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Letter from the Editor-in-Chief

Bulletin Announcement

I take great pleasure in announcing that all issues of the Data Engineering Bulletin, dating back to 1977, are now
available in pdf format via the Bulletin web sites (http://sites.computer.org/debull/
andhttp://research.microsoft.com/research/db/debull/de fault.htm ).
Further, these issues are now also referenced via the DBLP web site as well at
http://www.informatik.uni-trier.de/˜ley/db/journals /debu/index.html .
I believe you will find many articles that are of great interest. Some of these articles have continued to be cited
many years after their publication but have been hard to acquire until now.

Many people contributed in this effort. I want first to thank the Microsoft Corporation through which the
scanning of the issues was accomplished. Next, I must thank the many people who generously contributed issues
of the Bulletin from their “archives” so that we can bring to you a complete set of issues. These folks are Phil
Bernstein, Umesh Dayal, Stavros Christodoulakis, Mike Franklin, Hank Korth, Guy Lohman, Amihai Motro,
Timos Sellis, Gio Wiederhold, and Antoni Wolski. I want to single out for special thanks Sylvia Osborn, who
provided many of the very early issues that were particularly hard to find.

Finally, I want to mention that all issues of the Bulletin arenow included in and accessible via DBLP. I want
to thank Michael Ley for making this happen, and in an amazingly short time so that this information can be
included in the announcement.

I would urge you all to visit the Bulletin web site and browse the earlier issues. I think you will be impressed
by how interesting and relevant many of the papers continue to be.

The Current Issue

Database provenance is a topic that has more or less escaped attention by our field historically. We were, as a
field, pre-occupied with providing the basic data storage and retrieval functionality, ensuring that performance
was adequate, and generalizing to deal with issues such as additional data models, distribution, etc. One might
characterize this as needing to crawl before one can walk. But our users want us now to walk. They need to
know how reliable the data is, who is vouching for it, what arethe uncertainties, how precise it is, whether it is
under copyright, etc. To deal with this, we need to know wherethe data has come from and how it was derived.
That is, we need to know its provenance.

Dan Suciu together with Peter Buneman have assembled the current issue of the Bulletin on the subject of
“Data Provenance”. The papers in this issue were carefully selected, some coming from a recent workshop on
data provenance principles. I want to thank Dan and Peter fortheir fine job as editors of this issue, which makes
data provenance much more accessible to our community. It serves as a great introduction to an important and
suprisingly subtle area.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editors

As the Web makes it increasingly easy to exchange, copy and transform data, the issue ofprovenance– where
data had come from and how it was derived – has rapidly become aleading research issue. Provenance has
always been important in scholarship, and it is now becomingimportant to scientists who deal with large and
complex data sets; but we do not need scholars or scientists to tell us of its importance. Go to the Web and search
for the population of some country. You may well find that it isimpossible to find out where a figure came from
or how it was derived. derived.

The importance of provenance has been recently been recognized. The International Annotation and Prove-
nance Workshop is devoted largely toworkflowprovenance; there is also a growing body of database research
into dataprovenance The first paper in this issue by Wang-Chiew Tan, provides an accessible and comprehen-
sive introduction to these two aspects of provenance. Data provenance has recently emerged as being important
to a number of areas of computer science such as annotation, data integration, probabilistic databases, file syn-
chronization, data archiving and program debugging. In May2007, James Cheney, Nathan Foster and Bertram
Ludäscher organized an informal workshop on the Principles of Provenance at the University of Pennsylvania
in May 2007. Its purpose was to bring together people workingin these areas in order to elicit some underlying
principles and models. This issue is based on some of the talks at that workshop.

Provenance and Data Synchronization, by Nathan Foster and Grigoris Karvounarakis, describes two ap-
plications involving data replication: the data synchronization system Harmony where provenance tagging is
needed to provide independence from order and the data sharing system Orchestra where provenance is impor-
tant both for trust and for incremental updates. Following this musical demonstration, inProgram slicing and
data provenanceJames Cheney shows a connection between program slicing where – for debugging purposes –
one wants to focus on that part of the program that influenced aspecific variable and data provenance where one
is interested in that part of the evolution of a database thataccounts for the current state of a specific data item.

Update languages, especially the update fragment of SQL, are often dismissed by database researchers be-
cause, when measured by their ability to effect transformations of the database, they are less expressive than
query languages. InRecording Provenance for SQL Queries and Updates, Stijn Vansummeren and James Ch-
eney point out that when provenance is taken into account, update languages can become interesting because
they can express more than query languages. This paper describes both an implicit and explicit semantics for
provenance for both query and updates in SQL-like languages.

Although the focus of this issue is more on data provenance than workflow provenance, two of our papers
argue forcefully that these two topics should not be divorced. The first,Issues in Building Practical Provenance
Systemsby Adriane Chapman and H.V. Jagadish, provides a set of desiderata for provenance recording and
describes how simply recording workflow execution may not beadequate for understanding the evolution of
data, especially when this has been heavily manipulated. The second,Provenance in Scientific Workflow Systems
by Susan Davidsonet al describes an an approach to summarizing workflows and then – through a collection-
oriented model of data – analyzing the effect of the individual processes through a stream-based model of
processing. In our opinion, connecting workflow and data provenance is the most interesting research challenge
in the general field of provenance models.

Finally, in Copyright and Provenance: Some Practical Problems, John Ockerbloom shows how, even in the
world of fixed digital documents, provenance in is importantin determining intellectual property. Traditional
copyright law is based on the fact that copying a work (printing it) was a non-trivial task. While traditional law
may not have been ideal, it was at least workable. How we adaptit to electronic data sets in which many small
pieces of data have been derived and assembled from a large number of other sources is a major challenge; and
it is one in which a good model of provenance may be of significant benefit.

Peter Buneman and Dan Suciu
University Edinburgh and University of of Washington
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Provenance in Databases: Past, Current, and Future

Wang-Chiew Tan∗

UC Santa Cruz
wctan@cs.ucsc.edu

Abstract

The need to understand and manage provenance arises in almost every scientific application. In many
cases, information about provenance constitutes the proofof correctness of results that are generated by
scientific applications. It also determines the quality andamount of trust one places on the results. For
these reasons, the knowledge of provenance of a scientific result is typically regarded to be as important
as the result itself. In this paper, we provide an overview ofresearch in provenance in databases and dis-
cuss some future research directions. The content of this paper is largely based on the tutorial presented
at SIGMOD 2007 [11].

1 Overview of Provenance

The wordprovenanceis used synonymously with the wordlineagein the database community. It is also some-
times referred to assource attributionor source tagging. Provenance meansorigin or source. It also means
the history of ownership of a valued object or work of art or literature [26]. The knowledge of provenance is
especially important for works of art, as it directly determines the value of the artwork. The same applies to
digital artifacts or results that are generated by scientific applications. Information about provenance constitutes
the proof of correctness of scientific results and in turn, determines the quality and amount of trust one places on
the results. For these reasons, the provenance of a scientific result is typically regarded to be as important as the
result itself. There are two granularities of provenance considered in literature:workflow (or coarse-grained)
provenanceanddata (or fine-grained) provenance. In what follows, we provide an overview of workflow and
data provenance. However, the focus of this paper is on data provenance, which is described in the rest of this
paper (Sections 2 to 4).

Workflow (or coarse-grained) provenance: In the scientific domain, a workflow is typically used to perform
complex data processing tasks. Aworkflow can be thought of as a program which is an interconnection of
computation steps and human-machine interaction steps.Workflow provenancerefers to the record of the entire
history of the derivation of the final output of the workflow. The amount of information recorded for workflow
provenance varies. It may include a complete record of the sequence of steps taken in a workflow to arrive
at some dataset. In some cases, this entails a detailed record of the versions of softwares used, as well as the
models and makes of hardware equipments used in the workflow.In addition to providing a proof of correctness

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Supported in part by NSF CAREER Award IIS-0347065 and NSF grant IIS-0430994.
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Figure 1: An example of a workflow from [16].

to the final workflow output, workflow provenance can also be useful for avoiding duplication of efforts; With
appropriate bookkeeping of inputs taken by parts of the workflow, it is possible to identify parts of the workflow
that need not be repeated across different execution runs.

Example 1: A simple example of a workflow from [16] is depicted in Figure 1. Arrows denote the flow of data,
while boxes are used to indicate data processing steps. Thisworkflow describes the steps taken to construct
a phylogenetic tree from a set of DNA sequences. The workflow starts with step (S1) which downloads a set
of DNA sequences from the GenBank repository. The second step (S2) takes the DNA sequences and runs an
external sequence alignment program to generate a sequencealignment. Details of how a sequence alignment
is constructed from multiple DNA sequences are “hidden” by the external program (i.e., the external program
is a blackbox). Step S3 involves interaction with a biologist. The biologist examines the sequence alignment
obtained from (S2) and may improve on the quality of the sequence alignment output by manually adjusting
gaps inserted by the alignment program. The last step (S4) takes the edited alignment as input and produces a
phylogenetic tree as output. There are in fact many steps involved in (S4) (see [16] for a detailed explanation).
However, step (S4) abstracts the process of constructing a phylogenetic tree from the sequence alignment as
another blackbox. The provenance of an execution of this workflow may include a record of the version of the
GenBank repository used, the DNA sequences used, the software and version of the software used for sequence
alignment, as well as the decisions made by the biologist in editing the alignment.

As described in Example 1, an external process in step (S2) isinvolved in the workflow. In general, external
processes do not possess good properties for a detailed analysis of the transformation since such details are
typically hidden. Hence, the workflow provenance for this step is usuallycoarse-grained. That is, only the
input, output and the software used by an external process are recorded.

Data (or fine-grained) provenance:In contrast,data (or fine-grained) provenancegives a relatively detailed
account of the derivation of a piece of data that is in the result of a transformation step. A particular case of data
provenance that is of interest to the database community andfor which there have been considerable research
efforts is when the transformation is specified by a databasequery. More precisely, suppose a transformation on
a databaseD is specified by queryQ, the provenance of a piece of datat in the output ofQ(D) is the answer to
the following question:Which parts of the source databaseD contribute tot according toQ?

This is the subject of research of [18], where the authors described algorithms for computing data provenance
in the relational framework. We give an example of data provenance in the relational setting next.

Source databaseD:
Employee

empid dept

e977 CS
e132 EE
e657 BME

Department
deptid budget

BME 1200K
CS 670K
EE 890K
MATH 230K

QueryQ:
SELECT e.empid,e.dept,d.budget
FROM Employeee, Departmentd
WHERE e.dept =d.deptid

Output ofQ(D):
empid dept budget

e657 BME 1200K
e977 CS 670K
e132 EE 890K

Figure 2: An example of a data transformation with SQL.
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Figure 3: (a) Non-Annotation (NA) approach, (b) Annotation (A) approach, (c) a timeline for data provenance
research efforts using eitherNAor A approach.

Example 2: SupposeD and Q are the database and query, respectively, shown in Figure 2.The result of
executingQ againstD is also shown on the right of the same figure. The source tuples(e657, BME) and
(BME,1200K) contribute to the output tuple (e657,BME,1200K) according toQ. In particular, observe that some
source tuples, such as (e132,EE), play no role in contributing to the output tuple (e657,BME,1200K) according
to Q. The basic idea behind the algorithms proposed in [18] is to compute data provenance by analyzing the
underlying algebraic structure of relational queries. Provenance is computed and aggregated according to the
underlying algebraic operators used in query on an operator-by-operator basis.

Data provenance is the focus of this paper and we shall elaborate more on data provenance in subsequent
sections. Readers who are interested in workflow provenancemay find the following references useful: A survey
of provenance research related to scientific data processing and scientific workflow systems [5, 19] and a survey
on provenance research in E-science [28].

All of the existing research efforts on data provenance adopt one of two contrasting approaches for com-
puting data provenance: (1)Non-annotation approachvs. (2)Annotation approach. Techniques for computing
data provenance that use the non-annotation approach allowthe execution of a transformation functionQ as
it is. See Figure 3(a), which shows a normal execution ofQ. That is,Q is executed on an input database to
generate an output database. In order to compute the provenance of a piece of output data, it is typically the case
that the input and output database, as well as the definition of Q, are analyzed to arrive at an answer. In con-
trast, techniques for computing provenance that use the annotation approach (see Figure 3(b)) carry additional
information to the output database. In order to compute the extra information, the original transformationQ is
usually modified to another transformationQ′ so that whenQ′ is applied on the input database, it generates an
output database that is identical to that generated byQ applied on the input database, as well as the additional
information. With this approach, the provenance of a piece of output data can typically be derived by analyzing
the extra information.

A timeline where the research efforts are classified according to the two approaches is tabulated in Figure
3(c). We shall discuss past research efforts (i.e., mainly research efforts prior to 2005) and current research
efforts (i.e., mainly research efforts between 2005 and 2007) on data provenance in Sections 2 and 3 respectively.
We conclude with some future research directions in Section4.

2 Data Provenance: Past

As described in Section 1, the problem of computing data provenance in the relational framework was studied
in [18]. It is easy to see that the need to compute data provenance applies not only to tuples of relations, but
also to data that occur at different levels of granularitiesin a hierarchical or tree-like structure. This observation
was made in [9], where the authors described a hierarchical data model and an associated query language for
manipulating data in this hierarchical model. The provenance of a piece of data, at any granularity, in the result
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of a monotone query can be obtained by analyzing the syntax ofthe query. In [9], the authors also made a
distinction betweenwhy andwhere-provenance. The type of provenance studied by [18] is essentially why-
provenance. Where-provenance, on the other hand, is a description of the locations in the input database which
contain values where a piece of output data is copied from. Tosee the difference between why and where-
provenance, consider Example 2 again. The why-provenance of the output tuple (e657,BME,1200K) according
to Q consists of the two source tuples as described in Example 2. However, the where-provenance of the value
“BME” in the output tuple (e657,BME,1200K) is the location pointed by thedept attribute in the source tuple
(e657,BME). In other words, the “BME” value of the output tuple is copied from the “BME” value of the source
tuple (e657,BME) and not from the “BME” value of the source tuple (BME,1200K). This is because the query
Q extracts “BME” frome.dept (and notd.deptid). Observe that in contrast to the why-provenance of the output
tuple (e657,BME,1200K), the where-provenance of “BME” of the same output tuple completely disregards the
source Department relation.

Prior to [9] and [18], there has been a few similar research efforts [31, 32] targeted at resolving the data
provenance problem. The authors of [32] proposed to build the functionality of computing data provenance into
a database system using the non-annotation approach. Theirmotivation for using the non-annotation approach
was to support provenance tracing in a database visualization environment, where large datasets are usually
involved. It is therefore infeasible to associate additional information to every datum in these datasets for
computing provenance. The main idea in [32] was to allow a user to register data processing functions and their
corresponding inverse functions in a database system. Whengiven a specific piece of output data to invert, an
inversion planner module within the database system would infer which inverse function to apply and construct
an execution plan by invoking the appropriate functions in the database system. However, since not all functions
are invertible, a user is also allowed to registerweak inversesinstead. Intuitively, a weak inverse is an inverse
function that approximates provenance; It may only return asubset of the desired provenance or more than what
is required. A separate verification function is required toexamine that the answers returned by the weak inverse
are indeed answers to provenance. A fundamental drawback ofthis technique is that the user is required to
provide (weak) inverse functions and their corresponding verification functions. Subsequent research efforts by
[9] and, respectively, [18] that were described earlier, overcome this limitation by computing data provenance
through analyzing the syntax and, respectively, algebraicstructure of the queries.

The work of [31] first made the idea of using an annotation approach to compute provenance explicit. They
proposed a polygen model (“poly” for “multiple” and “gen” for “source”) that is able to track which originating
data sources and intermediate data sources were used to generate an output data of interest. In [31], operational
definitions on how one can compute the originating sources and intermediate sources of an attribute value over
basic relational algebra operators were given.

The polygen idea was followed up by [10], where a similar set of operational definitions (calledpropagation
rulesin [10]) for basic relational operators were given1. In [10], however, the authors made clear that annotations
(and not only originating sources) associated with source data can be propagated from source to output based
on the propagation rules. Furthermore, the propagation rules were designed to propagate annotations based
on where data is copied from (i.e., where-provenance). In particular, the relationships betweenlocationsof
data in the input and output database were formalized through the propagation rules given in [10]. One of the
problems studied in [10] is theannotation placement problem: Given a queryQ, source databaseD, a view
V = Q(D), and an annotation, denoted as∗, placed in the viewV , decide whether there is location to place
the annotation∗ in D so that∗ propagates to the desired location inV and nowhere else.If such a placement
of ∗ in D exists, it is called a “side-effect-free annotation”. The study of the annotation placement problem is
important for understanding the bidirectional transport of annotations between the source database and the view.
The authors showed a dichotomy in the complexity of the annotation placement problem for Select-Project-Join-
Union (SPJU) queries: It is NP-hard to decide if there is a side-effect-free annotation for a project-join relational

1In [10], the authors had natural join instead of cartesian product in the set of basic relational algebra operators.
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query even in the special case where the join is always performed before projection. On the other hand, there is
a polynomial-time algorithm for deciding whether there is aside-effect-free annotation for SPJU queries which
do not simultaneously contain both project and join operators. In fact, the annotation placement problem was
later shown to be DP-hard in [30]. In [17], the authors showedthat many of the complexity issues disappear for
key-preserving operations, which are operations that retain the keys of the input relations.

3 Data Provenance: Current

In this section, we describe research efforts that mainly occur between 2005 and 2007, as shown in Figure
3(c). Our discussion will center around two research projects, DBNotes [4, 15] and SPIDER [1, 14], recently
developed at UC Santa Cruz.

3.1 DBNotes

The work of DBNotes builds upon ideas developed in [10, 30]. DBNotes is an annotation management system
for relational database systems. In DBNotes, every attribute value in a relation can be tagged with multiple an-
notations. When a query is executed against the database, annotations of relevant attribute values in the database
are automatically propagated to attribute values in the result of the query execution. The queries supported by
DBNotes for automatic annotation propagation belong to a fragment of SQL queries that corresponds roughly to
select-project-join-union queries. In itsdefaultexecution mode, annotations are propagated based on where data
is copied from (i.e., where-provenance). As a consequence,if every attribute value in the database is annotated
with its address, the provenance of data is propagated along, from input to output, as data is transformed by the
query. An example of annotations propagated in the default manner is shown below:

Source databaseD:
Employee
empid dept

e977 (a1)CS (a2)
e132 (a3)EE (a4)
e657 (a5)BME (a6)

Department
deptid budget

BME (b1) 1200K (b2)
CS (b3) 670K (b4)
EE (b5) 890K (b6)
MATH (b7)230K (b8)

QueryQ:
SELECT e.empid,e.dept,d.budget
FROM Employeee, Departmentd
WHERE e.dept =d.deptid
PROPAGATE default

Output ofQ(D):
empid dept budget

e657 (a5)BME (a6)1200K (b2)
e977 (a1)CS (a2) 670K (b4)
e132 (a3)EE (a4) 890K (b6)

In this example, every attribute value in the source relations, Employee and Department, is annotated with
a unique identifier. For instance, the attribute value 670K is annotated with the identifierb4. The queryQ has
an additional “PROPAGATE default” clause, which means that we are using the default execution mode as
explained earlier. By analyzing the annotations that are propagated toQ(D), we can conclude that the value
“BME” in Q(D) was copied from “BME” in the Employee relation (and not the “BME” in Department relation).
If the SELECT clause ofQ had been “e.empid,d.deptid,d.budget” instead, then the annotation associated with
“BME” in Q(D) would beb1 instead ofa6. Hence, equivalent queries may propagate annotations differently.
This presents a serious difficulty as it means that the annotations (or provenance answers) that one obtains in the
result is dependent on the query plan chosen by the database engine. DBNotes resolves this problem through a
novel propagation scheme, called thedefault-all propagation scheme. In this scheme, all annotations of every
equivalent formulation of a query are collected together. Consequently, propagated annotations are invariant
across equivalent queries. This scheme can thus be viewed asthe most general way of propagating annotations.
In our example, the “BME” value inQ(D) will consist of both annotationsa6 and b1 under the default-all
scheme. At first sight, the default-all scheme seems infeasible because the set of all equivalent queries is infinite
in general. In [4], a practical and novel implementation that avoids the enumeration of every equivalent query
is described. The key insight is that for monotone relational queries, all relevant annotations can in fact be
determined by evaluating every query in a finite set of queries. Such a finite set can always be obtained, and is
not too big in general. DBNotes also allows one to definecustompropagation schemes. In this scheme, the user
can specify where annotations should be retrieved from input relations. The custom scheme is especially useful
when the user is, for example, only interested in retrievingannotations from a particular database, perhaps due
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to its authority, over other databases. In [15], the query language of DBNotes was extended to allow querying
of annotations. Techniques were also developed to explain the provenance and flow of data through query
transformations via the analysis of annotations.
Extensions to DBNotes.In DBNotes, as well as [10], annotations can only be placed ona column of a tuple
of a relation2. In other words, annotations can only be associated with attribute values only, and not tuples or
relations. In [21], an extension is made so that annotationscan be placed on any subset of attributes of a tuple
in a relation. Acolor algebrathat can query both values and annotations is also described. They showed that
for unions of conjunctive queries, the color algebra is complete with respect tocolor relational algebra queries.
A color relational algebra queryis a query that when applied on an color database (i.e., relations with extra
columns for storing annotations) returns another color database. They also showed that every operator in the
color algebra is necessary for the completeness result to hold. In [20], a similar completeness result is proven
for full relational algebra instead of unions of conjunctive queries; The color algebra of [20] is shown to be
complete with respect to color relational algebra queries.

In [29], the idea of associating annotations with data is further extended to allow annotations to be placed
on an arbitrary collection of data in a database. A query is used to capture the collection of data of interest
and the query is then associated with the desired annotations in a separate table. Similarly, one can associate
a collection of data with another collection of data by usingtwo queries that capture the collections of data of
interest respectively, and then associating the queries together in a separate table.
Expressivity of languages that propagate annotations.Since many languages that manipulate annotations (or
provenance) were proposed, a natural question is the comparative expressive power of these query languages.
For example, one natural question is the following: How doesthe propagation scheme for originating sources
as proposed in [31] compare with the default propagation scheme of DBNotes? Is one more expressive than the
other? The work of [7] addressed this question. They showed that the default propagation scheme of DBNotes
is as expressive as the propagation scheme for originating sources proposed in [31]. To show this result, they
defined a query language that manipulates annotations as “first-class citizens”, and showed that the propagation
schemes of [31] and DBNotes are equivalent in expressive power to a certain class of queries in their language.

3.2 SPIDER

In this section, we describe a recent work on computing provenance over schema mappings that uses the non-
annotation approach.

Schema mappingsare logical assertions of the relationships between an instance of a source schema and an
instance of the target schema. They are primary building blocks for the specification of data integration, data
exchange and peer data management systems. A fundamental problem in integration systems is the design and
specification of schema mappings, which typically takes a lot of time and effort to get it right [3, 24].

SPIDER [1, 14] is a system that facilitates the design of mappings by allowing mapping designers to un-
derstand, debug, and refine schema mappings at the level of mappings, through the use of examples. The idea
behind SPIDER is very much like debuggers for programming languages which allow programmers to under-
stand, debug, and refine their programs by running their programs on some test cases. The main approach that
SPIDER uses to explain the semantics of mappings is through descriptions of the provenance (resp. flow) of
data in the target instance (resp. source instance) throughchains of possibly recursive mappings. These descrip-
tions are calledroutesand intuitively, they describe how data in the source and target instances are related and
constrained via mappings. In SPIDER, a mapping designer caneither display routes ending at selected target
data (i.e., trace the provenance of target data) or display routes starting at selected source data (i.e., trace the
flow of source data). We describe an example of routes next.

2The same applies to [31], where originating sources are associated with attribute values.
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Source instanceI :
CardHolders

accNo limit ssn name

123 $15K ID1 Alice
Dependents

accNo ssn name

123 ID2 Bob

Mappings:
for c in CardHolders⇒ existsa in Accounts andcl in
Clients wherea.AccNo = c.AccNo anda.accHolder =
c.ssn andcl.ssn = c.ssn andcl.name = c.name (m1)

for d in Dependents⇒ existscl in Clients
wherecl.ssn = d.ssn cl.name = d.name (m2)

for cl in Clients⇒ existsa inAccounts
wherea.accHolder = cl.ssn (m3)

Target instanceJ :
Accounts

accNo creditLine accHolder

123 L1 ID1
A1 L2 ID2

Clients
ssn name

ID1 Alice
ID2 Bob

The source schema consists of two relational schemas, CardHolders and Dependents, and the target schema
consists of two relational schemas, Accounts and Clients. There are three mappings,m1,m2 andm3, written
in a query-like notation as shown in the middle of the figure above. Intuitively, the first mappingm1 asserts
that for every tuple in the CardHolders relation, there exists a tuple in the target Accounts relation and a tuple
in Clients whose correspondingaccNo, accHolder, ssn andname values are equal to theaccNo, ssn, ssn,
andname values, respectively, of the Cardholders tuple. The mapping m2 asserts that every Dependents tuple
has a corresponding Clients tuple whosessn values coincide. The last mappingm3 is a constraint on the target
instance that says that the existence of a Clients tuple implies the existence of an Accounts tuple where thessn
value of the former is equal to theaccHolder value of the latter tuple.

Given the schemas and the mappings, a mapping designer may wish to understand the mappings by executing
them against a source instanceI shown on the left of the figure above. A target instanceJ that conforms to the
target schema and also satisfies the mappings is shown on the right. Such a target instance may be obtained
by executing the schemas and mappings on a data exchange system such as Clio [25] or, by directly reasoning
about the semantics of the mappings. InJ , the valuesL1, L2 andA1 represent possibly distinct unknown values
for credit limits and account number. Since an account cannot be created without an account number, a mapping
designer may probe onA1 to understand howA1 was formed in the exchange process. In response to the probe,
SPIDER displays a route (shown below), starting from a source tuple inI that ultimately leads to the target tuple
in J that contains the probedA1.

Dependents(123,ID2,Bob)
m2−→ Clients(ID2,Bob)

m3−→ Accounts(A2,L2,ID2)

Intuitively, the route explains that the Dependents tuple (i.e., Bob) inI leads to the Clients tuple (i.e., Bob) in
J via mappingm2, which in turn leads to the ID2 Accounts tuple inJ via mappingm3. Although not illustrated
here, SPIDER also displays the bindings of variables inm2 andm3 that were used to derive each tuple in the
route. By analyzing the route, a mapping designer may realize that the account number 123 in the Dependents
tuple was somehow not copied over to the target and may hence refine or correct the mappings in the process.

The example above was kept simple for ease of exposition. In reality, mappings are usually not as simple
as those shown in this example. They are usually larger and typically more complex. A major difficulty in
computing routes is to reason about chains of possibly recursive mappings among schemas. Furthermore, the
number of routes to illustrate to a mapping designer in response to a single probe may be overwhelming. In [14],
an algorithm for computing routes that overcomes these difficulties has been developed. Their algorithm encodes
the set of all routes, even when there may be exponentially many, in a compact polynomial-size representation.
A demonstration of SPIDER is described in [1].
How-Provenance.Routes are different from why-provenance in that they not only describe which input tuples
contribute to the existence of an output tuple, but alsohow the input tuples lead to the existence of the output
tuple. Thus, compared to why-provenance, it is a more detailed explanation of the existence of an output tuple.
In a recent paper [23], the authors described a method whereby provenance can be described using asemiring
of polynomialsin the context of datalog queries and introduced the termhow-provenance. Semirings are similar
to routes of SPIDER in that they capture the input tuples thatcontribute to an output tuple, as well ashow
they contribute to that output tuple. For example, letR1(A,B) be a binary relation with three tuplest1, t2
andt3, wheret1 = (1, 2), t2 = (1, 3) andt3 = (2, 3) and letR2(B,C) be another binary relation with three
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tuplest4, t5 andt6, wheret4 = (2, 3), t5 = (3, 3) andt6 = (3, 4). The result of the queryΠA,C(R1 ⊲⊳ R2)
consists of three tuples(1, 3), (1, 4), (2, 3), (2, 4). The provenance polynomial for the output tuple(1, 3) is
t1t4 + t2t5, which describes that the output tuple(1, 3) is witnessed byt1 andt4 or, t2 andt5. On the other
hand, the why-provenance of(1, 3) according to the query is simply the set of tuples{t1, t2, t4, t5}. Algorithms
for calculating provenance semirings for datalog queries were described in [23]. In [22], an application of
provenance semirings is described in collaborative data sharing: Updates that are propagated along peers carry
along provenance semirings. These propagated semirings are subsequently utilized to trace the derivations of
an update in order to determine whether an update should be filtered based on the trust conditions specified by
participants of the data sharing system.

4 Data Provenance: Future

We have described some major research efforts in data provenance in the past two decades. In this section, we
describe some possible future research directions.

Most research efforts on data provenance have focused on reasoning about the behavior of provenance and
keeping track of annotations or metadata through SQL queries. While SQL queries are fundamental building
blocks of many database applications, knowing how to reasonabout the provenance and flow of data through
SQL queries alone is still insufficient for a complete end-to-end tracking of the provenance and flow of data in
many database applications. For example, a Web applicationthat is powered by a database backend may only use
SQL queries to retrieve data from (or store data into) the underlying database system. Data that is retrieved may
still undergo various transformations (e.g., cleansing orformatting transformations) before they are displayed
on a Web page. To make matters worse, many Web applications today (e.g., mashups) are based on other Web
applications where information is extracted and integrated though public application programming interfaces and
appropriate programming languages. In particular, the process by which information is extracted and integrated
is typically not described by SQL queries. Therefore, a major unsolved challenge for data provenance research
is to provide a uniform and seamless framework for reasoningabout the provenance (and flow) of data through
different data transformation paradigms. We list three aspects of research on data provenance next that would
make progress towards resolving this challenge.

Web applications and many other systems such as data warehouses, extract-transform-load systems behave
very much like workflows, where data typically undergoes a sequence of transformations in different paradigms
(e.g., SQL queries, C programs or Perl scripts.). Hence, oneapproach towards a solution for the above mentioned
unsolved challenge is to examine whether one can combine theresearch efforts of workflow provenance and data
provenance in a uniform manner. So far, the research effortson workflow provenance and data provenance have
been somewhat independent and disconnected. For the two threads of research to converge, extensions to the
formalism for workflow provenance are needed so that nodes that represent external processes in a workflow
need not be treated as a blackbox. In other words, whenever possible, one should be able to drill down and
analyze the provenance of data generated by external programs, which are commonly used in workflows and
typically abstracted as blackboxes by current techniques for computing workflow provenance. On the other front,
techniques for computing data provenance need to be extended to handle constructs of more powerful languages
(e.g., aggregates, iterators, and side-effects etc.). A recent promising research effort [12, 13] uses dependency
analysis techniques, similar to program slicing and program analysis techniques from the programming language
community, to analyze provenance over more complex database queries that includes relational queries with
grouping and aggregates. Another approach towards a uniform framework for analyzing data provenance is
to abstract different data transformation paradigms usinghigher-level declarative formalisms such as schema
mappings. However, similar to the discussion earlier, mappings will need to be enriched to model constructs of
more powerful languages such as aggregates, iterators, side-effects etc.

Another research direction that would make progress towards the unsolved challenge is to develop techniques
for reasoning about or approximating the provenance of datathat is generated by programs through the analysis
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of the “blackbox behavior” of programs. In other words, evenwhen the details of a program may not be available,
one should still be able to derive the provenance of data generated by the program to a certain extent. Methods
for resolving this challenge will be extremely useful in practice because in many cases, even when the details of
an external program are available, they are typically too complex to be amenable to a systematic analysis.

The last research direction concerns archiving. This is a topic that bears close relationship to provenance and
has not been discussed so far in this paper. Databases and schemas evolve over time. Necessarily, a complete
record of provenance entails archiving all past states of the evolving database so that it becomes possible to
trace the provenance of data to the correct version of the database or trace the flow of data in a version of
the database that is not necessarily the most recent. Archiving is especially crucial for scientific data, where
scientific breakthroughs are typically based on information obtained from a particular version of the database.
Hence, all changes or all versions of the database must be fully documented for scientific results to remain
verifiable. There have been some research efforts on archiving scientific datasets [6, 8]. However, two major
challenges remain: (i) The first is to provide techniques forefficiently archiving versions of databases whose
schema may also evolve over time. At the same time, the structure of the archive should still retain the semantics
of data and relationships between entities across different versions of data as far as possible so that the archive
can be meaningfully analyzed later. (ii) The second is to provide companion techniques to efficiently recover a
version of the database from the archive obtained from (i), incrementally update the archive with a new version
of data, as well as provide techniques to discover or analyzetemporal-related properties in the archive and how
entities evolve over time.

Recently, a number of applications of provenance have emerged in the context of probabilistic databases [2],
schema mappings [14], and updates [22]. These applicationsrequire extensions to prior techniques for comput-
ing provenance. An interesting research direction would beto discover whether there are other applications of
provenance that would require significant extensions to existing techniques or a completely new framework for
computing provenance. For example, a recent workshop on provenance [27] suggests that security, information
retrieval, dataflow or extract-transform-load scenarios etc. are some potential applications to investigate.
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1 Introduction

Replication increases the availability of data in mobile and distributed systems. For example, if we copy calendar
data from a web service onto a mobile device, the calendar canbe accessed even when the network cannot. In
peer-based data sharing systems, maintaining a copy of the shared data on a local node enables query answering
when remote peers are offline, guarantees privacy, and improves performance. But along with these advantages,
replication brings complications: whenever one replica isupdated, the others also need to be refreshed to keep
the whole system consistent. Therefore, in systems built onreplication, synchronization mechanisms are critical.

In simple applications, the replicas are just that—carbon copies of each other. But often the copied data needs
to be transformed in different ways on each replica. For example, web services and mobile devices represent
calendars in different formats (iCal vs. Palm Datebook). Likewise, in data sharing systems for scientific data,
the peers usually have heterogeneous schemas. In these morecomplicated systems, the replicas behave like
views, and so mechanisms for updating and maintaining viewsare also important.

The mapping between sources and views defined by a query is notgenerally one-to-one. This loss of infor-
mation is what makes view update and view maintenance difficult. It has often been observed thatprovenance—
i.e., metadata that tracks the origins of values as they flow through a query—could be used to cope with this loss
of information and help with these problems [5, 6, 4, 24], butonly a few existing systems (e.g., AutoMed [12])
use provenance in this way, and only for limited classes of views.

This article presents a pair of case studies illustrating how provenance can be incorporated into systems
for handling replicated data. The first describes how provenance is used inlensesfor ordered data [2]. Lenses
define updatable views, which are used to handle heterogeneous replicas in the Harmony synchronization frame-
work [23, 13]. They track a simple, implicit form of provenance and use it to express the complex update policies
needed to correctly handle ordered data. The second case study describes ORCHESTRA[17, 19], a collaborative
data sharing system [22]. In ORCHESTRA, data is distributed across tables located on many different peers, and
the relationship between connected peers is specified usingGLAV [16] schema mappings. Every node coalesces
data from remote peers and uses its own copy of the data to answer queries over the distributed dataset. Prove-
nance is used to perform incremental maintenance of each peer as updates are applied to remote peers, and to
filter “incoming” updates according totrust conditions.

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: (a) Synchronization architecture for heterogeneous replicas. (b) Correspondence induced by keys.

2 Lenses

A lensis a bidirectional program. When read from left to right it denotes an ordinary function that maps sources
to views. When read from right to left, the same lens denotes an “update translator” that takes a source together
with an updated view and produces a new source that reflects the update.

In the context of data synchronization, lenses are used to bridge the gap between heterogeneous replicas.
To synchronize two replicas represented in different formats, we first define lenses that transform each source
format into a common “abstract” format, and then synchronize the abstract views. For example, to synchro-
nize iCal and Palm Datebook calendars, we use the forward direction of two lenses to transform the files into
abstract calendars, discarding the low-level formatting details and any other data specific to each replica. After
synchronization, we then propagate the changes induced by the synchronizer back to the original formats using
the reverse direction of the same lenses. The architecture of a synchronizer for heterogeneous data assembled in
this way is depicted in Figure 1(a).

Semantically, a lensl is just a pair of functions, which we callgetandput. Thegetcomponent maps sources
to views. It may, in general, discard some of the informationfrom the source while computing the view. The
putcomponent therefore takes as arguments not only an updated view, but also the original source; it weaves the
data from the view together with the information from the source that was discarded by thegetcomponent, and
yields an updated source. (Note that lenses are agnostic to how the view update is expressed—theput function
works on the entire state of the updated view.)

The two components of a lens are required to fit together in a reasonable way: theput function must restore
all of the information discarded byget when the view update is a no-op, and theput function must propagate
all of the information in the view back to the updated source (see [14] for a comparison of these requirements
to classical conditions on view update translators in the literature.) In a lens language, these requirements are
guaranteed by the type system; in implementations, they arechecked automatically [14, 15, 3, 2].

2.1 Ordered Data

Recent work on lenses has focused on the special challenges that arise when the source and view are ordered [2].
The main issue is that since the update to the view can involvea reordering, accurately reflecting updates back
to source requires locating, for each piece of the view, the corresponding piece of the source that contains
the information discarded byget. Our solution to this problem is to enrich lenses with a simple mechanism
for tracking provenance: programmers describe how to divide the source intochunksand generate akey for
each chunk. These induce an association between pieces of the source and view that is used byput during the
translation of updates—i.e., theput function aligns each piece of the view with a chunk that has the same key.

To illustrate the problem and our solution, let us consider asimple example from the string domain. Suppose
that the source is a newline-separated list of records, eachwith three comma-separated fields representing the
name, dates, and nationality of a classical composer, and the view contains just names and nationalities:
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"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

get
−→

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English"

Here is a lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA
let comps = copy "" | comp . (copy "\n" . comp) *

The first two lines define regular expressions describing alphabetical data and year ranges using standard POSIX
notation for character sets ([A-Za-z ] and [0-9] ) and repetition (+ and{4} ). Single composers are pro-
cessed bycomp; lists of composers are processed bycomps. In thegetdirection, these lenses can be read as
string transducers, written in regular expression style:copy ALPHA matchesALPHAin the source and copies
it to the view, andcopy ", " matches and copies a literal comma-space, whiledel YEARS matchesYEARS
in the source but adds nothing to the view. The union (| ), concatenation (. ), and iteration (* ) operators work
as usual. Theget of comps either matches and copies an empty string or processes a eachcomposer in a
newline-separated list usingcomp. (For formal definitions see [2].)

Theput component ofcomps restores the dates to each entry positionally: the name and nationality from
thenth line in the abstract structure are combined with the yearsfrom thenth line in the concrete structure (using
a default year range to handle cases where the view has more lines than the source.) For some simple updates
this policy does a good job. For example, suppose that the update changes Britten’s nationality, and adds a new
composer to the end of the list. Theput function combines

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

with
"Jean Sibelius, 1865-1957, Finnish

Aaron Copland, 1910-1990, English
Benjamin Britten, 1913-1976, English"

and yields an updated source

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(The year range0000-0000 is the default; it is generated from the regular expressionYEARS.) On other
examples, however, the behavior of thisput function is highly unsatisfactory. For example, suppose instead that
the update to the abstract string swaps the order of the second and third lines. Then theput function takes the
following view (and the same source as above)

"Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American"

and yields
"Jean Sibelius, 1865-1957, Finnish

Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Copland and inserted into into Britten’s, and vice versa!
What we want, of course, is for theput to align the entries in the concrete and abstract strings bymatchinglines
with identical name components, as depicted in Figure 1(b).On the same inputs, thisput function yields

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

where the year ranges are correctly restored to each composer.
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2.2 Provenance for Chunks

To achieve this behavior, the composers lens needs to be ableto keep track of the association between lines in
the source and view even when the update involves a reordering—i.e., it need to trackprovenance.

One way to do this would be using explicitprovenance tokens. On this approach, each line of the source
would be annotated with a unique identifier, and thegetfunction would propagate these annotations from source
to view. The disadvantage of this approach is that the view isno longer an ordinary string, but a string with
annotations. This means that applications that take views as input, such as the data synchronizer described
above, need to operate on annotated structures, which can becumbersome.

Lenses use a simpler mechanism that eliminates the need to handle annotated structures. The set of lenses
is enhanced with two new primitives for specifying thechunksof the source and akeyfor each chunk, andput
functions are retooled to work on structures where the source is organized as a dictionary of chunks indexed by
key, rather than the strings themselves. We call thesedictionary lenses. Here is a dictionary lens that has the
desired behavior for the composers example:

let comp = key ALPHA . copy ", "
. del (YEARS . ", ")
. copy ALPHA

let comps = "" | <comp> . ("\n" . <comp>) *

Compared to the previous version, the two occurrences ofcomp are marked with angle brackets, indicating that
these subexpressions are the reorderable chunks, and the firstcopy at the beginning ofcomp has been replaced
by the special primitivekey . The lenskey ALPHA copies strings just likecopy ALPHA, but also specifies
that the matched substring is to be used as the key of the chunkin which it appears—i.e., in this case, that the
key of each composer’s entry is their name.

The association induced by keys approximates the association that would be obtained using explicit prove-
nance tokens. Indeed, when the keys are unique and when the view update does not modify the names, the two
coincide. The idea of using keys to guide view update is not new: similar approaches have been studied in the
relational setting [17]. However note that the “keys” used in dictionary lenses are not required to be keys in the
strict database sense. When several pieces of the view have the same key, theput function pulls chunks out of
the dictionary in the order that they originally appeared inthe source. This gives the option of obtaining other
useful update policies via the choice of key. For example, ifa put function that operates by position is desired,
it can be programmed as a lens whose key component returns a constant.

Another way to control the update policy embodied in a dictionary lens is via the definition of chunks. Many
examples can be processed using one level of chunking, as in the composer lens. But chunks may also be nested,
which has the effect of stratifying matching into levels: top-level chunks are matched globally across the entire
string, subchunks are aligned locally within each chunk, and so on. This is useful in cases where the source has
nested structure—e.g., it is used in a lens for LaTeX sources.

We have used dictionary lenses to build lenses for a variety of textual formats including vCard, CSV, and
XML address books, iCal and ASCII calendars, BibTeX and RIS bibliographic databases, LaTeX documents,
iTunes libraries, and protein sequence data represented inthe SwissProt format and XML. These examples
demonstrate that a simple notion of implicit provenance formulated using keys is capable of expressing many
useful update policies. Current work is focused on an extension to key matching that uses “fuzzy” metrics such
as edit distance to align chunks. This relaxed form of matching is useful when processing data with no clear key
such as documents, and for handling cases where the update changes a key. We are also studying primitives that
incorporate explicit metadata (e.g., source string locations) into the keys, and on developing dictionary lenses
for richer structures such as trees and graphs.
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m2

m4

m3

m1 m1 : G(i, c, n) → B(i, n)
m2 : G(i, c, n) → U(n, c)
m3 : B(i, n) → ∃c U(n, c)
m4 : B(i, c) ∧ U(n, c) → B(i, n)

Figure 2: Example collaborative data sharing system for bioinformatics sources. For simplicity, each peer
(PGUS , PBioSQL, PuBio) has one relation. Schema mappings, given at the right, are indicated by labeled arcs.

3 ORCHESTRA

ORCHESTRA is a collaborative data sharing system(abbreviated CDSS) [22], i.e., a system for data sharing
among heterogeneous peers related by a network of schema mappings. Each peer has a locally controlled and
edited database instance, but wants to ask queries over related data from other peers as well. To achieve this,
every peer’s updates are translated and propagated along the mappings to the other peers. However, thisupdate
exchangeis filtered by trust conditions, expressing what data and sources a peer judges to be authoritative,
which may cause a peer to reject another’s updates. In order to support such filtering, updates carryprovenance
information. ORCHESTRA targets scientific data sharing, but it can also be used for other applications with
similar requirements and characteristics.

Figure 2 illustrates an example bioinformatics CDSS, basedon a real application and databases of interest
to affiliates of the Penn Center for Bioinformatics. GUS, theGenomics Unified Schema, contains gene ex-
pression, protein, and taxon (organism) information; BioSQL, affiliated with the BioPerl project, contains very
similar concepts; and a third schema, uBio, establishes synonyms and canonical names for taxa. Instances of
these databases contain taxon information that is autonomously maintained but of mutual interest to the others.
Suppose that a BioSQL peer,PBioSQL, wants to import data from peerPGUS , as shown by the arc labeledm1,
but the converse is not true. Similarly, peerPuBio wants to import data fromPGUS , along arcm2. Addition-
ally, PBioSQL andPuBio agree to mutually share some of their data: e.g.,PuBio imports taxon synonyms from
PBioSQL (via m3) andPBioSQL uses transitivity to infer new entries in its database, via mappingm4. Finally,
each peer may have a certaintrust policyabout what data it wishes to incorporate: e.g.,PBioSQL may only trust
data fromPuBio if it was derived fromPGUS entries. The CDSS facilitates dataflow among these systems,using
mappings and policies developed by the independent peers’ administrators.

The arcs between peers are sets oftuple-generating dependencies(tgds). Tgds are a popular means of
specifying constraints and mappings [11, 10] in data sharing, and they are equivalent to so-calledglobal-local-
as-viewor GLAV mappings [16, 21]. Some examples are shown in the right part of Figure 2. For instance,m1

says that, if there is a tuple inG about an organism with idi, canonical namec and namen, then an entry(i, n)
should be inserted inB. Another mapping,m4, ensures that, if there is an entry inB associating idi with a
namec, and - according toU - n is a synonym ofc, then there is also an entry(i, n) in B. Observe thatm3 has
an existential variable. For such mappings, update exchange, also involves inventing new “placeholder” values,
called labeled nulls. Figure 3(a) illustrates update exchange on our running example: assuming that the peers
have the local updates shown on the top, (where ‘+’ signifies insertion), the update translation constructs the
instances shown on the bottom (wherec1, c2, c3 are labeled nulls).

3.1 Using Provenance for Trust Policies

In addition to schema mappings, which specify the relationships between data elements in different instances,
a CDSS supportstrust policies. These express, for each peerP , what data from update translation should be
trusted and hence accepted. Some possible trust conditionsin our CDSS example are:

• PeerPBioSQL distrusts any tupleB(i, n) if the data came fromPGUS , and trusts any tuple fromPuBio.
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Figure 3: Example of update exchange and resulting provenance graph

• PeerPBioSQL distrusts any tupleB(i, n) that came from mapping(m4) if n 6= 2.

Since the trust conditions refer to other peers and to the schema mappings, the CDSS needs a precise description
of how these peers and mappings have contributed to a given tuple produced by update translation, i.e.,data
provenance. Trust conditions need a more detailed provenance model than why-provenance [6] and lineage [9,
1], as explained in [17]. Informally, we need to know not justfrom which tuples a tuple is derived, but alsohow
it is derived, including separate alternative derivationsthrough different mappings.

Figure 3(b) illustrates the main features of our provenancemodel with a graphical representation of the
provenance of tuples in our running example (a more formal description can be found in [17, 18]). The graph
has two kinds of nodes: tuple nodes (rectangles), and mapping nodes (ellipses). Arcs connect tuple nodes to
mappings that apply to them, and mapping nodes to tuples theyproduce. In addition, we have nodes for the
insertions from the local databases. This “source” data is annotated with its own id (unique in the system)
p1, p2, . . . etc. (called aprovenance token), and is connected by an arc to the corresponding tuple entered in the
local instance.

Note that, when the mappings form cycles, it is possible for atuple to have infinitely many derivations,
as well as for the derivations to be arbitrarily large; nonetheless, this graph is a finite representation of such
provenance. From the graph we can analyze the provenance of,say,B(3, 2) by tracing back paths to source
data nodes — in this case through(m4) to p1 andp2 and through(m1) to p3. This way, we can detect when
the derivation of a tuple is “tainted” by a peer or by a mapping, i.e., if all its derivations involve them, or not, if
there are alternative derivations from trusted tuples and mappings. For example, distrustingp2 andm1 leads to
rejectingB(3, 2) but distrustingp1 andp2 does not.

3.2 Using Provenance for Incremental Update Exchange

One of the major motivating factors in our choice of provenance formalisms has been the ability toincrementally
maintainboth the data instances at every peer and the provenance associated with the data. Similarly to the case
of trust conditions, the provenance model of ORCHESTRAis detailed enough for incremental maintenance, while
lineage [9, 1] andwhy-provenance[6] are not, intuitively because they don’t identify alternative derivations of
tuples. We represent the provenance graphtogetherwith the data instances, using additional relations (see [17]
for details). Schema mappings are then translated to a set ofdatalog-like rules (the main difference from standard
datalog being thatSkolem functions are used to invent new values for the labeled nulls). As a result, incremental
maintenance of peer instances is closely related to incremental maintenance of recursive datalog views, and
some techniques from that area can be used. Following [20] weconvert each mapping rule (after the relational
encoding of provenance) into a series ofdelta rules.
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For the case of incremental insertion, the algorithm is simple and analogous to the incremental view main-
tenance algorithms of [20]. Incremental deletion is more complex: when a tuple is deleted, we need to decide
whether other tuples that were derived from it need to be deleted; this is the case if and only if these derived
tuples have no alternative derivations from base tuples. Here, ORCHESTRA’s provenance model is useful in
order to identify tuples that have no derivations and need tobe deleted. A small complication comes from the
fact that there may be “loops” in the provenance graph, such that several tuples are mutually derivable from one
another, yet none are derivable from base tuples. In order to“garbage collect” these no-longer-derivable tuples,
we can also use provenance, to test whether they are derivable from trusted base data; those tuples that are not
must be recursively deleted following the same procedure.

Revisiting the provenance graph of Figure 3(b), suppose that we wish to propagate the deletion of the tuple
B(3, 5). This leads to the invalidation of mapping nodes labeledm3 andm4. Then, for the tuples that have
incoming edges from the deleted mapping nodes,U(5, c1) has to be deleted, because there is no other incoming
edge, while forB(3, 2) there is an alternative derivation, fromG(3, 5, 2) through(m1), and thus it is not deleted.
We note that a prior approach to incremental view maintenance, theDRed algorithm [20], has a similar “flavor”
but takes a more pessimistic approach. Upon the deletion of aset of tuples,DRed will pessimistically remove
all tuples that can be transitively derived from the initially deleted tuples. Then it will attempt to re-derive the
tuples it had deleted. Intuitively, we should be able to be more efficient thanDRed on average, because we can
exploit the provenance trace to test derivability in a goal-directed way. Moreover,DRed’s re-derivation should
typically be more expensive than our test for derivability,because insertion is more expensive than querying,
since the latter can useonly the keys of tuples, whereas the former needs to use the complete tuples; when these
tuples are large, this can have a significant impact on performance. Experimental results in [17] validate this
hypothesis.

In the future, we plan to add support for bidirectional propagation of updates over mappings. In this case,
we have to deal with a variation of the view update problem, and we expect provenance information to be useful
in order to identify possible update policies for the sources anddynamicallycheck if they have side-effects on
the target of the mappings.

4 Discussion

These case studies describe some first steps towards applying provenance to problems related to data replica-
tion. In particular, they demonstrate how tracking provenance, either implicitly as in lenses or explicitly as
in ORCHESTRA, can improve solutions to traditionally challenging problems such as view update and view
maintenance.

There is burgeoning interest in provenance, and more sophisticated models are being actively developed.
Whereas early notions such aslineage[9] and why-provenance[6] only identified which source values “con-
tribute to” the appearance of a value in the result of a query,more recent models [7, 18] also describehow
those source values contributes to the value in the result. We believe that as these richer models are developed,
they will increasingly be applied at all levels of systems including in mechanisms for creating, maintaining, and
updating views, for debugging schema mappings [7], and for curating and synchronizing replicated data.
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Program Slicing and Data Provenance

James Cheney
University of Edinburgh

Abstract

Provenance is information that aids understanding and troubleshooting database queries by explaining
the results in terms of the input. Slicing is a program analysis technique for debugging and understand-
ing programs that has been studied since the early 1980s, in which program results are explained in
terms of parts of the program that contributed to the results. This paper will briefly review ideas and
techniques from program slicing and show how they might be useful for improving our understanding of
provenance in databases.

1 Introduction

The result of a query could be considered “incorrect” in a number of ways: the input data might be erroneous; the
query might contain incorrect data values; or the query itself might be misleading or subject to misinterpretation.
For example, consider the queriesQ1, Q2, Q3:

Q1 SELECT Name, Height FROM People WHERE Name = ’James’
Q2 SELECT Name, ’200’ AS Height FROM People WHERE Name = ’James’
Q3 SELECT P.Name, Q.Weight AS Height

FROM People P, People Q
WHERE P.Name = ’James’ AND Q.Name = ’Bob’

Suppose that each of these queries returns the same record (Name:James, Height:200) when run against some
databaseDB, having a table with schema People(Name, Height, Weight). We might interpret this result as
saying that the person James has height 200cm; this happens to be incorrect if ‘James’ refers to the author of this
article. However, in the first case, the error is in theoriginal data; in the second case, the error is in thequery;
and in the third case, the error is the mismatch between the user’s interpretationof the query result and what the
query actually says. Of course, there are many other possible sources of error or misinterpretation, such as units
of measure (e.g. centimeters versus inches) which we will not consider here.

An expert user who is familiar with the semantics of the querylanguage and who has access to the database
can, with some effort, trace erroneous query results to the underlying data in the input, and perhaps “clean” or
repair the errors. A lot of recent research has been undertaken to automate the expensive process of correcting
errors (or reconciling inconsistencies) in databases, often calleddata cleaning[8]. Automatic data cleaning
works best when there is a clear, formal definition of “correct” or “consistent” data; in practice, correctness is

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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often taken to be consistency with keys, functional dependencies, or other database constraints. However, it is
usually left to the user to determine which constraints characterize “clean” data.

The other problems of misformulation or misinterpretationof a query are more difficult to detect and correct.
This problem is compounded by barriers between end-users and databases in typical systems. For example, in
a typical Web application, queries are generated by middleware based on user input from a form, so the user
who must interpret the results of the query is often not the author of the query, and may not have direct access
to either the query or database. Thus, from such a user’s point of view, the database (and the overall system) is
a “black box” that accepts form input and produces results, which are presented as bare assertions without any
supporting explanation orevidencethat could be used to decide whether the results are trustworthy or not or
whether the query accurately reflects the user’s interpretation of the results.

There are, of course, many possible ways to bridge this gap. Previous work onprovenancein databases
(see, for example, [9] for an overview) has sought to providesuch explanations, for example to answer questions
about a query result such as “Why was this record part of the result?” or “Where in the input database did this
value come from?” In this article, we consider provenance tobe any information that explains how the results
were obtained from the underlying database. However, this informal definition begs the questions: just whatis
an explanation, and what makes one explanation preferable to another?

A number of answers have been proposed in previous work on provenance. For example, in approaches
such as Cui, Widom and Wiener’slineage[6] and Buneman, Khanna and Tan’swhy-provenance, an explanation
(called “witness” in [4]) for the presence of a recordt in the output of a queryQ run on databaseDB is a subset
DB′ of the records inDB such thatt ∈ Q(DB′). Moreover, there is a “best” explanationDB′ is obtained by
combining all of theminimalexplanations. A related approach calledwhere-provenance[4] records the source
locations in the input from which output data were copied. Most of these definitions are sensitive to the syntax
of the query, thus the provenance may be altered by query rewriting. Minimal why-provenance is insensitive to
query rewriting, but it appears difficult to extend beyond monotone (SELECT-FROM-WHERE-UNION) queries.
In particular, features such as negation, grouping, and aggregation are problematic for these techniques.

However, databases are certainly not the only setting in which it is important to be able to explain the
behavior of a large system. This is a central issue in software engineering, security, and many other areas.
Therefore it may be worthwhile to consider whether ideas or techniques in these other branches of computer
science can be transferred to the database and data provenance settings.

Program slicingis a well-explored technique in software engineering. Intuitively, program slicing attempts
to provide a concise explanation of a bug or anomalous program behavior, in the form of a fragment of the
program that shows only those parts “relevant” to the bug or anomaly. There seems to be a compelling analogy
between program slicing and data provenance, since most approaches to the latter propose to explain part of the
result of a query using a “relevant” part of the input database. In this article, we explore this analogy and discuss
a form of provenance based on ideas from program slicing and related concepts such asdependency analysis.

In the rest of this article, we provide some background discussion of dependency analysis and program slic-
ing (Section 2), show how similar ideas can be used to developa fine-grained notion of dependency provenance
(Section 3), and conclude by discussing some research questions for future work (Section 4). We focus on
high-level exposition rather than technical details whichcan be found in a recent paper [5].

2 Program slicing background

Consider the straight-line program fragment shown in Figure 1(a). If we execute this program in a context where
initially x = 1, y = 2, z = 3, w = 4, then the finalw-value of the program will bew = 23. If we were expecting
a different result value forw, such as 17, then we might like to know what parts of the program are responsible.
To diagnose the problem, it would be helpful to highlight a subset of the statements which were relevant to the
final result ofw, and ignore the other statements. Informally, aslice is a subset of the statements of the program
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x = y + 2 * z;
y = z + 3 * w;
z = w - 4 * x;
w = x + y;
y = z + 3 * w;
z = w - 4 * x;

(a) Program

x = y + 2 * z;
y = z + 3 * w;
...
w = x + y;
...
...

(b) w-slice

x = y + 2 * z;
...
...
...
...
...

(c) x-slice

x = y + 2 * z;
y = z + 3 * w;
z = w - 4 * x;
w = x + y;
y = z + 3 * w;
...

(d) y-slice

x = y + 2 * z;
y = z + 3 * w;
...
w = x + y;
...
z = w - 4 * x;

(e)z-slice

Figure 1: Straight-line program and slices with respect tow, x, y, andz

if (x == 0) {
y = z + w;
x = 10;
w = y + 1;

} else {
y = x + w;
x = x - 1;
w = 5;

}

(a) Program

if (x == 0) {
y = z + w;
...
w = y + 1;

} else {
...
...
w = 5;

}

(b) Staticw-slice

if (x == 0) {
...
...
...

} else {
...
...
w = 5;

}

if (x == 0) {
y = z + w;
...
w = y + 1;

} else {
...
...
...

}

(c) Dynamicw-slices forx = 0, x 6= 0

Figure 2: Conditional program with static and dynamic slices with respect tow

that are relevant to some part of the output. Figure 1(b) shows a slice of the program with respect tow; we have
replaced the statements that do not “contribute” to the finalvalue ofw with ellipses. Similarly, Figure 1(c)–(e)
depict slices with respect tox, y, andz.

Conditional expressions make the slicing problem slightlymore interesting. For example, consider Fig-
ure 2(a). Since conditionals introduce the possibility of having code in the program that is not executed during a
particular run, we distinguish between static and dynamic slices; the former cannot take into account the values
actually encountered at run time. Astatic slicefor this program with respect tow includes statements in both
branches because we do not know which branch will be taken; see Figure 2(b). In a dynamic slice, we may omit
all of the code in the branch that is not taken; for example, depending on whether the initial value ofx is zero or
nonzero, the dynamic slice forw would be as shown in the left or right of Figure 2(c), respectively.

It is, of course, trivial to find at least one program slice: the program itself. However, the goal of slicing
is to aid understanding a large and complex program by identifying a small, and hopefully easy-to-understand,
subset of program points. As with most interesting program properties, computing minimal slices (whether static
or dynamic) is undecidable; it is intractable even if we restrict to programs with conditionals and assignment
but without while-loops or recursion. Thus, in practice, program slicing techniques attempt to conservatively
approximate the minimal slice.

Slicing captures an intuitive debugging process used by experienced programmers [12]. Since its introduc-
tion by Weiser [11], both static and dynamic program slicinghave been investigated extensively [10]. Subse-
quent research has identifieddependenceas a key concept in slicing and a number of related program analysis
techniques [1]. In program analysis, dependence information describes how parts of a program, such as vari-
ables or control flow points, affect other parts. This information is valuable because it can be used to predict
how the program will behave statically before execution or to understand how the program actually behaved
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after execution. Dependences are often classified intodata dependences, or dependences on data from which an
object was computed, andcontrol dependences, or dependences on data that affected the flow of control leading
to the computation of an object.

While the majority of research on slicing has considered imperative (C) or object-oriented paradigms, slicing
techniques have also been adapted to declarative (functional or logic) programming paradigms which are closely
related to database query languages such as SQL.

3 A slicing approach to provenance

In databases, it is usually thedata that is large and poorly understood, while the query is relatively small.
Previous work on data provenance has often defined provenance as a set of “parts” of the input (e.g. fields or
records) that “explains” a part of the output. There is a compelling analogy between program slicing, which
uses part of a program as a concise “explanation” for part of the output, and data provenance, which uses part
of the database to explain part of the output. This analogy suggests that we may be able to transfer ideas and
techniques for program slicing into the database and data provenance setting. We explore this idea in the rest of
the article.

Recall the queriesQ1, Q2, Q3 from the introduction. Suppose we run each of them on the input database
consisting of the table People shown in Figure 3. This database contains just three entries. When run against
this table, queriesQ1–Q3 produce produces exactly one record, namely (James, 200).

We now might like to know: What parts of the input does the Height field in this record depend on? There
are many possible answers, depending on how we interpret theterm “depend”. One natural notion is to consider
the how a change to each part of the input affects the output. We say that a part of the outputdepends ona part
of the input if changing the input partmayresult in a change to the output part. Thus, as in program slicing, we
need to consider not just what actually did happen but also what might have happened: how would the output
change if the input were slightly different?

We consider three kinds of dependences: dependences of output relations, records, or fieldson field values
in the input. Consider a queryQ and input databaseI and records ∈ I with field B. We say that the output
relationdepends ons.B if changing the value ofs.B may cause the output to change in any way. We say that a
recordr ∈ Q(DB) depends ons.B if changing the value ofs.B may delete inr from the output. Finally, we
say that the field valuer.A in the outputdepends ons.B in the input if there is some way to change the value of
s.A that either deletesr from the output or changes the value ofr.A. Thedependency provenanceof r.A is the
set of all input fieldss.B on whichr.A depends on. Since the dependency provenance of a part of the input is a
subset of fields of the input, we can think of it as being adata sliceof the input in which irrelevant parts not in
the dependency provenance are elided.

We want to emphasize that this is only an informal definition but that it can be made precise and generalized;
however, here we will only illustrate the idea through examples. Recall the example from the introduction. Fig-
ures 4(a–c) show data slices of the input datau1.Height for queriesQ1–Q3. ForQ1, the dependency provenance
of u1.Height consists oft1.Name andt1.Height. The value ofu1.Height was copied fromt1.Height, and the
output also depends ont1.Name, because changing this value would makeu1 disappear from the output. For
Q2, however, as shown in Figure 4(b),u1 does not depend ont1.Height; the value 200 was provided by the
query, not copied from the input. It does still depend ont1.Name field for the same reason asQ1. For Q3, as
shown in Figure 4(c),t1.Height does not depend ont1.Height in the input, but itdoesdepend ont3.Name and
t3.Weight.

Dependency provenance is clearly similar in some respects to previous approaches such as why-provenance,
where-provenance and lineage. In particular, where-provenance (that is, the input field from which an output
field was “copied”) appears to be included in the dependency provenance. Moreover, for conjunctive queries like
the above, the lineage (that is, the input records that “contributed” in some way to an output record) appears to
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People
id Name Height Weight
t1 James 200 190
t2 Alice 160 150
t3 Bob 204 200

=⇒
id Name Height
u1 James 200

Figure 3: Input data and result of running queriesQ1, Q2, andQ3

id Name Height Weight
t1 James 200 · · ·

...
(a)Q1

id Name Height Weight
t1 James · · · · · ·

...
(b) Q2

id Name Height Weight
t1 James · · · · · ·

t3 Bob · · · 200
...

(c) Q3

Figure 4: Data slices with respect tou1.Height and queriesQ1, Q2, andQ3

include all of the records mentioned in the dependency provenance. Finally, why-provenance seems very closely
related, but a direct comparison is difficult because the original paper [4] used a semi-structured, deterministic
tree model quite different from the relational model we use here. We are glossing over many details here;
characterizing the precise relationship between these approaches (and other recent proposals for data provenance
in queries [7] and updates [3, 2]) is beyond the scope of this article.

Now we consider a second example, a queryQ4 with grouping and aggregation:

SELECT Name, AVERAGE(Salary)
FROM Employees
WHERE Year >= 2005
GROUP BY Name

This query returns the names and average salaries since 2005of all employees; a sample input database and
result is shown in Figure 5. Note that Alice has no entries since 2004 so does not appear in the result.

In the previous example, we considered only dependences of output fields on input fields; the relation and
record dependences are not very interesting for this example. Relation and record dependences become more
important for queries such asQ4 involving grouping and aggregation.

Figures 6(a–c) show the data slices for the whole output, record u1 (andu1.Salary), and fieldu1.Name,
respectively. The whole output depends on everything in theinput except for Alice’s salary fields; changing
them cannot affect the output, but other changes may. The dependency provenance ofu1 is shown in Figure 6(b).
The presence of recordu1 clearly depends on all of the data int2 andt3; changing any of these fields may affect
the average, which would replaceu1 with some other record (James, avg′). Recordu1 also depends ont1.Year
andt6.Name. The reason is that changing ‘2004’ to ‘2008’ int1 or changing ‘Bob’ to ‘James’ int6 would affect
the average associated with James in the output. Coincidentally, the provenance ofu1.Salary turns out to be the
same as the provenance ofu1, and the reasoning is similar. Finally, in Figure 6(c), we see thatu1.Name does
not (directly) depend on anything in the input. Of course, the presence ofu1 does depends on several parts of
the input, sou1.Name depends “indirectly” on these parts as well, but thereis no single field in the input that we
can change that will changeu1.Name in the result.
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Employees
id Name Salary Year
t1 James 1000 2004
t2 James 1100 2005
t3 James 1200 2006
t4 Alice 1900 2003
t5 Alice 2000 2004
t6 Bob 1000 2006

=⇒

id Name Salary
u1 James 1150
u2 Bob 1000

Figure 5: Input data and result of running queryQ4

id Name Salary Year
t1 James 1000 2004
t2 James 1100 2005
t3 James 1200 2006
t4 Alice · · · 2003
t5 Alice · · · 2004
t6 Bob 1000 2006

(a) For whole output

id Name Salary Year
t1 · · · · · · 2004
t2 James 1100 2005
t3 James 1200 2006
t6 Bob · · · · · ·

...
(b) Foru1 andu1.Salary

id Name Salary Year
...

(c) Foru1.Name

Figure 6: Data slices forQ4

4 Conclusions

We believe that the key question any approach to provenance must answer is what the provenance information
explainsabout a query result in the context of the input data and querysemantics that is not conveyed by
the query result value itself. Previous approaches, such aswhy-provenance, where-provenance, and lineage
have been based on intuitive notions of explanations such asidentifying the source data that “influenced” or
“contributed to” a part of the output or from which a part of the output was “copied”. However, corresponding
semantic correctness properties relating these forms of provenance to the actual semantics of a query have proven
elusive or hard to generalize beyond monotone queries.

We have outlined one approach, dependency provenance, which is based on well-understood techniques
from programming languages such as dependency analysis andprogram slicing. We believe this approach
captures intuitions similar to those motivating other provenance techniques, but may be easier to generalize to
the full range of features found in databases, including grouping, aggregation and stored procedures. However,
this work is still relatively speculative and more researchis needed to determine the feasibility of computing (or
conservatively approximating) dependency provenance in practice and scale. Nevertheless, there appears to be
a deep connection between program slicing and data provenance that we may be able to exploit by transferring
ideas, tools, and techniques from programming languages research.
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Abstract

Knowing the origin of data (i.e., where the data was copied orcreated from)—itsprovenance—is vital
for assessing the trustworthiness of contemporary scientific databases such as UniProt [16] and SWISS-
PROT [14]. Unfortunately, provenance information must currently be recorded manually, by added
effort of the database maintainer. Since such maintenance is tedious and error-prone, it is desirable to
provide support for recording provenance in the database system itself. We review a recent proposal for
incorporating such support, as well as its theoretical properties.

1 Introduction

Chris, a fan of foreign and domestic beers, constructs a databaseR(beer, kind, origin) listing beers, their kind,
and their origin. He proceeds by manually inserting tuples,as well as by copying from the existing general beer
databaseS(beer, kind, origin), and fromT (beer, origin), a database that specializes in lagers.

insert into R values (’Duvel’, ’Strong ale’, ’Belgium’); (1)

insert into R (select ∗ from S where origin = ’USA’); (2)

insert into R (select T.beer, ’Lager’ as kind, T .origin from T ); (3)

When inspecting the result, Chris notices thatR reportsStella Artois as an American beer, while it is in fact a
Belgian one. A friend tells Chris that this error is probablydue to databaseT , which is known for its poor data
quality. Perhaps Chris should check the other records inserted fromT for their correctness?

Although the scenario above is clearly a simplification for the purpose of illustration, many contemporary
scientific databases—sometimes referred to ascurated databases—are constructed in a similar manner by a
labor-intensive process of copying, correcting, and annotating data from other sources. The value of curated
databases lies in their organization and in the trustworthiness of their data. As illustrated above, knowing where
data was copied or created from—itsprovenance—is particularly important in assessing the latter.

In hindsight, Chris could simply have recorded provenance by adding an extra attributeprov to R and by
issuing slightly different update statements. For instance, update (3) would have become

insert into R (select T.beer, ’Lager’ as kind, T .origin, ’db T’ as prov from T ). (4)

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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This only records provenance of whole tuples, however, and afiner granularity is often required. For in-
stance, the presence of(Stella Artois, lager,USA, db T) in R would designateT as the provenance of the tuple
(Stella Artois, lager,USA) even though this tuple does not literally occur inT . After all, only Stella Artois and
USA were copied fromT , but lager was inserted by Chris. On the other hand, recording only the provenance of
data values (likeStella Artois, lager, . . . ) is often not sufficient either. For instance, knowing that all data values
in (McChouffe,Scottish ale,Belgium) were copied fromS does not necessarily imply that all of these data val-
ues came from the same record inS. As such, it is desirable to record provenance at all levels in a database (data
values, tuples, and even whole tables). While it is possibleto do so manually by adding enough extra attributes
to R and by suitably rewriting the original updates (1), (2), and(3), this approach quickly becomes very tedious,
time-consuming, and error-prone, especially whenR contains many attributes. Also, the importance of retaining
detailed provenance information is often not appreciated until it is too late—perhaps months or years after the
data was originally copied into the database. In this respect, it seems preferable to let the user write queries and
updates as before, and to let the database system record provenanceautomatically.

Before provenance recording can be automated, however, it is imperative to have a good explanation of the
meaning of queries and updates with regard to provenance. This meaning may be obvious for the examples
given so far, but what about updates such as the following?

insert into R (select S.beer, ’stout’ as kind, S.origin from S where S.kind = ’stout’) (5)

Is stout created by Chris or copied fromS? Both explanations seem reasonable due to the condition that
S.kind = ’stout’. A similar situation occurs for updates involving joins:

insert into R (select S.beer, S.kind, T.origin from S, T where S.beer = T.beer and S.origin = T.origin;) (6)

Are thebeer andorigin attributes copied fromS or fromT? Again, both explanations seem reasonable, but it is
unclear which explanation is to be preferred.

In this article, we will follow Wang and Madnick [17] and Bhagwat et al. [2] and definestout to be created
by Chris in update (5) becausestout appears as a constant in the select clause instead ofS.kind. Moreover, we
definebeer to be copied fromS in update (6) because the select clause listsS.beer and notT.beer. Similarly,
origin is taken to be copied fromT because the select clause listsT.origin and notS.origin.

While this provenance semantics is simple and natural, it may not be the particular provenance that a database
curator had in mind for the above updates. Nevertheless, this simple provenance semantics has been shown
expressively complete: for every query or updateO that manually records provenance (like (4) above) there
exists a normal query or update (like (1), (2), and (3) above)for which the provenance semantics is equivalent
to O, provided thatO satisfies certain soundness criteria discussed in Sections2 and 3. As such, if we use this
semantics to record provenance automatically, we do not lose flexibility with regard to recording provenance
manually. We feel that this property strongly argues in favor of the proposed provenance semantics as the
“right” basis for recording provenance automatically.

We should note that although we will restrict ourselves in what follows to the provenance semantics for (a
fragment of) SQL queries and updates operating on classicalflat relations and only consider provenance at the
data value and tuple level, the topic was originally studiedfor queries and updates operating onnestedrelations,
where provenance is recorded at all levels (data values, tuples, and tables) [5]. We refer the interested reader to
Buneman et al. [6] for a full exposition.

To put this article in the right context, we should also mention the other forms of provenance recently studied
in databases. First, while we are interested in recordingwheredata is copied or created from, thewhy-provenance
approach of Cui et al. [6] and Buneman et al. [4] wishes to identify, for each output tuplet of a query, the set of
input tuples that causedt to be output. More recently, why-provenance has been refinedusing program slicing
techniques by Cheney et al. [8]. Thehow-provenance approach of Green et al. [7] is interested in recording how
t was computed from the input (e.g.,t could be the result of joining two input tuples). Finally, there has also
been interest onqueryingprovenance and other forms of annotations rather than recording it [12, 11].
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beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois USA c4 c5 c6

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois Belgium c4 ⊥ ⊥

Figure 1: Color propagation for query (7). On the left isclr(T ), the colored version of tableT , and on the right
is the colored result.

2 Provenance Recording for Queries

Let us first consider provenance recording for queries. Updates will be considered in Section 3. For ease of
exposition we restrict ourselves to simple SQL queries of the following form, excluding subqueries; grouping;
and aggregation.

Q ::= select ri.∗ from R r, . . . , Rm rm where ϕ

| select a as A, . . . , an as An from R r, . . . , Rm rm where ϕ

| Q union Q

Here,ϕ is any valid where-clause without subqueries and everyai is either a constant data value or an expression
such asri.C that refers to an attribute of one of the tuple variables. Ourapproach can be generalized to deal
with subqueries, grouping, and the connectivesintersect andexcept, but aggregation presents some problems,
as we will see. Note that we only allow the wildcard∗ to be applied to a single tuple variable; selections such
asselect ∗ from R, S that return all attributes of a cartesian product can alwaysbe rewritten to mention these
attributes explicitly in theselect clause.

The provenance semantics. Let us collectively refer to the individual data values and tuples in a database
as the database’sitems. To define the provenance semantics, we use a formalization based on the “tagging” or
“annotation propagation” approach of Wang and Madnick [17]and Bhagwat et al. [2]. In this approach, each
input item is assumed to have an identifying “color” which serves as an abstraction of a system identifier or
some other means of referring to part of a database. We can then describe how queries and updates manipulate
provenance by means of functions mapping such colored databases to colored databases in which colors are
propagated along with their item during computation of the output. The provenance of an item in the output
is simply the item in the input with the same color. To illustrate, consider the tableT (beer, origin) from the
Introduction with tuples{(Leinenkugel,USA), (Stella Artois,USA)} in which the data values and the tuples are
annotated with colorsc1, c2, . . . as shown at the left of Fig. 1. There,beerc andoriginc store the colors of the
data values in thebeer andorigin attributes, andtupc stores the colors of the tuples. As such,Leinenkugel is
colored byc1, the first occurrence ofUSA is colored byc2, the first tuple is colored byc3, and so on. We could
then define the colored semantics of the SQL query

(select t.∗ from T t where t.beer <> ’Stella Artois’)

union (select t.beer, ’Belgium’ as origin from T t where t.beer = ’Stella Artois’)
(7)

to mapT to the colored table at the right of Fig. 1. This defines the provenance ofLeinenkugel in the output to
be the corresponding data value inT , the provenance of the tuple(Leinenkugel,USA) to be the provenance of
the first tuple inT , and so on. The “empty” or “blank” color⊥ indicates that an item is introduced by the query
itself. Hence, this particular colored semantics takes theview that the secondselect subquery constructs a new
tuple rather than copying an existing one.

Intuitively, we will take the view that queries either construct new items or copy complete items from the
input. As such, all data values resulting from constant construction as inselect ’USA’ as origin from T t are
colored⊥, as are the tuples returned by queries such asselect A, B from R whose select clause constructs new
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tuples. All other items, such as the tuples returned byselect t. ∗ from T t, retain their color. This is essentially
the same provenance semantics as that of Wang and Madnick [17] and Bhagwat et al. [2], although they only
consider provenance for data values, not tuples.

In order to elegantly formalize this intuition, notice that, by storing colors as in Fig. 1, it becomes possible
to define functions mapping colored databases to colored tables in SQL itself. For example, if we letclr(T )
denote the colored version of tableT (beer, origin) then the particular colored semantics of query (7) illustrated
in Fig. 1 is defined by

(select t.∗ from clr(T ) t where t.beer <> ’Stella Artois’)

union (select t.beer as beer, ’Belgium’ as origin, t.beerc as beerc, ⊥ as originc, ⊥ as tupc

from clr(T ) t where t.beer = ’Stella Artois’)

(8)

To define our provenance semantics it hence suffices to assign, to each queryQ, a queryP[Q] mapping col-
ored databases to colored tables. It is important to remark that Q andP[Q] operate on different views of the
database:Q operates on the tables without colors (like (7) above), whileP[Q] operates on colored tables (like
(8)). To avoid confusion between the two views, we will rangeover uncolored tables byR,S, andT , and over
their colored versions byclr(R), clr(S), andclr(T ). We refer to the attributes that store normal data values in
clr(R), clr(S), andclr(T ) (like beer andorigin) as thenormal attributesand to the attributes that store colors
(like beerc, originc, andtupc) as thecolor attributes.

Definition 1: The provenance semanticsP[Q] of a queryQ operating on uncolored tables is inductively defined
as follows. LetP[a] denote the blank color⊥whena is a constant, and letP[a] denotet.Ac whena is an attribute
referencet.A with t a tuple variable.

• P[select ri.∗ from R r, . . . , Rm rm where ϕ] :=

select ri.∗ from clr(R) r, . . . , clr(Rm) rm where ϕ;

• P[select a as A, . . . , an as An from R r, . . . , Rm rm where ϕ] :=

select a as A, . . . , an as An, P[a] as Ac
, . . . , P[an] as Ac

n, ⊥ as tupc

from clr(R) r, . . . , clr(Rm) rm where ϕ;

• P[Q1 union Q2] := P[Q1] union P[Q2].

Example 1: To illustrate,P[Q] with Q = select s.beer, ’stout’ as kind, s.origin from S s where s.kind = ’stout’
as in example (5) from the Introduction yields

select s.beer, ’stout’ as kind, s.origin, s.beerc as beerc, ⊥ as kindc, s.originc as originc, ⊥ as tupc (9)

from clr(S) s where s.kind = ’stout’.

Also,P[Q] with Q as in query (7) yields query (8).

Inherent to definition ofP[Q] is that queries that are equivalent under the normal semantics need not be
equivalent under the provenance semantics. For exampleQ1 := select r.∗ from R r is equivalent toQ2 :=
select r.A as A, r.B as B from R r whenR consists only of attributesA andB, butP[Q1] is not equivalent to
P[Q2] as the former retains the tuple colors from the input, while the latter colors all tuples⊥.
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Expressive completeness Let us now see how this provenance semantics compares with the manual approach
to recording provenance. In this respect, note that queriesmapping colored databases to colored tables, such as
(8) above, can also be viewed as beingmanually constructedto record provenance. In other words, we want to
compare the class of queries{P[Q] | Q a query on uncolored databases} with the class of queriesP mapping
colored databases to colored tables. Since we are interested in recordingprovenance, however, we will exclude
from our discussion queriesP such as

select t.∗ from clr(T ) t where t.beerc = c1 (10)

thatqueryprovnenance rather than record it.

Definition 2: A provenance recordingquery is a queryP mapping colored databases to colored tables in which
every where-clauseϕ mentions only normal attributes.

Clearly, (10) is hence not provenance recording. In contrast, P[Q] is always provenance-recording since the
where-clause of a queryQ operating on uncolored tables only mentions normal attributes and sinceP[Q] does
not affect where-clauses.

Can every provenance-recording query be defined in terms ofP[Q] for someQ? The answer is no, for
two reasons. First, due to our view of queries as either constructing new items or copying whole items, it is
impossible forP[Q] to yield something like

select t.beer as beer, t.beerc as beerc, t.tupc as tupc from clr(T ) t (11)

that returns tuples which do not literally occur inT , yet have the same colors as tuples inT . Similarly, it is
impossible forP[Q] to yield something like

select ’USA’ as origin, t.originc as originc, ⊥ as tupc from clr(T ) t (12)

in which data values are given the provenance of data values fromT although the data value itself need not occur
in T . We refer to provenance recording queries that only color output itemsi by color c if i also occurs in the
input as ‘copying’. (See [5, 6] for a full formal definition of this concept).

Second, due to our view that only data values constructed by aconstant expression are colored⊥, it is
impossible forP[Q] to yield something like

select t.beer as beer, ⊥ as beerc, ⊥ as tupc from clr(T ) t (13)

that colors every possiblebeer data value by⊥. Indeed, to simulate (13) by means ofP[Q], Q would have to
mention every possiblebeer value as a constant, of which there are unboundedly many. We call queries that can
color only a finite, bounded number of atoms by⊥ ‘bounded inventing’.

We view the fact thatP[Q] can only define provenance recording queries that are ‘copying’ and ‘bounded
inventing’ as a desirable property: it ensures that the provenance relationship between input and output described
by P[Q] is not arbitrary, but meaningful. After all, one could hardly argue that the provenance relationships
described by (11) and (12) above correspond to the intuitivenotion “is copied fromT ”. Similarly, queries
without aggregation are typically considered as “domain-preserving” in database theory, with limited ability to
create new data values. The bounded inventing property merely ensures that the provenance semantics respects
this view. With regard to the copying and bounded inventing queries, our provenance semantics can be shown
expressively complete:

Proposition 3 (Buneman et al. [5, 6]): For every provenance recording queryP that is copying and bounded
inventing there exists a queryQ mapping uncolored databases to uncolored tables such thatP ≡ P[Q].
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As such, we are ensured that we do not lose flexibility when usingP[Q] to record provenance automatically
instead of recording provenance manually. Of course, in practice we also would like to record provenance for
queries involving aggregation such asselect A, sum(B) from R group by A that fall outside the current frame-
work. Indeed, although we could in principle simply define the provenance of all atomic data values resulting
from sum to be created by the query itself, this causes the provenancesemantics to becomeunbounded invent-
ing. A more satisfying approach than simply defining the results of an aggregation operator to be created by the
query itself could be to recordhowthis result was computed. For example, we could color a data value resulting
from the abovesum aggregation bysum(c1, c2, c3) indicating that it was obtained by applying sum to the set
of data values from the input colored byc1, c2, andc3, respectively. This use ofexpressionsas provenance is
similar to the approach of Green et al. [7], who use semi-ringexpressions to describe the provenance of rela-
tional algebra queries without aggregation. It is also analogous to certain techniques forworkflowprovenance,
as known from the geospatial and Grid computing communities[3, 10, 15]. It is not clear, however, whether and
how our expressive completeness results transfer to this setting.

3 Provenance Recording for Updates

Our discussion of provenance for queries is straightforwardly extended to updates like (2) and (3) from the
Introduction of the forminsert into R Q: the provenance of the inserted items is simply given byP[Q].

Definition 4 (Provenance of query insertion): P[insert into R Q] := insert into clr(R) P[Q].

For instance, for update (3) from the Introduction this yields

insert into clr(R) select t.beer, ’Lager’ as kind, t.origin, (14)

t.beerc as beerc, ⊥ as kindc, t.originc as originc,⊥ as tupc from clr(T ) t.

Updates of the forminsert into R(A, . . . , B) values (d, . . . , d′) like (1) from the Introduction clearly add
newly constructed items toR. We hence define:

Definition 5 (Provenance of value insertion):

P[insert into R(A, . . . , B) values (d, . . . , d′)] :=insert into clr(R)(A, . . . , B,Ac, . . . , Bc, tupc)

values (d, . . . , d′,⊥, . . . ,⊥),

where we assume for ease of exposition thatA, . . . , B comprise all attributes ofR.

The provenance semantics ofdelete statements is also straight-forward, as deleting a tuple also deletes its
provenance.

Definition 6 (Provenance of deletion):P[delete from R where ϕ] := delete from clr(R) where ϕ.

Observe that for the updates considered so far,P[U ] is still ‘copying’ and ‘bounded inventing’. Moreover,
the provenance semantics is still expressively complete with regard to the class of updates from colored databases
to colored databases that manually record provenance, in the following sense. Similar to the case for queries,
we exclude from our discussion updates such asdelete from clr(T ) t where t.beerc = c1 thatqueryprovenance
rather than record it.

Definition 7: A provenance recordingupdate is an update mapping colored databases to colored tables in which
every where-clauseϕ mentions only normal attributes.
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beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois USA c4 c5 c6

beer origin beerc originc tupc

Leinenkugel USA c1 c2 c3

Stella Artois Belgium c4 ⊥ c6

Figure 2: Color propagation for update (15). On the left isclr(T ), the colored version of tableT , and on the
right is the colored result.

Proposition 8: Let V be a provenance recording update of the following form.

U ::= insert into R Q | insert into R(A, . . . , B) values (d, . . . , d′) | delete from R where ϕ.

If V is copying and bounded inventing, then there exists an update U operating on uncolored databases, also of
the above form, such thatV ≡ P[U ].

Let us now considerupdate statements. In this respect, note that updates such as the following intuitively
do not construct new tuples but modify existing ones “in-place”.

update T set origin = ’Belgium’ where beer = ’Stella Artois’ (15)

It hence seems reasonable to define their provenance semantics in a way that agrees with how system identifiers
are preserved in practical database management systems.

Definition 9 (Provenance of updates):P[update R set (A, . . . , B) = (d, . . . , e) where ϕ] := update clr(R)
set (A, . . . , B,Ac, . . . , Bc) = (d, . . . , e,⊥, . . . ,⊥) where ϕ.

For instance, for update (15) above this yields

update clr(T ) set (origin, originc) = (’Belgium’, ⊥) where beer = ’Stella Artois’. (16)

Note that although update (15) and query (7) essentially express the same database transformation on uncolored
tables, their provenance semantics differs significantly.Indeed the query maps the colored table at the left of
Fig. 1 to the colored table at the right of Fig. 1, while the update maps that same table to the colored table at the
right of Fig. 2. In particular, the provenance semantics of the update isnot copying, as the first output tuple is
not identical to the first input tuple, although they are colored the same. The provenance semantics of the update
statement is ‘kind preserving’ however: it will only color an output atom by colorc if the atom also occurs in
the input with colorc; and it will only color an output tuple by colorc if there is a tuple in the input with color
c. We refer to Buneman et al. [5, 6] for a full definition of this concept.

Every copyingV is also kind preserving. As such, the provenance semanticsP[U ] of all updatesU consid-
ered in this article is kind preserving. The provenance semantics isnot expressively complete with regard to the
class of kind preserving and bounded inventing provenance recording updates, however. To see why, suppose
thatR consists only of the attributeorigin, and further suppose that we want to simulate the update

insert into clr(R) (select ’Belgium’ as origin, t.originc as originc, ⊥ as tupc from clr(T ) t), (17)

which is kind preserving, but not copying. (The inserted tuples are colored the same as tuples ofT , but are not
identical.) To simulate this update in terms ofP[U ] for someU , U clearly needs to be aninsert statement itself.
We already know, however, that this implies thatP[U ] is copying; as such it cannot express (17). Nevertheless,
by adding extra update operators it is possible to regain expressive completeness; see Buneman et al [5, 6].
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4 Conclusion

In order to assess the trustworthiness of a database it is vital to know the provenance of its data. Since manually
recording such provenance quickly becomes very tedious, time-consuming, and error-prone, is preferable to let
the user write queries and updates as before, and to let the database system record provenance automatically. In
this respect, it is imperative to have a good explanation of the meaning of queries and updates with regard to
provenance. Fortunately, the intuitive view of queries as either constructing new items or copying whole items
from the input, as well as the intuitive view of updates as modifying items in-place, yields an automatic prove-
nance recording semantics that is guaranteed to be as flexible as recording provenance manually. We conclude
this article by remarking that, while the full provenance semantics presented here remains to be implemented
in practice, preliminary experiments by Bhagwat et al. [2] and Buneman et al. [4] suggest that the overhead
incurred by recording provenance as opposed to not recording it is reasonable.

Acknowledgement We are grateful to Peter Buneman for introducing us to provenance in databases, and for
the very enjoyable collaboration that led to the expressivecompleteness results presented here.
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Issues in Building Practical Provenance Systems
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Abstract

The importance of maintaining provenance has been widely recognized, particularly with respect to
highly-manipulated data. However, there are few deployed databases that provide provenance informa-
tion with their data. We have constructed a database of protein interactions (MiMI), which is heavily
used by biomedical scientists, by manipulating and integrating data from several popular biological
sources. The provenance stored provides key information for assisting researchers in understanding
and trusting the data. In this paper, we describe several desiderata for a practical provenance system,
based on our experience from this system. We discuss the challenges that these requirements present,
and outline solutions to several of these challenges that wehave implemented. Our list of a dozen or so
desiderata includes: efficiently capturing provenance from external applications; managing provenance
size; and presenting provenance in a usable way. For example, data is often manipulated via provenance-
unaware processes, but the associated provenance must still be tracked and stored. Additionally, prove-
nance information can grow to outrageous proportions if it is either very rich or fine-grained, or both.
Finally, when users view provenance data, they can usually understand a SELECT manipulation, but
“why did the bcgCoalesce [1] manipulation output that?”

1 IntroductionOne upon a time, there lived a beautiful (and highly intelligent) researcher. She had a sad life chained to her
lab bench day and night, slaving for her evil Principal Investigator, collecting data and analyzing numbers. One
day a handsome Computer Scientist heard of the researcher’splight and decided to save the damsel in distress.
First he built a program that would measure signal intensityin her experiments. Many more programs followed,
each designed to reduce the tasks performed by the beautiful(and highly intelligent) researcher. The handsome
Computer Scientist dazzled the evil Principal Investigator with the power of his programs and rescued the fair
researcher from her lab bench. Just as they were about to rideinto the sunset, the evil Principal Investigator
popped her warty green face out of the tower and said, “I thinkyou better come back in, I don’t understand how
or where you got these numbers, but they certainly can’t be correct.”

The handsome Computer Scientist laughed and cried, “Slaying this dragon will be easy. I maintained prove-
nance!” Unfortunately, the provenance the handsome Computer Scientist kept was coarse-grained and not easy

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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38



curate
BIND

curate
IntAct

curate
DIP

curate
BioGRID

curate
Delbruek

curate
HPRD

curate
CSB

transform

extract
GO

extract
OrganelleDB

extract
InterPro

extract
OrthoMCL

extract
IPI

extract
PFam

extract
miBLAST

extract
ProtoNet

annotate

merge

(a)

molecule

ID
Wee1

P30291

dataset

name descr

ID

NP_003381

...Prov

Prov

Prov Prov

Prov

nameN

...

transform

curate
HPRD

transform

curate
BIND

PubmedID
15964826

PubmedID
15964826

merge

transform

curate
HPRD

transform

curate
BIND

PubmedID
15964826

PubmedID
15964826

merge

transform

curate
HPRD

transform

curate
BIND

PubmedID
15964826

PubmedID
15964826

merge

transform

curate
HPRD

transform

curate
BIND

PubmedID
15735666

PubmedID
15964826

MBIND MHPRD
MHPRD

MHPRD

MHPRD

MBIND

MBIND

MBIND

(b)

Figure 1: 1(a) The workflow used to
generate MiMI. 1(b) A data item with
provenance from MiMI.

Insert x into T/b2
Copy S/a1/y into T/b1/y
Insert y into T/b2
Copy S/a2 into T/b3
Copy S/a1/x into T/b2/x

(a)

yxyx

a1

S

a2

yyy xxx

b3b1 b2

T

(b)

Figure 2:2(a) The user’s actions onS
andT. 2(b) The provenance links from
T to S. Nodes originally inT are white;
inserted nodes are black and copied
nodes are grey to distinguish user ac-
tions.

Sample Reduction of MiMI Provenance

0
10
20
30
40
50
60
70
80
90

100

S
tr

uc
tu

ra
l

In
h.



P
re

di
ca

te


B
as

ed


In
h.


S

tr
uc

tu
ra

l-
P

re
di

ca
te


In

h.


B
as

ic


F
ac

t.

A
rg

um
en

t
F

ac
t.

A
rg

. F
ac

t,
S

tr
uc

tu
ra

l
In

h.


O
pt

io
na

l
F

ac
t.

O
pt

io
na

l
F

ac
t.,


S

tr
uc

tu
ra

l-

O
R

 F
ac

t.

O
R

 F
ac

t.,


S
tr

uc
tu

ra
l-

P
re

di
ca

te


Reduction Technique

P
er

ce
n

ta
g

e 
o

f 
O

ri
g

n
in

al
 

P
ro

ve
n

an
ce

 S
to

re


S
tr

uc
tu

ra
l I

nh
.

P
re

d
ic

a
te

 B
a

se
d

 In
h

.

S
tr

uc
tu

ra
l-P

re
d

ic
at

e 
In

h
.

B
a

si
c 

F
a

ct
.

A
rg

u
m

e
nt

 F
a

ct
.

A
rg

. F
a

ct
., 

S
tr

uc
tu

ra
l I

nh
.

O
p

tio
n

al
 F

a
ct

.

O
p

tio
n

al
 F

a
ct

., 
S

tr
uc

tu
ra

l-P
re

d
ic

at
e 

In
h

.

O
R

 F
a

ct
.

O
R

 F
a

ct
., 

S
tr

uc
tu

ra
l-P

re
d

ic
at

e 
In

h
.

Reduction
Technique

Figure 3: The storage savings for a
set of reduction techniques applied to
MiMI.

to query with the data itself. The handsome Computer Scientist and beautiful (and highly intelligent) researcher
spent the remainder of their lives toiling to understand what happened to the data.The End.

The moral of this bedtime story: Don’t just maintain provenance, maintaingoodprovenance. Knowing that
we should store provenance information doesn’t mean we actually can, or do, or do it correctly. Even outside of
fairy tales, researchers and scientists still have difficulty understanding what happened to their data, particularly
when the data is heavily manipulated.

We have constructed a database of protein interactions, MiMI [16], by manipulating and integrating data
from several popular biological sources. Figure 1(a) contains the general workflow used to generate MiMI. As
scientists used the data in MiMI, it became apparent that provenance was needed to assist them in understanding
and trusting the data presented. A snapshot of provenance information captured in MiMI is shown in Figure
1(b). While watching researchers use provenance information, we realized that their provenance information
needs more than just a simple capture-store-fileaway approach. In Section 2, we present both required and
recommended features for a database system incorporating provenance information based upon our experience
with MiMI. Section 3 describes current provenance systems in light of these desiderata. In Sections 4 and 5 we
discuss practical implementation options and conclude.

2 Desiderata

In this section, we will outline a set of features, required and recommended, needed for a database to incorporate
provenance.
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2.1 How Much Provenance to Capture

I. Granularity Choice (Required)Allow provenance to be captured and stored at every granularity. Currently
there are two main trends for attaching provenance information: coarse and fine grained. Many workflow
systems that generate provenance records attach provenance information at the coarse-grained file level [2, 12,
13, 14, 15]. Other specialized systems attach provenance atthe fine grain of attribute [4, 6, 7, 8, 11]. Often,
however, systems need a mix of usage. For example, in MiMI, provenance is attached to files, data items and
attributes, as shown in Figure 1(b). When attributes, files and data items are broken up or used out of context,
provenance is especially important at every granularity.

II. Exact Execution Provenance (Required)Record the exact provenance for each specific data item, not
just the general provenance for a “class” of items. For example, attributes and data items within files behave
differently through a given workflow based on data/attribute type, content, etc. The workflow to generate MiMI
is shown in Figure 1(a). If a scientist wishes to know where the Wee1 name attribute came from, pointing to
the workflow used is not enlightening, since via the workflow,that attribute could have come from any number
of external sources, e.g. BIND, HPRD, etc. Instead, we wish to know that theWee1 name attribute came from
BIND and HPRD, while theP30291 ID attribute came only from HPRD. Moreover, while the MiMI.xmlfile
went through a merge process, theP30291 ID attribute never merged with any other information.

III. Provenance Information (Required)Permit variation of the form or content of the provenance informa-
tion. Current provenance systems capture a huge range of information from information about the files used and
produced and the scripts run [2, 12, 13, 14, 15] to user annotations [3, 19]. But what exactly is needed to allow
individuals to utilize the data? In MiMI, we found storing a mix of provenance information the most successful.
For instance, HPRD describes each protein in an XML file, and MiMI’s provenance should reference the exact
XML file used. On the other hand, user annotations, such as thePubMedID (a unique identifier for biology re-
search articles) used to garner the original information should also be kept. In other words, a provenance system
should be flexible enough to store a large range of information as determined by the application.

IV. Capturing Non-automated processes (Required)Provide the ability to capture manipulations that are
performed outside of automated workflows. While capturing the exact execution for every file, data item and
attribute, it is imperative not to miss the actions performed manually by a curator. For instance, in MiMI, because
the identity functions that dictate which proteins to mergeare generated automatically, an expert user will find
a mistake occasionally. The manual correction of this mistake must be reflected in the provenance records.
Automatic capture of workflows alone is not enough.

2.2 Systems Issues

V. Source Data Item Identity (Required)Keep track of your incoming data. No matter what informationis
ultimately retained in the data set or provenance store, there must always be a firm, unbending representation
for data item identity. Consider the problem in MiMI: 232,680 proteins from seven sources are merged into
117,549 proteins. When the merge process takes place, how doyou identify the original components and where
they came from? How do you go backwards to look at the originalproteins? Even specifying that a protein is
from BIND is not enough, since several proteins from BIND canbe merged into one. You cannot trace back any
further without some notion of source data item identity.

VI. Provenance Storage Size (Required)Plan for large provenance store costs. Given the amount of prove-
nance material stored, provenance stores can grow to immense sizes, and easily outstrip the size of the data.
MiMI is 270MB; the associated provenance store is 6GB beforecompression.
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VII. Manipulation Information (Recommended)Maintain detailed manipulation information. Most prove-
nance systems keep track of the scripts or manipulations that have been applied to the data. Some, such as
[14], allow users to modify process order, and change applications to achieve the desired results. However, this
requires an innate knowledge of each process, such asSELECTor bcgCoalese[1]. An alternative approach
would be to maintain information to generate result explanations. Thus, when a user asks, “Why didP30291
from HPRD merge withNP 003381 from BIND?” no innate knowledge of the merge process is required for
the answer; it can be automatically derived based on information in the provenance store.

VIII. Inter-system Provenance (Recommended)Build toward inter-operability of provenance systems. As
systems grow and become interconnected, provenance shouldbe interchangeable. As MiMI has grown in pop-
ularity, it has become a reference to other applications such as PubViz [22]. These systems also attempt to
maintain some notion of provenance. However, they should not be required to store provenance information
found in MiMI. Instead, they should store the provenance associated with their actions, then point to MiMI for
the provenance beyond their borders.

2.3 Usability

IX. User Interactions (Required)Allow users to actively utilize provenance information at many levels. As
discussed previously, there can be a huge amount of provenance information to trawl through. This information
should not be stored away out of sight in case there is major problem, it should be available to end users. How
can an end user navigate this deluge of information? In MiMI,we have noticed that user’s needs fall into several
categories: dataset generation overview, data item overview and particular manipulation overview. Users should
be able to see provenance information at many levels.

X. Provenance Queriability with the Data (Required)Provide support for querying provenance and data
together. Provenance is an essential component in assisting end users in trusting and using the data. To this
end, the provenance information should be queriable with the data itself. In MiMI, queries often consist of
intersections of data and provenance. For instance, “Return all molecules located in the mitochondria(data)that
were reported by HPRD or IntAct(provenance).” Making the provenance records available, but forcing users to
do a processing step to join them with the data is an undue burden.

XI. Error Finding and Fixing (Recommended)Enable easy provenance store maintenance. Consider the
following scenario: a user queries MiMI, and notices two molecules have been merged that should not have
been. The user reports it. What happens? Hopefully the errorwill be corrected and the two mis-merged proteins
will be separated. But what about the provenance store? Mechanisms must be in place to incrementally update
the provenance store to allow for error finding and fixing.

3 Current Provenance Systems

There are several provenance systems that have been appliedto real scientific data [5, 21], and espouse many of
the desiderata discussed above. The PASOA project [15, 17] has been applied to several real-world scientific en-
deavors. It is concerned with the origins of a result or determining when results are invalid and has paid specific
attention to desiderataVII, VIII andX. Chimera [12], is concerned with data derivation and shinesin desiderataV,
VI andVIII. Additionally, myGRID [13] is a collaborative environmentfor scientists with provenance handling;
myGRID handles desiderataVIII andIX. Other workflow systems have integrated provenance information such
as VisTrails [14], Redux [2], and those participating in theInternational Provenance and Annotation Workshop

41



Challenge [18]. In general these systems are thoughtful ofVI andIX. However, workflow based systems so far
fail in desiderataII, III, andIV.

Outside of workflow-based systems, very few database provenance systems have been applied to real-world
scientific problems. However, we would like to highlight several systems that satisfy various desiderata. First,
Trio [19] fulfills the notions for desiderataII, V andX very well. In [3], problems with desiderataIII, V andX
are explored. [20] are working on desideratumIV. Also, [7, 8] take an interesting look at desiderataII andV.
Finally, [11] and [10] are both tackling desideratumIX.

4 Finding Practical Solutions

Each desideratum discussed above is a challenge to satisfy.In this section, we suggest how two of these chal-
lenges can be met.

4.1 Capturing Non-automated Processes

Human curators are often responsible for the content of specialized databases, or for “tweaks” in existing au-
tomated systems. The Uniprot consortium employs more than seventy scientists for curation. In some curated
databases, the database designer augments the schema with provenance fields for the curator to populate; in
“tweaked” systems, the actions often go unrecorded.

Using an appropriate architecture, and a language to express user actions, it is possible to capture these
non-automated processes. By forcing a user to manipulate the database through a program that can track his
movements, the user’s actions can be distilled into Copy, Insert and Delete. Once we know (1) what action is
occurring, (2) where in the current database the action is occurring, and (3) where any incoming data is from,
we can effectively store provenance on the user’s edits. Figures 2(a)–2(b) show an example series of user edits
and their record in the provenance store. For further details, please refer to [6].

4.2 Reducing the Provenance Store

As stated in DesideratumVI, provenance information can balloon to gargantuan sizes. Utilizing features of the
provenance store, it is possible to perform some reduction.A family of Factorization algorithms and two distinct
Inheritance algorithms can reduce the provenance store by up to a factor of 20. Using Factorization, by breaking
provenance records down into smaller pieces, it is possibleto decrease repeated information. Using Inheritance,
properties of the dataset are used to reduce the storage needed for the provenance. Figure 3 shows the ability of
these algorithms to compress the provenance space needed for MiMI. Details of the algorithms and experiments
can be found in [9].

5 Conclusions

The benefits of maintaining provenance are already apparent. Based on our experience with MiMI, we outline
several desiderata that the next generation of provenance systems should meet. We outline some of the challenges
in meeting these desiderata and suggest some directions to find a solution.
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Abstract

The automated tracking and storage of provenance information promises to be a major advantage
of scientific workflow systems. We discuss issues related to data and workflow provenance, and present
techniques for focusing user attention on meaningful provenance through “user views,” for managing
the provenance of nested scientific data, and for using information about the evolution of a workflow
specification to understand the difference in the provenance of similar data products.

1 Introduction

Scientific workflow management systems (e.g., myGrid/Taverna [18], Kepler [6], VisTrails [13], and Chimera
[12]) have become increasingly popular as a way of specifying and executing data-intensive analyses. In such
systems, a workflow can be graphically designed by chaining together tasks (e.g., for aligning biological se-
quences or building phylogenetic trees), where each task may take input data from previous tasks, parameter
settings, and data coming from external data sources. In general, a workflow specification can be thought of as a
graph, where nodes representmodulesof an analysis and edges capture theflow of databetween these modules.

For example, consider the workflow specification in Fig. 1(a), which describes a common analysis in molec-
ular biology: Inference of phylogenetic (i.e., evolutionary) relationships between biological sequences. This
workflow first accepts a set of sequences selected by the user from a database (such as GenBank), and supplies
the data to module M1. M1 performs a multiple alignment of thesequences, and M2 refines this alignment. The
product of M2 is then used to search for the most parsimoniousphylogenetic tree relating the aligned sequences.
M3, M4, and M5 comprise a loop sampling the search space: M3 provides a random number seed to M4, which
uses the seed together with the refined alignment from M2 to create a set of phylogenetic trees. M5 determines
if the search space has been adequately sampled. Finally, M6computes the consensus of the trees output from
the loop. The dotted boxes M7, M8 and M9 represent the fact that composite modulesmay be used to create
the workflow. That is, M7 is itself a workflow representing thealignment process, which consists of modules
M1 and M2; M8 is a workflow representing the initial phylogenetic tree construction process, which consists
of modules M3, M4, and M5; and M9 is a composite module representing the entire process of creating the
consensus tree, which consists of modules M3, M4, M5 and M6.

The result of executing a scientific workflow is called arun. As a workflow executes, data flows between
moduleinvocations(or steps). For example, a run of the phylogenetics workflow is shown inFig. 1(b). Nodes

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: Phylogentics workflow specification, run, and datadependency graph.

in this run graph represent steps that are labeled by a uniquestep identifier and a corresponding module name
(e.g., S1:M1). Edges in this graph denote the flow of data between steps, and are labeled accordingly (e.g., data
objectsSeq1,...,Seq10 flow from input I to the first step S1). Note that loops in the workflow specification are
always unrolled in the run graph,e.g., two steps S4 and S7 of M4 are shown in the run of Fig. 1(b).

A given workflow may be executed multiple times in the contextof a single project, generating a large
amount of final and intermediate data products of interest tothe user [9]. When such analyses are carried out
by hand or automated using general-purpose scripting languages, the means by which results are produced are
typically not recorded automatically, and often not even recorded manually. Managing such provenance infor-
mation is a major challenge for scientists, and the lack of tools for capturing such information makes the results
of data-intensive analyses difficult to interpret, to report accurately, and to reproduce reliably. Scientific work-
flow systems, however, are ideally positioned to record critical provenance information that can authoritatively
document the lineage of analytical results. Thus, the ability to capture, query, and manage provenance informa-
tion promises to be a major advantage of using scientific workflow systems. Provenance support in scientific
workflows is consequently of paramount and increasing importance, and the growing interest in this topic is
evidenced by recent workshops [4, 17] and surveys [5, 19] in this area.

Data provenance in workflows is captured as a set of dependencies between data objects. Fig. 1(c) graph-
ically illustrates a subset of the dependencies between data objects for the workflow run shown in Fig. 1(b).
In such data-dependency graphs, nodes denote data objects (e.g., Tree4 ) and dependency edges are annotated
with the step that produced the data. For example, the dependency edge fromAlignment2 to Alignment1
is annotated with S2:M2 to indicate thatAlignment2 was produced fromAlignment1 as a result of this
step.

Many scientific-workflow systems (e.g., myGrid/Taverna) capture provenance information implicitly in an
event log. For example, these logs record events related to the start and end of particular steps in the run and
corresponding data read and write events. Using the (logical) order of events, dependencies between data ob-
jects processed or created during the run can be inferred1. Thus, determining data dependencies in scientific

1The complexity of the inference procedure and type of log events required depends on the specific model of computation used to
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Figure 2: Provenance ofTree6 in Joe’s (a) and Mary’s (b) user views.

workflow systems generally is performed using dynamic analysis, i.e., modules are treated as “black boxes” and
dependency information is captured as a workflow executes. In contrast, determining provenance information
from database views (or queries) can be performed using static analysis techniques [10]. In this case, database
queries can be viewed as “white box” modules consisting of algebraic operators (e.g., σ, π, ⊲⊳). An intermediate
type of provenance can also be considered in which black-boxmodules are given additional annotations spec-
ifying input and output constraints, thus making them “greyboxes” [6]. These additional specifications could
then be used to reconstruct provenance dependencies using static analysis techniques, without requiring runtime
provenance recording.

The use of provenance in workflow systems also differs from that in database systems. Provenance is not
only used for interpreting data and providing reproducibleresults, but also for troubleshooting and optimizing
efficiency. Furthermore, the application of a scientific workflow specification to a particular data set may involve
tweaking parameter settings for the modules, and running the workflow many times during this tuning process.
Thus, for efficiency, it is important to be able to revisit a “checkpoint” in a run, and re-execute the run from that
point with new parameter settings, re-using intermediate data results unaffected by the new settings. The same
information captured to infer data dependencies for a run can also be used to reset the state of a workflow system
to a checkpoint in the past or to optimize the execution of a modified version of a workflow in the future.

While the case for provenance management in scientific workflow systems can easily be made, real-world
development and application of such support is challenging. Below we describe how we are addressing three
provenance-related challenges: First, we discuss how composite modules can be constructed to provide prove-
nance “views” relevant to a user [3]. Second, we discuss how provenance for complex data (i.e., nested data
collections) can be captured efficiently [7]. Third, we discuss how the evolution of workflow specifications can
be captured and reasoned about together with data provenance [13].

2 Simplifying provenance information

Because a workflow run may comprise many steps and intermediate data objects, the amount of information
provided in response to a provenance query can be overwhelming. Even for the simple example of Fig. 1, the
provenance for the final data objectTree6 is extensive.2 A user may therefore wish to indicate which modules
in the workflow specification arerelevant, and have provenance information presented with respect tothat user
view. To do this, composite modules are used as an abstraction mechanism [3].

For example, user Joe might indicate that the M2:Refine alignment, M4: Find MP trees, and M6:Compute
consensusmodules are relevant to him. In this case, composite modulesM7 and M8 would automatically be
constructed as shown in Fig. 1(a) (indicated by dotted lines), and Joe’s user view would be{M7, M8, M6}.
When answering provenance queries with respect to a user view, only data passed between modules in the user

execute a workflow,e.g., see [8].
2The graph shown in Fig. 1(c) is only partial, and omits the seeds used in M4 as well as additional notations of S7:M4 on the edges

from Tree1 ,...,Tree3 to Alignment2 .
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view would be visible; data internal to a composite module inthe view would be hidden. The provenance for
Tree6 presented according to Joe’s user view is shown in Fig. 2(a).Note thatAlignment1 is no longer
visible.

More formally, auser viewis a partition of the workflow modules [3]. It induces a “higher level” workflow in
which nodes represent composite modules in the partition (e.g., M7 and M8) and edges are induced by dataflow
between modules in different composite modules (e.g., an edge between M7 and M8 is induced by the edge
from M2 to M3 in the original workflow). Provenance information is then seen by a user with respect to the flow
of data between modules in his view. In the Zoom*UserViews system [2], views are constructed automatically
given input on what modules the user finds relevant such that (1) a composite module contains at most one
relevant (atomic) module, thus assuming the “meaning” of that module; (2) no data dependencies (either direct
or indirect) are introduced or removed between relevant modules; and (3) the view is minimal. In this way,
the meaning of the original workflow specification is preserved, and only relevant provenance information is
provided to the user.

Note that user views may differ: Another user, Mary, may onlybe interested in the modules M2:Refine
alignmentand M6: Compute consensus. Mary’s user view would therefore be constructed as{M7, M9}, and
her view for the provenance ofTree6 (shown in Fig. 2(b)) would not exposeTree1 ... Tree5 .

3 Representing provenance for nested data collections

Modules within scientific workflows frequently operate overcollections of data to produce new collections of
results. When carried out one after the other, these operations can yield increasingly nested data collections,
where different modules potentially operate over different nesting levels. Thecollection-oriented modeling and
design(COMAD) framework [16] in Kepler models this by permitting data to be grouped explicitly into nested
collections similar to the tree structure of XML documents.These trees of data are input, manipulated, and
output by collection-aware modules. However, unlike a general XML transformer, a COMAD module generally
preserves the structure and content of input data, accessing particular collections and data items of relevance to
it, and adding newly computed data and new collections to thedata structure it received. COMAD workflow
designers declare theread scopeandwrite scopefor each module while composing the workflow specification.
A read scope specifies the type of data and collections relevant to a module using an XPath-like expression to
match one or more nodes on each invocation; paths may be partially specified using wildcards and predicates. As
an example, the read scope for M1 could be given asProj/Trial/Seqs , which would invoke M1 over each
collection of sequences in turn. A write scope specifies where a module should add new data and collections
to the stream. Data and collections that fall outside a module’s read scope are automatically forwarded by the
system to succeeding modules, enabling an “assembly-line”style of data processing.

Similar to other dataflow process networks [15], modules in aCOMAD workflow work concurrentlyover
items in the data stream. That is, rather than supplying the entire tree to each module in turn, COMAD streams
the data through modules as a sequence of tokens. Fig. 3 illustrates the state of a COMAD run of the example
workflow shown in Fig. 1 at a particular point in time, and contrasts the logical organization of the data flowing
through the workflow in Fig. 3(a) with its tokenized realization at the same point in time in Fig. 3(b). This figure
further illustrates the pipelining capabilities of COMAD by including two independent sets of sequences in a
single run. This pipeline concurrency is achieved in part byrepresenting nested data collections at runtime as
“flat” token streams containing paired opening and closing delimeters to denote collection membership.

Fig. 3 also illustrates how data provenance is captured and represented at runtime. As COMAD modules
insert new data and collections into the data stream, they also insert metadata tokens containing explicit data-
dependency information. For example, the fact thatAlignment2 was computed fromAlignment1 is stored
in the insertion-event metadata token immediately preceding the A2 data token in Fig. 3(b), and displayed
as the dashed arrow from A2 to A1 in Fig. 3(a). The products of aCOMAD workflow may be saved as an
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Figure 3: An intermediate state of a COMAD run

XML-formatted trace file, in which provenance records are embedded directly within the file as XML elements
annotating data and collection elements. Detailed data dependencies can be inferred from the trace file,i.e.,
from the embedded provenance annotations together with thenested data collections output by the workflow run.
Note that COMAD can minimize the number and size of provenance annotations as described in [7, 9]. For
example, when a module inserts a node that is a collection, the provenance information for that node implicitly
cascades to all descendant nodes. Similarly, if a node is derived from a collection node, an insertion annotation
is created that refers just to the collection identifier rather than the various subnodes.

The current COMAD implementation includes a prototype subsystem for querying traces. The system pro-
vides basic operations for accessing trace nodes, constructing dependency relations, and querying corresponding
dependency graphs over the XML trace files. Methods also are provided to reconstruct parameter settings and
metadata annotations attributed to data and collection nodes [7].

4 Workflow evolution

Scientific workflows dealing with data exploration and visualization are frequently exploratory in nature, and
entail the investigation of parameter spaces and alternative techniques. A large number of related workflows
are therefore created in a sequence of iterative refinementsof the initial specification, as a user formulates and
tests hypotheses. VisTrails [13] captures detailed information about this refinement process: As a user modifies a
workflow, it transparently captures the change actions, e.g., the addition or deletion of a module, the modification
of a parameter, the addition of a connection between modules,3 akin to a database transaction log. The history
of change actions between workflow refinements is referred toas a visual trail, or avistrail.

The change-based representation of workflow evolution is concise and uses substantially less space than the
alternative of storing multiple versions of a workflow. The model is also extensible. The underlying algebra of
actions can be customized to support change actions at different granularities (e.g. composite modules versus
atomic modules). In addition, it enables construction of anintuitive interface in which the evolution of a work-
flow is presented as a tree, allowing scientists to return to aprevious version in an intuitive way, to undo bad
changes, and be reminded of the actions that led to a particular result.

Vistrails and data provenance interact in a subtle but important way: The vistrail can be used to explain
the difference in process between the data provenance of similar data products. Returning to our example,

3Modules are connected by input/outputports, which carry the data type and meaning. Static type-checking can be therefore per-
formed to help in debugging.
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Figure 4: Visual difference interface for a radiation treatment planning example.

suppose that two runs of the workflow in Fig. 1 took as input thesame set of sequences, but returned two
different final trees. Furthermore, suppose that the specification was modifed between the two runs, e.g. that a
different alignment algorithm was used in M1, or that three iterations of the loop were performed in M8 due to
different seeds being used. Rather than merely examining the data provenance of each tree, the scientist may
wish to compare their provenance and better understandwhy the final data differed. However, computing the
differences between two workflows by considering their underlying graph structure is impractical; the related
decision problem ofsubgraph isomorphism (or matching)is known to be NP-complete [14]. By capturing
evolution explicitly in a vistrail, discovering the difference in process is simplified: The two workflow nodes are
connected by a path in the vistrail, allowing the differencebetween two workflows to be efficiently calculated
by comparing the sequences of change actions associated with them [11].

Figure 4 (right) shows the visual difference interface provided by VisTrails. A visual difference is enacted
by dragging one node in the history tree onto another, which opens a new window with a difference workflow.
Modules unique to the first node are shown in orange, modules unique to the second node in blue, modules
that are the same in dark gray, and modules that have different parameter values in light gray. Using this in-
terface, users can correlate differences between two data products with differences between their corresponding
specifications.

5 Conclusion

Workflow systems are beginning to implement a “depends-on” model of provenance, either by storing the in-
formation explicitly in a database (e.g., VisTrails) or within the data itself (e.g., COMAD). Several techniques
have also been proposed to reduce the amount of provenance information either presented to the user (e.g., user
views), or stored by the database (e.g., by treating data as collections). Furthermore, since workflow specifica-
tions evolve over time, there is a need to understand not onlythe provenance of a single data item but how the
provenance of related data items differ.

Although some workflow systems provide a query interface forinteracting with the provenance information,
it is still an open problem as to what a provenance query language should provide. For example, we might
wish to scope provenance information within a certain specified portion of a workflow, or return all provenance
information that satisfies a certain execution pattern. Thequery language should also allow users to issue high
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level queries using concepts that are familiar to them, and present the results in an intuitive manner. Related
work in this area has been done in the context of business processing systems, in which runs are monitored by
querying logs (e.g., [1]).
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Abstract

Copyright clearance is an increasingly complex and expensive impediment to the digitization and reuse
of information. Clearing copyright issues in a reliable andcost-effective manner for works created in
the last 100 years can involve establishing complex provenance chains for the works, their copyrights,
and their licenses. This paper gives an overview of some of the practical provenance-related issues
and challenges in clearing copyrights at large scale, and discusses efforts to more efficiently gather and
share information and its copyright provenance.

1 Introduction

As information seekers increasingly move from print to digital media, print resources are being digitized at
an ever-accelerating rate. As of 2007, over a million volumes have been digitized by libraries such as the
Library of Congress and the University of Michigan, for-profit corporations like Google, and public-private
partnerships such as the Open Content Alliance [1]. Mass digitization is made possible by ever-lower costs for
large-scale scanning and storage. The Open Content Alliance’s scanning projects for example, digitize books
nondestructively at a cost of 10 cents per page, or about $30 for a 300-page book [2].

The cost of clearing copyright, however, can be substantially higher than the cost of digitization itself.
A 2003 study of attempts to obtain copyright permissions fora book digitization project at Carnegie Mellon
University found that it cost $78 per title to clear copyrights of the copyrighted books they sought to digitize [3].
This figure does not include any royalty costs, but only the overhead cost in determining copyright status and
obtaining necessary permissions. Most of this cost was labor, a cost that tends to increase over time.

Most books, particularly those by a single author, have relatively few and simple copyrights. However,
periodicals, collective works, sound recordings, and motion pictures often involve a large number of potential
copyrights and copyright owners in their various elements.Moreover, different rights and permissions may
apply to these copyrights in different contexts and legal jurisdictions.

There is widespread scientific, business, and cultural interest in disseminating, adapting, and reusing the
content of others, as seen in initiatives like the Internet Archive, Google Book Search, YouTube, and Arxiv.org.
Since copyright restrictions apply to most present-day content, as well as historic content going as far back as
100 years, clearing copyright can be both an essential and a costly part of these initiatives.

In order to legally publish and reuse content, one typicallyneeds to determine the answers to several impor-
tant questions:

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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• What copyrights, if any, apply to this content? (And which are currently in force?)

• Who controls these copyrights, and how can they be contacted?

• What permissions, if any, have been granted concerning the copyrighted content?

In projects that make large-scale reuse of content, it may not be feasible to have complete, certain answers to
these questions for all the content one may want to use. In practice, content reuse at scale may be best understood
as an optimization problem along multiple dimensions, according to these desires:

• Maximizing the value of the collection, by including as many valuable resources as one can, with the
broadest rights possible.

• Maximizing throughput on rights-clearing , so a large collection can be built quickly.

• Minimizing the cost of rights-clearing, which as noted above can can be impractically high per item.

• Minimizing the risk of legal penalties, which in the worst case can be very large. Current copyrightlaw
in the US authorizes statutory penalties (which are distinct from penalties for actual damages) of up to
$150,000 per infringement. Penalties are lower if the infringement is shown not to be willful, but proving
that in court can be uncertain and costly, and even non-willful infrigement statutory penalties can run into
the thousands of dollars [4].

Different projects may put different priorities on these dimensions. For example, Google’s Library project
has to date been especially conservative with copyright determination in its “full view” book displays. In some
cases it presumes that US copyright is still in force for books published as long ago as 1909, and that foreign
copyrights may subsist from as far back as 1865. (In a large number of these cases, these copyrights have in fact
long since expired.) These conservative guidelines, intended to minimize clearance cost and risk, enable them
to make visible a significant number of books with very littleeffort needed to clear titles, but suppresses much
content that could be usefully viewed and repurposed by the public. In contrast, organizations like the Internet
Archive put a higher priority on maximizing collection value in the copyright clearance of their digitized texts,
and therefore expose many commercially published works from as late as 1963, and government-published
works up to the present day.

In order to control risk and cost of clearing copyright in a large-scale project, simply stating copyright
restrictions in binary terms (such as “this is in the public domain” or “this is in copyright” is insufficient. To
understand the reliability and applicability of such determinations, one needs to know a variety of facts that
inform those determinations, and know how these facts were derived. Moreover, the same facts may lead to
different determinations in different places, times, and contexts. What may be legal to reuse in a classroom in the
US in 2007 may not be legal to reuse in a commercial film in Japanin 2009, or vice versa, but the determination
in both of these contexts may depend on the same underlying set of facts about the work in question and its
copyrights.

Managing these facts involves several kinds of provenance issues. To reliably determine the rights to a
work, one may have to understand and record the provenance ofa work, the provenance of its rights, and the
provenance of the information used in rights determination. In the next sections, I survey some of the specific
provenance problems involved, and describe some of the derivations and uncertainties that are part of copyright
clearance. I then describe some methods to alleviate the problems of provenance in copyright determinations,
and suggest ways in which copyright clearance can be a productive and illuminating application domain for
provenance research.
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2 Provenance issues

In this section, I describe some of the provenance-related issues involved in determining a work’s copyright
status and the rights available for using the work. It is not within the scope of this paper to provide a complete or
authoritative guide to copyright clearance; rather, I illustrate important aspects of clearance where provenance
is relevant. Useful detailed guides to copyright clearancein the US, written by copyright attorneys, include [5]
and [6].

2.1 Provenance of works

Whether a work is copyrighted at all, what copyrights might apply to it, and who initially owns the copyrights
to the work, depend on the provenance of the work itself. Relevant questions include:

• Who authored the work? And when did they live? Copyrights are generally assigned toauthors by
default, and in many cases last for a set period after the author’s death.

• When was the work created, first published, first published with a US-recognized copyright notice,
and first published in the US? In various cases, the time and place of these events determine when a
copyright term starts and ends.

• Is this a work for hire? For whom? Works for hire may have different initial copyright owners and
copyright term lengths. Works produced as work for hire for the US government may not be copyrighted
at all.

• Does this work include or derive from other works? If so, the rights available for this work may depend
on the rights available for those other works.

• What is the work’s current commercial status? For example, if a book is sufficiently old, out of print,
and cannot be bought inexpensively, some US users may have special rights to reuse the work without
permission under special provisions of US copyright law, even if the work is still under copyright [7].

2.2 Provenance of rights

The rights available for the use of a work depend on a number offactors apart from the provenance of the work
itself. The provenance of the rights must also be considered. In some jurisdictions, for instance, copyrights must
be explicitly asserted and maintained through various mechanisms in order to remain in force. Rights to a work
can also be transferred, in whole or in part, from the original author to new agents. (This is commonly done
with articles submitted to scholarly journals, for example.) The original or subsequent rightsholders can further
license the work under various terms and conditions. These transfers and licenses may be matters of public
record, or private agreement.

Under the Berne Convention, the dominant international copyright treaty, copyright automatically applies to
a new creation without any formal claims or registration. While this principle may make it easier to determine
that a copyright has not prematurely expired, it may make it more difficult to determine when the copyright was
originally established, and who claimed it.

Many copyrights today, however, were originally established under different regimes than that of Berne. For
example, the United States was a latecomer to the Berne treaty and until the early 1990s made copyright status
dependent on notices, registration, and formal renewal of copyright. Under US law, valid copyright notices
include an explicit claim of copyright, a year in which the copyright was claimed, and the name of the claimant.
Registration and renewal involves providing certain data about the work, including the author, title, and date of
claim. The US Copyright Office records, maintains and makes available the data in these registrations.

Relevant questions of rights provenance, then, include:
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• What copyright notices, if any, were distributed with the work? These notices may determine the
copyright status of a work, as well as noting the initial owner and the start of the work’s copyright term.

• What registrations and renewals were made of the copyright?These may also determine the copyright
status of a work and identify owners. Renewals may show ownership changes since the initial registration.

• What assignments were made of the copyright or of subsidiaryrights? These may involve full copy-
right transfers, or narrower assignment of rights for certain uses and jurisdictions. For example, a freelance
writer may assign US first serial rights to an article to a particular magazine, but retain rights to republish
the work in other formats and markets. The exact terms of suchrights assignments are typically governed
by contract language rather than by statute, though in some cases, such as intestate or insolvent authors,
rights assignments may be determined by local inheritance or bankruptcy laws. Rights may be assigned
to a specific party, or in some cases to the world at large. Opensource and Creative Commons licenses,
for example, specify that anyone has certain rights to use a work under standard terms and conditions that
are typically published along with the work.

2.3 Provenance of information

WhIle provenance of the work and the rights are sufficient in theory to determine whether and how a work can
be used, in practice one cannot rely on perfect and complete knowledge of this information. Therefore, those
who wish to make copyright determinations must also consider the provenance of the information they have
about the works and copyrights. What are the sources of information? Are they reliable? Did they derive their
information from other sources? If so, which ones? Are thereimportant sources of information that are not
being taken into account, and could these change one’s copyright determinations in important ways?

Many rights determination issues include or derive from negative as well as positive information. For exam-
ple, consider the judgment that a book first published in 1940in the US is in the public domain in that country.
Positive information supporting this judgment may includethe imprint of a US publisher, and the notations
“first edition” and “copyright 1940” on the title and verso pages of the book. Negative information may include
the lack of any prior editions of the book, the lack of any further copyright notices in the book, the lack of a
copyright renewal, and the lack of any prior publications from which the book derives.

Some of these facts may be easier to establish than others, with negative information usually more difficult
to prove than positive information. The imprint and copyright notice of a book, for instance, can be verified
with images of the pages on which they appear. The lack of other copyright notices might be established from
other pages on which copyright notices might appear, which can be a larger page set. The lack of copyright
renewal can be verified against a complete data source of copyright renewals, which exists, but which is in turn
a much larger information set that is more difficult to accessor search in full than the information sets discussed
to this point. The lack of previous editions or works from which the book might derive depends on yet larger,
and less well-defined, information domains. In practice, atsome point along the continuum of verifying these
facts, one will need to rely on the judgment of another personor source, rather than including the complete set
of information needed to establish a particular fact.

The particular source of this information is important. Onemight trust the word of a publisher or a profes-
sional librarian about the copyright date or status of a bookmore than the word of an anonymous uploader to
a file-sharing site. However, sometimes unexpected information can surprise even experts. In 2004, a popular
online animated political satire used, without permission, the tune and some of the words of Woody Guthrie’s
song “This Land is Your Land” The animators were sent a cease and desist notice by Guthrie’s music publishers,
who had duly registered and renewed the copyright on their first edition of the work. A complaint brought by the
Electronic Frontier Foundation on behalf of the producers of the animation initially relied on a fair use defense;
however, in the course of litigation, the Foundation discovered that Guthrie had produced a hand-written song
book, complete with copyright notice and cover price, that included an early version of the song, years before the
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song was conventionally published. Only a few known copies of this work are known to exist, and its copyright
was never renewed. The publisher and the animators settled quickly thereafter, with an agreement allowing the
online animation to continue [8].

In some cases, positive or negative information asserted about the copyright of a work may need to be
discounted or overridden. It is not unheard of, for example,for a publisher to place a copyright notice, dated the
year of publication, on an unaltered reprint of a public domain work, even though under US law such reprints
are not entitled to a new copyright. Contributors to shared content sites like YouTube or Wikipedia may attach
liberal licenses to content, authored by others, that they do not have the right to relicense or redistribute. For
some uses, such as the literal reproduction of works that carry copyright notices, it may be important to retain
these assertions while at the same time noting that they do not apply, or do not apply in full.

3 Derivations and uncertainties

How far back one needs to trace and record the provenance of copyright information depends on the relative
importance of risk, cost, and productivity in the optimization problem described earlier. Their importance, and
the degree of copyright provenance recording required, mayvary depending on context and application. Project
Gutenberg, for instance, requires and stores title and verso page images to establish original claims of copyright.
It also has produced, and uses, a text transcription of the book renewal sections of the US Copyright Office’s
Catalog of Copyright Entries, in order to determine whethera book copyright has been renewed. For other fact
determinations relevant to copyright, however, such as thelack of prior publications of the work, it relies on the
judgment and assertions of its contributors and volunteers.

The transcription of the Catalog of Copyright Entries itself is derived from earlier artifacts. The ultimate
source of a copyright renewal claim is the renewal form filed by a copyright holder and deposited with the US
Copyright Office. These forms are included or reproduced in registration books that are accessible to Copyright
Office staff. From 1978 onward, the information in these forms has been used to populate an online database
accessible worldwide. Before 1978, though, catalog cards were prepared from these forms to allow copyright
registrations and renewals to be looked up by name, title, orvarious other criteria. These cards are accessible
to both the Copyright Office staff and to members of the general public that can visit the copyright card catalog
in Washington, DC. From these cards, bound volumes of the Catalog of Copyright Entries were printed and
distributed to libraries across the United States and beyond, where they are available to patrons of those libraries
(though in many libraries the volumes are kept in closed reserve stacks). From this point, already some distance
down the provenance chain, independent third parties have made digital images of some of the Catalog of
Copyright Entries pages and published them on the Internet,where the digital images have been used to produce
text transcriptions of the copyright registration information that are used by Project Gutenberg and others.

The renewal records that can be quickly searched online, then, can be information derived via several steps
from the original copyright holder filings. It is possible that errors or omissions exist in the derivations, and
that erroneous rights determinations may be made as a result. Going back further brings one closer to the orig-
inal copyright filings, but is generally more difficult and costly. As mentioned above, the Catalog of Copyright
Entries have been partially digitized. The copyright card catalog has not, nor have the registration books. Digi-
tizing these resources would be more expensive than digitizing the summary Catalog, due to the larger number
of images and the rarity and vulnerability of the materials.They would also be more cumbersome to search than
a database would be. Thus, we see that following provenance chains further back involves a tradeoff of cost and
risk. Studies at Stanford suggest that the error rate of using transcriptions of the Catalog of Copyright Entries
is very low, and that errors in derivation were much less common than errors and term mismatches in copyright
searches [9]. Many projects, then, may well find the more easily searched derivative forms of the copyright
records a useful or even superior starting point for research.

In many cases, simply searching copyright records will not answer the question of what can be done with
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a work. If the records indicate that a work is still under copyright, or there is not sufficient information to
determine with sufficient certainty that a work is no longer under copyright, then one may be legally liable if
one reuses the work. To avoid this liability, one must obtainpermission (or assurances of public domain status)
from the presumed rightsholder. Unfortunately, for many works the rightsholder can be difficult or impossible to
determine or contact. Copyright claimants at the time of registration may be listed in the Catalog of Copyright
Entries, but their addresses are not (though they may appearin the registration books). Copyrights may have
been transferred, assigned or willed to others since the copyright was registered or renewed, and this is more
likely the longer that the copyright term has run. While copyright transfers may be registered with the Copyright
Office, there is no requirement that transfers be registeredthere or anywhere else.

Hence, there is now a large and growing set of “orphan works” for which copyright cannot be reliably
cleared, due to the inability to determine or locate the proper copyright owners. Orphan works come in all va-
rieties: “abandonware” developed by defunct software companies; articles and monographs from long-dead au-
thors with obscure heirs; images of great historic or artistic importance whose original creator cannot be traced;
documentary productions and compilations that feature copyrighted material from a wide variety of creators,
not all of whom can be determined or found. As US law stands now, orphan works are effectively impossible to
reuse legally (beyond the usual rights of fair use and resale). The Copyright Office has acknowledged the orphan
works problem as a serious one, and has held public hearings and suggested legislation to alleviate it.

Uncertainties can also exist with rights to data. In many European countries, factual data can have copyright-
like restrictions associated with it. (In the US, facts in themselves are in the public domain, though an original
selection, expression, or arrangement of the facts can be copyrighted.) Also, in many legal jurisdictions, privacy
laws or confidentiality agreements may limit the disclosureof certain data. Keeping track of rights and restric-
tions on private information, while often not specifically acopyright issue, involves many of the same issues of
provenance tracking as copyright clearance does.

4 Initiatives for easing copyright clearance

Copyright clearance need not be as complicated and risky as it currently is. Several initiatives have been started
or proposed to ease copyright clearance, a number of which relate to provenance.

One way to ease copyright clearance at the large scale is simply to promulgate standards for recording and
distributing copyright-related information. For example, many of the digitized books at the Internet Archive
include metadata relevant to copyright in standard forms, including publication dates, copyright notice infor-
mation, and the results of copyright renewal searches. While this information is not currently formatted for
machine processing, its use of a standard vocabulary and setof assertions about copyright has inspired efforts
to define standard, structured, machine-readable vocabularies and grammars for expressing copyright facts [10].
Note that the vocabulary of copyright provenance is different from the vocabulary of digital restrictions often
used by Digital Rights Management (DRM) systems. The latteris largely concerned with the specific operations
that software should allow or disallow on particular content, such as printing, reading aloud, or duplicating.
The former is concerned with underlying intellectual rights and permissions, such as the existence and owner of
copyright, the duration of the copyright, and licenses granted for the content. DRM restrictions may be derived
in part from these underlying rights, but are distinct from them.

One vocabulary of rights expression that has gained widespread popularity in recent years is the Creative
Commons vocabulary. Creative Commons supports a variety ofstandardized permissions, such as the right to
reuse with attribution, or noncommercially, or without making derivatives, or with the right to make derivatives
that must be licensed under the same terms as the original. These permissions can be encoded in machine-
readable format and distributed along with, or as part of, a copyrighted work. Assuming that the permissions
were granted by an authorized party, this rights expressionsystem allows others to easily reuse a work in well-
understood ways, without having to trace the copyright holder to get special permissions [11].
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Registries are useful as stores of copyright clearance data, including provenance data. The US Copyright
Office is one such registry already discussed, but other types of registries also exist or have been proposed. For
example, the Writers, Artists, and Their Copyright Holdersregistry, based in the US and the UK, keeps up-to-
date contact information on many well-known copyright holders [12]. Groups representing copyright holders,
such as the Copyright Clearance Center and the Harry Fox music licensing agency, both track copyright holders
of works and handle payments to them, streamlining common uses of many copyrighted works such as recording
new performances of songs or reprinting articles from periodicals. The Online Computer Library Center (OCLC)
has proposed a general purpose registry of copyright information to be associated with its WorldCat union
catalog, to make it easier to clear rights for all kinds of library materials [13].

Legislation can also ease copyright clearance, and suggestparticular types of provenance information that
may be useful to track. For example, the proposed Orphan Works Act of 2006 would have allowed copyrighted
works to be reused by others without permission if the users were unable to find the copyright holder after a
“reasonably diligent search” [14]. To date, orphan works legislation has not been enacted in the US, but if it
were, it could limit the degree of provenance information one would need to gather for a work (since one might
not have to trace back copyright information indefinitely ifdoing so were unreasonably burdensome). On the
other hand, to prove that a reasonably diligent search was conducted, users might wish to explicitly document
the steps taken in the search, to establish the provenance ofone’s “reasonably diligent” determination.

5 Conclusions

The preceding discussion should illustrate how provenanceissues are important in copyright clearance, and how
copyright clearance is a significant application domain forprovenance research. Practical, reliable copyright
clearance requires careful consideration of the provenance of works, their rights, and the assertions about the
works and rights. Optimal procedures for rights determination must take into account positive and negative
factual assertions, legal analysis tailored to jurisdiction and context, and an appropriate balancing of value,
throughput, cost and risk. The factual assertion chains that support determinations of rights available for works
can be complex in their structure, and involve varying degrees of uncertainty.

Copyright clearance, then, is fertile ground for applying provenance research. Theoretical foundations for
evaluating the reliability of assertion chains can be applied to estimate risk in copyright determinations. Common
representations of copyright assertions, searches, and their provenance, can be preserved as metadata and used
in context-sensitive copyright evaluations. Simple, cheap methods of storing and querying this provenance
information, and improvements in the efficiency of provenance calculations, data representations, and queries,
can improve the reliability and practicality of copyright evaluations in large-scale collections.

Moreover, improved copyright clearance is not simply an interesting research application. The easier it is to
safely and legally reuse the works of the past, the easier it becomes to advance the state of knowledge and culture.
The technologies that now allow organizations to digitize millions of books for the Internet make it possible to
revive, redistribute and build upon the large corpuses of text, data, audiovisual media, and software, that make
up the historic, cultural, and scientific endowment of the world. If advances in provenance handling allow us to
more easily clear their copyrights, we may all enjoy greateraccess to a richer heritage of knowledge. As Isaac
Newton and other scientists have noted, building on this richer heritage can let us all see farther, standing on the
shoulders of giants [15].
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