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Letter from the Editor-in-Chief

The IEEE Technical Committee on Data Engineering

The Technical Committee on Data Engineering (TCDE) is tlmspring technical committee within the IEEE
Computer Society both for the Data Engineering Bulletint $fwau are currently reading and for the International
Conference on Data Engineering (ICDE). The TCDE has anaaletttair who then appoints an executive com-
mittee. Being chair of the TCDE is a responsible and impaérnpasition. Hence, voting in the election of a
new TCDE chair is an important duty of TCDE members. So | waulge you to vote. Information from the
nominating committee and on the candidate that they havenated is on the following page. You will find
the ballot form on page 3. | urge you to vote.

The Current Issue

Users have eagerly bought the wonderful technology provimedatabase vendors while simultaneously strug-
gling to exploit it effectively. So making systems, and mararly database systems, easier to use has been
on the hot list of research topics for many years. It is veffiadilt to make systems simple to use. And the
early industrial efforts were not very successful, withtegss performing badly "out of the box” and with users
required to provide insightful values for dozens of perfante parameters to improve on this. Things began to
change in the 1990's when Surajit Chaudhuri’s insights doraatic index selection led to an explosion of new
industrial interest in this area.

Over time, this renewed industrial and research intereatitomatic management of database systems led
to the formation of the Working Group on Self Managing Dath8ystems, chaired by Sam Lightstone. Sam,
in representing the working group, intended to organizeeisf the Bulletin devoted to this topic. By happy
circumstance, Natassa Ailamaki, the current issue edltwr laad an interest in self-managing systems and
decided to proceed with an issue on this topic. This was adbitee than | had expected, but surely timely
considering the importance of the topic. The issue contaitisles both from researchers and from technical
folks working for the three dominant database vendors. Thifie kind of issue that is the strength of the
Bulletin, at the intersection of research and industrialcfice. | want to thank Natassa Ailamaki for initiating
the effort that led to the issue and for her hard work in briggi to fruition. Readers will be well rewarded by
the technical papers presented here.

David Lomet
Microsoft Corporation



TC on Data Engineering: Election of Chair for 2007-2008

TC on Data Engineering: Election of Chair for 2004-2005

The Chair of the IEEE Computer Society Technical Committeddata Engineering (TCDE) is elected for a
two-year period. The mandate of the current Chair, Erichidél) terminates at the end of 2006. Hence is time
to elect a Chair for the period January 2007 to December 2R&se vote before December 1, 2006 using the
ballot on the next page.

The Nominating Committee, consisting of Betty SalzberagighErich Neuhold, and David Lomet is nom-
inating Paul Larson as Chair of TCDE. Paul’s position statienand a short biography are included below. The
Committee invited nominations from members of the TCDE batived no other nominations.

Betty Salzberg, David Lomet, Erich Neuhold
Nominating Committee

Position Statement and Biography

Biography

PerAke (Paul) Larson is a Principal Researcher at Microsoftelgesh. His primary research area is query
optimization and query processing in database systent. tBrjoining Microsoft Research, he was a Professor
in the Department of Computer Science at the University ofeeo, Canada, serving as department chair for
three years. He received his Ph.D. from bo Akademi UniveisifFinland where he also served as an Assistant
Professor. He is a Fellow of the ACM.

Position statement

The International Conference on Data Engineering (ICDHEhésmain conference sponsored by the Technical
Committee on Data Engineering (TCDE). Both its quality attdredance have improved greatly over the last
few years. If elected | will continue working to further imese its visibility and quality. | will work closely with
the ICDE Steering Committee to achieve this goal and agtisekk input and suggestions from the database
community.

Paul Larson
Microsoft Research
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The Technical Committee on Data Engineering (TCDE) is holding an election for Chair.
term of the current chair, Erich Neuhotkpires at the end of 2006. Please email, mail or fax in
your vote.

BALLOT FOR ELECTION OF CHAIR
Term: (January, 2007 - December, 2008)

Please vote for one candidate.

@) Paul Larson

O

(write in)

Your Signature:

Your Name:

IEEE CS Membership No.:
(Note: You must provide your member number. Only TCDE members who are Computer Society
members are eligible to vote.)

Please email, mail or fax the ballot to arrive by December 1, 2006 to:
s.wagner@computer.org
Fax: +1-202-728-0884

IEEE Computer Society
Attn: Stacy Wagner
1730 Massachusetts Avenue, NW
Washington, DC 20036-1992
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Letter from Chair of the Working Group on Self-Managing Data base Systems

“Civilization advances by extending the number of importart operations
which we can perform without thinking about them.” — Alfred Whitehead

The topic of administration cost is growing more importamery year and the problems that require our
research and development are changing. Why is that? Thefribe Internet, online transaction processing,
online banking, and the ability to connect heterogeneoaterys have all contributed to the massive growth in
data volumes over the past 15 years. Terabyte sized dasdhase become commonplace. Concurrent with this
data growth, have come dramatic increases in CPU perforenaparred by Moores Law, and improvements in
disk fabrication which have improved data density limitsfersistent disk storage. At the same time there has
been a large shift in the nature of the data we manage. Oveaitelecade data has made a dramatic shift from
being predominantly well structured, to being increasinghstructured (such as image, audio data streams,
and video) and semi-structured data (such as XML). Usengralft expect the same benefits that relational
databases achieved with structured data to apply to newtygaga as well — concurrency control, performance,
data manipulation, rich language support, availabilitd eecovery, security and authority to name a few. The
increasing volumes of data, and the changing kinds of dataarmage also spur “creeping featurism” as clever
scientists and engineers find new ways to provide functi@r wglume, scale and content. Creeping featurism
adds administrative complexity to systems. We end up witherdata, more features, more options, more things
to think about and a lot more complexity. End users end updipgmmore on the staff to manage the complexity
of information technology than on the products they pureda8ecause featurism will not cease to expand our
paradigm must change.

The urgent need to reduce administrative complexity is mique to database systems and is pervasive
throughout the IT industry. I'd like to share with you a veiynple and hopefully entertaining analysis: In a
brief examination of 3 popular middleware products produeg different companies, we observed the number
of configuration/registry parameters ranged from 384 td1dMese parameters were used to specify everything
from memory configuration to connection and process limit&ny of the parameters have a dynamic range
of potential values (for example, configuring memory altamss to the database caching areas can have a
wide range of values). The most extreme simplification ofdbefiguration space considers each configuration
parameter as having a binary setting (ON/OFF or TRUE/FALSIE éJsing this gross oversimplification, and
completely excluding the complexity of logical and physidasign, the possible configurations for a product
with 384 parameters is0''> while a product having 1200 binary parameters would H##!' configurations.
These numbers are monstrous, far beyond the ability of humeargs to assess. Astrophysicists estimate the
upper bound on the number of atoms in the univetsebe 103!, many orders of magnitude less than the
number of ways one can configure the three middleware presigestudied, even with dramatic oversimplifying
assumptions. It matters because the alternatives are: geakly administered high cost systems that run at
fractions of their potential. The answer to this is self-aging autonomic systems that just work without fuss
and bother.

The following topics generally frame the domain for selfrraging information management systems and
are the areas where continued research and developmeptianeed for our industry to be successful in signif-
icantly reducing administrative cost.

1. Self-Configuring Information management systems that are trivial to set up.
2. Self-Healing Information systems that know their own problems.

3. Self-Optimizing Information systems that maximize their own performaeffeiency.

Current estimates are in the rangel 6> to 105! atoms. | have used the upper bound (worst case) to strentithemgument.



4. Trust in self-managing systemidow is trust in automation fostered when, especially whenfinancial
stakes are high?

5. Benchmarking of self-managing information systefew are self-managing information systems best
evaluated?

6. Self-Protecting Databases that protect themselves from security attacks.

7. System-wide self-manageme8ystems that are self-managing as an integrated wholentpby com-
ponents.

To advance research and development in self-managingadaamnd information management systems, the
IEEE Data Engineering Workgroup on Self Managing Databaste®hs (which was formally announced a few
months ago) will sponsor workshops in conjunction with t8®E, foster publications, and maintain an online
collection of links to key resources. | am pleased that oitialrexecutive committee includes some of the lead-
ing advocates of self-managing database technology froossgeographies in both industry and academia. Dr.
Guy Lohman is organizing a workshop on Self Managing Dalsystems at ICDE 2007. We invite readers to
follow the news and announcements about the workgroupiatees at our website: http://db.uwaterloo.ca/tcde-
smdb/.

I’'m delighted to see the this special edition of the bulletirprint, and extend my thanks and appreciation
to Prof. Anastassia Ailamaki of Carnegie Mellon Universiapnd David Lomet of Microsoft Research for their
efforts. | look forward to welcoming you to the ICDE 2007 Wshlop on Self Managing Database Systems in
Istanbul.

Sam Lightstone
DB2 Universal Database, IBM Canada LTD
Toronto, Canada



Letter from the Special Issue Editor

This special edition of the IEEE Data engineering Bulletirdevoted to Self-Managing Database Systems, an
extremely important research topic for managing todayés-gvowing datasets. Since the 1999 edition on Self-
Tuning Databasés automatic information management has become incregsamigical not only for database
systems, but also for storage systems as well as middlewaragplications. In all these domains there is a
common trend: hardware and software depreciates over i the human administration costs increase. It
is typical for a company today to spend $20 on human admatistr and maintenance for every $1 spent on
hardware and software. There is currently a vast researomemity working on the subject of automating data
management tasks, varying from automatic configurationoaganization to self-maintenance and healing.

The invited articles in this bulletin demonstrate the tredmus advancement in the field. The first three
articles reflect the commercial state-of-the-art: an aesnof the automated database management features in
three leading commercial products (Microsoft's SQL Seri@M’s DB2, and Oracle). Research teams from
these companies describe tools integrated in their predbet automate physical database design as well as
other daunting tuning tasks. The next article by Pautassh elescribes the design and development of an
autonomic workflow engine, which can be used to compose-ksrgke system services. Moving on to system
resource management, Narayanan et.al. present the désigesource advisor which answers questions such
as “how would the performance of my OLTP application charfggoubled the main memory?”. The last
two articles reflect efforts on automating storage managém@iao et.al. describe R STORE, an analytic
framework to transparently alter storage configuratiorats# a time-varying 1/0 workload while maintaining
QoS guarantees. Finally, a large team from the Parallel Dalbaat Carnegie Mellon University report on the
design and implementation of a self-* storage system, wbahmanage itself using performance predictions,
thereby greatly simplifying tuning automation.

I would like to thank Sam Lightstone, Chair of the IEEE DatggErering Workgroup on Self-Managing
Database Systems, who kindly agreed to foreword this isstreaMetter summarizing the current trends in
the field and the workgroup’s activities. | also cordiallatik David Lomet and all the authors who graciously
contributed their time and effort to make this special edita reality. | hope that you will enjoy reading it.

Anastassia Ailamaki
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

%|EEE Data Engineering Bulletin Volume 22, Number 2, June9lSpecial Issue on Self-Tuning Databases and Applicationiripu



AutoAdmin: Self-Tuning Database Systems Technology

Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, Vivekridsayya
Microsoft Research

1 Introduction

The AutoAdmin research project was launched in the Fall &6l Microsoft Research with the goal of
making database systems significantly more self-tuninigally, we focused on automating the physical design
for relational databases. Our research effort led to ssfaldacorporation of our tuning technology in Microsoft
SQL Server and was subsequently also followed by similactfanality in other relational DBMS products. In
1998, we developed the concept of self-tuning histogranisctwremains an active research topic. We also
attempted to deepen our understanding of monitoring itrfrefaire in the relational DBMS context as this is
one of the core foundations of the “monitor-diagnose-tyma‘adigm needed for making relational DBMS self-
tuning. This article gives an overview of our progress in #@t@ve three areas — physical database design,
self-tuning histograms and monitoring infrastructure.

2 Physical Database Design Tuning

One great virtue of the relational data model is its datapedeence, which allows the application developer to
program without worrying about the underlying access patt@mvever, the performance of a database system
crucially depends on the physical database design. Yakeunlidespread use of commercial tools for logi-
cal design, there was little support for physical databassiga for relational databases when we started the
AutoAdmin project. Our first challenge was to understandphgsical design problem precisely. There were
several key architectural elements in our approach.

Use of Workload: The choice of the physical design depends on the usage pobfitee server, so we use

a representative workload (defined as a set of SQL DML statesrsich as SELECT, INSERT, DELETE and
UPDATE statements), as a key input to the physical desiggtseh problem. Optionally, a weight is associated
with each statement in the workload. A typical way to obtaiolsa workload is to use the monitoring capabili-
ties of today’s DBMSs that allow capture of SQL statementsictv execute on the server over a representative
time period to a trace file (see Section 4). In some cases,raseqtative workload can be derived from an
appropriate organization or industry specific benchmark.

Optimizer “in the loop”.  When presented with a query, the database query optimizesp®nsible for de-
ciding which available physical design structures (e.glekes or materialized views) to use for answering the
query. Therefore, it is crucial to ensure that the recomratods of an automated physical design selection

Copyright 2006 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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tool are in-sync with the decisions made by the optimizeris Taquires that we evaluate the goodness of a
given physical design for a database using the same metdptasizer uses to evaluate alternative execution
plans, i.e., the optimizer’s cost model. The alternativeragch of building an external, stand-alone simulator
for physical design selection does not work well for bothumacy and software engineering reasons (see [13]).
This approach was first adopted in DBDSGN [19], an experiaigitysical design tool for System R.

Creating “what-if” physical structures:  The naive approach of physically materializing each exgul@hysi-

cal design alternative and evaluating its goodness cleladyg not scale well, and is disruptive to normal database
operations. A “what-if” architecture [14] enables a phgséidesign tool to construct a configuration consisting
of existing as well afiypotheticalphysical design structures and request the query optintizesturn the best
plan (with an associated cost) if the database were to hatetmfiguration. This architecture is possible be-
cause the query optimizer does not require the presenceutly afaterialized physical design structure (e.g., an
index) in order to be able to generate plans that use suattteu Instead, the optimizer only requirestadata
entries in the system catalog and the relevant statistrosach hypothetical design structure, often gathered via
sampling. The server extensions that support such a “vihatil are shown in Figure 1.

These three foundational concepts allow us to preciselyeeiysical design selection asearchproblem
of finding the best set of physical structures ¢onfiguratior) that fits within a provided storage bound and
minimizes the optimizer-estimated cost of the given waakilo

Challenges in Search for a Physical Design

We now outline the key challenges for solving the physicaigie selection problem as defined above.

Multiple physical design features: Modern DBMSs support a variety of indexing strategies (elystered
and non-clustered indexes on multiple columns, mateedliews). Furthermore, indexes and materialized
views can be horizontally partitioned (e.g., range, hastitigaming). The choices of physical design features
stronglyinteractwith each other [4]. Thus, an integrated approach that densiall physical design features is
needed, which makes the search space very large.

Interactions due to updates and storage: The physical design recommendation for a query may have a
significant impact on the performance of other queries artthigs on the database system. For example, an
index recommended to speed up an expensive query may cadate igpatements to become much more ex-
pensive or may reduce the benefit of another index for a diftequery in the workload. Thus, good quality
recommendations need to balance benefits of physical dssigrtures and their respective storage and update
overheads [15].

Scaling Challenges: Representative workloads generated by enterprise appfisaare often large and consist

of complex queries (e.g., in the order of hundreds of thodsaifi statements). Furthermore, the database schema
and the table sizes themselves can be large. Thus, to beeusadn enterprise setting, physical design tuning
tools must be designed to scale to problem instances of #umitude.

Key Ideas for Efficient Search

Table Group and Column Group pruning using frequent itemses: The space of physical design struc-
tures that needs to be considered by a physical design toekgexponentially with the number of tables (and
columns) that are referenced in any query. Therefore it penative to prune the search space early on, without



compromising the recommendation quality. Often, a largalmer of tables (and columns) are referenced in-
frequently in the workload. For many of them, any indexes ataralized views on such tables (and columns)
would not have a significant impact on the cost of the worklodtierefore, we use a variation of frequent
itemset techniques to identify such tables (and columng) efficiently and subsequently eliminate these from
consideration [2, 4].

Workload compression: Typical database workloads consist of several instancgmi@meterized queries.
Recognizing this, and appropriately compressing the inparkload [10] can considerably reduce the work
done during candidate set generation and enumeration.

Candidate set generation: A physical structure is considered a candidate if it beldgan optimal (or close
to optimal) configuration for at least one statement in thuinvorkload. The approach described in [13]
generates this candidate set efficiently. A more recent {&jrliscusses how to instrument the optimizer itself
to efficiently generate the candidate set.

Merge and Reduce: The initial candidate set results in an optimal (or closeqtimal) configuration for
gueries in the workload, but generally is either too largéditton the available storage, or causes the updates
to slow down significantly. Given an initial set of candidater the workload, théMerge and Reduceprimi-
tives [15, 2, 5, 6] augment the set with additional indexes mmaterialized views that have lower storage and
update overhead while sacrificing very little of the quegyadvantages. For example, if the optimal index for
query @, is (A, B) and the optimal index fo€); is (A, C), a single “merged” indexA, B, C'), while sub-
optimal for each); and(@- can be optimal for the workload if there is insufficient sgggdo build both indexes.

Enumeration: The goal of enumeration is to find the best configuration foroakiwad from the set of can-
didates. As described earlier, the choice of various sirastinteracts strongly with each other and this makes
the enumeration problem hard. We have explored two aligematarch strategies: top-down [5] and bottom-
up [13, 2] enumeration, each of which has relative meritse Tgp-down approach can be efficient in cases
where the storage bound is large or the workload has few epddh contrast, the bottom-up search can be
efficient in storage constrained or update intensive ggtin

Customizing Physical Design Selection

Exploratory “what-if” analysis:  Experienced DBA's often want the ability to propose diffaraypothetical
physical design configurations and explore the impact opthposed configuration for a given workload (which
statements speeded up or slowed down, and by how much etc3][1

Incremental refinement of physical design: Changes in data statistics or usage patterns can introddoe-r
dancies and may make a very well tuned physical design iogppte over time. However, physical design
changes can have a significant overhead (e.g., existing glaars can get invalidated, which is not be desirable
on production servers). In such cases, one would like to eatrthe existing physical design in an incremental
manner, without significantly sacrificing performance. é&ehce [6] describes such a technique that starts from
the initial configuration, and progressively refines it gsihe mergeandreduceprimitives until some property

is satisfied (e.g., the configuration size or its performategradation meets a pre-specified threshold).

Constrained physical design selection: DBAs often need the ability to specify a variety of consttsion
the physical design (e.g, which tables to tune, or whichtiexjsndexes to keep) [3]. An important constraint
that impacts manageability is that indexes are partitioidedtically as the underlying table (i.ealigned.
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In this case, common operations like per-partition badlagtre and data load/remove become much easier.
However as shown in [4], database system performance cagrbgcantly impacted by the choice of a specific
partitioning strategy. Therefore, a DBA may still need talfthe best physical design where all the indexes are
required to be aligned.

When to Invoke Physical Design Tuning?

Data and workload characteristics can change over time.ushge modes described thus far assume that the
DBA knows when to invoke a physical design tuning tool. Sipbgsical design tuning has an associated
overhead (and impacts the underlying database enginerpenice), it is useful to identify a priori whether or
not physical design tuning on the database can significangyove performance. We built a lightweight tool,
calledAlerter, that identifies when the current physical design has thempity to be improved. It does not
make any additional optimizer calls; rather it piggybackstlve optimizer when the latter generates the query
plan (see [7] for details).

Product Impact

The AutoAdmin research work on physical database desigindguesulted in a tool called the Index Tuning
Wizard that shipped with Microsoft SQL Server 7.0 in 1998eTdol was the first of its kind among commercial
relational database systems. It used many of the key bgiloliocks described above, including the “what-if”
architecture (which required extending the SQL Servemaigtr), candidate selection, merging and bottom-up
enumeration. Microsoft added support for materializedr{dexed) views in the SQL Server 2000 release. Our
work on table group pruning and view merging in Index Tuning&k enabled us to provide efficient, integrated
recommendation for indexes and materialized views. In S@&ive& 2005, our work resulted in a tool, called
the Database Engine Tuning Advisor (DTA) that replaced dgificantly expanded the scope and usability of
Index Tuning Wizard. DTA can provide integrated recommeioda for range partitioning in addition to indexes
and materialized views. Furthermore, it incorporates sohtiee new usage modes described above such as: (a)
partitioning “alignment” constraint (b) exploratory “wh#” analysis. An overview of the architecture of DTA
is shown in Figure 1 (see [3] for more details).
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3 Self-Tuning Histograms: Exploiting Execution Feedback

Query optimization in DBMSs has traditionally relied onglmcolumn histograms to estimate selectivity values.
Despite the fact that several proposals for multi-dimemaidnistograms have been put forward [21, 22, 20] to
address obvious inaccuracies in estimating multiple seleconditions on different columns using single-
column histograms, none is presently supported amongrga®iational database products. This is partly
explained by the fact that like single-column histograms|tiadimensional histograms implicitly assume that
all multi-dimensional queries are equally likely. This &ely true in practice and this incorrect assumption has
much more adverse impact on multi-dimensional histogrdmras single column histograms.

The above observation led the AutoAdmin team to propose thiem of aself-tuning histogram The
key intuition in self-tuning histogram is to use the queryridoad as a key driver in defining the structure
of the multi-dimensional histogram. Self-tuning histagsaare incrementally built up by exploiting workload
information and query execution feedback. Intuitively, @loit query workloads to zoom in and spend more
resources in heavily accessed areas while allowing sonteunacy in the rest. We exploit query execution
feedback in a truly multidimensional way to: (i) identifygmising areas to enclose in histogram buckets, (ii)
detect buckets that do not have uniform density and need tedh€ into smaller and more accurate buckets,
and (iii) collapse adjacent buckets that are too similas tfecuperating space for more critical regions. Self-
tuning histograms can gracefully adapt to changes in theedlatribution they approximate, without the need to
periodically rebuild them from scratch. Additionally, serdata sources might only expose their values through
gueries (e.g., web-services), and thus traditional tegles, which require the complete data set to proceed, are

of little or no value.
Enumeration »( Ouery Plan Execution
Engine > Query Engine

! -
— Histogram
Cost Estimation - Histograms Build/Refine
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Module
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Result Stream

Figure 2: Self-tuning histograms.

Figure 2 shows schematically how to maintain self-tunirggdgrams. For each incoming query, the opti-
mizer exploits existing histograms and produces an exacyian. The resulting execution plan is then passed
to the execution engine, where it is processed. A buildfefiistogram module monitors the query execution
feedback and diagnoses whether the relevant buckets aneate@nough. If that is not the case, the corre-
sponding histogram buckets are tuned so that the refineaghish becomes more accurate for future similar
queries.

To define a self-tuning histogram, we need to address thieésgees: the multidimensional structure that
holds histogram buckets, the monitoring component thdtegatquery execution feedback, and the tuning proce-
dures that restructure histogram buckets. Our first attaingelf-tuning histograms was STGrid histograms [1]
where we (i) greedily partition the data domain into disfjdinckets that form a grid, (ii) monitor query results
by aggregating coarse information that is used to refine diuitkquencies, and (iii) periodically restructure
buckets by merging and splitting rows of buckets at a tim@(&serve the grid structure). Later, in reference [8]
we introduced STHoles histograms, which use a novel paniiig strategy that is better suited to represent
multi-dimensional structures. Specifically, some buckeis be completely included inside others. This way,
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we implicitly relax the requirement of rectangular regiovisle keeping rectangular bucket structures. STHoles
histograms gather query execution feedback on a per-bimkalt and can refine individual buckets for better
accuracy.

While STGrid focuses on efficiency by monitoring aggregatedrse information, STHoles focuses on
accuracy at the expense of a more heavyweight monitoringmany cases, STHoles histograms are more
accurate for the expected workload than alternative tectes that require multiple scans over the whole data
set. Recently, reference [23] introduces ISOMER, a vanmatf STHoles histograms that balances accuracy
and monitoring overhead. By using a lightweight monitormgchanism and applying the maximum entropy
principle to refine buckets, ISOMER provides a good middimigd between the faster but less accurate STGrid
histograms and the relatively slower but more accurate $d3+Hustograms.

4 Monitoring the Database Server

Our goal for making the database systems self-tuning regjufre ability to observe and analyze the “state”
of the server often over a period of time. The previous twdises of this article point to the importance of
capturing the query workload as well as execution feedb&@zspite the clear benefit of monitoring the state
of the server, database systems have traditionally beetedrm their support for monitoring. Therefore, the
AutoAdmin project considers this an important area of fertexploration. In this section, we summarize some
of our progress in this area, after reviewing the curreriesththe art for DBMS monitoring infrastructure.
Today'’s relational database systems support two basictaromg mechanisms in addition to those provided
by the operating system. The first exposeshapshot of counterthat captures current database state. These
counters can be obtained at any point in time by polling theesevia system defined views/functions. For
example, in Microsoft SQL Server 2005, these snapshots eabtained by Dynamic Management Views or
DMVs (www. nsdn. ni cr osof t . conm). The second mechanism, which we refer taegent recordingallows
system counters to be logged to a table/file whenever a m@fsal event occurs. For example, in Microsoft
SQL Server 2005, the Profiler provides such event recordingtionality. Both these mechanisms form the
basis of diagnostic and tuning tasks (e.g., DTA uses Profdé#Vs can be used to diagnose performance
bottlenecks such as excessive blocking). We now highligbtgieces of work on the monitoring infrastructure.

Query Progress Estimation

Consider the problem adstimating progres®f a currently executing query. An estimate of the percemtag
completed for a query is useful to DBAs for many reasons ,(&agdecide whether to kill the query to free up
resources and for admission control decisions). Howelsrproblem is significantly more challenging than the
common problem of measuring progress of a file download. ttiqudar, unlike the file download example, it is
not always possible to ensure tlegtimatedorogress monotonically increases over time without comsmg
accuracy.

Itis important to recognize that since query progress edton will be used for monitoring, such estimation
must be computationally lightweight and yet be able to aapprogress at fine granularity (being accurate at
only at 0% and 100% is trivial and uninteresting). In solvthgs monitoring problem, our first challenge is to
define a meaningful metric for work done by a query. For examiile count of answer tuples is not a good
indicator since there could be one or more blocking opesatothe execution plan. Next, we must provide
estimators that rely on the model of work done for doing rodightweight estimation.

Metric for Work done:  The requirements for modeling the work done for progressnasion are different
from those of the query optimizer, which uses its cost maglebimpare alternative execution plans. Estimation
of progress requires the ability to incorporate executemdback and progressively refine the a priori estimation,

12



obtained initially using the optimizer's model. These ddagtions lead us to a different metric for work, as
explained in [16]. We observe that the operators in a queegwtion plan are typically implemented using a
demand-driven iterator model, where each physical opeiratbe execution plan supports Open(), Close() and
GetNext(). We model the work done by the query as the totalbmurof GetNext() calls executed in the plan,

which can satisfy the requirements of a progress estimagmtioned above.

Estimators: The above metric for work leads to the natural definition ofdealized measure for progress as
> K;/> N;, whereK; is the number of GetNext() calls executed by oper&gpy thus far, andV; is the total
number of GetNext() calls that will be executed by oper&ipy when the query execution is complete. While
K is easily measured as the query is executing, this is notrsi;for hus, the key challenge is to estimafeas
accurately as possiblghile the query is executing he work in [11] analyzes the characteristics of the pregre
estimation problem from the perspective of providing rapusrst-case guarantees. Despite the fact that we
have to contend with a negative result in the general casendmy common scenarios it is possible to design
effective progress estimators with bounded error. For ganif we assume input tuples arrive in random order,
then measuring progress at the leaf nodes that “drive” tieewgion of the pipeline by supplying tuples to the
other nodes (e.g, table or index scans), can provide roltistation of progress for the entire query [16, 11].

SQLCM: A Continuous Monitoring Infrastructure

Beyond ensuring that we have the right plumbing to monitatust of the server (e.g., query progress monitor-
ing), another key challenge is that of tracking and aggmegathanges in one or more selected counters over
time, aggregating from multiple counters that are being itoogd, or a combination of both. For example,
consider the task of detecting instances of a stored proedtat are 3 or more times slower than the historical
average execution time of the stored procedure. If we usd eseording, then a very large volume of monitored
data needs to be written out by the server (all stored proeeclumpletion events). On the other hand, if we
use the mechanism of repeatedly polling the server using BMM could compromise the accuracy of answers
obtained if we do not poll frequently enough (i.e., missiens)). If instead, we poll too frequently, then we may
impose significant load on the server. Thus, neither of tkgglent mechanisms provides adequate support for
handling the above task — what we need is a lightweight sesider mechanism to aggregate events generated
by the monitored counters (also referred tgasbesin this section).

These requirements led us to build the SQLCM prototype (€igli[12], with the following characteristics.
First, it is implemented inside the database server. Seaooditoring tasks can be specified to SQLCM in
a declarative manner using a simple class of Event-Comdaiction (ECA) rules. A rule implicitly defines
what conditions need to be monitored (e.g., an instance ¢brads procedure executes 3 times slower than
the average instance, a statement blocks others for manelthaeconds) and what actions need to be taken
(e.g., report the instance of the stored procedure to a,tahlecel execution of the statement). Third, the
monitored information can be automatically grouped andegated based on the ECA rule specifications. This
grouping and aggregation can be done very efficiently usmig-samemory data structure called the lightweight
aggregation table (LAT). Consequently, the volume of infation that needs to be written out by the server is
small, thus dramatically reducing the overheads incurrethe server by the monitoring tasks. SQLCM only
incurs monitoring overhead that is necessary to implemeamently specified rules (see details in [12]).

5 Conclusion
As part of the AutoAdmin research project, we have had theodppity to address several significant chal-

lenges that relate to endowing the relational databaserystith increased self-tuning capabilities. These
self-tuning capabilities rely on a monitoring infrastuiet and leverage that to build specialized diagnostic and
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tuning capabilities that are appropriate to the task at hdhds, they conceptually share a comnfioronitor-
diagnose-tune’pattern. As new queries are executed, the DBMS internallpitois and keeps information
about the workload. After a triggering condition happeng.(ea fixed amount of time, an excessive number of
recompilations, significant database updates), the d&igsocomponent is launched automatically and evalu-
ates the situation quickly. After the lightweight diagnost if it is determined that the database needs to change,
a tuning component proceeds to recommend/incorporategelanr better performance. The diagnostics and
tuning components are typically specific to each task. Hewehe monitoring component can be shared by
multiple “vertical” diagnose-tuning components. Due tckd@f space, we have only highlighted a few selected
aspects of the AutoAdmin project. Information about otherkvdone in the AutoAdmin project can be found
atresearch. m crosoft. com dnx/ Aut oAdmi n.

Since launching of the AutoAdmin effort, there has beeneased awareness of the need to reduce the total
cost of ownership of database systems and several inggitivother research groups and database vendors have
helped contribute to the development of self-tuning tetdoo [9, 18]. Finally, our experience over the last
decade has also convinced us that today’s relational degadrahitecture may in fact stand in the way of robust
self-tuning capability. Specifically, recognizing thedeaoff between adding features and providing self-tuning
capability requires careful thinking [17].
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Abstract

This paper evaluates the impact of the DB2 Autonomic Comgutioject at the IBM Toronto Software
Lab, Almaden Research Center, and Watson Research Camtescribes the key ideas behind the many
self-managing features added to the IBNDB2R®)for Linux®, UNIX®), and Window&® products, and
evaluates the degree to which these features have beenteddgpthe DB2 user community. We offer
lessons learned from this experience, our conclusionsfanee directions for self-managing databases.

1 Introduction

Over the last three decades, database research and degetdps achieved remarkable improvements in func-
tionality and performance, aided both by the emergenceanfdsirds for the SQL language and by the TPC
family of benchmarks, which fueled competition. Howeveede features and performance have come at the
price of skyrocketing complexity, particularly the comytyg of database administration. Researchers focused
on languages such as SQL to provide a simple, declaratieefacte for application developers, but adminis-
trative interfaces received considerably less attentidit gquite recently. Simultaneously, improvements in the
density of chips and disk storage have drastically redutedast and increased the capacity of hardware, while
skilled database administrators (DBAS) have become isorgly rare and expensive. As a result, the total cost
of ownership of modern database systems is now dominatedebgdst of people, not hardware or software.
All of these trends prompted efforts in the last few yearsyad make existing database products easier and
cheaper to manage, mostly by adding mechanisms to automateysly manual administrative tasks, or at
least to provide guidance to DBAs.

This paper evaluates the impact of one such effort, the DB®wamic Computing project. We summa-
rize the key ideas that fueled the many autonomic featurastiie project contributed to the DB2 products,
evaluate the degree to which customers have accepted tbatees, and relate the lessons learned. This
project was initially inspired by the early development afladex Advisor that first appeared in V6 of DB2
Universal Databas& (DB2 UDB) for Linux, UNIX, and Windows [15]. The DB2 AutonomiComputing
(DB2 AC) project was subsequently formed in early 2000 asrd gffort between the IBM Almaden Research
Center and the IBM Toronto Software Lab, and later the WaResearch Center. Based upon requirements
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interviews with over 120 customers, an ambitious plan wagldped for making DB2 self-configuring, self-
healing, self-optimizing, and self-protecting [6, 8, 7]hélresulting autonomic features added to DB2 over
several releases have been described in previous papgeesd@inplete bibliography of which can be found at
http://www.almaden.ibm.com/software/projects/autoiwreferences/autonomi@f.shtml. A good overview
of autonomic computing (AC) in DB2 can be found online at ti#&2lMagazine site, at
http://www.db2mag.com/epub/autonomic.

To understand the context of the DB2 AC project, one must girgsp the constraints under which it op-
erated. The project started with an existing databasemyttat, in response to the competitive environment,
had primarily emphasized features and performance, rétlaerease of administration. The team didn’'t have
the luxury of building an autonomic system from scratch, lad to retroactively add autonomic functionality.
Moreover, the autonomic enhancements needed to be iralustiength and enterprise scale, i.e., we had to
develop robust solutions that would work in all environnseahd would scale to hundred-terabyte databases.
For example, moving to one large memory pool would have sfraglmemory management significantly and
reduced the need for configuring individual memory heapsalaingle memory pool would have been vulner-
able to a runaway agent over-consuming memory. Finally, akth support an existing customer set and their
expectations, so we had to be very conservative about aingtige default behavior. For example, the existing
customers were very sensitive to any decreases in perfaanamd hence we had to be very cautious when
adding monitoring overhead. All of these constraints affidour approach and solutions.

The remainder of the paper is organized as follows. The metich summarizes the key ideas underlying the
autonomic features that we have added to DB2. Section 3s#issian evaluation that we performed to determine
the extent to which our customers exploited and liked thestufes. The lessons we have learned from this
experience are presented in Section 4, and the final seaiains our conclusions and future directions.

2 Key ldeas and Themes

Several key ideas and themes were exploited in our changeake DB2 more autonomic:

Low-impact collection of accurate system dataWe developed and exploited two low-impact methods for
automatically obtaining database statistics, inforrmata query and system behavior, etc. The resulting up-
to-date and accurate information is used to improve theracguwf the query optimizer’s cardinality model, as
well as to enable the system to adjust a variety of operdtjmarameters to improve query-processing efficiency.
The first method involves opportunistic monitoring of vailsanformation sources during query execution; the
trick is to focus on measurements that can be collected vétl low overhead. For example, DB2 simply
counts the actual number of rows processed by each run-foeetmr during query execution. These cardi-
nality actuals are then compared to the optimizer's esémah order to detect significant variations from the
optimizer’'s cardinality model. Such comparisons can beeveter the query has completed, as in the LEO
LEarning Optimizer [12], or the comparisons can potentibk made dynamically, thereby enabling a Progres-
sive OPtimization (POP) system [10] to decide whether top#mize a query plan while the plan is running. A
second example is Self-Tuning Memory Manager [13], whicltects minimal information on hit ratios (frac-
tion of requested pages that reside in the various buffelsptmbetter determine the best allocation of available
memory among the competing pools. A third example of oppistic data collection is the DB2 Health Center,
which periodically “takes the pulse” of the system and miakerts if certain pre-set thresholds are exceeded.
The second method for low-impact monitoring is databasepagy For example, we exploit sampling to
augment the traditional single-column statistics with timatiate statistics in the DB2 product. Such statistics
allow the optimizer to detect statistical correlationswetn columns and thereby avoid bad estimates due to
erroneous independence assumptions. The CORDS (CORBrelétection by Sampling) system explicitly
searches for correlations among all pairs of columns befoegies run, by sampling the database [3]. CORDS
is less efficient than LEO, because LEO selectively pingoamly those correlations that cause significant es-
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timation errors in the actual query workload [9]; on the othand, CORDS complements LEO by providing
accurate estimates during LEO’s initial learning periaalj ashen LEO is faced with unforeseen queries. The
Design Advisor [16, 17] samples the data as needed to confimlisprove correlations pertinent to the cardi-
nality estimates used for determining which set of mategdl views to maintain and which Multi-Dimensional
Clustering (MDC) organizations to adopt [5]. The samplipgpm@ach provides the Design Advisor with very
accurate information on which to base its decisions, whi@specially important in data warehousing scenarios.

Feedback. The notion of feedback control loops is not new, but the appilbn to query planning was
definitely a novel development. The idea is to use oppotticalf/-gathered information, as described above,
to automatically and dynamically adjust the DB2 enginesaloin over time, in repsonse to changes in the data
or the operating environment. For example, LEO uses actubkatimated cardinalities to compute correction
factors that are used to improve subsequent cardinalityatgs, in a perpetually self-correcting loop. Similarly,
Self-Tuning Memory Manager uses feedback on hit ratios asrded above to dynamically adjust the sizes of
the buffer pools. Another form of feedback loop in DB2 is emliled by “throttled” daemons, discussed below.

Re-using Optimizer as a “What if?” tool. Recognition that the query optimizer's model of system exe-
cution could be re-used as a “What if?” tool was one of theiestrand most significant “aha!” moments of
our project. That is, instead of merely using the optimizepttedict query performance in an existing logical
and physical configuration (i.e., existing indexes, mataed views, clustering, partitioning, memory, etc.),
the optimizer can be used to evaluate hypothetical, aliemeonfigurations to provide guidance on potentially
advantageous reconfigurations. Thus we can create viliat if?” objects such as virtual indexes, material-
ized views, and table partitionings or clusterings, and tineck the resulting properties of the query plan as it
exploits these virtual objects. This approach has a nuniideryoadvantages. First, we can exploit the existing,
carefully crafted mechanisms for composing and compaitiegcbst and properties of plans. Also, we don't
have to build and maintain separate cost models, therebygsawich effort. Finally, we avoid the embarrass-
ing situation in which a separate model recommends a chamyéha optimizer’s model, for obscure reasons,
disagrees, confusing the customer. If the optimizer as ‘MWRA&tool recommends a plan using a virtual index,
then it is very likely that the optimizer as plan selectorlhalso pick the same plan once the index is actually
created, because the same model is used in both situations.

Heuristics, new models.Despite the usefulness of the optimizer’'s cost model, waddhat in some cases
alternative, novel models or heuristics were needed. Thim@er's model can be too detailed and too focused
on picking a plan for a specific query to yield good values fighHevel system parameters that interact with
each other and affect many queries simultaneously. Thusleweloped new high-level models to choose the
40 or so configuration parameters that most affect perfocmancluding major pools of main memory such as
the shared memory used for sorts (sortheap) [4]. These madeless detailed than the optimizer’s cost model,
but more realistically consider the system-wide intecactf multiple queries and mathematically embodies the
real world experience of our performance team gained byingncustomer and industry-standard benchmarks.
A more dynamic and detailed model to deal only with all the ragnpools was later developed to holistically
make the hard trade-offs between competing needs for membitg avoiding the dangers of a single memory
pool that would permit a single, runaway query to hog systesources to the detriment of others.

“Throttled” daemons. Our early interviews with DBAs revealed that much of thaindiwas spent schedul-
ing and performing batch operations that required largeksi@f time, such as performing backups, reorgani-
zations, and database statistics collection. In tod2y's 7 world, those blocks of time were being shrunk to
zero, so the tasks performed in them had to be executed e¢entlyrbut unobtrusively with regular workloads.
What was needed was a generic background daemon that wokklansured progress on such operations us-
ing spare cycles in periods with relatively low (but not ngistent!) workload demands, and would back off
as workload demands increased. The solution we implemeaveaisca generic mechanism for “throttling” pro-
cesses, using classical control theory to determine th&leamt-dependent length of time that such a process
“sleeps” before it “wakes” and achieves progress on its itk By performing batch processes as a continuous
background process, the need for scheduling and resewrvigg blocks of down time is obviated, unused cycles
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are efficiently exploited (achieving greater overall sgsigilization), and the entire process can be automated.

Works out-of-the-box. Reducing the number of decisions necessary for gettingestaeduces the all-
important “time to value,” the time between the decision g | system and when it begins producing value.
Moreover, by automating many of the processes that cuswmaofien neglected unless they were experts, we both
improve their experience and decrease our service costexample, poor optimizer behavior resulting from
out-of-date or nonexistent database statistics somesieesmed from the fact that new users were unaware of
the need to execute the RUNSTATS statistics-collectiolityutiBy automating and throttling RUNSTATS by
default [1], the “out-of-the-box” experience of custombes been significantly enhanced. Similarly, the Health
Center is pre-configured to collect its health metrics anskeralerts based upon pre-set thresholds. All the
installer needs to provide is an address to send the natifitsatThe DBA could of course subsequently modify
the thresholds, but such intervention is not required ireotd become operational, and usually isn't needed,
because the thresholds are based upon a universal metrie petbent of the resource being consumed.

Progressively more autonomic.Many of the augmentations we made to DB2 required a lot of fem,
understanding the rationale for the existing “knobs”, gesig an automated scheme to robustly “get it right”
(almost) all of the time, and implementing and fully testitng new mechanism, all in the context of regular
product release cycles. Frequently the work had to be brakento smaller pieces that could be released in a
timely manner, rather than waiting through multiple reésabefore the fully automated scheme could emerge
full-blown. Take for example the setting of configuratiorrgraeters. The first (inglorious but crucial) step
was only to make them dynamic, so that changes of those ptestid not require restarting DB2 for the new
values to take effect. For parameters such as buffer ptids;hhange was non-trivial, because shrinking a buffer
pool could force out pages prematurely. The next step wafounfiguration Advisor, which the DBA had to
invoke to set almost 40 detailed configuration parametaiaguseven high-level parameters about the system
(provided by the DBA) and some equations that summarizeddahwlicated interactions of the 40 configuration
parameters. This advisor first appeared in Version 7.2 of DBB, and was enhanced in Version 8. Finally,
in DB2 9 (which was released in late July 2006), we fully austed and dynamically adjusted the settings for
many of these configuration parameters that controlled mgimeaps and buffer pools with the Self-Tuning
Memory Manager. A benefit of this successive roll-out of Gieas was the insight that we were able to develop,
based on experience and feedback, about which of these g@ameally mattered most to performance.

3 Evaluation

During the fall of 2005 and winter of 2006, IBM conducted aiesy of the self-managing features in DB2.
The goal was to determine the quality and success of theserdeaas of Version 8.2.2, and to identify any
necessary refinements for maximizing their impact. Infaromawas gathered through surveys, discussion, and
experimentation. Several hundred people were involveth Within and outside IBM, including customers,

data was collected from over a dozen consultants, called2bkl Consultants,” who each work professionally
with multiple DB2 accounts. The autonomic features thatea@raluated includédAutomatic Backup, Au-
tomatic Reorganization, Automatic Statistics, Autom&tatistics Profiling, Automatic Storage, Configuration
Advisor, Design Advisor, Health Monitor, Self-Tuning BAGQK, Self-tuning LOAD, and Utility Throttling.

A number of interesting trends emerged from this evaluati@s summarized in Figure 1. In the figure, we
have masked the feature names, referring to them only asrésaf, B, C, and so forth. For each feature, we
have plotted both the consultants’ average perceived lngesfsi of the feature (on a scale from 1 to 10), as well
as the standard deviation of those responses. A standaatidevarger than 2.5 indicates that consultants had
significantly different views on the value of a feature.

INote that some features discussed in this paper, such a3 8gifg Memory Manager, CORDS, and Progressive Optinonati
were not yet available in Version 8.2.2, and hence were deddrom the survey.
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Figure 1: Survey results from DB2 consultants.

Features A, B, and C have the highest average rating for vakigvell as relatively low deviation in the
opinions. These features were all characterized as bdingllyr easy to use. Features F, G, H, and | have
noticeably large standard deviations in the usefulnessgsit The probable reason for the large variation is
that these features were designed predominantly for smatigdium-sized business (SMB) markets, where
DBA skills are most scarce. Whereas consultants workindp wihall-scale engagements found significant
value in the features, consultants who worked primarilyhvarge-enterprise users found these features of little
value. In contrast, Feature J was designed for high-endidecsupport systems. This feature generated very
positive feedback for its functionality and potential ugeéss, but also engendered frustration over its interface
usability, and platform support requirements. These misebtions resulted in the high standard deviation
displayed in the figure. Finally, Feature K stands out asrtgplsbth a low score for perceived value as well as a
low standard deviation, implying a lack of success so fais Tiser reluctance is attributable to the complexity
of the feature’s interface and its negative impact on dagaaility.

The survey verified a number of factors related to awareragksption, and trust. Anecdotally, our discus-
sions with the Gold Consultants revealed that the majoffityus autonomic features were known to most of
them, and all were using some of the features on a regulas.dascontrast, fewer features were used by non-
consultants, and features enabled by default enjoyed dicatha higher adoption. As of Version 8.2, most of
these AC features must be manually enabled, and some fedtuge, Design Advisor) require human expertise.
This situation appears to severely hinder adoption by useigeneral, the survey showed that

e A feature that needs to be invoked will be used 20 times lass dfian one enabled by default.

e Theaverageuser will generally not be aware of any of the system'’s adedrieatures.

e Thepoweruser needs self-managing technology the least, and wikthiee benefit the most from those
AC features that automatically handle frequent, contisuadministrative chores that expert humans are
hard-pressed to do themselves; one-time automation ansbashare less valuable to this community.

Trust, not surprisingly, was found to be a significant fagtofeature adoption [14]. Several customers
strongly requested both better monitoring of DB2 autoncawtivity and better insight into the specific decisions
that the autonomic components were making in the courseeofdperation. Furthermore, customers expressed
more trust in adaptive technologies than in heuristic-tbasmfiguration and tuning. As a result, features such
as Automatic Utility Throttling and Self-Tuning Memory Mager are likely to be trusted more than features
such as the Configuration Advisor.
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4 Lessons Learned

We have learned many lessons in the course of planning,robéeg, and developing autonomic capabilities in
DB2 products. These can be summarized in the following sguating principles for making existing systems
more self-managing. Keep in mind that autonomic computtpigely a software-oriented discipline that
inherits the design goals and requirements of all good swéwencapsulation, reliability, reuse, etc.), so most
of the following seven principles are, not surprisinglyplgable to software development in general.

Build what users need, not what’s coolPerhaps surprisingly, one of the major challenges to dpvedmt
teams that build AC technology is that designing such systisnioo much fun. Although this assertion may
seem ridiculous at first glance, the fact is that almost exsywho works on autonomic systems continually
desires the excitement and challenge of making the systsiha jlittle more adaptive and intelligent. In many
cases, the added sophistication is not needed, and onbases the complexity of the code. Indeed, there are
many instances in the world of industrial software develeptin which full-blown complex features have been
implemented, when a few simple heuristics would have suffice

Always give the user an “out:” features providing system aubmation must have an OFF switch.Even
the best autonomic technology will not work perfectly in siluations. Poor automated decisions can occur
either because of an imperfect underlying model of systehawer or because of software defects. Either
way, when an AC feature fails, the user must have an optiotisethte that feature. This is particularly true for
mission-critical systems: many DBA managers will activalyid purchasing autonomic technology that cannot
be disabled if necessary. More generally, providing thétgltd disable autonomic components helps engender
trust in autonomic technology by lowering the risks inheérenits adoption. Such trust is important because,
without trust, regardless of how good the technology is,litvot be used.

Features must be on by default in order for the majority of uses to exploit them. The vast majority of
customers are unaware of the existence of autonomic feafmeeed, of most advanced features), and discover
such features on an as-needed basis. Ironically, thesbamistomers who most desperately need autonomic
technology. The small group of power users, while most awér&C features, are the least likely to need
them. Enabling AC features by default allows the average teseap the benefits of the technology with no
effort required, while still giving the power user a choicause or bypass the technology. Otherwise, autonomic
technology might suffer the same fate as automatic trarssoms in cars (which did not dominate the market
until roughly 15 years after their introduction in 1939, ambich are still resisted by some customers today):
the novices don't know about it and the enthusiasts don’t\itan

Never force the user to make a choice that your developers ctin’t make. All too often in the software
world, a development team, unable to determine a reasosealtiiag for a parameter that is crucial to system
performance, opts to require the user to set the parametdds. This happens frequently when the correct
parameter setting is “it depends.” While development salesdmay temporarily preclude an autonomic solu-
tion to the problem of user configurable parameters, elitingesuch parameters must be a key objective for
autonomic systems over the long run. The reason is simpiee dlevelopment team that designed and coded the
system didn’t know how to set the parameter, it is almostiethat the vast majority of end users won't, either.
Foisting the problems of the development team onto unstiggeasers (in this case, system administrators) is
a losing strategy.

AC technology must be evaluated in complex, dynamic real wad scenarios.Another negative habit that
has become rampant in the industry is the design and ewvatuatiautonomic solutions around benchmarking
systems. Industry-standard benchmarks are frequentty tosassess the performance or recoverability of sys-
tems. The use of benchmarks is, in fact, a reasonable iydsisaitegy that helps drive competition. However,
the vast majority of these benchmarks are extremely wéiabed and static. Development teams often use
benchmark systems to evaluate autonomic features bedaidenchmark system provides a well understood
workload and performance baseline against which to pitalents of a newly created autonomic feature. How-
ever, production systems are notoriously more complex aniéie over time than benchmark systems. As a
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result, the success of autonomic technology with benchsystems, while meaningful, is not sufficient.

Never automatically undo or contradict the explicit choices of administrators or applications. Auto-
nomic systems typically execute a cycle of monitoring, grialy, planning and execution. The analysis and
planning could recommend changes to the system that cicttadeplace the deliberate choices of a human
administrator or system designer. Ideally, a perfect autoo system would only recommend changes that were
certain to improve on the human choices. In reality, theeesmveral reasons why overriding the deliberate
choices of humans is ill-advised. First, the quality of A€Cheology is not mature enough to ensure that the
decision of an AC feature is superior to that of a deliberatim&n choice. Second, once a human administrator
has made a choice, however suboptimal, the system can maddg assumed to be in a state acceptable to
that human, and incremental (or even dramatic) improvesnever the human design probably aren’'t needed.
Third, the choices of human beings are often superior becaegple are able to observe the system as a whole,
whereas any single component within a system cannot do #te #dministrator has taken the time to manually
intervene, there are probably good reasons for this degisieen if the autonomic components of the system
can't detect them. Thus, it is crucial for autonomic systéondistinguish between system changes made by hu-
man operators and those made by the autonomic compondhtdtsehat those changes performed by humans
will not be overridden.

Minimize policy and keep it human. Numerous system policy grammars and specifications havegyee
posed over the past 30 years. Because policies represeamtebiéication by human administrators of knowledge
that the system could not glean on its own, they should belampviated by autonomic technology. Elimi-
nation of the need for policy specification is clearly morartla decade away. What we can safely conclude is
that: (1) policies are needed and will be needed for the rexdral years; (2) policies should represent business
objectives that can be described in relatively human teinticating what is expected of a system, and not
be a conduit for injecting configuration parameters andsrié an autonomic system; and (3)policies require
standardization in order to facilitate the combinationystem components. Sadly, today, “The nice thing about
standards is that there are so many of them to choose fromb(déd to Andrew S. Tanenbaum).

5 Conclusions and Future Directions

The DB2 Autonomic Computing project has had considerabieess in developing and incorporating into the
DB2 products many powerful technologies to ease the burfiéeleaguered DBAs. Overall, our customers
generally find these autonomic features very helpful whey ¥mow to invoke them or, preferably, the feature
is enabled by default. The latter requires that autononghbrtelogies must engender the trust of DBAS by
robustly getting “good enough” results almost all the timd &y allowing DBAs to disable them in the event of
problems.

Adding autonomic features to an existing complex systengisificantly more challenging than designing
an entirely new system to be autonomic from day one. While ovéticue to work on additional AC features
to simplify the administration of a DB2 environment, we alsdnvestigating more revolutionary, longer-term
approaches that obviate many administrator tasks in amnation management appliance. Such an approach
requires significant research in a variety of challenging technologies that are already under investigation
within IBM Research and that provide ample opportunity foltaboration with academic researchers, as well.
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Abstract

Performance tuning in modern database systems requiresd &xpertise, is very time consuming and
often misdirected. Tuning attempts often lack a methogotbgt has a holistic view of the database.
The absence of historical diagnostic information to iniggge performance issues at first occurrence
exacerbates the whole tuning process often requiring thattlpms be reproduced before they can be
correctly diagnosed. Even when the problem root cause #ifted, fixing it often requires a very high
level of expertise that very few DBA possess. This is edfyeirige for the inherently complex activity of
SQL Tuning, requiring a high level of expertise in severahdms: query optimization, access design,
and SQL design.

In this paper we describe how Oracle overcomes these clygfeand provides a way to perform
automatic performance diagnosis and tuning. The abilitygid-tune is a critical aspect towards building
a self-managed database, which was one of the key objefivil® latest version of Oracle, Oracle10g,
that was released in early 2004.

1 Introduction

In today’s around-the-clock economy, the importance offacient and reliable IT infrastructure for the success
of an enterprise hardly needs any explanation. As busiadasesasingly rely on this infrastructure, system
performance becomes more important than ever before. &ssas are building more and bigger databases,
and database administrators (DBAS) are expected to takbismver-increasing load. Hiring highly skilled
administrative staff to manage such complex environmesgslts in spiraling management costs, making self-
managing technologies a must-have for modern databassrsy§4].

In this context, being able to effectively analyze systemigsmance is crucial for ensuring good quality of
service. Database systems traditionally expose a pletifareeasurements and statistics about their operation
and it can be hard to get an overall view of what is happenirthérsystem. ldentification of the root cause of
a performance problem is not easy [10, 3, 2]. It is not uncomfoo DBAs to spend large amounts of time and
resources fixing performansymptomsonly to find that this has marginal effect on system perfaroea Lack
of a holistic view of the database leads to incorrect diagnaosisdirected tuning efforts and over-configured
systems, increasing the total cost of ownership. [9, 3, 8].

Even when the proper methodology for analysis is followeds often found that the available data stops
short of what is required to fully diagnose the root causecklLaf adequate statistics is a very common issue

Copyright 2006 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
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because collecting appropriate ones is prohibitively agpe, especially since a very broad class of statistics is
required to address a very large spectrum of potential $sdlverse, to be effective, statistics collection must be
continuous and enabled by default, since a performanceégonotan strike any time. Additionaly, statistics need
to be persisted since the analysis of a performance issttersmerformed long after this issue has occurred.

When appropriate statistics are not available, an optitémiisproduce the problem while collecting a larger
set of targeted statistics, in the hope that this would beiginao complete the performance diagnosis. In real
world, this solution is rarely feasible because it requadsll-scale test system and a way to simulate/reproduce
a full-scale workload. This is either impossible to do ortfaw expensive to be practical.

Recognizing these challenging demands, Oracle 10g intesda sophisticated self-managing database that
automatically monitors, adapts, and fixes itself. This papevides a overview of Oracle’s self-tuning architec-
ture along with a more detailed presentation of two autamatiing solutionsAutomatic Database Diagnostic
Monitor (ADDM) which automatically diagnoses the bottlenecks etffeg the total database throughput and
provides actionable recommendations to alleviate themhtlamAutomatic SQL Tuning Advisevhich provides
comprehensive tuning recommendations for a SQL workloatigpan query optimization, access path analysis
and statement restructuring.

2 Self-Tuning Architecture

Oracle’s tuning framework developed in Oraclel0g for sedfhaging

gg}fg;ﬂg databases is centered around the three phases of the selffimg loop:

ollection | IN-Memory Observe, Diagnoseand Resolve This framework enables a compre-
Performance Data | - hansive tuning solution by providing the necessary compisneEach
A component provided by the framework plays a key role in ormaane of
| these phases, and can be broadly classified into two cadegStatistics

| Collection and Storage (observehich includes components that mea-

Diagnostics

ADDM, SOL Tune g sure and collect interesting statistics and performantafdacurrent as
and Other Advisors | well as historical analysis and alerting; aAdvisor (diagnose and re-
| solve)which includes the components that carry out a targeted/sisal
| of the data and work towards optimizing the performance fgivan
! | area.
| The phases in the self-tuning loop refer to a particularngraycle
Recommendations — — (e.g. total database tuning cycle via ADDM, or a SQL Tuningle),

and there could be many such tuning cycles occurring coectlyreach
_ . in different phases. A tuning cycle could contain other migneycles.
Figure 1.~ The Sel-Managing|, tact the system is designed with precisely such a hieizatmodel
Database Framework. in mind; a system-wide top-down throughput based tunindhouilogy

is used wherein ADDM acts as the central advisor that dirkotber
tuning activity in the system by invoking other subsysteracsiic advisors based on top issues affecting overall
throughput. Figure 1 illustrates the relationship betwdmnStatistics Collection and Storage components and
the Advisors.

Before we briefly explore each stage in the self-tuning lae@ would like to introduce the key concept of

Database Tim¢hat has enabled us to successfully tackle inter-compatetabase wide tuning.

2.1 Database Time

Traditionally, performance of various subsystems of thialoiase is measured using different metrics. For ex-
ample, the efficiency of the data-block buffer cache is esggd as a percentage in buffer hit-ratio; the 1/0
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subsystem is measured using average read and write laetiseng such disparate metrics to find the perfor-
mance impact of a particular component over the total dab&oughput is extremely hard, if not infeasible.
We addressed this issue in Oraclel0g by introducing theegiraf Database Timer simply DbTimein this
paper, a new time based measure.

DbTime is defined as the sum of the time spent inside the dsgai@cessing user requests. It is only a
portion of the response time perceived by the user sincest dot include time spent in the intervening layers
like the network or the middle tiers. It is directly proportal to the number and duration of user requests, and
can be higher or lower that the corresponding wall-clocletin is a measurement of the total amount of work
done by the database, and the rate at which the databases tbaresiumed can be thought of as the database load
average, similar to the OS load average.

DbTime serves as a common currency for the measurement disysgam’s performance impact. For
example, the performance impact of an under-sized buffemeaould be measured as the total database time
spent in performing additional 1/0O requests that could Haeen avoided if the buffer cache was larger.

2.2 Observe Phase

This phase is automatic, enabled by default and continuo@sacle10g. It's reponsibility is to collect and store
an extensive set of statistics. Oraclel10g has been exéngnstrumented to obtain precise timing information,
both CPU and wait times, for a wide range of database opegatla addition, the observe phase records samples
of database sessions activity at a frequency of one eveondeto allow for fine grain analysis of user activity;
it collects various statistics on resource usage, bothtabdae and OS level, to help identifying any resource
bottlenecks; finally it maintains statistics for highly dsgatabase entities, like high-load SQL statements and
on often accessed objects like tables and indices.

Statistics collected by the observe phase are stored iAdt@matic Workload RepositofAWR). AWR is
a persistent store of performance data for Oracle10g antde#mught of as the Oracle performance dataware-
house. Statistics in AWR are organized chronologicallyngifiourly delta snapshots of in-memory statistics.
The AWR is self-managed; it accepts policies for data retardnd proactively purges data should it encounter
space pressure. The same data is also used for feedbackignad: to analyze the result of tuning actions
undertaken as part of previous analysis.

2.3 Diagnose Phase

Activities in this phase refer to the analysis of varioustpaf the database system using data in AWR or in
in-memory views. The analysis is performed by a seid¥isors Oracle10g introduces many advisors, each re-
sponsible for analyzing and optimizing the performancedsféspective sub-components. ADDM and the SQL
Tuning Advisor are presented later in this paper; othersasgiinclude:Segment Advisdhat analyzes space
wastage by objects due to internal and external fragmentdiiemory Advisorghat continuously monitor the
database instance and auto-tune the memory utilizatiomeleet the various memory pools for shared memory
and process private memory [®ndo Advisorthat provides optimal sizing of the Undo space.

2.4 Resolve Phase

The various advisors, after having performed their angJysiovide as output a set of recommendations that can
be implemented or applied to the database. Each recomni@mdafccompanied by a benefit, in DbTime units,
which the workload would experience should the recommenldde applied. The recommendations may be
automatically applied by the database (e.g., the memoizimgsby the memory advisors) or it may be initiated
manually. This constitutes the Resolve phase.
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Applying recommendations to the system closes an iteratfdhat particular tuning loop. The influence
of the recommendations on the workload will then be obsemddture performance measurements. Further
tuning loops may be initiated until the desired level of perfance is attained.

3 ADDM

The Automatic Database Diagnostic Monitor (ADDM) in Oratl¥g automates the entire process of diagnosing
performance issues and suggests relevant tuning reconatin@msiwith the primary objective of maximizing the
total database throughput. This advisor is executed othiedbox once every hour, each time an AWR snhapshot
is produced. Results of these analyses are kept by defaalinh@nth making it very easy for the DBA to address
past performance issues.

Automatic performance diagnosis is very challenging beeanodern database systems have complicated
interactions between their sub-components and have thigy abiwork with a variety of applications. This
results in a very large list of potential performance isssigsh an automatic analysis could identify. Also, as
new database technologies and applications are introdaceldolder ones are made obsolete, it is pivotal that
automatic diagnostic and tuning solutions can easily betadao accommodate such changes.

ADDM was designed with the following objectives:

e Should posses a holistic view of the database and under#tandteractions between various database
components.

e Should be capable of distinguishing symptoms from the &ctwdt-cause of performance bottlenecks.
e Should provide mechanisms to diagnose performance issuthein first occurrence.
e Should easily keep up with changing technologies.

ADDM uses DbTime to identify database components that reqavestigation and also to quantify perfor-
mance bottlenecks. Identifying the component consumiegntbst database time is equivalent to finding the
single database component that when tuned will provide thatgst benefit. In other words, it is looking for
ways to process a given set of user requests in the least awmicdatabase time.

3.1 DBTime-graph and ADDM Methodology

The first step in automatic performance tuning is to coryadentify the root causes of performance problems,
Only then is it possible to explore effective tuning recormfetions to solve or alleviate the issue. ADDM looks
at the database time spent in two independent dimensioa$irshdimension looks at the database time spent in
various phases of processing user requests, and inclugg®das like 'connecting to the database’, 'optimizing
SQL statements’, 'executing SQL statements’; the secomestion looks at the database time spent using or
waiting for various database resources used in processieigrequests, and includes both hardware resources
like CPU and I/O devices, and software resources like datalmrks and application locks.

ADDM looks at the database time spent in each category urathrthese dimensions and drills down into
the categories that had consumed significant database Tihige.two dimensional correlation gives ADDM a
very good judgment in zooming in to the more significant penfance issues. The drill down process can be
represented using a directed-acyclic-graph as shown uré&@, which we call th®BTime-graph

It should be noted that this DBTime-graph is not a decisier for a rule-based diagnosis system, where a
set of rules is organized in the form of a decision tree thihigersed either to find the goal given a particular set
of data or to find the data given a particular goal [1]. The DB@&igraph has various properties that differentiates
itself from rule-based decision trees: (a) each node ingit@iph looks at the amount of database time consumed
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Figure 2: A Sample DBTime-Graph.

by a particular database component or resource; (b) allsnodihis graph are gauged with the same measure -
DbTime; (c) all the children of a particular node are unctindally explored whenever the database time spent
in that node is significant; and (d) database time attribteal particular node should be completely contained
in the database time attributed to each of its parents. A rbat complies with all these properties can be
added to the DBTime-graph making it easy to evolve with ciantechnologies, unlike the decision tree of a
rule-based diagnosis system [1].

ADDM explores this DBTime-graph starting at the root-nodel aisiting all the children of a node if the
database time consumed is significant. Branch nodes in thhddentify the performance impact of what is
usually a symptom of a bottleneck, whereas the terminal s\atkmtify particular root-causes that can explain
all the symptoms that were significant along the path in whighterminal node was reached. For example,
in Figure 2, the branch node "I/O Capacity” would measurablase time spent in all I/O requests. Whenever
significant database time was spent in I/O requests all titdreh of the "I/O Capacity” node would be explored,
which are the two terminal nodes in this example. The "Unideds Buffer Cache” node would look for a
particular root-cause, which is to see if the data-blockdndache was undersized causing excessive number of
I/O requests. The "Insufficient I/O Bandwidth” node woulakofor hardware issues that could slow down all
I/0O requests.

Once a terminal node identifies a root-cause, it measurasact in DbTime units. It then explores ways
that can solve or alleviate the problem and comes up witloratile tuning recommendations based on the
various workload measurements gathered. The nodes alsmtsthe maximum possible database time that
could be saved by the suggested tuning recommendationshwhed not necessarily be equal to the database
time attributed to the root-cause.

It is interesting to note that ADDM doesn't traverse the enBBTime-graph, rather it prunes the uninterest-
ing sub-graphs. This is possible only because a node’s asgahme is contained in the database time attributed
to its parents. Consequently the cost of an ADDM analysiedép only on the number of actual performance
problems that were affecting the database, and not on thldotd on the database or the number of issues
that ADDM could potentially diagnose.

3.2 Workload Measurements

ADDM analysis can only be done if the appropriate data islalsbg. Our first and most important requirement
is that we collect all the data ADDM needs for each node in tBTihe-graph. ADDM needs data for the
following operations: quantifying the impact in DbTime fitre database components and operations; finding
recommendations for alleviating root-cause problems atithating the potential benefit in DbTime units. Our
second requirement is the "minimal intrusion principlel’states that the act of collecting measurements for
performance diagnostics should not cause a significantadagion in performance. All the data collection is
done as part of the AWR snapshot mechanism described edifiervarious types of measurements include:
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Database Time MeasurementsThe first priority in an ADDM analysis is to establish the meomponents
that consume significant database time. This measurementusnulative non-decreasing function of time
whose value over any time period can be got by a differencéeféspective values from the start and end
points. Direct measurements can only be done on databasstiops that usually take significant time to finish.
The decision about which operations should be measuredlmeusised on the cost of measurement (i.e. start
and end a timer) and the expected length and quantity of quetations. For example, measuring the total time
spent in I/O operations is reasonable while measuring the §pent in critical sections is not. Our solution to
capture short duration operations is to use sampling, lvetiuéncy-based as well as time-based sampling.

Active Session History: We use regular time-based sampling to capture the activitysystem since it is
not practical to collect a complete system trace of opematid his enables ADDM to narrow down root-causes
of problems and give effective recommendations. We calktiikection of sampled data the "Active Session
History” (ASH). Each sample contains information about wie database server is doing on behalf of each
connected user (a.k.a. "session”) at the time of sampling. oWy collect data for sessions that are actively
using the database during the sample time. If a specific bpereonsumes significant database time during the
analysis period, there is a high probability that this operawill appear in a significant number of samples in
ASH. This enables ADDM to diagnose such operations even ifleveot measure them directly.

System Configuration Data: We collect system configuration data related to databasimgst Since
database settings do not change very often we maintain l¢udf changes. This data can be crucial to giving
recommendations for fixing specific problems. Examples chalata are size of memory components (like
buffer cache), number of CPUs used by the system, special gp&mizer settings.

Simulation Data: Sometimes, estimating the impact of a specific area of trebdat requires a simulation
of various possible alternatives. For example to find thathihffer cache is the root-cause of an 1/O issue we
must determine that we spent time reading data blocks thag wehe buffer cache at some point in time and
were replaced. In other words, we need to determine how neau/IfO operations could have been saved given
an infinite buffer cache. Our solution is to simulate and dgifyathe effect of various cache sizes.

4 SQL Tuning Advisor

The inherently complex activity of SQL Tuning requires ahhigvel of

Missing soL vissing | [Poor oL expertise in several domains: query ep';imization, to ime_rt_he exe-
statistics Profile cution plan selected by the query optimizer; access detigidentify
ﬁ ﬁ ﬁ missing access structures; and SQL design, to restructgrsimplify

ﬁ the text of a badly written SQL statement. Oracle10g addresgrob-

Indexes Constructs|

| SQL Tuning Advisor | lem by introducing a new advisor, the "Automatic SQL Tuningvi
sor”, implemented as a core enhancement of the Oracle qptryiper.
ﬁ It introduces the concept &QL profilingto transparently improve ex-
Automatic Tuning Optimizer ecution plans. It also generates SQL tuning recommendabgrper-
statistios | | soL Access sqL forming cost-based access path and SQL structure "whatrélyses.
analysis | | profiing || PR ]| BREEE! | Figure 3 shows the architecture of the Automatic SQL Tuningic

ponent. We term the special extension of the query optimasethe
Figure 3: Automatic SQL Tuning Ar- Automatic Tuning Optimizer.
chitecture. The advantage of using the Oracle query optimizer as the lfasi
Automatic SQL Tuning is multifold: tuning is done by the sanun-
ponent that is responsible for selecting the execution; plature enhancements to the query optimizer are
automatically considered; customized optimizer settcays be used based on the execution history of the SQL
statement. The SQL Tuning Advisor acts as the front-ente@otw one or more SQL statements and passing it
to the Automatic Tuning Optimizer along with other input @aeters, such as a time limit. It then displays the
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results in the form of tuning recommendations, each withtiamale and an estimate of the benefit in DBTime
units

4.1 SQL Profiling

The query optimizer relies on data and system statisticsiriotion properly and by employing probabilistic
models on these base statistics the query optimizer deraresus data size estimates. Some of the main reasons
for a sub-optimal plan include: missing or stale base siegiswrong estimation of intermediate result sizes,
and inappropriate optimization parameter settings.

To overcome these limitatione we introduce SQL profilingew oncept that denotes the capability within
the optimizer to obtain auxiliary information specific to 8IS statement based on 1) statistics analysis, 2)
estimates analysis, and 3)parameters settings. A SQL&adijiect is then built from this auxiliary information.

Once the user, acting on the recommendation generategita@&QL Profile, it is stored in Oracle’s data
dictionary. When this SQL statement (same text with potdigtdifferent host variables and/or literal values)
is subsequently presented to the system the optimizer etilerve the SQL Profile from the dictionary and use
it along with other statistics to build a well-tuned exeountplan. The use of a SQL Profile remains completely
transparent to the user, and more importantly its creatiolhuse don’t require changes to the application source
code. The following is done as part of profiling:

Statistics Analysis: The goal here is to verify whether statistics are missingales The Automatic Tuning
Optimizer checks each of the statistics required during gkneration. It uses sampling to check the accuracy
of the stored statistic. Iterative sampling with incregsgample size is used to meet this objective to obtain
greater accuracy if needed. If a statistic is found to bee stalxiliary information is generated to compensate
for staleness. If it is missing, auxiliary information isrgeated to supply the missing statistic.

Estimates Analysis:One of the main features of a cost-based query optimizes &bility to derive the size
of intermediate results. Errors in estimates result in gptimal plans and can be caused by a combination of
factors like uniform distribution assumption, column edation and an inadequate statistical model for complex
predicates. During SQL profiling, various standard estamatre validated by running parts of the query on a
sample of the input dataset. When errors are found, comfmgsaformation is added to the SQL Profile.

Parameter Settings Analysis:Here the past execution history of a SQL statement is usedt@rrdine the
best optimizer settings. For example, the history may shatthe output of a SQL statement is often partially
consumed, consequently a setting to produce thefirsis is generated, whereis derived from this execution
history.

4.2 Access Path Analysis

Creating suitable indexes is a well-known tuning technitha can significantly improve the performance of
SQL statements. The Automatic Tuning Optimizer recommehesreation of indexes based on what-if anal-
ysis of various predicates and clauses present in the S@unstat being tuned. The recommendation is given
only if the performance can be improved by a large factor.

4.3 SQL Structure Analysis

Often a SQL statement can be high-load simply due to the wiawtitten. This usually happens when there
are different, but not semantically equivalent ways toevaitstatement to produce same result. It is important to
understand that the optimizer, as part of regular plan @ioarprocess, already does semantically equivalent
transformations. Semantic equivalence can be establighet certain conditions are met; for example, a
particular column in a table has the non-null property. Havethese constraints may not exist in the database
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but instead are enforced by the application. The Automaticirig Optimizer performs a cost-based what-if
analysis to identify missed query rewrite opportunitied esues recommendations.

5 Conclusions

In this paper we describe the Oracle’s Self Tuning Architexztand how it enables a comprehensive automatic
tuning solution. We then described two automatic tuningtsmhs: ADDM and SQL Tuning Advisor.

ADDM seeks to improve the overall throughput of the datahdaga comprehensive top-down performance
analysis of the system. By using database time in conjumetith the two-dimensional DBTime-graph ADDM
is able to quickly isolate the root causes of performanc#dracks and provide very specific actionable recom-
mendations, obtained by using fine-grained sampling da¢ase refer to [7] for more details.

The SQL Tuning Advisor is based on the Automatic Tuning Optén an extension of the Oracle query
optimizer. We have described the multipronged approachQt $uning, and the unique concept of SQL
Profiling that results in a SQL Profile object associated whh SQL statement and used subsequently during
plan generation. For more information please refer to [6].
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1 Introduction

The increasing interest in new software engineering teloigies for application integration such as Service Ori-
ented Computing and Service Orchestration has resultegrioliferation of workflow management systems as
the underlying representation and execution platform éovise composition [7]. Workflow management sys-
tem are also being applied to new domains (e.g., virtuahsifielaboratories [1], Grid computing [12], service
delivery and provisioning [6]). For these new applicationsrkflows are seen as the modeling metaphor behind
the notion ofstraight through processingndvirtual organizationswvhere a collection of existing heterogeneous
systems are composed into an integrated solution.

In all these settings workflow engines are at the core of a tengmmbination of applications and clustered
computers. As such, they have become rather difficult toayeguhd configure, let alone tune to obtain maximum
performance. This problem is not unique to workflow and sendgomposition engines but it is more difficult
to address in these settings because there is only a limitédrstanding of the execution procedures behind
a workflow engine. In this short paper we report on our ongeilogk to design and develop an autonomic
workflow engine that can be used for large scale service ceitimo. The challenge we face in doing this
is threefold. First, we need to design an execution proeedr service compositions that is amenable to
autonomic treatment. Second, this procedure needs to loeeckin an architecture that supports the deployment
of different modules of the system across a computer clustader to achieve the desired level of performance.
Third, an autonomic controller and appropriate controlgie$ need to be developed to automatically provision
the optimal amount of resources to the engine.

In what follows we provide a high level description of how wavh accomplished these three goals and
give a brief account of the performance of the system. Thdemented system is part of the JOpera project.
JOpera is an advanced SOA tool for Eclipse, which providedatmng, execution, monitoring and debugging
tools for workflow-based Web service orchestration. A matitied presentation of the autonomic capabilities
of JOpera, including an extensive experimental evaluaiidche approach can be found in [4, 11].

2 Web Service Orchestration with Workflows

In Service Oriented Architectures (SOA) workflow modeliagduages have found a good application to define
an executable model of the flow of information between a sseofices [7]. A workflow process defines the

Copyright 2006 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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interactions between a set of services by scripting (orestrhting) the exchange of messages between them.
To simplify its integration and reuse, the resulting wonkflis also typically published as a service.

As an example, we illustrate a small workflow for providingaue-added service out of the composition
of two basic ones. In particular, the workflow shows how a iserproviding stock prices converted in any
currency can be built out of the composition of two serviaase returning stock prices in U.S. dollars and the
other one returning currency exchange rates between slalfat the requested currency.

The screenshot of Figure 1 shows how the workflow is develas#ty JOpera. The outline view on the
left contains the structure of the workflow in terms of itskand also lists the services to be composed. The
editors on the right show two graphs defining the control flow data flow relationships between the tasks of
the workflow. The control flow graph (at the top) defines thesomf execution of the tasks of the workflow.
Since the stock quote and currency exchange services agandent of each other, the tasks invoking them can
be executed in parallel. Once both of these tasks completaask computing the converted price is executed.
The data flow graph of the workflow (shown in the bottom editbgfines where the information required by
each service comes from. The result of the entire workflowpeaeturned to its client, is produced by the
StockQuote service invocation task for the OriginalPricd By the PriceConversion task for the ConvertePrice.
This task receives its input from the result of the invocatd both the StockQuote and the CurrencyExchange
service. These are invoked passing data (the Currency an8yimbol identifying the stock) provided by the
client as input of the whole workflow.
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Figure 1: Defining a simple Web service orchestration in J®pe
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In addition to the separate visualization of the control flamd data flow aspects of a workflow and the
use of control flow extraction algorithms to ensure the aatiimreconciliation between the two, JOpera also
offers efficient means of binding each task of the workflowhi® $ervice to be invoked while executing it [9].
In this example, the tasks devoted to collecting infornmafrom the external providers of stock prices and cur-
rency rates are bound to a standard-compliant Web senaéseribed using plain WSDL, accessed using SOAP
messages). With the price of additional complexity and lowad, this ensures the interoperability between the
workflow engine and the service provider and removes the akdéveloping customized adapters to make the
engine access external sources of information. For the thgk, responsible for computing the converted price
by running a multiplication between the original price ahe torresponding exchange rate, it should not be nec-
essary to pay the overhead of a remote SOAP call. In JOper&rtbeConversion service can be implemented
using a so-called Java snippet, which is invoked with thelmed comparable to a local Java method call.

3 Stage-based Workflow Execution in JOpera

Running such a workflow process involves executing the takse workflow in the correct order and passing
the data produced by one task to its successors. In the ¢aftéeb service orchestration, tasks are typically
bound to service invocations and their execution involtesexchange of messages between the engine and an
external service provider. Messages are also exchangée ireverse direction, when clients of the workflow
engine want to initiate the execution of a new process istarpon receipt of such message, the engine
begins running a new process instance, analyzes its cdluvwoktructure and determines which tasks need to
be executed next. Then, for each active task, the enginetséle service to be invoked, fetches data from the
process variables to compose a message, which is then siet torresponding service provider. Once this
invocation completes, the state of the process needs todasagpwith the results so that other tasks can access
them. Process execution continues until all tasks have brecuted, or an explicit termination point in the
workflow has been reached.

Clearly, workflow engines are capable of running more thamiostance of a workflow at the same time.
This feature is also very important in the context of Web merorchestration: once processes are published as
a Web service, clients can send messages to the enginertorgsanew process at any time. Given the limited
amount of resources (i.e., CPU threads and memory) avaitalthe engine, it becomes important to restructure
the execution of a workflow so that the engine can scale to targa number of concurrent process instances.

In this regard, the simple solution of permanently assigrarthread to run each process instance suffers
from a number of limitations. The number of concurrent tdeethat are available in a virtual machine would
set a limit to the number of processes that can be run by thaeaga given time (a few hundred). Furthermore,
such threads would be underutilized as they would dedicaigt of their time to 1/0O operations, i.e., sending
and receiving SOAP messages. Finally, assigning one thoszaith process instance would limit the amount of
intra-process parallelism supported by the engine. Inratloeds, even if the control flow structure of a process
defines a partial execution order over its tasks, this enireading model would serialize the execution of all
tasks within a process.

One of the innovative design decisions of the JOpera engisein employing a threading model which
effectively decouples the process instances from the dsreaecuting them. Apart from shifting the factor
limiting the maximum number of concurrent processes thatbeaexecuted from the number of threads to the
amount of available memory, this decision also makes itiptes$or the same engine architecture to scale out
from a centralized to a distributed configuration [10].

To do so, we have partitioned the execution of a process instages The first involves the, so-called,
processavigation i.e., making the control and daflaw through the process instance by using a graph traversal
algorithm to determine which tasks of the process are to bewutgd next based on their dependencies to the
already completed tasks. The second stagkspatching— involves the actual execution of the tasks, which

34



boils down to the synchronous or asynchronous exchange sdages with the provider of the Web service to
which the task has been bound.

In the architecture of JOpera, these two execution stages lieen assigned to two different (and loosely
coupled) active components of the engine: the navigatortbedlispatcher. The navigator runs processes,
the dispatcher runs tasks. As it can be seen from Figure 2dbeymunicate asynchronously using queues.
Whenever the navigator has determined that a new task iy teade executed, the information required to
perform such execution is added to tiask queue The dispatcher takes tasks from such queue and performs
the corresponding Web service invocation. Once the inimtas complete, the dispatcher puts its results in the
event queueThe navigator collects them, updates the state of thegmoreling process instance and continues
running it by sending the next tasks to be executed to theattibpr.

Given an appropriate implementation of such task and evesties, the navigator and dispatcher compo-
nents can be run by threads which are distributed on diffggbysical hosts, e.g., a cluster of computers [5].
To achieve a large task execution capacity dispatchers eaarbby a large thread pool. Similarly, navigators
running different (and independent) process instancesisarbe replicated among a pool of threads.
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Figure 2: Architecture of a self-managing workflow engireftjland performance evaluation (right)
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4 A Deployment Dilemma

Although such stage-based architecture delivers the sagefiexibility to adapt the number of dispatcher and
navigator components to the workload executed by the endginpens up another important problem, related
to thedeploymentand managemenof such system. The engine may face an unknown number ohaitand
external clients that can define and run an unpredictablebruwf processes concurrently. Thus, the structure
of these processes and the number of their instances thdtavé to be executed in response to clients cannot
be determined a priori. This makes it difficult to choose leswa centralized or a distributed solution for the
deployment of the system. Moreover, in case a distributguicgeh is chosen to provide the required level of
performance, the correct amount of resources must be proei$ and these must be managed and optimally
configured, in terms of how the resources are allocated tigatrs and dispatchers.

To illustrate this problem, in Figure 3 we include an exangilewing the sensitivity of the system to its
configuration. In this example we started 1000 concurreotgsses and measured their total execution time
using different configurations of the engine.
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Figure 3: Speedup relative to the slowest configuration of thfferent workloads over all possible configura-
tions of the engine deployed on a cluster of 15 nodes

Tuning the engine by allocating the “right” amount of natiga and dispatchers can — in this example —
achieve a 5x speedup in the execution of the same workloald, ti& optimal configuration for one kind of
workload could turn out to be sub-optimal for a differentdoadn the example (Figure 3 right), we use two
workloads characterized by different task durations. FEasits can be consumed quickly by the dispatchers
and shift the load onto the navigators, which have to resureeuting processes after having issued the tasks
which immediately complete. For short tasks duration, i@dst speedup is found with a configuration which
allocates more resources to navigators. The opposite edth slow tasks, which keep the dispatchers busy
for a longer time. In Figure 3 left, we show that with tasksha same duration, second order effects due to the
process control flow structure become apparent.

From this example, it is clear that it is not enough to basedigloyment decisions on estimating the
performance of a certain configuration of the system by ntakissumptions about the properties of its work-
load [2]. Once these assumptions no longer hold, the systidinbevmisconfigured and use the available re-
sources inefficiently. Instead of a static solution, we d®to follow a dynamic approach based on a closed
feed-back loop. As we are going to illustrate in the follogvisection, we have extended the workflow engine
with self-management capabilities so that it can adjustatdiguration on the fly based on measurements of its
performance under the actual workload.
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To do so, we introduce an autonomic controller whose algorstand policies do not make any assumption
about the structure of the processes to be executed. Thiollencan dynamically grow and shrink the size
of the system based on the number of processes that are tbumaetive. Such self-managing engine can be
initially be deployed in a centralized configuration anddyraly evolve as a distributed engine as its workload
gets larger. This avoids the problem of resource overpiavisg, where the workflow engine would have to be
dimensioned for peak capacity at all times.

Such a solution requires the engine to support dynamic figgoation. Clearly, stopping the entire engine
in order to migrate some of its components and to alter itdigoration is not possible as it would affect the
availability of the processes that are published as a Weficgethrough the engine. Instead, with our design, to
grow the size of the engine, i.e., to increase its procesaghraxecution capacity, it is enough to provision an
additional thread for executing the navigator or dispatcleenponents. In case of overprovisioning, threads can
be relinquished and the size of the engine reduced accdyding

5 Autonomic Deployment

The engine’s architecture has been designed to provides tie necessary extension points to follow a “bolt
on” approach to achieve self-management [3]. A managemehtok monitoring the performance of the engine
and for applying reconfiguration actions is available. Tihisrface can be used both for manual system admin-
istration tasks, as well as automatic self-management wieappropriate autonomic controller component is
added.

As opposed to measuring raw hardware metrics (e.g., CPIl4atiiin) of the physical hosts running the
engine, in our approach we have chosen to observe how théoadr&ffects the performance of the engine at a
higher level of abstraction. The workload for the engineloadefined as the number of active process instances
that are being executed. This can be measured as the woidieats both execution stages and influences the
length of the process queue serviced by navigators as wiidkasumber of tasks to be invoked by dispatchers.
The execution of a large number of processes will generateya humber of tasks. Still, monitoring the queues
gives a precise picture of the performance of each stageamoeint of queued tasks depends on the degree of
parallelism within a process and will change for processainly different control flow structures. Additionally,
the size of the process queue will grow if several tasks cetaftheir execution at the same time.

As shown in the lower part of Figure 2, this performance infation is fed into the autonomic controller,
which processes it and reacts by applying the appropriatsnfiguration and recovery actions to the engine. The
controller is structured into three functional componestdf-healing, self-tuning and self-configuration, which
interact asynchronously and share a common model of thee&rgionfiguration. As a first approximation, this
model includes information about the available resourdd¢lencluster and their allocation state. The configu-
ration information is kept up to date by the self-healing poment which periodically monitor its consistency
with respect to the actual configuration of the cluster. Oagaismatch occurs, the self-healing component
detects a failure in the engine, updates the configuratiodelrend performs the appropriate recovery actions.
For example, tasks executing on a failed dispatcher havelbseand have to be requeued to be retried.

The goal of the self-tuning and self-configuration compameto work together in order to keep the engine
provisioned with the optimal amount of resources and eniatethe current configuration provides a good per-
formance. The self-tuning component periodically readfop@mance measurements (i.e., the size of the process
and task queues) from the engine and uses this informatidetext imbalances in the current configuration.
Measuring the length of the event and task queues makesidér eaglefine high level policies to control the
engine’s configuration. Such policies map observed va&bito a reconfiguration plan. For example, if the
task queue grows beyond a certain threshold, a dispatchaldsbe added to increase the rate of task execution.

This abstract plan (e.g., to add one dispatcher) is exedytélae self-configuration component. Decoupling
planning from execution is important not only because ietakme to perform the actual reconfiguration, but
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also because it allows the controller to choose the optigsdurce targeted by the reconfiguration plan. While
a reconfiguration is taking place, the self-tuning compoican continue to observe the system’s behavior and
possibly update the reconfiguration plan with new decisioased on more up-to-date information. At the

same time, the self-configuration component can choosep®priate resource on which to apply the plan by
minimizing the distruption caused by the reconfiguration.

6 Evaluation

To evaluate the architecture of the engine and its autoncapabilities we have performed a number of ex-
periments which (1) motivate the need for adding self-manant capabilities to the engine (2) show that the
controller can indeed automatically reconfigure and healsystem [4] and (3) compare the performance of
different control policies [11].

Due to space limitations, in this section we only descrilgerésults of a self-healing experiment. In addition
to adjusting the configuration in response to changes in thr&laad applied to the system, in this case, the
controller also reacts to external changes in the systerfigtmation. The right side of Figure 2 shows a trace
of how the engine evolves, from the point of view of the coltéro The top two graphs include measurements
of the performance of the engine in terms of the length ofdls& and process queues. The bottom graph shows
various snapshots of the configuration of the engine oves,tdafined as the number of nodes of the cluster that
have been allocated to run dispatchers and navigators.

Given the lack of benchmarks for autonomic workflow enginee, have performed a basic load test,
where the system is periodically hit by a peakrofmessages that are handled by starting the execution of
the same number of processes in parallel. To simplify thdyaisaof the results, these processes have the
same structure and contain the same number of tasks. In pleeiments, four peaks of 500 processes arrive at
t = 20s, 100s, 205s, 305s. The controller notices that the workload has increaseddsgiving the evolution of
the process queue length. When such queue gets longer,nsrttes the engine needs to allocate more process
execution capacity. Thus, the controller allocates up t@@gators to service the process queue. Once the
processes begin execution, also the task queue gets fillaadypn the first part of the experiment, the controller
allocates up to 10 dispatchers to deliver the required tas&ution capacity.

While the second peak arrives,tat= 100s, the engine undergoes a maintenance operation. First, &nod
are added to the pool of resources of the engine, then othedésrare taken out of the pool for maintenance
(att = 140). This manual node rotation is part of the normal mainteaariche system and should not disrupt
its operations. The controller immediately makes uses@hwly added resources by allocating 3 additional
dispatchers and 2 additional navigators. Still, once 5 s@de taken out of the pool, the self-healing component
notices their disappearance and recovers the tasks argspescthat were running on the failed nodes. Also, the
configuration of the remaining nodes is out of balance. Tlhiisb& corrected before the next peak of processes
arrives. Att = 230 the newly added nodes fail and the engine continues runnitigonly 10 nodes. Clearly its
performance has decreased as both task and process queinessgsingly longer. The controller tries to make
use of the remaning nodes and the system keeps running.

7 Conclusion

In the same way that using database engines provides coaidielesavings in terms of code to be developed
in large applications, workflow engines greatly simplifyetbrchestration problem in application integration
settings. Yet, for developers to be able to take advantagaadf savings in coding, the performance of existing
workflow engines needs to be significantly improved.

In this paper we show how the processing capacity of a secaogosition engine based on the workflow
paradigm can be extended automatically in response to ekangthe load. Although we have shown how
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to apply it to JOpera, our approach is independent of thecpdat workflow engine, as its general principles
can be applied to any process execution engine for Web seovithestration (e.g., other implementations of
WS-BPEL [8]).

The solution described builds upon three important ideapamating dispatching from navigation in the
process execution, implementing them as separate mo@ueéslesigning appropriate policies for determining
how many dispatchers and how many navigators are neededdamgdo the current workload. The fact that
the system can dynamically adjust the number of navigatitmhdaspatching modules it utilizes by itself is an
important property that frees up the developer and systaniréstrator from having to worry about tuning and
deployment configurations.

Downloading JOpera

The latest release of JOpera for Eclipse, including sevedamples to get started, can be downloaded from
www. updat e. j oper a. or g. Additional publications and documentation can be foundiw. j oper a. or g.
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Abstract

Administration increasingly dominates the total cost ofnevghip of database management systems.
A key task, and a very difficult one for an administrator, igustify upgrades of CPU, memory and
storage resources with quantitative predictions of theeexgd improvement in workload performance.
We present a design and prototype implementation of a Res@udvisor that is able to answer “what-
if” questions about DBMS performance under hypotheticaiditons. We discuss the design issues
and challenges involved in building such a Resource Advasowell as our experiences in building a
prototype Resource Advisor for SQL Server.

1 Introduction

Administering database management systems (DBMS) is alegrapd increasingly expensive task. There is a
pressing need to raise the level of abstraction at whichbda®administrators (DBAS) interact with the system,
by automating tasks which currently require substantiahduu effort and expertise [8]. In this paper we focus
on the task ofesource (re)provisioningdetermining the number, type, and configuration of haréweasources
most appropriate to a given workload, hardware budget, arfdpnance goals.

Resource provisioning is typically done by human experisguexperience and rules of thumb to decide
whether additional resources will improve performance [Bhe cost of such experts is significant for large
enterprises and prohibitive for small ones. Even expert$ifilifficult to quantify the expected benefit of a
resource upgrade. The net result is over-provisioned mysteth no guarantees on performance [8].

The key technical challenge in automating resource prawisg decisions is automated prediction of perfor-
mance in hypothetical hardware configurations. In otherd&owe wish the system itself to provide accurate,
guantitative answers to “what-if” questions such ashatwould be the increase in throughpiithe server’s
main memory were doubled?” In this paper we discuss the dassyes and challenges in building such a
predictive capability, and also our experiences in buddirspecific system, Resource Advisdior SQL Server.

Copyright 2006 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.
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Figure 1: Resource Advisor architecture

2 Design principles

Large commercial databases are complex systems that depeederal physical resources such as the back end
storage system, volatile main memory and CPUs. A databas@atrator (DBA) must decide on a good initial
configuration of these resources, and then continuouslyitoraime system for new bottlenecks and changes
in workload. To do this she must have an intimate understgndf the various database components, their
interactions, and of the workload. Such experienced DBAsapensive and even they do not have the tools to
accurately and easily predict the performance effect ofrasgurce provisioning decision.

Consider a DBMS running multiple application workloadstwdifferent resource demands and performance
requirements. For example, DSS workloads have low conacyrand total run time is the metric of interest.
OLTP workloads have high concurrency and require not orty tinroughput but also bounded response time.
For any proposed resource provisioning the DBA must eséitineg impact on the performance of each workload,
taking into account the resource contention between them.

The most common approach to (re)provisioning such systertesmonitor the performance counters pro-
vided by most commercial systems. These counters measgregade load statistics for various resources,
which is not always sufficient to find the global bottleneckbey do not offer any insights into response time,
as they do not track per-request resource usage or distimdpgitween critical-path and background resource
usage. Finally, they place the heavy burden on the DBA ofectly interpreting 400+ performance counters.

We advocate a system architecture that addresses thedenpsdiy

1. Tracingper-request resource usage and control flow at fine gratyulari

2. Modelling hardware resources and the algorithms that schedule @ #iemn across multiple requests.

3. Predictingperformance on hypothetical hardware by combining woidlmaces with hardware models.

The bottleneck in DBMS provisioning today is the human inlttap. CPU cycles are relatively abundant,
allowing fine-grained yet low-overhead tracing of the liystem, as well as offline trace processing using idle
cycles. For example, SQL Server running an OLTP workloadcegen 500 events/transaction, with a CPU
overhead of 1000 cycles/event and generated 68 bytes/efveate data [5]. Extrapolating to the fastest TPC-C
system as of date (3,210,540 tpmC with 64 processors at 129 [BHwe get a CPU overhead of 5% and a trace
data rate of 8 MB/s. This could be reduced further througimapation, sampling, and runtime event filtering.
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Event Type Arguments Description
Control Flow StartRequest SQL transaction begins
EndRequest SQL transaction ends
EnterStoredProc procname Stored procedure invocation
ExitStoredProc procname Stored procedure completion
CPU scheduling SuspendTask taskID Suspend user-level thread
ResumeTask tasklD Resume user-level thread
Thread/CSwitchin | cpulD, sysTID Schedule kernel thread
Thread/CSwitchOut cpulD, sysTID Deschedule kernel thread
Buffer pool activity | BufferGet pagelD Fetch a page (blocking)
BufferAge pagelD Reduce the “heat” of a page
BufferTouch pagelD Increase the “heat” of a page
BufferDirty pagelD Mark a page as dirty
BufferReadAhead | startpage, numpages Prefetch pages (non-blocking)
BufferEvict pagelD Evict and free page
BufferNew pagelD Create a new page
BufferSteal numpages Allocate memory from free pool
BufferFree bufferID Release memory to free pool
Disk 1/0 DisklO startpage, numpages Asynchronously read/write pages
DisklOComplete startpage, numpages Signal read/write completion
Locking EnterLockAcquire | resourcelD, mode, timeoyt Attempt to lock a resource
ExitLockAcquire status Success/failure of lock acquisition
LockRelease resourcelD, mode Release a held lock

Table 1: Instrumentation events

8113984086 0 XactionStart tpcc_neworder,0
8113984086 1:0 CPU 3663
8113987749 2:1 CPU 187

8113990027 12:11 LOCK KEY: 5:844424932360192 (e102aa462451),S,ACQUIRE
8114036559 269:268 MEM ALLOC,1

8114152008 368:367 CPU 8544
8114160900 369:368 BUF 00000005,00000001,00000170,Fetch

8114160900 432:368 BUF 00000005,00000001,000001AF ,Fetch
8114160900 433:368 CPU 109

Each resource demand contains a timestamp and a “demanfbliBived by a list of previous demands that must precede
this one, in the transaction execution. This allows us tdwapany in-transaction concurrency: e.g., demands 369a4S3
asynchronous prefetch requests to the buffer managerhwahécexecuted concurrently with demand 433, i.e. commutati

is overlapped with I/O here. Each demand has additional-$peeific parameters, e.g. lock demands specify a resource
ID, a mode, and an action (acquire or release).

Figure 2: Simplified snippet of demand trace

42



3 Experience

Based on the principles and high-level design describedealwe have designed and implementelesource
Advisorfor SQL Server, which predicts the performance of a live iaakl under hypothetical hardware up-
grades. Here we briefly describe our experiences with ag pestotype based on analytic models, which was
described in detail in an earlier paper [6]. We then desailvecurrent simulator-based approach.

3.1 Analytic modelling

Figure 1 shows the high-level design of the Resource Advifforelies on fine-grained, low-overhead event
tracing from an instrumented DBMS. The instrumentatiomimare chosen to enal#ad-to-end tracing?2] of
each request from the moment it enters the system to its etimpl We record each use of system resources
— CPU, memory, I1/0O — as well as virtual resources such as lotkble 1 shows the set of events traced by
our instrumentation. These events allow the Resource Adwisreconstruct exactly the sequence of resource
demands issued by the workload. Since this sequence is aggadg of many concurrently executing requests,
the Resource Advisor first separates it out ipg-requestdemand traces. This requires instrumentation of all
context switches: points where a resource such as CPU stwpswgy on one request and starts work on another.

The raw event trace is transformed into a per-request dernaoe, where each request is represented as a
partially ordered set of resource demands, each for a speesiource. Figure 2 shows a simplified snippet of a
demand trace for an OLTP transaction. The aggregate denmaticbsystem is then the effect of concurrently
executing these per-request demands.

Subsequent steps in processing are parametrised by thectevastics of the hypothetical “what-if” hard-
ware: the buffer cache memory size, the CPU clock speed, iskcpdrameters such as rotational speed. The
buffer references are processed by a cache simulator toageran /O trace, and the I/O and CPU traces are
fed to analytic models that predict the throughput and meapanse time of each transaction type.

Our analytical models are able to accurately predict thecethf changing the buffer cache memory on the
throughput and response time of an OLTP workload. Figureo8vstthe prediction accuracy for two different
types of “what-if” questions. DOUBLE predicts the effect parformance of doubling the memory of the
current configuration (e.g. from 128 MB to 256 MB). TREND pi#dl performance over the entire range of
memory sizes, bases on observing the system with 64 MB.

Thus the models have good accuracy but restricted apgligafiihey make two major assumptions about
the workload, which are valid for OLTP but not for other war&tls such as DSS:

¢ that buffer cache misses cause a random-access I/O pattern;

e that the throughput bottleneck remains the same througiheutvorkload execution, i.e. the workload

does not have different phases with different bottlenecks.

With analytic models based on operational analysis, it &/ d¢a predict aggregate throughput, assuming
sufficient concurrency that the bottleneck resource is yawaisy. However, if there are multiple concurrent
users, each with a different workload (for example a diffiéteansaction mix), then it is difficult to predict the
throughput of each user individually.

Analytic models also make it difficult to predict responsadi Our models predict mean response time
per transaction type but are specific to OLTP. They also asghat a request’s response time is dominated by
its resource demands rather than queueing and scheduliagsd=used by concurrently executing requests.
To correctly model queueing and scheduling delays, and nigpate second-order metrics such as variance in
response time, we need queueing models. However, analgigegng models rely on assumptions about request
arrival time distributions that are often unrealistic.
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Figure 3: Predicting OLTP performance for hypothetical menthanges

3.2 Simulation-based modelling

The current version of the Resource Advisor is based on e@rrén simulation rather than analytical through-
put and response time models. Live workload traces are deseed into per-request demand traces as before,
and the concurrent execution of the requests on hypothéiicdware is modelled by the simulator. The result
of the simulation is a execution trace with the predictedrgninformation (including scheduling delays) of each
resource demand within each request. This allows us to ctentipe predicted throughput, response time, or any
other performance metric of interest. Unlike the analytmdels, the simulation approach is workload-agnostic
and also enables a wider range and a finer granularity of qmegiace metrics.

Each request’'s demands are executed by the simulator awgdadthe partial order specified in the de-
mand trace. Demands are executed by passing them to thepappEaesource model, which determines their
completion time by adding any queueing/scheduling delayedkas the predicted service time:

e TheCPU modekomputes scheduling delay by simulating a non-preempliv®Bcheduler. Service time

is computed by scaling, i.e. the speed of CPU execution imasg to be proportional to the clock speed.

e The buffer cache modddimulates an LFU eviction policy. Cache misses generate désnands which
are handled by the disk model. Note that disk demands areimeatlgt present in the demand trace: we
capture the workload’s reference trace above the buffdre;aso that we can model the effect of changes
in buffer cache memory.

e Thedisk modelis a simple approximation of a single-spindle storage sysigthout on-disk caching.
Track and sector positions are inferred from LBNs (logiclalck numbers) based on the known disk
geometry, and seek and rotational times are inferred frasethBased on this, the disk model is able to
simulate the SSTF (shortest seek time first) schedulingyaked by most disks.

e Thelock modehandles requests for locks at various granularities — pagerd, etc. — and in different
modes — shared, exclusive, shared-intention, etc. It imesame default policies as the DBMS to make
decisions on competing lock grant/upgrade requests.

We are confident that these models, although simple, candergood accuracy for a wider range of workloads
than the analytic models. Our philosophy is to start witlséhsimple models and refine them only if necessary
for improved accuracy.

Simulation has a higher overhead than analysis but iswpitally much faster than real time: we simulate
a CPU computation of arbitrary length in constant time, arlis& access with a few cycles of computation.
For in-memory, lock-bound workloads simulation is slowleart real time, as the simulator’'s buffer and lock
management are no faster than that of the DBMS.

44



4 Ongoing challenges

There are many open guestions on designing, building, apkbylag systems such as the Resource Advisor.
Here we present some of these questions and our thoughtsoer@amg them.

Granularity. What is the best granularity to represent resource demardss@xample, we represent a CPU
“demand” as a single number: the number of cycles of comjaumtatincluding information such as L2 cache
misses and the integer/floating point instruction mix calldw “what-if” questions about different processor
architectures rather than just different clock speeds. édmw this finer granularity comes at the cost of increased
complexity in instrumentation and modelling.

We envision a need for models at multiple levels of compyexiith the DBA using a “drill-down” approach
to increase complexity where needed. For example, crude &¥Udlisk models might suffice to indicate that a
faster CPU would be more valuable than a faster disk. The D&Adcthen use a more refined CPU model to
exactly quantify the performance benefits of different pssor upgrade options.

Scope. How much of the system should we model? The key insight thesyperformance prediction feasible
is that we only need to model those aspects of the systemffeat performance and are affected by resource
availability. Aspects which are essential to the correcictioning of the system but independent of resource
availability can be ignored. For example, when simulatimisk access we need to predict its timing but not the
contents of the accessed block.

Thus we must trace the system at a leafebvethat of the resource manager lmgtiowthat of any resource-
agnostic components, to avoid the complexity of modellimgnt. For example, in the Resource Advisor, we
trace page accesses above the buffer cache rather than beloesthe latter will change with the size of the
buffer cache. In contrast, we trace the physical executfajuery plans, i.e. below the query optimiser. This
frees us from the task of modelling the query optimiser aaditg all its run-time inputs. However, it limits
us to modelling resource-agnostic query optimisers theanat adaptive to changes in resource availability but
make decisions solely based on data statistics and catgiaatimates.

Evolution. When building a Resource Advisor for a legacy DBMS, we chasmsert only passive instru-
mentation, while maintaining the simulation/analytic retsdseparately. However, this introduces the additional
burden of keeping the models consistent with the DBMS coraptinas they evolve. For example, if the lock
scheduling algorithm changes in the DBMS, a correspondiagge must be made to the lock model. If the code
itself is restructured, then the tracing instrumentatiom{s may need to be changed; if this results in a change
in the semantics of the traced events, this will cause a éhanthe models as well. We surmise that tighter
integration of predictive models with DBMS components, iteking each component truly self-predictive, will
help to alleviate this problem. However, we currently laa programming tools and techniques for developers
to maintain a performance model for each component in tangigmts functionality.

Hierarchical models. The drill-down approach also requires us to ask and answaat¥i’ questions at
different component granularities. For example, the gireomponent could be a file server with a network
RAID back end. For the initial phase of resource planning,RBA might simply ask “What if the entire storage
subsystem were twice as fast?” If the predicted benefitsisfidlok promising, she might investigate different
ways to achieve this speedup, for example “What if | made teesérver 4-way SMP” or “What if | moved from
mirroring to RAID-5?" This hierarchical approach would &l¢he need for asking “what-if” questions about
all possible hardware configurations.
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Administrative boundaries. In a typical 2- or 3-tier architecture, there are multiplenpmnents — applica-
tion servers, database servers, networked storage — ltygican different vendors and possibly with different
administrators. We could hope that in the future each ofetiveasuld be self-predicting, but it is likely that they
will provide this prediction as a “black-box” functionalithat does not expose model internals. Thus the tight
integration of different predictive components that we unsthe Resource Advisor may not be feasible. Rather
than predict the performance of individual resource dersamd might have to process the entire workload trace
with the DBMS to create a “storage access trace” and passaltibé storage model to get the timings of the
I/Os generated. Since the 1/O timings would affect the tgsinf the entire workload, we would have to iterate
this process to converge on a solution.

Distributed modelling. End-to-end performance prediction for large distributgstams is a significant chal-
lenge. Individual hosts can efficiently generate localdredormation; however, a request in a multi-tiered or
clustered configuration might trigger activity on multiplests. Backhauling all event traces to a centralised lo-
cation is a simple but non-scalable solution, and hence we distributed modelling and prediction algorithms.

5 Related work

Our work on end-to-end tracing in SQL Server was directlpiresl by the Magpie project [2], which used end-
to-end tracing in 2-tier web services to model workload vese demand and control flow. Our broad aim —
automated resource provisioning — is one of many self-ysitenarios suggested by Weikum et al [8]. Other
researchers have investigated self-tuning for other éspéthe DBMS: for example, the DB2 Advisor [4] and
the Database Tuning Advisor [1] suggest the most appr@psiet of indexes and materialised views as well as
the best physical layout of tables.
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Abstract

Storage virtualization in modern storage systems allowgldity in the number of “physical” disks supporting

a single “virtual” disk. In practice, 10 workloads vary wittime. Presuming the evolution of reasonable predic-
tive models with the power of accurately predicting 10 wodd, it may be argued that it is straightforward to
compute the number of disks needed at any time to satisfy @a8aints. However, because disks contain data,
the data also needs to be reallocated amongst disks. Notdwely data migration need to be scheduled ahead
but it must also be scheduled in such a way that QoS violatifonaot occur because of the extra migration
I0s. In this paper, we present a novel analytic framew@k, STORE, for autonomically managing the storage
to balance both cost and performance. Given the workloadaditeristics of an application and storage QoS
requirements, ouPuUL STORE framework yields an optimal schedule for adding and rempdisks to support a
time varying 10 workload without QoS violations. A case gthdsed on real 1O traces shows tHauL STORE

is very effective in achieving both QoS and utility goals.

1 Introduction

Traditionally, storage has been purchased and attachedihgla computer system. Such storage is accessible
only through the computer system to which it is locally dtieat. In the last 10 years, especially in corporate
data centers, storage is being increasingly purchasegendent of the processors, and independently managed
and administered. Because of the standardization of disgréfibcols, storage can be easily shared amongst
various heterogeneous processors running differentegtigns. The shared storage is accessed over a network
interconnecting the processors to the shared disk sulbsykt®wn as thetorage area networka network on
which processors send IO calls to virtual disks. It is thé tafsthe storage controller to manage the mapping
of virtual disks to physical disks, a task known sterage virtualization similar to memory virtualization of
processors. The storage virtualization layer has beemigg@lto provide diverse storage functions.
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The storage virtualization layer may be used not only siliyidout also dynamically to change the mapping
of virtual disks to physical disks. This can be exploited yoamically change the physical disk configuration.
Many IO workloads exhibit cyclic behaviors, and alternagiween bursts of high activity and periods of low
activity. A significant number of practical instances shdwattthe 1O workload lends itself to be predictable.
For example, the IO workload for a week extracted from HP&@IIO traces [11] collected from an HP-UX
file server exhibits highly repetitive behaviour. It hasoaleen observed that there is an order of magnitude
difference between the peak and average 10 rates. Configthien|O sub-system for the peak leads to over-
provisioning and waste. In a virtualized storage managérsgstem, it is possible to provision on demand,
especially when the storage is shared amongst multiplecagpipihs, each of which would have peak require-
ments at different times.

If a reasonable prediction of IO workload can be made, theagtovirtualization layer could optimize the
mapping of physical disks to virtual disks to satisfy apaiions’ IO response time requirements. This problem
is usually referred to asn-demand utility provisioning10]. This is analogous to the problem of processor
allocation to shared concurrent workloads. The differeisddat disks contain data. Hence if we change the
number of disks supporting a specific collection of data vge aked to redistribute the data. This task involves
data movement, which generates even more 10. Under somenstances, it may not always be advisable to
change the number of disks. If the number of disks are to bagdth then the change needs to be done in
advance. When must it be done? These are questions thaeveilidwered in this paper.

In this paper, we tackle the problems of moving data in a gtaerarchy under both capacity/performance
constraints and on-demand resource provisioning consirai he challenges are two folds. First, for a single
data movement action, as it interacts with the applicatioresneed to limit its impact on application perfor-
mance. In particular, we need to control the invocation tifeedata movement such that there is no performance
constraint violation during and after the data movemento8e, as workload varies over time, it is likely that
the previous storage provisioning action may have beeereitto small or too large, resulting in either capac-
ity/performance constraint violation (under-provisiog) or wasteful storage configuration (over-provisioning)
Hence it is important to dynamically generate a sequencerefially tuned data movement actions in order to
adapt to the changing workload. To solve these problems,ave Heveloped an analytic framework, namely
PULSTORE, to maintain QoS constraints, while avoiding waste of reses!

2 The System Overview

In this paper, we specifically address the problem of batentie conflicting goals of the storage utility cost
and QoSS requirements. Our study is based on a hierarclicabe structure, storage QoS goals, an online
data migration model, and a storage utility cost model.

2.1 Storage Architecture

Modern applications access the storage in terms of logisakdwhich are then transparently mapped to the
physical disks by the storage virtualization engine [3]gUfe 1 depicts the architecture of such a hierarchical
storage system. Here the virtualization engine can residestorage controller or the storage management layer
of a DBMS.

Each layer in the hierarchy contains a pool of identical a&jerdevices, called storage poal Moving
upward through the hierarchy, each layer provides fasteesscspeed but is more expensive. As we move
downward through the hierarchy, the cost decreases andesotde access speed. Such a storage hierarchy
scheme provides flexible control over the tradeoffs betvemeess speed and cost through data movements. The
overall objective of the storage hierarchy is to provideftistest average access speed with the least expensive
average cost of data. Such a storage model is widely usether-$zale data centers [2].

48



physical disks

888 - § wo

320MB/sec  $7.5/GB

storage
virtualizatiol
engine

,,,,,,,,,,,,,,,

160MB/sec  $4.7/GB

888 - 8 wo

80MB/sec $3.5/GB

Figure 1: Virtualization for Hierarchical Storage Pools

2.2 Workload and QoSS

An IO workload is a time series of 10O requests. It is charaogel by the 10 request size, 10 arrival rate, etc.The
storage level quality-of-service (QoSS) specifies the I@opmance for a particular storage object that must be
guaranteed under any workload. QoSS goals are associatetbgical disks [5]. We usé.y,s to denote the
QoSS goal on IO latency for a logical disk. To enforce the Qg88&s, it is crucial to predict the performance
outcome for a given workload and storage system configurafibere are numerous models [4, 7, 1] on models
that predict performance outcome. In these models, the t€hdst can be represented as a function of the
workload and the logical disk configuration. Since these pamameters are a function of time, latency can
simply be predicted as a function of time, denoted.&s. The QoSS goal is expressed as a bounded latency:
i.e.,L(t) < Lgos at any timef.

2.3 Online Data Migration

Data migration is initiated when the storage system expeeig performance degradation or anticipates disk
failure. Furthermore, data migration needs todndine i.e., no application should be interrupted during data
migration. In our model, one logical disk is striped acrdéshe physical devices assigned to it. We study two
aspects which directly impact the performance of a strigitogage system. We can either increase the physical
disk speed or the striping width to decrease the 10 laterroyice versa to increase the 10 latehcihe change
of physical disk speed is realized through the data moveawnss pools (inter-pool migration), and the change
of the striping width is implemented through the data movenigside a pool (intra-pool migration) by adding
or removing disk(s) from the current configuration. A miggatthat reduces the application latency is callgd
migration A migration that reduces resource utility cost is caltiedvn migration

We now describe a typical online data migration scheme, lwhias been exploited in commercial DBMSs,
such as IBM DB2 UDB [6]. The data location is maintained by tadgement map. Once a data element is
moved from one source disk to another destination disk, #t@ element map is updated. Therefore, part of the
workload is directed to the destination disks and the otlagr @f the workload continues to be directed to the
source disks until migration completes.

2.4 Storage Utility Cost

The storage cost over time for a particular logical disk Iedaheresource utility costor/. Itis the summation
of the cost of the provisioned storage systéry,at each time over the whole time period.

U=> G
t

Our goal is to minimizé/ while guaranteeing that no QoSS violation occurs.

1Changing the striping unit size dynamically for varying Wiomds has been studied [12]. We do not address this probéeen h
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3 PULSTORE

We present the design of a system, named $oRE [8, 9], whose goal is to produce a migration sequence so
that the performance outcome satisfies the QoSS specificatide minimizing the resource utility cost.

3.1 Requirements

In order to adapt to the variations in workload while pros@iQoSS guarantees, the following challenges need
to be addressed:

e Guarantee QoSS requirement$he challenge is to detect when performance will violate  o&juire-
ments, and determine how to avoid this via appropriate resowe-allocation. Analytical techniques are
needed to identify the new resources as destination fomdiggiation, if current resources are not capable
of ensuring QoSS guarantees in the future.

e Ensure minimal resource consumptiortie challenge is that the goal of minimizing utility cost Hars
with QoSS constraints. This goal is to reduce the resourtesated to applications when the system
exhibits over-provisioning. However, too aggressive uese reclaim may hurt the performance, and
violate QoSS, which is not desirable. Therefore, migratitmt reduce resources must be considered
together with migrations that increase resources for Q@Bagtees.

e Control migration.The migration 10s should be controlled to enforce QoSS ferapplication workload
when the migration is ongoing. This is achieved by finding dpgropriate time to initiate migration.
If the migration invocation time is not chosen carefullye tmigration task may never complete due to
“migration thrashing”, which occurs when applications s@me the entire storage bandwidth.

3.2 Single Migration Action

In this section, we analyze how a migration process fromadisks,S, to destination disksD, affects the
workload and IO latency on each individual disk. We note thete are two exclusive sets of physical disks, with
opposite change in the amount of resident data, which iteBgaerformance outcome, during migration. We
call a disk anx-disk if the amount of data residing on the disk is decreasing owes,tor ag-disk otherwise.
We enumerate three migration cases, as shown in Figure 2ug-origration,an a-disk is a diske S and
B-disk is a diske D — S; for down migration, am-disk is a diske S — D and as-disk is a diske D.

2 s pool 1| pool 2
=E ElE el
ll@@@ ID_!@@ SEE

D

(a) Intra-pool (b) Intra-pool (c) Inter-pool
(up-migration) (down-migration) (up- or down- migratior

I data element before migratiem  data element after migration

Figure 2: Cases of Migration

In order to find the appropriate time to start migration, walgze the relationship between 10 workload
and migration invocation time. The fraction of 1/O workloedproportional to the portion of data residing on
the disk based on a uniform 10 distribution assumption. ia gaper, we use the workload fraction and the
data fraction interchangeably. L&tdenote the migration starting time, atd denote the migration duration.
p®(t,Z) andp®(t,T) represent the fraction of total data in the logical diskeedisks ands-disks respectively,
at timet, and with a migration starting at tinie
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Lemma 1: Given timet, for ana-disk, p° (¢, T) is non-decreasing whehincreases, o2 > (, and for a
. . . 5 .
(-disk, p®(t,T) is non-decreasing whehincreases, o pd(It’I) < 0,onintervalt —t,, <Z < t.

In this paper, we study one aspect of the IO workload, nan@lyakte. (There are other aspects of the 10
workload, such as read 10 to write 10 ratio, random 10 to setjaklO ratio, etc.) We observed that in most
cases the relationship between 10 rate and IO latency cardmided by the Monotonicity Assumption.

Monotonicity Assumption. During the migration process, if the application 10 rate phgsical disk increases,
the application 10 latency increases too. Otherwise, ifapplication 1O rate to a physical disk decreases, the
application 10 latency decreases too.

Based on this Monotonicity Assumption and Lemma 1, we ddhed the latency function for the-disks,
referred to as.®(¢,Z), is monotonically increasing, and the latency function tfoe 5-disks, referred to as
LP(t,T), is monotonically decreasing, whérnincreases.

Given the relationship between the latency function andatign invocation time, the main challenge now
is to determine when to start migration so that during migrathere is no QoSS violation.

Sincea-disks ands-disks have different performance characteristics, weteisure that both-disks and
(-disks do not violate the QoSS requirements during mignatiormally, we need to find a valid migration
invocation timeZ, so that wher¥ <t < 7 +t,, (i.e., during the migration period), we always hav&(t,7) <
Loos andLP(t, T) < Lg,s- We call the range of vali@ a safe time zonéor the migration, referred to &R7.

The basic method for finding treafe time zones to first calculate the safe time zone terdisks and then
generate the safe time zone fordisks. The solution is based on two properties: (1) Weagtithe monotonic
property (Section 3.2) oL*(t,Z) and L*(¢,Z) on Z to enforce QoSS guarantees; (2) We only examine the
latency during a migration. That is, we need to guaranteeftha < [Z,7 + ¢,,], there is no QoSS violation.
The final safe time zonés simply the intersection of safe time zones of batdisks ands-disks. Function
ActionRangdakes the migration sourcé&), destination D), the earliest migration invocation time,(;,) and
the latest migration invocation time,{,.) as input parameters and calculates the safe time Rdhas output.

4 Global Schedule of Migration Actions

We developed the algorithm to find the safe time zone for aleinggration in the previous section. In this
section, we extend the scope of the algorithm to handle plelthigrations in a sequence.

The main problem is to find a sequence of migration invocatemthat no QoS violation exists in a given
time frame and the resource utility is minimized. Recalt tv@e migration invocation is defined 68,7). We
formally define the multiple migration problem in Definiti@n

Definition 2: Given discrete time pointg{, ¢, ...... ,tn], and let the number of disks in thh pool bek;, the
QoS-aware action sequence is definet' as {(D1,7,), (D2, Z2), -..... s (D i) bt <Tq < oo < Iy < gy,
1 < |D;| < k; inthe jth pool. Let/(I") denote the utility cost for sequente For eachD;,Z;), 1 < i < m,
there is no QoS violatiorl is an optimal schedule iff I € QoS-aware action sequené&I’) < U (TV).

We exploit dynamic programming to find the optimal solutiordanore details are presented in [8, 9]. The
compuational complexity of the optimal algorithm(&n?3). Asn is a measure of time, it is desirable to have an
algorithm with lower compuational complexity. We now deyeh sub-optimal but practical algorithm based on
the above concerns. Compared to the optimal algorithm siihaar computational cost. The intuition behind
the approximate algorithm is that in the case of up migratiivenD;_1, D, and a migration deadline, we want
to postpone the migration starting time as late as possilies. delays the increase in the utility cost. In the case
of down migration, we want to start the action as early asiptessso that the utility cost is reduced at the earliest
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time. The ActionRangé&inction (Section 3.3) finds appropriate migration stgrtime,RZ. Hence, for a single
migration, the approximate algorithm picksax(RZ) as the value of for up migration, andnin(RZ) as the
value ofZ for down migration. Another aspect of the approximate atgor is when making the choice for up
or down migration, the up migration is considered only whenessary, i.e. when QoS violation is expected,
and the down migration is considered whenever possible.

The approximate algorithm will look forward a fixed number @ftime steps. Multiple migrations are
scheduled inV future time steps, and the decision on one migration wiketfthe later migrations. Hence,
the problem of coordinating a sequence of migrations arigesnsider two migrations happening one after
another, after the completion of the first migration, we maiylve able to find the safe time zone for the second
migration. In this case, we say that the two migrationsflict The above concern motivates looking ahead
into the migration sequence invoked in an 10 prediction wiménd adjusting consecutive migrations to resolve
conflicts.

5 A Case Study

In this section, we conduct a case study to examine the pieess and efficiency of our proposed algorithms.

5.1 Setup

We used I/O traces published by the Storage Performancec@¢8RC) [13]. These traces were collected by
monitoring requests to disks of an OLTP application at addngancial institution. The 10 workload lasts for
2000 minutes. The IO rate varies from less than 200 10s peuteito more than 12000 10s per minute.

There are two pools, Pooll and Pool2, in our storage hieyaieach pool contains 3 identical disks. Since
we do not consider multi-pool disk assignment, there areah &b 6 disk configurations: 1p1: using 1 disk in
Pooll; 2)D2: using 2 disks in Pooll; 33: using 3 disks in Pooll; 4»4: using 1 disk in Pool2; 5p5: using 2
disks in Pool2; 6D6: using 3 disks in Pool2. We use two linear latency functiarsdisks in two pools. These
two functions are collected from a storage controller (FAS00) with different settings. For all the disks in
Pooll, their latency function is 6.6 +0.00023*10 rate (n)sé&or all the disks in Pool2, their latency function is
6.2 +0.00011*I0 rate (msec). The first part of the latencyesents the disk seek time per 10, while the second
part represents the data transfer time. Considering tleetdatsfer time, a disk in Pool2 is about twice as fast
as a disk in Pooll.

In this case study, we normalize the utility cost of each @iskover the utility cost obl. ForD1 to D3,
their utility costs per minute are respectively 1, 2, 3;Bdrto D6, their utility costs per minute are respectively
3, 6, 9. This setting mimics the situation that disks in Pd@f2e double the IO processing speed and triple the
cost of disks in Pooll.

We set the other critical parameters with the following estuQoS latency requirement is 7.4 msec; number
of migration 10s 20,000; migration duration is 30 minuteediction window size is 100 minutes.

5.2 Global migration sequence

We now analyze the performance outcome of the schemes Iist€dble 2 between time 0 and time 2000.
Schemel andScheme2 exploit static configurations, ar&themeOpt, the output of optimal dynamic program-
ming algorithm, andschemeApp, the output of approximate algorithm, provide dynamic agunfations. We
report the migration sequence and utility cost of all scremd-igure 3.

The migration sequences generatedsbifemeOpt andSchemeApp are shown in Figure 3(a) and (c). Both
schemes initialize the system configuration usidg SchemeOpt generates the migrations at a finer granularity
than SchemeApp. However,SchemeApp accurately captures the trend of the big changes, althdugHess
responsive to small fluctuation in the workload. Specific@themeApp only runs 8 migrations, less than half
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Schemes| Policy Meaning
Schemel | Using Diskset5 only Over provisioning
Scheme2 | Using Diskset3 only Average provisioning
SchemeOpt | Using the optimal algorithm Ideal solution
SchemeApp | Using the approximate algorithm Practical solution
Table 2: Schemes

of SchemeOpt, which dramatically reduces the amount of data movementtove. Figure 3(b) and (d) depict
the utility cost per minute of the outputs for bacghhemeOpt andSchemeApp. Note that the shape of the utility
cost is different from that of the migration sequence beealising a migration, the utility cost is the sum of
the utility costs of all the disks participating in that magjon. The savings in the utility cost &chemeOpt is
not significant compared witBchemeApp, althoughSchemeOpt aggressively moves data to minimize utility
cost. Figure 3(e) shows the cumulative utility cost. Théitutcost of SchemeApp grows at almost the same
rate as that o8chemeOpt. The overall utility cost ofSchemeApp is merely 10% more thaBchemeOpt. By
using slightly more utility tharBcheme2, SchemeApp provides QoS guarantee. The system usabeme2
suffers from 400 minutes QoS violation. Although the systesimgSchemel does not have any QoS violation,
it incurs twice as much utility cost a&chemeApp (Figure 3e)). In summary,SchemeApp, the approximate
algorithm, efficiently minimizes the utility cost and eftaely provides QoS guarantees.

6 Conclusion

PULSTORE provides an automated storage management service whiahdeal the conflicting goals of both

QoS guarantees and economical provisioning of resourceshe\lO workload changes over time, storage re-
sources need to be re-allocated to satisfy both servics givethis paper, we developed an analytical framework
to schedule data migration in large scale storage manadesystems. The analytical framework determines
safe time zones for invoking migration actions. Using thalyical model, we then present an optimal algorithm
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for data migration which minimizes storage utility costdamsures that no QoS violation occurs. However, the
optimal algorithm is predicated on complete knowledge ¢direl workload and the computation cost is huge.
Therefore, we present an approximate algorithm that s¢éediata migration in real time with a fixed-length 10
workload prediction. The paper concludes with an analykiea |0 traces and demonstrates that the proposed
approach results in significant savings in storage utildgtavhile preventing QoS violation effectively. More
details of RILSTORE can be found in [8, 9].
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Abstract

Self-* systems are self-organizing, self-configuringf-sehling, self-tuning and, in general, self-
managing. Ursa Minor is a large-scale storage infrastruetbeing designed and deployed at Carnegie
Mellon University, with the goal of taking steps towards #@f-* ideal. This paper discusses our
early experiences with one specific aspect of storage mamagie performance tuning and projection.
Ursa Minor uses self-monitoring and rudimentary system etind to support analysis of how system
changes would affect performance, exposing simple \Wihajuery interfaces to administrators and
tuning agents. We find that most performance predictionssafficiently accurate (within 10-20%)
and that the associated performance overhead is less than®$96h embedded support for What
queries simplifies tuning automation and reduces the adnirior expertise needed to make acquisition
decisions.

1 Introduction

The administration expenses associated with storagensystee 4-8 times higher than the cost of the hardware
and software [2, 6, 8]. Storage systems are key parts of ir@piodata-centric applications, such as DBMSes,
hence their high administration cost directly translate$igher costs for the latter. Storage system admin-
istration involves a broad collection of tasks, includirgtadprotection (administrators decide where to create
replicas, repair damaged components, etc.), problem dsgifadministrators must figure out why a system
is not behaving as expected and determine how to fix it), p@dace tuning (administrators try to meet per-
formance goals with appropriate data distribution amorgespappropriate parameter settings, etc.), planning
and deployment (administrators determine how many andhwiyipes of components to purchase, install and
configure new hardware and software, etc.), and so on.

Like many [3, 7, 15], our goal is to simplify administratioy mcreasing automation [5]. Unlike some, our
strategy has been to architect systems from the beginnitngswpport for self-management; building automation
tools atop today’s unmanageable infrastructures is agalplio approach the self-* ideal as adding security
to a finished system rather than integrating it into the sysdesign. We have designed, implemented, and are
starting to deploy a cluster-based storage infrastru¢taied Ursa Minor) with many self-management features
in a data center environment at Carnegie Mellon University.

Copyright 2006 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
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Figure 1: Architecture of Ursa Minor

Ursa Minor’s high-level architecture is shown in Figure heldesign separates functionality into two logical
tiers: a mechanical tier that provides storage of and adoedata and a managerial tier that automates many
decision and diagnosis tasks. This separation of concaritis,clean interfaces between them, allows each
tier to be specialized and evolved independently. Yet,weetiers collaborate to simplify administration. The
mechanical tier provides detailed instrumentation antistaformation to the managerial tier and implements
decisions passed down from it.

Ursa Minor's mechanical tier consists of versatile clustesed storage [1]. We focus on cluster-based stor-
age, rather than traditional monolithic disk arrays, bseatican simplify some aspects of administration by its
nature. For example, unlike monolithic arrays, clusteseobstorage naturally provides incremental scalability.
This feature reduces the consequences of not over-proingi®n initial purchases and the effort involved in
growth over time—one can simply add servers to the clustefeasand increases. Ursa Minor's data access
protocols are versatile, allowing per-object data distitn choices, including data encoding (e.g., replication
vs. erasure codes), fault model (i.e., numbers and typesutiEftolerated), and data placement. This versatility
maximizes the potential benefits of cluster-based storggallbwing one scalable infrastructure to serve the
needs of many data types, rather than forcing adminisgdtoselect the right storage system for a particular
usage at the time of purchase or migrate data from one to @nasirequirements change.

The managerial tier contains most of the functionality nalfypnassociated with self-* systems. It provides
guidance to the mechanical tier and high-level interfaceadministrators to manage the storage infrastructure.
The guidance comes in the form of configuration settingsuding the data access versatility choices mentioned
above. Various automation agents examine the instruniemtdata exposed by the mechanical tier, as it serves
client requests, to identify improvements and solutionsliserved problems. These automation agents also
condense instrumentation data to useful information foniagtrators and allow them to explore the potential
consequences/benefits of adding resources or modifyintpaeats performance and reliability goals.

This paper focuses on our experiences with one specific aepatorage administration: predicting the
performance consequences of changes to system configur&iach predictions represent a crucial building
block for both tuning and acquisition decisions. Yet, suchdctions are extremely difficult to produce in
traditional systems, because the consequences of mosgwa@ifon changes are determined by a complex
interaction of workload characteristics and system irgkstnAs such, it is a substantial source of headaches for
administrators working with limited budgets.

Ursa Minor supports performance prediction with a combamabf mechanical tier instrumentation and
managerial tier modeling. The mechanical tier collects exubrts various event logs and per-workload, per-
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resource activity traces [13]. The mechanical tier proegshis information and uses operational laws and
simple models to suppowhat..if queries (e.g.,Whatwould be the expected performance of client A's requests
if | move its data to the set S of newly purchased storage-ntyda£?.

~ Our experiences with this approach, to date, have been \a=ijiye. Instrumentation overheads are ac-
ceptable (less than 6%), and prediction accuracies areisuaffly high (usually within 10-20%) for effective
decision making. This paper discusses these experiemme®, Iessons learned, and directions for continuing
work.

2 Tuning knobs in Ursa Minor

Like any substantial system, Ursa Minor has a number of cordigpn options that have a significant impact
on performance and reliability. In this paper, we focus on sets on knobs: those that define the data’s en-
coding and those that decide where to actually place theatheta the encoding decision has been made. Both
encoding and placement selection involve many trade-offisaae highly dependent upon the underlying system
resources, utilization, and workload access patterns, s¥@tificant benefits are realized when these data dis-
tribution choices are specialized correctly to accesepatand fault tolerance requirements [1]. Expecting an
administrator to understand the trade-offs involved iringrihese and to make informed decisions, without sig-
nificant time and system-specific expertise, is unreasendiblis section describes the encoding and placement
options, and the next section explains how Ursa Minor supprroosing among them.

Data encoding A data encoding specifies the degree of redundancy withhwdnjgiece of data is encoded,
the manner in which redundancy is achieved, and whethertdhaalata is encrypted. Availability requirements
dictate the degree of data redundancy. Redundancy is achiivreplicating or erasure coding the data [4, 10].
Most erasure coding schemes can be characterized by thegtara(m, n). An m-of-n scheme encodes data
into n fragmentssuch that reading any. of them reconstructs the original data. Confidentialityuissments
dictate whether or not encryption is employed. Encrypt®mperformed prior to encoding (and decryption is
performed after decoding). The basic formVighat..if questions administrators would like answers toghat
would client A's performance bé its data is encoded using scheme E?”.

There is a large trade-off space in terms of the level of abadity, confidentiality, and system resources (such
as CPU, network, storage) consumed as a result of the emgcoddaice [12, 14, 16]. For example, agncreases,
relative tom, data availability increases. However, the storage cpaonsumed also increases (as does the
network bandwidth required during data writes). #isincreases, the encoding becomes more space-efficient:
less storage capacity is required to provide a specific dagfrédata redundancy. However, availability decreases.
More fragments are needed to reconstruct the data durintg.ré&hen encryption is used, the confidentiality
of the data increases, but the CPU demand also increasasc(igpethe data). The workload for a given piece
of data should also be considered when selecting the dataliegc For example, it may make more sense to
increasem for a write-mostly workload, so that less network bandwidtitonsumed—3-way replication (i.e.,

a 1-of-3 encoding), for example, consumes approximately 40% mareank bandwidth than &-of-5 erasure
coding scheme for an all-write workload. For an all-readkiaad, however, both schemes consume the same
network bandwidth.

Data placement In addition to selecting the data encoding, the storagiesmn which encoded data
fragments are placed must also be selected. When dataadlyniteated, the question of placement must be an-
swered. Afterwards, different system events may causeléiceiment decision to be revisited, such as when new
storage-nodes are added to the cluster, when old storatgsrawe retired, and when workloads have changed
sufficiently to warrant re-balancing load. Quantifying ferformance effect of adding or subtracting a work-
load from a set of storage-nodes is non-trivial. Each seragde may have different physical characteristics
(e.g., the amount of buffer cache, types of disks, and nétemnnectivity) and may host data whose workloads
lead to different levels of contention for the physical ieses.
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Workload movementVhat..if questions (e.g.,Whatis the expected throughput/response client A canfget
its workload is moved to a set of storage-nod&%) need answers to several sub-questions. For example, the
buffer cache hit rate of the new workload and the existingleads on those storage-nodes need to be evaluated
(i.e., for each of the workloads the question WHatis the buffer cache hit raté | add/subtract workload A
to/from this storage-node?”). The answer to such a questibrdepend on the particulars of the workload
access patterns and the storage-node’s buffer cache nmaeapalgorithm. Then, the disk service time for each
of the 1/0 workloads’ requests that miss in buffer cache makd to be predicted (i.e., for each of the workloads,
the question isWhatis the average I/O service tinifel add/subtract workload A to/from this storage-node?”).
The new network and CPU demands on each of the storage-nedds to be predicted as well.

3 Performance prediction support

With hundreds of resources and tens of workloads it is chgife for administrators to answkvhat..if ques-
tions such as the above. Doing so accurately requires eetailowledge of system internals (e.g., buffer cache
replacement policies) and each workload’s charactesisticess patterns (e.g., locality). Traditionally, admin
istrators use two tools when making decisions on data engoaind placement: their expertise and system
over-provisioning. Most administrators work with a cotiea of rules-of-thumb learned and developed over
their years of experience. Combined with whatever undedstg of application and storage system specifics
are available to them, they apply these rules-of-thumb @omihg challenges. Since human-utilized rules-of-
thumb are rarely precise, over-provisioning is used to cedhe need for detailed decisions. Both tools are
expensive, expertise because it requires specializatidnoger-provisioning because it wastes hardware and
human resources — the additional hardware must be configumédnaintained. Further, sufficient expertise
becomes increasingly difficult to achieve as storage systerd applications grow in complexity.

Ursa Minor is designed to be self-predicting: it is able toyie quantitative answers to performance
guestions involved with administrator planning and aut@dduning. Instrumentation throughout the system
provides detailed monitoring information to automatiomratg, which use simple models to predict the perfor-
mance consequences of specific changes. Such predictiorizeaased, internally, to drive self-tuning. They
can also be exported to administrators via preconfigikdght..if query interfaces The remainder of this sec-
tion describes the two primary building blocks, monitoremp modeling, and illustrates the effectiveness with
example data.

System self-monitoring The monitoring is to be detailed so that per-workload, rgseurce demands and
latencies can be quantified. Aggregate performance cautygically exposed by systems are insufficient for
this purpose. Ursa Minor uses end-to-end instrumentatiaing form of traces oéctivity recordsthat mark
steps reached in the processing of any given request in $trébdied environment. Those traces are stored in
relational databases (Activity DBs) and post-processetbinpute demands and latencies. The monitoring is
scalable (hundreds of distributed nodes with several ressu— CPU, network, buffer cache and disks) and
easy to query per-workload (tens of workloads). The ceided in designing the monitoring is for it to capture
the work done by each of the system’s various resourcesidimgj the CPUs used for data encoding/decoding,
the network, the buffer caches, and the disks. There ar¢Hass200 instrumentation points in Ursa Minor. All
those points of instrumentation are always enabled, andubaeghead has been found to be less than 5-6%, as
qguantified by Thereska et al. [13]. As a general rule of thuwwiobserve that approximately 5% of the available
storage capacity is used for Activity DB storage. Differelénts’ access patterns generate different amounts
of traces; the main insight we had from the work on the insemtation of multiple systems [9, 13] is that it is
inexpensive to monitor a distributed system that has stoeddts core. This is because the rate of requests to
such a system is relatively slow, since the system is usti@lypound. We find the performance and statistics
maintenance cost a reasonable performance price to paygfadded predictability.

Performance modeling tools Modules for answeringVhat..if questions use modeling tools and observa-
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tion data to produce answers. Tools used include experahergasurements (for encode/decode CPU costs),
operational laws (for bottleneck analysis of CPU, netwar#t disks), and simulation (for cache hit rate projec-
tions). What..if questions can be layered, with high-leV&hat..if modules combining the answers of multiple
lower-levelWhat..if modules. For exampleMWhatwould be the performance of client A's workloidve add
client B's workload onto the storage-nodes it is using?"dse@nswers to questions about how the cache hit rate,
disk workload, and network utilization would change. ¥What..if modules make use of the observation data
collected through self-monitoring. B

The basic strategy for making a high-level prediction imesl consulting low-leveWhat..if modules for
four resources: CPU, network, buffer cache and disk. Toigretlent A's throughput, the automation agents
consult these resource-spechithat..if modules to determine which of the resources will be the etttk one.
Client A's peak throughput will be limited by the throughmiftthat resource. In practice, other clients will share
the resources too, effectively reducing the peak througtimse resources would provide if client A was the
only one running. The automation agents adjusts the thymutgbredicted for client A to account for that.

The CPUWhat..if module answers questions of the foriivhatis the CPU request demand for requests from
client if the data is encoded using schefi®”. The CPU modules use direct measurements of encodeflecod
costs to answer these questions. Direct measurements @Ptieost are acceptable, since each encode/decode
operation is short in duration. Direct measurements sgetite need for constructing analytical models for
different CPU architectures. The netwdikhat..if module answers questions of the foriWHatis the network
request demand for requests from clieiftthe data is encoded using schefi®". To capture first-order effects,
the network module uses a simple analytical function toiptetetwork demand based on the number of bytes
transmitted. Intuitively, schemes based on replicatidlizatlittle client CPU but place more demand on the
network and storage resourcesgtorage nodes are updated on writes). Schemes based orearading are
more network and storage efficient (data is encoded in a ‘Smary), but require more client CPU work to
encode the data (math is needed for the “smart” way). All seeerequire significant amounts of CPU work
when using encryption.

The buffer cache module answers questions of the fontmdtis the average fraction of read requests
1 — p; that miss in the buffer cache (and thus have to go to dfs&)workload from client; is added to a
storage-node?”. The buffer cache module can similarly anspwestions on other workloads when one client’s
workload is removed from a storage-node. The buffer cachduieouses simulation to make a prediction.
The module uses buffer cache records of workloads that dve toigrated (collected through monitoring) and
replays them using the buffer cache size and policies ofdifyeet storage-node. The output from this module is
the fraction of hits and misses and a trace of requests thatthago to disk for each workload. Simulation is
used, rather than an analytical model, because buffer ceplecement and persistence policies are too complex
and system-dependent to be accurately captured usingianbfgrmulas. The storage-node buffer cache policy
in Ursa Minor is a variant of least-recently-used (LRU) witrtain optimizations. The disWhat..if module
answers questions of the formhatis the average service time of a request from clieiftthat request is
part of a random/sequential, read/write stream?” The geeservice time for a request is dependent on the
access patterns of the workload and the policy of the unideristorage-node. Storage-nodes in Ursa Minor use
NVRAM and a log-structured disk layout [11], which helps kvinaking write performance more predictable
(random-access writes appear sequential). When a disktalled, a simple model is built for it, based on the
disk’s maximum random read and write bandwidth and maximequential read and write bandwidth. These
four parameters are easy to extract empirically. The diséluteis analytical. It receives the sequence of 1/0Os
of the different workloads from the buffer cacki¢hat..if module, scans the combined trace to find sequential
and random streams within it, and assigns an expected sdiwie to each request.

Figure 2 illustrates the prediction accuracy for two highdl What..if questions the administrator may pose
(for the exact setup of these experiments, please refer ¢éoeSka et al. [12]). In general, we have observed
predictions accuracies are within 10-20% of the measurddnpeance [12].
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loads. “Whatis the throughputf | use encryption (or if | do “What is the throughput client 2 can géft its workload is

not)?” The question is answered for different read:writboea  moved to a new set of storage-nodes?” The set of nodes con-

CPU can be the bottleneck resource when using encryptidains a workload from client 1 that is sequential and hit$ t

The network can be the bottleneck resource if the workload muffer cache. When workload 2 is added, the hit rate for both

write-mostly. drops and the interleaved disk access pattern looks lilkdoran
access.

Figure 2: Prediction accuracies for two exam@léat..if questions.

4 Lessons learned and the road ahead

We have had positive experiences with Ursa Minor’s twoetiearchitecture, particularly in the space of per-
formance self-prediction and its application to self-tghand provisioning decision support. With acceptable
overheads, sufficient instrumentation can be continuogatiiered to drive simple models that can effectively
guide decisions. This sections expands on some key lessanget from our experiences thus far and some
challenges that we continue to work on going forward.

4.1 Lessons learned

Throw money at predictability : Administration, not hardware and software costs, doreitadlay’s data cen-
ter's costs. Hence, purchasing extra “iron” to allow selgiction may be warranted. Ursa Minor utilizes
“spare” resources to aid with both self-monitoring and mioge Spare CPU is used to collect and parse trace
records (we measure about 1-5% of the CPU goes towards thimgzhine). Spare network is needed to ship
traces to collection points for processing. Spare storageeded to store these traces and statistics (about 5%
of the storage is dedicated to them). Spare CPU time is alsd g automation agents to ansvww&hat..if
questions. a

Per-client, per-resource monitoring is a must Exporting hundreds of performance counters to an admin-
istrator is counter-productive. Performance counterthaedifferentiate among workloads in a shared environ-
ment nor correlate across nodes in a distributed envirohrmé® instrumentation in Ursa Minor tracks a request
from the moment it enters the system until it leaves, frommiraeto machine. Such instrumentation is the only
way to know 1) where requests spend their time, 2) what wasdh&ext during which a client experienced a
performance degradation, and 3) what are the bottleneckiress for one specific workload in the distributed
system.

Separate data collection from usageWe found that there is value in separating the system imstntiation
from its use in specific tuning and control loops, rather tiigintly coupling the two. This separation has allowed
easy data access for new uses of the instrumentation, sysrfasmance debugging. It has also allowed us to
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continuously refine our notions of what data are needed teeraaknformed tuning decision.

Rough system models work wellResources in Ursa Minor (CPU, buffer pool, network, dike)e simple
models associated with them. These models are based ohrdeasurements (CPU), analytical laws (network,
disk) and simulation (buffer pool). These resources areptexnespecially when shared by multiple workloads
(e.g., the disk’s performance may range over two orders @nitade depending on the workload’s and disk’s
characteristics). However, basic modeling works well,east to pinpoint the bottleneck resource and give
bounds on improvement if the bottleneck is removed. Funtloee, rough modeling is usually sufficient to pick
one from among four or five possible configurations.

4.2 Research agenda

We are following several research directions toward makingage systems truly self-* [5], including automated
data protection, problem diagnosis and repair, and of edunsing. This paper discusses our experiences with
one building block: performance prediction support. Everthis one sub-area, several difficult and exciting
research issues still remain:

Predicting values beyond the averageWe need to develop a common terminology for how to measure
predictability (and thus know when we have reached a satfaoutcome). All our predictions so far concen-
trate on expected values, or averages. Making predictibastavariance requires assumptions about workload
patterns (e.g., Poisson arrival times) that may not holdw ldan we ensure the variance is predicted within
reasonable bounds as well? Can we get a notion of confideroeiated with each prediction?

Co-operation with other self-* systems How will Ursa Minor interact with other self-* systems, e.@
DBMS that also has self-tuning at its core? The DBMS may detiddo an optimization (e.g., suggest to its
administrator to double the amount of buffer cache). Thahge may alter the workload that Ursa Minor sees,
triggering in turn an optimization from Ursa Minor (e.g.,darMinor could suggest to its administrator to switch
the encoding from 3-way replication 8s0f-5). It is desirable for the combined DBM3Jrsa Minor system to
be stable, settle on good global configurations and avoidatamy cycles of optimization. Should the DBMS
micro-manage Ursa Minor’s operations and optimizationshould the DBMS convey high-level performance
goals to Ursa Minor and let the latter take any necessargratti meet those goals?

Integration of legacy components We built Ursa Minor from scratch and were thus able to insadugh
detailed instrumentation inside it to answer the abdtret..if questions. However, it is convenient to be able to
incorporate off-the-shelf components, such as databfsegrious services within Ursa Minor (e.g., a metadata
service, an asynchronous event notification service, &@erformance prediction possible when such legacy
systems are introduced within Ursa Minor? In particulaxy nadll we account for their resource utilization (they
may use all four system resources just like clients)? WhatskofWhat..if questions can be answered for these
legacy components and how fine-grained can they be? B

Performance isolation for predictability: Without a basic level of performance isolation in a shaned e
vironment with competing workloads, predictions will na meaningful. Whenever a prediction is made that
workload W,, will get X MB/s of throughput (a QoS guarantee), that prediction shook be annulled when
another workload?,, . ; comes inside the system. Although performance isolatioth®s CPU and network re-
sources is usually straightforward to do (utilizing wetleevn scheduling techniques), it still eludes researchers
for the disk resource, which is traditionally non-work-sernving (the cost of a disk “context switch” is pro-
hibitively high, on the order of milliseconds).
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