on private information, while often not specificallg@pyright issue, involves many of the same issues of
provenance tracking as copyright clearance does.

4 Initiatives for easing copyright clearance

Copyright clearance need not be as complicated and riskycasrently is. Several initiatives have been started
or proposed to ease copyright clearance, a number of whiate e provenance.

One way to ease copyright clearance at the large scale isysimpromulgate standards for recording and
distributing copyright-related information. For exampieany of the digitized books at the Internet Archive
include metadata relevant to copyright in standard formsluding publication dates, copyright notice infor-
mation, and the results of copyright renewal searches. @Athis information is not currently formatted for
machine processing, its use of a standard vocabulary araf assertions about copyright has inspired efforts
to define standard, structured, machine-readable vogasiEnd grammars for expressing copyright facts [10].
Note that the vocabulary of copyright provenance is diffiefeom the vocabulary of digital restrictions often
used by Digital Rights Management (DRM) systems. The l&tirgely concerned with the specific operations
that software should allow or disallow on particular comtesuch as printing, reading aloud, or duplicating.
The former is concerned with underlying intellectual rigahd permissions, such as the existence and owner of
copyright, the duration of the copyright, and licenses tgdtior the content. DRM restrictions may be derived
in part from these underlying rights, but are distinct frdmarh.

One vocabulary of rights expression that has gained wideasppopularity in recent years is the Creative
Commons vocabulary. Creative Commons supports a variesyaoardized permissions, such as the right to
reuse with attribution, or noncommercially, or without rimakderivatives, or with the right to make derivatives
that must be licensed under the same terms as the originaseTjpermissions can be encoded in machine-
readable format and distributed along with, or as part opydghted work. Assuming that the permissions
were granted by an authorized party, this rights expressistem allows others to easily reuse a work in well-
understood ways, without having to trace the copyright éiotd get special permissions [11].

56

Registries are useful as stores of copyright clearance oteiading provenance data. The US Copyright
Office is one such registry already discussed, but othestgpecgistries also exist or have been proposed. For
example, the Writers, Artists, and Their Copyright Holdeggistry, based in the US and the UK, keeps up-to-
date contact information on many well-known copyright les&l[12]. Groups representing copyright holders,
such as the Copyright Clearance Center and the Harry Foxcrficesinsing agency, both track copyright holders
of works and handle payments to them, streamlining commes alsmany copyrighted works such as recording
new performances of songs or reprinting articles from pkcels. The Online Computer Library Center (OCLC)
has proposed a general purpose registry of copyright irdtiam to be associated with its WorldCat union
catalog, to make it easier to clear rights for all kinds ofdity materials [13].

Legislation can also ease copyright clearance, and suggéstular types of provenance information that
may be useful to track. For example, the proposed Orphan s\ackof 2006 would have allowed copyrighted
works to be reused by others without permission if the usenewnable to find the copyright holder after a
“reasonably diligent search” [14]. To date, orphan worlgidiation has not been enacted in the US, but if it
were, it could limit the degree of provenance informatioe @rould need to gather for a work (since one might
not have to trace back copyright information indefiniteldding so were unreasonably burdensome). On the
other hand, to prove that a reasonably diligent search waduobed, users might wish to explicitly document
the steps taken in the search, to establish the provenamreisf“reasonably diligent” determination.

5 Conclusions

The preceding discussion should illustrate how proven@stes are important in copyright clearance, and how
copyright clearance is a significant application domaingavenance research. Practical, reliable copyright
clearance requires careful consideration of the provemanhevorks, their rights, and the assertions about the
works and rights. Optimal procedures for rights deternimainust take into account positive and negative
factual assertions, legal analysis tailored to jurisditctand context, and an appropriate balancing of value,
throughput, cost and risk. The factual assertion chainsstiygport determinations of rights available for works

can be complex in their structure, and involve varying degrmef uncertainty.

Copyright clearance, then, is fertile ground for applyimgyenance research. Theoretical foundations for
evaluating the reliability of assertion chains can be agojio estimate risk in copyright determinations. Common
representations of copyright assertions, searches, airdoitovenance, can be preserved as metadata and used
in context-sensitive copyright evaluations. Simple, ¢hezethods of storing and querying this provenance
information, and improvements in the efficiency of provaerenalculations, data representations, and queries,
can improve the reliability and practicality of copyrightaduations in large-scale collections.

Moreover, improved copyright clearance is not simply aer@sting research application. The easier it is to
safely and legally reuse the works of the past, the easieciiines to advance the state of knowledge and culture.
The technologies that now allow organizations to digitizlioms of books for the Internet make it possible to
revive, redistribute and build upon the large corpusesxif tiata, audiovisual media, and software, that make
up the historic, cultural, and scientific endowment of theldiof advances in provenance handling allow us to
more easily clear their copyrights, we may all enjoy greatsress to a richer heritage of knowledge. As Isaac
Newton and other scientists have noted, building on thigeriheritage can let us all see farther, standing on the
shoulders of giants [15].

57

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

Sharita Forrest, “An Open Book: CIC Member Librariesnl@oogle in Digitizing up to 10 Million Vol-
umes”Inside lllinois 26:22, June 2007, online at http://www.news.uiuc.ef@¥iD621/google.html.

“Open Content Alliance Will Scan Boston's Book<Zhronicle of Higher EducationSeptember 28,
2007; online at http://chronicle.com/wiredcampus/éet418/open-content-alliance-will-scan-the-best-
of-bostons-books .

Denise Troll Covey,Acquiring Copyright Permission to Digitize and Provide @pAccess to Books.
Digital Library Federation and Council on Library and Infzation Resources, October 2005. Online at
http://purl.oclc.org/dIf/pubs/dIf105/

Statutory penalties are specified in section 504 of they@ight Act, “Remedies for Infringment: Damages
and Profits” (17 USC 504). Online at http://www.copyriglagitle17/92chap5.html#504 .

Stephen FishmarT,he Public Domain: How to Find Copyright-Free Writings, NtwsArt and More.(3rd
edition; Berkeley, CA: Nolo Press, 2006.)

William S. Strong, The Copyright Book: A Practical Guid€sth edition; Cambridge, MA: MIT Press,
1999.)

See section 108 of the Copyright Act, “Limitations on ksive rights: Reproduction by libraries and
archives” (17 USC 108), online at http://www.copyrightufjidle17/92chapl.html#108 . The right of li-

braries to reproduce older works no longer commerciallyiatgr under certain conditions is spelled out
in section 108(h).

Katie Dean, “JibJab is Free for You and Me” Wired News, Agg 24, 2004; online at
http://www.wired.com/entertainment/music/news/2Q&464704 .

Mimi Calter, “Assessing Copyright Status: Copyright riesvals Database” Pre-
sentation at Digital Library Federation Forum, November 020 Online at
http://www.diglib.org/forums/fall2007/presentatid@glter.pdf .

“Data elements needed to ascertain copyright facts"RADiscussion Paper No. 2007-DP05, May 30,
2007. Online at http://www.loc.gov/marc/marbi/2007/Z6fp05-original.html .

Creative Commons website. Online at http://creativemons.org/ .
The Watch File: Writers, Artists and Their Copyright lders, online at http://tyler.hrc.utexas.edu/ .

See comment by Bill Carney of OCLC in O'Reilly Radar, Mowber 7, 2007, online at
http://radar.oreilly.com/archives/2007/11/checkicapyri.html .

Gigi Sohn, “Orphan Works Bill Introduced” Public Knoedge Policy Blog, May 22, 2006. Online at
http://www.publicknowledge.org/node/392 .

Newton’s famous aphorism, used by numerous writerh before and after his time, is discussed in great
detail in Robert K. Merton’s bookn the Shoulders of Giants: A Shandean Posts¢@hicago: University

of Chicago Press, 1993). | verified the aphorism, and Newtosé of it, with a searchable digital copy of
the book provided by Amazon at http://www.amazon.com/@tedos/ASIN/0226520862 .

58

24th IEEE International Conference on Data Engineering

@ April 7-12, 2008, Canctn, México
CALL FOR PARTICIPATION

[@\

m Data Engineering deals with the use of engineering techniques and methodologies in the design, development and assessment of

information systems for different computing platforms and application environments.

The 24th IEEE International Conference on Data Engineering will provide a forum for:
sharing research solutions to problems of today's information society

exposing practitioners to the latest research, tools, and practices

raising awareness in the research community of the problems and challenges of practical applications of data engineering

promoting the exchange of data engineering technologies and experience among researchers and practitioners

identifying newissues and directions for future research and development work

H the exchange and discussion of new ideas and for interacting/networking with peers

* o o o o o

HIGHLIGHTS

¢+ 3 Keynotes

+ 6 Advanced Technology Seminars

+ 75 Research papers with full presentations, and
44 Research papers with short presentations, out of over
600 submissions

KEYNOTES

Hector Garcia-Molina (Stanford University, USA), on PhotoSpread: A Spreadsheet for Managing Photos
Martin Kersten (CWI, The Netherlands), on The Database Architecture Jigsaw Puzzle
Luis von Ahn (Carnegie Mellon University, USA), on Human Computation

10 Workshops in conjunction with the main conference
3 Panels

75 Posters out of 650 submissions

13 Industrial papers, out of over 50 submissions

23 Demos, out of over 60 submissions

* o o o o

> o

-

WORKSHOPS
¢+ Self-Managing Database Systems (SMDB) ¢+ Secure Semantic Web (SSW)
¢+ Mining Multimedia Streams in Large-Scale ¢+ Data and Services Management in Mobile
Distributed Environments (MMSDE) Environments (DS2ME)
* RFID Data Management (RFDM) + Networking Meets Databases (NetDB)
¢+ Ranking in Databases (DBRank) + Data Engineering for Blogs, Social Media, and
+ Methodologies, Architectures and Systems for Web 2.0
Information Integration (IIMAS) + Similarity Search and Applications (SISAP)

ADVANCED TECHNOLOGY SEMINARS

¢+ Mobile and Embedded Database Systems and Technology

Anil Nori (Microsoft Corp.)

¢+ Data and Metadata Alignment: Concepts and Techniques

Lise Getoor (University of Maryland) and Renee Miller (University of Toronto)

+ Exploring the Power of Links in Scalable Data Analysis

Jawei Han (University of Illinois, Urbana-Champaign), Xiaoxin Yin (Google) and Philip Yu (IBM T.J. Watson)
¢+ Stream Processing: Going Beyond Database Management Systems

Sharma Chakravarthy (University of Texas, Arlington)

+ TheJava Persistence API (JPA): Technology, Standards, and Implementations
Patrick Linskey (BEA Systems, Inc.)

¢+ Performance Evaluationin Database Research: Principles and Experience
Toana Manolescu (INRIA Futurs) and Stefan Manegold (CWT)

Venue: CANCUN

ICDE 2008 will take place at Canctin, a truly unique spot nestled in the heart of the Mexican Caribbean. Canctn's Hotel Zone is
a 14 mile long island shaped like a "7" and connected to the mainland by bridges at either end. Some 25% of this area’s natural
surroundings are protected in ecologlcal reserves and holds the second largest reef system in the world. Part of its cultural
heritage can be seen in dozens of remains of ancient Mayan cities—some more than 2,600 years old—encompassing more than
5,000 buildings or temple mounds.

The conference hotel, Presidente InterContinental Cancin Resort, is all you could ever want in a tropical retreat: five-star
luxury, premium restaurants and the best, picture-perfect beach in the peninsula. Central shops and nightlife are 10 minutes
away, Isla Mujeres is just across the water, and there’s a golf course next door.

For more information, visit WWW . 1cde2008.or g

CSEﬁ/ITER ‘ [E E E (b] Micresoft ﬁ E

SOCIETY invent ' ®

Non-profit Org.

U.S. Postage
_ PAID
IEEE Computer Society Silver Spring, MD
1730 Massachusetts Ave, NW Permit 13é8

Washington, D.C. 20036-1903

