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Letter from the Editor-in-Chief

The Data Engineering Conference ICDE’06

The next International Conference on Data Engineering (ICDE’06) will be held in Atlanta in April, 2006. This
conference is the flagship conference of the IEEE Technical Committee on Data Engineering. Atlanta is a great
venue, and April is a wonderful time to visit the city, with balmy weather and with magnolias and peach trees in
bloom. This year’s conference is sure to be of very high quality as submissions continue to be very very high.
The result is a very selective conference with high quality papers.

Working Group on Self-Managing Database Systems

I want to draw your attention to the letter from Sam Lightstone about a new working group. The area of self-
managing database systems is both interesting technically, and important in the commercial world. So I urge
you to read Sam’s letter.

The Current Issue

The database community mostly lives in the realm of precise information. Occasionally, that information turns
out to be wrong, at which point we endeavor to correct it. So we are really addicted to precise answers for our
queries.

However, the “real” world is not so precise or exact. When we measure temperature, there is an uncertainty
in the reading. When we deal with polling information, there is a margin of error that needs to be considered.
When looking at information, how much credence to place in it is a function of the information source. So there
are several senses for the word “probabilistic” and in the current issue, several approaches involving several
notions of this word are pursued. One might say that this area “welcomes database folks to the real world”.

The editorial arrangement for the current issue is a bit unusual. Minos Garofalakis is a current Bulletin
editor. Dan Suciu is a “future” Bulletin editor. They are both interested in probabilistic databases and have
collaborated on the current issue. (They will collaborate on another before they are done.) The issue is a fine
survey of work in this area, which has become one of the new areas that have attracted attention in the last couple
of years. Minos and Dan have succeeded in garnering submissions from some of the leading researchers in this
exciting area. I want to thank them both for their hard work and for the successful result. I believe you will
almost surely “probably” enjoy this issue.

David Lomet
Microsoft Corporation
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Letter from Chair of Working Group on Self-Managing Database Systems

Its my pleasure to announce to the formation of the Data Engineering Workgroup on Self-Managing Database
Systems (DEW-SMDB), a formal workgroup of the IEEE Technical Committee on Data Engineering (TCDE).
http://db.uwaterloo.ca/tcde-smdb/

To advance research and development in self-managing database and information management systems the
workgroup will sponsor workshops in conjunction with the ICDE, foster publications, and maintain a collection
of key resource links on its website. I am pleased that our initial executive includes some of the leading advocates
of self-managing database technology from across geographies in both industry and academia.

Alfred Whitehead, the preeminent American mathematician once wrote that “Civilization advances by ex-
tending the number of important operations which we can perform without thinking about them.” Database
technology and in particular enterprise scale relational database technology, has reached a milestone in ad-
vancement of feature rich capabilities and massive data volumes which compels a quantum improvement in the
administration profile of these systems.

Since the development of the relational model by E.F. Codd at IBM, relational databases have become the de
facto standard for managing and querying structured data. The rise of the Internet, online transaction processing,
online banking, and the ability to connect heterogeneous systems have all contributed to the massive growth in
data volumes over the past 15 years. Terabyte sized databases have become commonplace. Concurrent with this
data growth, have come dramatic increases in CPU performance, spurred by Moores Law, and improvements
in disk fabrication which have improved data density limits for persistent disk storage. Relational databases lie
behind 70% of the world’s structured data, and much of the world’s unstructured and semi-structured data is
evolving into structured management systems as well. Practically everywhere data is processed in significant
volume there is an information management system. To help manage the massive volume of data, and exploit
the available hardware, modern Relational Databases Systems (RDBMSs) have been enhanced with powerful
features to maximize efficiency and availability, providing numerous topology options for structuring the data
and the storage, for indexing and caching, and for managing system workloads. These features are much needed
in environments where systems can contain hundreds of disks and CPUs, massive volumes of data, and are often
required to run 24 hours a day, 7 days a week (24x7).

The powerful capabilities of modern RDBMSs add complexity to the system too however, and have given
rise to an entire professional domain of experts, known as Database Administrators (DBAs), to manage these
systems. The problem is not unique to RDBMSs, but is ubiquitous in technology today. Some have called this
explosive growth of complexity creeping featurism. In fact many companies now spend more money recruiting
administrators to manage their technology than the money they have spent on the technology itself.

The only real viable long term strategic solution is to develop systems that manage themselves. Such systems
are called self-managing or autonomic systems.

The following challenges in information management require the industrys attention:
Self-Configuring refers to function that connects and configures components so that technology is oper-

ational with minimal human intervention. For database servers this can include server and storage topology
configuration, installation, initial database design, and configuration of the database server (there are several
dozen possible options). Self configuring also includes the ability for a database server to be easily deployed,
configured and interconnected with other middleware and applications.

Self-Healing refers to the ability of a system to detect problems or problem trends (which have not yet
manifested as problems) and either take corrective action, or provide advice and automated notification to an
end user who can then take corrective action. With all the sophistication and redundancy in database systems,
things can and will occasionally fail, which makes the automated problem determination aspect of self-healing
a critical domain. In automated problem determination, a self-managing system detects problem trends (such
as disk storage is filling up at a detectable rate, from which storage constraint can be projected), or detects and
notifies administrators when sudden errors arise.
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Self-Optimizing is the domain of system performance tuning. For databases this includes tuning of subtle
I/O and caching parameters, memory distribution, and physical database design. Physical database design is
the broad area of database administration that deals with the selection of attributes that structure and control the
way data is physically stored. Some common physical database design problems include: determining ways to
cluster (sort) data on disk, which indexes (fast lookup structures, such as B+ trees) should be created, and what
subset of the data should be pre-computed or replicated (materialized views).

Trust in self-managing systems. Even as we advance the underlying technology of self-managing systems,
we need to concomitantly advance the trust of the administrators and executives who depend on these new self-
managing capabilities. Building trust is as much to do with emotional invest and risk assessment as much as
with technology.

Benchmarking of self-managing information systems. How can we objectively assess the success of data
management systems to be self-managing? Just as benchmarks have been created in other domains to help
assess the maturity and performance of system capabilities (such as database query or transaction performance)
the development of industry standardized benchmarks to evaluate attributes of self-management will further
compel the industry to compete for TCO, just as it has done historically for system performance.

Self-Protecting systems have the ability to anticipate, identify and protect against security attacks. This scope
varies from static defenses such as virus protection and data encryption to more advanced dynamic defenses
such as behavior analysis where user/application activity can be analyzed for negative behaviors, tracked, and
adaptively undone.

System-wide self-management. Finally but not least, the holy grail of systems administration comes through
not only creating piece-wise self-managing components (such as a self-managing database management system)
but also by enabling large complex stacks of hardware and software in a truly cooperative self-managing sys-
tem. This cooperative notion can only be achieved through the development of standards and multi-component
technology.

The future evolution of these technologies will lead to self-managing systems that are require a minimal
amount of human interaction, and a maximum amount of efficiency, meaning that information management
systems will become both easy to administer and resource efficient.

Its our pleasure to announce the formation of this workgroup, and we invite everyone interested to follow
our web site for news and announcements.

“Any intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of
courage to move in the opposite direction.” - Albert Einstein

Sam S. Lightstone
IBM Corporation
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Letter from the Special Issue Editors

Several classes of applications have recently emerged that require database systems to manage and process prob-
abilistic data. For example, large-scale data integration systems have to cope with several issues of data quality
that can often be expressed naturally using probabilistic information; data acquisition systems such as sensornet
or RFID deployments can produce huge volumes of raw data that is often error-prone and is best described
through a probabilistic model; data extracted automatically from large text corpora is often imprecise and best
modeled probabilistically. There have been attempts in the past to extend database management systems with
the capability of storing and processing probabilistic data, but the technical challenges involved are enormous
and remain, for the most part, unaddressed.

The collection of eight articles in this special issue represents an interesting sample of different research
perspectives, efforts, and novel applications in the vibrant area of large-scale probabilistic data management.
The first four papers in the issue discuss novel algorithmic and systems aspects of probabilistic databases. The
paper by Benjelloun et al. presents a prototype probabilistic database system developed at Stanford University
that adds both data uncertainty and data lineage as first-class concepts. The authors give a thorough discussion
of various facets of the system (e.g., data model, query language, lineage management) in a unified framework,
and describe their current implementation effort. The paper by Green and Tannen offers a concise, yet very
thorough, comparison of the various proposed models for both incomplete and probabilistic databases, thus
providing an excellent entry point to the rich literature on both topics. In the third article, Ré et al. discuss the
evaluation of SQL queries over probabilistic databases, and give interesting theoretical results demonstrating the
boundary between “easy” and “hard” queries. In a nutshell, they show that while some queries can be evaluated
by simple manipulation of probabilities (a process that can be easily pushed inside relational database engines),
others have high theoretical complexity making evaluation intractable. Unfortunately, much of the database
research on probabilistic databases has evolved independently from the much richer area of probabilistic models
in machine learning and knowledge representation. The paper by Getoor tries to fill this gap, by providing a
very accessible discussion of probabilistic graphical models and their extensions to relational databases.

The final four articles in the issue discuss four novel application domains and the associated requirements
on a probabilistic data management system. Jayram et al. describe AVATAR, a high-precision, rule-based sys-
tem for extracting information from text documents developed at IBM Almaden, that relies on probabilistic data
management techniques. Choudhury et al. give a thorough survey of recent work done at the Intel Research Seat-
tle lab on automatic human activity recognition from sensor data, and discuss desirable features for a database
system that can support such applications. Garofalakis et al. discuss the novel probabilistic data management
challenges faced by the Data Furnace project that aims to provide database support for pervasive computing
(e.g., “smart home”) environments. Finally, the article by Doan et al. surveys the authors’ recent efforts on
building a new data management platform that allows effective information sharing across web communities,
arguing convincingly for probabilistic database tools.

We believe that you will find this diverse collection of research papers on probabilistic data management
stimulating and thought-provoking, and hope that this special issue will spark even more interest in this exciting
new area. Our sincerest thanks to all the authors for their contributions.

Minos Garofalakis, Dan Suciu
Intel Research Berkeley and University of Washington
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An Introduction to ULDBs and the Trio System∗

Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Jennifer Widom
Stanford University

{benjello,anish,hayworth,widom}@cs.stanford.edu

Abstract

We introduce ULDBs: relational databases that add uncertainty and lineage of the data as first-class
concepts. The ULDB model underlies the Trio system under development at Stanford. We describe the
ULDB model, then present TriQL, our SQL-based query language for ULDBs. TriQL’s semantics over
ULDBs is defined both formally and operationally, and TriQL extends SQL with constructs for query-
ing lineage and confidence values. We also briefly describe our initial prototype Trio implementation,
which encodes ULDBs in conventional relations and automatically translates TriQL queries into SQL
commands over the encoding. We conclude with research directions for ULDBs and the Trio system.

1 Introduction

In the Trio project at Stanford, we are developing a new kind of database management system (DBMS): one
in which data, uncertainty of the data, and data lineage are all first-class citizens in an extended relational
model and SQL-based query language. In an earlier paper [Wid05], we motivated the need for these three
aspects to coexist in one system and detailed numerous potential applications including scientific and sensor
data management, data cleaning and integration, information extraction systems, and others. For examples in this
paper we use a highly simplified “crime-solver” application with just two base tables: Owns(owner,car) and
Saw(witness,car), capturing (possibly uncertain) car ownership information and crime-vehicle sightings.

We call the type of relational database managed by Trio a ULDB, for Uncertainty-Lineage Database. To the
best of our knowledge, ULDBs are the first database formalism to integrate uncertainty and lineage. In the rest
of this section we briefly motivate the concepts and survey related work.

Uncertainty. Uncertainty is captured by tuples that may include several alternative possible values, with op-
tional confidence values associated with each alternative. For example, if a witness saw a vehicle that was a
Honda with confidence 0.5, a Toyota with confidence 0.3, or a Mazda with confidence 0.2, the sighting yields
one tuple in table Saw with three alternative values. Furthermore, the presence of tuples may be uncertain, again
with optionally specified confidence. For example, another witness may have 0.6 confidence that she saw a
crime vehicle, but if she saw one it was definitely an Acura. Based on alternative tuple values and confidences,
each ULDB represents multiple possible instances of a database.

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported by the National Science Foundation under grants IIS-0324431 and IIS-1098447, and by a grant from the
Boeing Corporation.
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Lineage. Lineage, sometimes called provenance, associates with a data item information about its derivation.
Broadly, lineage may be internal, referring to data within the ULDB, or external, referring to data outside the
ULDB, or to other data-producing entities such as programs or devices. As a simple example of internal lineage,
we may generate a table Suspects by joining tables Saw and Owns on attribute car. Lineage associated with
a value in Suspects identifies the Saw and Owns data from which it was derived. A useful feature of internal
lineage is that the confidence of a value in Suspects can be computed from the confidence of the data in its
lineage.

As an example of external lineage, Owns may be populated from various car registration databases, and
lineage can be used to connect the data to its original source. Many varieties of lineage are discussed in [Wid05].
In this paper we focus on simple internal lineage.

Queries. We will present a precise semantics for relational queries over ULDBs in Section 2, and in Section 3
an operational description of our SQL-based query language that conforms to the semantics. Intuitively, the
result of a relational query Q on a ULDB U is a result R whose possible instances correspond to applying Q
to each possible instance of U . Internal lineage connects the data in result R with the data from which it was
derived, as in the Suspects join query introduced in the “Lineage” discussion above. Confidence values in
query results are defined in a standard probabilistic fashion.

TriQL (pronounced “treacle”), Trio’s query language, adapts SQL to our possible-instances semantics in a
straightforward and natural manner. TriQL also includes simple but powerful constructs for querying lineage
(e.g., “find all witnesses contributing to our suspicion of Jimmy”), querying uncertainty (e.g., “find all high-
confidence sightings”), or querying both together (e.g., “find all suspects whose lineage contains low-confidence
sightings or ownerships”).

Prototype. In our initial prototype, Trio is built on top of a conventional relational DBMS, although as we
delve more into storage, access method, and query optimization issues, we are likely to work more and more
inside the system. Currently, we encode ULDBs as conventional relations, with a two-way translation layer
so users can view and manipulate the ULDB model without being aware of the encoding. TriQL queries are
translated automatically to SQL commands over the encoding, and the translation is not difficult or complex.
Confidence and lineage are queried through simple built-in functions and predicates. Furthermore, lineage
enables confidence values in query results to be computed lazily, a noteworthy feature of our approach. The
prototype is described in more detail in Section 4.

1.1 Related Work

Our initial motivation to pursue this line of research, described in [Wid05], was followed by an exploration of the
space of models for uncertainty with an emphasis on usability [DBHW06], and more recently a study of several
new theoretical problems in this space [DNW05]. We subsequently added lineage to uncertainty, proposing and
formalizing ULDBs in [BDHW05]. These papers all contain more extensive discussion of related work than we
have room for here.

There has been a large body of previous working studying representation schemes and query answering
for uncertain databases, including but certainly not limited to [AKG91, BGMP92, BP82, BP93, FR97, Gra84,
Gra89, IL84, LLRS97, Var85]. A recent paper [BDM+05] describes a system for handling imprecisions in
data, and the same research group has made considerable progress in query answering for probabilistic data-
bases [BDM+05, DMS05, DS04, DS05].

Data lineage was introduced for a scientific data visualization system [WS97], and has been studied for
conventional relational databases, e.g., [BKT01, BKT00, BKT02], and for data warehouses, e.g., [CW00, CW03,
CWW00]. References [BCTV04, CTV05] describe a recent system being developed around data provenance
(lineage).
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2 ULDBs: Uncertainty-Lineage Databases

We present the ULDB model primarily through examples. A more formal treatment appears in [BDHW05].
ULDBs extend the standard SQL (multiset) relational model with: (1) alternatives, representing uncertainty
about the contents of a tuple; (2) maybe (‘?’) annotations, representing uncertainty about the presence of a tuple;
(3) numerical confidence values optionally attached to alternatives and ‘?’; and (4) lineage, connecting tuple
alternatives to other alternatives from which they were derived. We next discuss each of these four constructs,
then we define the semantics of relational queries on ULDBs.

2.1 Alternatives

ULDB relations are comprised of x-tuples (and therefore are called x-relations). Each x-tuple consists of one or
more alternatives, where each alternative is a regular tuple over the schema of the relation. For example, if a
witness Amy saw either a Honda, Toyota, or Mazda, then in table Saw we have:

(witness, car)

(Amy,Honda) || (Amy,Toyota) || (Amy,Mazda)

This x-tuple logically yields three possible instances for table Saw, one for each alternative. In general, the
possible instances of an x-relation R correspond to all combinations of alternatives for the x-tuples in R. For
example, if a second tuple in Saw had four alternatives, then there would be 12 possible instances altogether.

Clearly the x-tuple above can be represented more naturally with attribute-level instead of tuple-level uncer-
tainty. Using set notation to denote “one of” we could write:

witness car

Amy {Honda,Toyota,Mazda}

As in [DBHW06, Wid05], we call this attribute-level construct an or-set. Or-sets can be a convenient compact
representation for x-tuples, e.g., for readability or for space-efficient storage, and we plan to support them in
Trio for these reasons. However or-sets are less expressive than x-tuples: If a tuple contains or-sets in multiple
attributes, the alternatives of the x-tuple it represents are all possible combinations of the values in each of the
or-sets, i.e., dependencies across attributes cannot be expressed using or-sets.

2.2 ‘?’ (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car but is not sure. However, if she saw a car, it was definitely
an Acura. In ULDBs, uncertainty about the existence of a tuple (more generally of an x-tuple) is denoted by a
‘?’ annotation on the x-tuple. Betty’s observation is thus added to table Saw as:

(witness, car)

(Amy,Honda) || (Amy,Toyota) || (Amy,Mazda)
(Betty,Acura) ?

The ‘?’ on the second x-tuple indicates that this entire tuple may or may not be present (so we call it a maybe
x-tuple). Now the possible instances of an x-relation include not only all combinations of alternatives, but
also all combinations of inclusion/exclusion for the maybe x-tuples. This Saw table has six possible instances:
three choices for Amy’s car times two choices for whether or not Betty saw an Acura. For example, one
possible instance of Saw is the two tuples (Amy,Honda),(Betty,Acura), while another instance is just
(Amy,Mazda).
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2.3 Confidences

Numerical confidence values may be attached to the alternatives of an x-tuple. Suppose Amy’s confidence in
seeing a Honda, Toyota, or Mazda is 0.5, 0.3, and 0.2 respectively, and Betty’s confidence in seeing a vehicle is
0.6. Then we have:

(witness, car)

(Amy,Honda):0.5 || (Amy,Toyota):0.3 || (Amy,Mazda):0.2
(Betty,Acura):0.6 ?

In [BDHW05] we formalize an interpretation of these confidences in terms of probabilities. (Other interpre-
tations may be imposed, but the probabilistic one is the current default for Trio.) Thus, if Σ is the sum of
confidences for the alternatives of an x-tuple, then we must have Σ ≤ 1, and if Σ < 1 then the x-tuple must have
a ‘?’. Implicitly, ‘?’ is given confidence (1 − Σ) and denotes the probability that the tuple is not present.

Now each possible instance of an x-relation itself has a probability, defined as the product of the confidences
of the alternatives and ‘?”s comprising the instance. It can be shown that for any x-relation: (1) The probabilities
of all possible instances sum to 1; and (2) The confidence of an x-tuple alternative (respectively a ‘?’) equals
the sum of probabilities of the possible instances containing this alternative (respectively not containing any
alternative from this x-tuple).

An important special case of ULDBs is when every x-tuple has only one alternative with a confidence
value that may be < 1. This case corresponds to the traditional notion of probabilistic databases, as in, e.g.,
[BGMP92, CP87, DS04, LLRS97]. For simplicity in subsequent discussions we assume each ULDB includes
confidences on all of its data or none of it, although “mixing and matching” is generally straightforward.

2.4 Lineage

Lineage in ULDBs is recorded at the granularity of tuple alternatives: lineage connects an x-tuple alternative to
other x-tuple alternatives.1 Specifically, we define lineage as a function λ over alternatives, such that λ(t) gives
the set of alternatives from which the alternative t was derived.

Consider again the join of Saw and Owns on attribute car, followed by a projection on owner to produce
a table Suspects(person). Let column ID contain a unique identifier for each x-tuple, and let (i, j) denote
the jth alternative of the x-tuple with identifier i. Here is some sample data for all three tables, including lineage
for the derived data in Suspects. For example, the lineage of Jimmy’s presence in table Suspects is the
second alternative of tuple 51 in table Saw, together with the second alternative of tuple 61 in table Owns.

ID Saw (witness, car)

51 (Cathy,Honda) || (Cathy,Mazda)

ID Owns (owner, car)

61 (Jimmy,Toyota) || (Jimmy,Mazda)
62 (Billy,Honda)
63 (Hank,Honda)

?

ID Suspects (person)

71 Jimmy
72 Billy
73 Hank

? λ (71,1) = { (51,2), (61,2) }
? λ (72,1) = { (51,1), (62,1) }
? λ (73,1) = { (51,1), (63,1) }

1Recall we are considering only internal lineage in this paper. We expect that many types of external lineage will also be recorded at
the tuple-alternative granularity, although for some lineage types coarser granularity will be more appropriate [Wid05].
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Figure 1: Relational queries on ULDBs.

An interesting and important effect of lineage is that it imposes restrictions on the possible instances of a
ULDB. Consider the derived table Suspects. Even though there is a ‘?’ on each of its three tuples, not all
combinations are possible. If Billy is present in Suspects then alternative 1 must be chosen for tuple 51,
and therefore Hank must be present as well. Jimmy is present in Suspects only if alternative 2 is chosen for
tuple 51, in which case neither Billy nor Hank can be present. Note that choosing alternative (51, 2) does not
guarantee Jimmy’s presence in Suspects, since tuple 61 has a ‘?’. Roughly speaking, a tuple alternative is
present in a possible instance if and only if all of the alternatives in its lineage are present, although the actual
constraints are somewhat more complex; see [BDHW05] for details.

In summary, once we add lineage, not all combinations of alternatives and ‘?’ choices correspond to valid
possible instances. The above ULDB has six possible instances, determined by the two choices for tuple 51
times the three choices (including ‘?’) for tuple 61. Note that arbitrary lineage functions may not “work”
under our model—consider for example a tuple whose lineage (directly or transitively) includes two different
alternatives of the same x-tuple. In [BDHW05] we formally define well-behaved lineage and show that internal
lineage generated by queries is always well-behaved. Under well-behaved lineage, the possible instances of an
entire ULDB correspond to the possible instances of the “base” data (data with no lineage of its own), as seen
in the example above. Now, with well-behaved lineage our interpretation of confidences carries over directly:
combining confidences on the base data determines the probabilities of the possible instances, just as before. We
will discuss confidences on derived data in Section 4.

2.5 Relational Queries

In this section we formally define the semantics of any relational query over a ULDB. Trio’s SQL-based query
language is presented in Section 3. The semantics for relational queries over ULDBs is quite straightforward
but has two parts: (1) the possible-instances interpretation; and (2) lineage in query results.

Refer to Figure 1. Consider a ULDB D whose possible instances are D1,D2, . . . ,Dn, as shown on the
left side of the figure. If we evaluate a query Q on D, the possible instances in the result of Q should be
Q(D1), Q(D2), . . . , Q(Dn), as shown in the lower-right corner. For example, if a query Q joins x-relations
Saw and Owns, then logically it should join all of the possible instances of these two x-relations. Of course we
will not actually generate all possible instances and operate on them, so a query processing algorithm follows
the top arrow in Figure 1, producing a ULDB query result Q(D) that represents the possible instances.

In our model, a query result is more than just a set of x-tuples: Q(D) contains the original x-relations of D,
together with a new result x-relation R. Lineage from R into the x-relations of D reflects the derivation of the
data in R. This approach is necessary for Q(D) to represent the correct possible instances in the query result,2

and to enable consistent further querying of the original and new x-relations. Our example in the previous sub-
section with Suspects as the result of query Q = πowner(Saw �� Owns) demonstrates the possible-instances

2Technically, the possible instances in the lower half of Figure 1 also contain lineage, but this aspect is not critical here; see
[BDHW05] for formal details.
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interpretation and lineage from query result to original data; details are left as a useful exercise for the reader.
The lineage of tuples in query results can be defined in different ways, as explored in other work [BKT01].

So far, we have considered a class of queries (subsuming SPJ queries and union, formally defined in [BDHW05])
for which the lineage is straightforward: every result tuple alternative t identifies a unique combination of base
tuple alternatives from which t was derived.

3 TriQL: The Trio Query Language

In this section we describe TriQL, Trio’s SQL-based query language. Except for built-in functions and predicates
for querying confidence values and lineage, TriQL uses the same syntax as SQL. However, the interpretation of
SQL queries must be modified to reflect the semantics over ULDBs discussed in the previous section.

In this paper (and in our current implementation), we limit ourselves to single-block queries without aggre-
gation or DISTINCT. Thus, the general form of a TriQL query Q is:

SELECT attr-list [ INTO new-table ]
FROM X1, X2, ..., Xn
WHERE predicate

As an example, our join query producing Suspects is written in TriQL exactly as expected:

SELECT Owns.owner as person INTO Suspects
FROM Saw, Owns
WHERE Saw.car = Owns.car

If we execute this query as regular SQL over each of the possible instances of Saw and Owns, as in the lower
portion of Figure 1, it produces the expected set of possible instances in its result. More importantly, following
the operational semantics of TriQL given next, this query produces a result table Suspects, including lineage
to tables Saw and Owns, that correctly represents those possible instances.

3.1 Operational Semantics

We provide an operational description of TriQL by specifying direct evaluation of an arbitrary TriQL query
over a ULDB, corresponding to the upper arrow in Figure 1. Consider the generic TriQL query block above.
Let schema(Q) denote the composition schema(X1) � schema(X2) � · · · � schema(Xn) of the FROM relation
schemas, just as in SQL query processing. The predicate is evaluated over tuples in schema(Q), and the
attr-list is a subset of schema(Q) or the symbol “*”, again just as in SQL.

The steps below are an operational description of evaluating the above query block. As in SQL database
systems, a query processor would rarely execute the simplest operational description since it could be woefully
inefficient, but any query plan or execution technique (such as our translation-based approach described in
Section 4) must produce the same result as this description.

1. Consider every combination x1, x2, . . . , xn of x-tuples in X1, X2, . . . , Xn, one combination at a time, just
as in SQL.

2. Form a “super-tuple” T whose alternatives have schema schema(Q). T has one alternative for each com-
bination of alternatives in x1, x2, ..., xn.

3. If any of x1, x2, . . . , xn has a ‘?’, add a ‘?’ to T .

4. Set the lineage of each alternative in T to be the alternatives in x1, x2, . . . , xn from which it was con-
structed.
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5. Retain from T only those alternatives satisfying the predicate. If no alternatives satisfy the predicate,
we’re finished with T . If any alternative does not satisfy the predicate, add a ‘?’ to T if it is not there
already.

6. If we are operating on a ULDB with confidences, either compute the confidence values for T ’s remaining
alternatives and store them (eager confidence computation), or set the confidence values to NULL (lazy
confidence computation). See Section 4 for further discussion.

7. Project each alternative of T onto the attributes in attr-list, generating an x-tuple in the query result.
If there is an INTO clause, insert T into table new-table.

We leave it to the reader to verify that this operational semantics produces the Suspects result table shown
with example data in Section 2.4, and more generally that it conforms to the formal semantics given in Section 2.

3.2 Querying Confidences

TriQL provides a built-in function conf() for accessing confidence values. Suppose we want our Suspects
query to only use sightings having confidence > 0.5 and ownerships having confidence > 0.8. We write:

SELECT Owns.owner as person INTO Suspects
FROM Saw, Owns
WHERE Saw.car = Owns.car AND conf(Saw) > 0.5 AND conf(Owns) > 0.8

In the operational semantics, when we evaluate the predicate over the alternatives in T in step 6, conf(Xi)
refers to the confidence associated with the xi component of the alternative being evaluated. Note that this
function may trigger confidence computations in the lazy case.

3.3 Querying Lineage

For querying lineage, TriQL introduces a built-in predicate designed to be used as a join condition. If we include
predicate lineage(R,S) in the WHERE clause of a TriQL query with x-relations R and S in its FROM clause,
then we are constraining the joined R and S tuple alternatives to be connected by lineage. For example, suppose
we want to find all witnesses contributing to Hank being a suspect. We can write:

SELECT Saw.witness INTO AccusesHank
FROM Suspects, Saw
WHERE lineage(Suspects,Saw) AND Suspects.person = ’Hank’

In the WHERE clause, lineage(Suspects,Saw) evaluates to true for any pair of alternatives x1 and x2

from Suspects and Saw such that x1’s lineage includes x2. Of course we could write this query directly on
the base relations if we remembered how Suspects was computed, but the lineage() predicate provides a
more general construct that is insensitive to query history.

With the addition of derived x-relation AccusesHank, we now have two layers of lineage: from
AccusesHank to Suspects, then from Suspects to the base x-relations. In general, over time a ULDB
may develop many levels of lineage, so we also have a transitive lineage predicate: lineage*(R,S) evaluates
to true for any pair of alternatives x1 and x2 from R and S such that there is a “path” via lineage from x1 to
x2. This predicate introduces some interesting evaluation issues. Our current prototype keeps track of lineage
structure and uses it to translate lineage*() into joins with lineage() predicates.

As a final TriQL example incorporating both lineage and confidence, the following query finds persons who
are suspected based on high-confidence ownership of a Honda:
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SELECT Owns.owner INTO HighHonda
FROM Suspects, Owns
WHERE lineage(Suspects,Owns) AND Owns.car = ’Honda’ AND conf(Owns) > 0.8

4 Current Implementation

Our first-generation Trio prototype, which is up and running, is built on top of a conventional relational DBMS:
ULDBs are represented in relational tables, and TriQL queries and commands are rewritten automatically into
SQL commands evaluated against the representation.

The core system is implemented in Python and presents a simple API that extends the standard Python
DB 2.0 API for database access (Python’s analog of JDBC). The Trio API supports TriQL queries instead of
SQL, query results are cursors enumerating x-tuple objects instead of regular tuples, and x-tuple objects provide
programmatic access to their alternatives, including confidences and lineage. The first application we built using
the Trio API is a generic command-line interactive client, similar to that provided by most DBMS’s.

We are currently building on the Postgres open-source DBMS. However, we intentionally rely on very few
Postgres-specific features, so porting to any other DBMS providing a DB 2.0 API should be straightforward. The
next two sections describe our representation of ULDBs as conventional relations, and our rewrite techniques
for query processing.

4.1 Representing ULDBs as Relations

Let R (A1, . . . , An) be an x-relation with lineage and possibly confidences. We store the data portion of R as a
conventional table (which we also call R) with three extra attributes: R (aid, xid, conf, A1, . . . , An). Each
alternative in the original x-relation is stored as its own tuple in R, with a unique identifier aid. The alternatives
of each x-tuple have the same x-tuple identifier, xid. Finally, conf stores the confidence of the alternative,
with three special values: NULL denotes that the alternative’s confidence has not yet been computed (but can
be computed from the alternative’s lineage); −1 denotes that the alternative does not have a confidence value
but its x-tuple has a ‘?’; −2 denotes that the alternative does not have a confidence value and its tuple does not
have a ‘?’. If an alternative has conf = −1 then so must all other alternatives with the same xid; similarly for
conf = −2.

The lineage information for each x-relation R is stored in a separate table lin:R (aid1, table, aid2),
whose tuples denote that R’s alternative aid1 contains alternative aid2 from table table in its lineage. Here
is an example of an encoded ULDB corresponding to a subset of the data from Section 2.4, with confidence
values added to Saw for illustrative purposes only:

Saw
aid xid conf witness car

11 51 0.8 Cathy Honda
12 51 0.2 Cathy Mazda

Owns
aid xid conf owner car

21 61 -1 Jimmy Toyota
22 61 -1 Jimmy Mazda
23 62 -2 Billy Honda

Suspects
aid xid conf person

31 71 -1 Jimmy
32 72 -2 Billy

lin:Suspects
aid1 table aid2

31 Saw 12
31 Owns 22
32 Saw 11
32 Owns 23
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The Trio implementation does not require all relations to have uncertainty or lineage—conventional relations
can coexist with x-relations, and they can be queried together. Currently, a single Trio metadata catalog keeps
track of which relations include uncertainty, and records the general structure of the lineage present in the
database, i.e., which x-relations include lineage to which other x-relations.

4.2 Query Processing

The Trio system evaluates TriQL queries by translating them into SQL operations over the representation de-
scribed in the previous section. Consider a TriQL query Q whose result is to be stored in a new x-relation R.
Q is rewritten into a query Qr executed against the actual database. Qr’s result is post-processed in order to
group alternatives into the x-tuples represented in R, and to generate the lineage table lin:R. Confidence values
for result tuples are computed separately, possibly not until they are requested by the user or application. We
detail each of these phases next, then describe how Trio produces transient results for queries without an INTO
clause.

Query Rewriting. Consider one last time a variant on our favorite join query producing Suspects:

SELECT Owns.owner as person INTO Suspects
FROM Saw, Owns
WHERE Saw.car = Owns.car AND conf(Saw) > 0.5

This query is translated to the following SQL query Qr, shown with a sample query result:

CREATE TABLE Suspects AS
SELECT newOid() as aid, NULL as xid, NULL as conf,

owner as person,
Saw.aid as Saw_aid, Saw.xid as Saw_xid,
Owns.aid as Owns_aid, Owns.xid as Owns_xid

FROM Saw, Owns WHERE Saw.car = Owns.car AND conf(Saw) > 0.5

aid xid conf person Saw aid Saw xid Owns aid Owns xid

32 NULL NULL Billy 11 51 23 62

The translation of queries with lineage() predicates requires joining in the corresponding lin tables in the
expected way; details are omitted.

Post-processing. Next, the Trio engine processes the result table obtained from the translated query Qr as
follows. Each step is performed by simple, automatically-generated SQL commands.

1. New xid’s are generated for the xid column, to group the alternatives in the result into x-tuples. Recalling
the operational semantics from Section 3.1, we can use a simple GROUP BY query on the xid’s of the
original tuples (Saw xid and Owns xid in our example) and a sequence to generate the new xid’s.

2. The lineage information—aid values with table names—is moved to a separate newly-created table
(lin:Suspects in our example).

3. The data needed for steps 1 and 2 (attributes Saw aid, Saw xid, Owns aid, and Owns xid in our
example) are removed from the query result table by dropping the corresponding columns.

4. Metadata information is added to the Trio catalog about the new table Suspects, and the fact that it was
derived from Saw and Owns.
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Computing Confidences. Lastly, we discuss confidences on query results: their definition and their compu-
tation. For the class of queries we have considered so far, a very simple definition is enabled by lineage: The
confidence of a tuple alternative t in a query result is the product of the confidences of the tuple alternatives in
λ(t). For example, if Hank in table Suspects was derived from a 0.8 confidence Saw alternative together
with a 0.5 confidence Owns tuple, then Hank has confidence 0.4. This definition is consistent with the standard
interpretation of probabilistic databases.

The fact that confidences can be computed via lineage enables us to compute and store confidence values
lazily if we wish to do so—if an application typically does not use confidence values, or uses them very selec-
tively. Of course we can also compute confidences eagerly during query execution; both options were presented
in our operational semantics (Section 3.1). Many optimizations are possible for computing confidences, and
new challenges arise when we extend the class of queries considered. This area constitutes an important avenue
of current work, as mentioned in the next section.

Transient Query Results. So far in this section we have assumed query results are to be stored in a newly-
created table. Trio also supports conventional (transient) query results, when the INTO clause is omitted: Trans-
lated query Qr now sorts its result by the xid’s of the original x-tuples, and is executed via a cursor instead of
writing its result into a table. Trio returns a cursor for Q to its client. As the client iterates through the Q cursor,
x-tuple objects (with lineage) are generated on-the-fly by iterating through the cursor for the sorted Qr result.

5 Current and Future Directions

• Theory: There is a great deal of theoretical work to do on ULDBs. Effectively, nearly every topic con-
sidered in relational database theory can be reconsidered in ULDBs. Examples include (but are certainly
not limited to) dependency theory and database design, query containment and rewritings, and sampling
and statistics. We are attempting to address the most interesting and relevant of these problems.

• Confidences: We are currently exploring various algorithms and optimizations when computing confi-
dences lazily, such as memoization and pruning the lineage traversal. We are also studying the fundamen-
tal tradeoffs between lazy and eager computation of confidences.

• Updates: The formal query semantics and TriQL language presented here are query-only. We are in the
process of considering updates: identifying and formally defining an appropriate set of primitive update
operations for ULDBs, and exposing them in SQL-like data modification commands.

• Queries: Our current Trio prototype supports only single-block “SPJ” queries. While some additional
query constructs simply require additional programming, other constructs—such as duplicate elimination,
aggregation, and negated subqueries—require more complex definitions and implementation of lineage.
We also plan to add richer constructs for querying uncertainty, including “top-K” style queries based on
confidence, and “horizontal” queries that aggregate or perform subqueries across tuple alternatives.

• Storage, Auxiliary Structures, and Query Optimization: The ULDB model introduces new options and
tradeoffs in data layout, along with new possibilities for indexing, partitioning, and materialized views,
and new challenges for query operators and optimizations. To fully explore many of these topics we will
need to move our prototype away from its translation-based approach and begin custom implementation
inside a DBMS.

• Long-Term Goals: There are several important features in the original Trio proposal [Wid05] that we
have barely touched upon but remain on our agenda: Continuous uncertain values such as intervals and
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Gaussians, incomplete relations, versioning, and various types of external lineage. In addition, the intro-
duction of uncertainty and lineage introduces new challenges in both human and programmatic interfaces.

• Applications: Needless to say, a most important long-term goal is to deploy a wide variety of applications
on the Trio system to test its functionality and scalability. We also may develop specialized versions of
Trio with restricted and/or extended functionality suited to specific applications, such as for sensor data
management or data integration.
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1 Introduction

This is an abbreviated version of [13] where proofs and additional results are discussed (available also from
http://db.cis.upenn.edu).

The representation of incomplete information in databases has been an important research topic for a long
time, see the references in [12], in Ch.19 of [2], in [21], as well as the recent [22, 20, 19]. Moreover, this work
is closely related to recently active research topics such as inconsistent databases and repairs [3], answering
queries using views [1], and data exchange [9]. The classic reference on incomplete databases remains [14]
with the fundamental concept of c-table and its restrictions to simpler tables with variables. The most important
result of [14] is the query answering algorithm that defines an algebra on c-tables that corresponds exactly to the
usual relational algebra (RA). A recent paper [19] has defined a hierarchy of incomplete database models based
on finite sets of choices and optional inclusion. One of our contributions consists of comparisons between the
models [19] and the tables with variables from [14].

Two criteria have been provided for comparisons among all these models: [14, 19] discuss closure under
relational algebra operations, while [19] also emphasizes completeness, specifically the ability to represent all
finite incomplete databases. We point out that the latter is not appropriate for tables with variables over an
infinite domain, and we contribute another criterion, RA-completeness, that fully characterizes the expressive
power of c-tables.

We also introduce a new idea for the study of models that are not complete. Namely, we consider combining
existing models with queries in various fragments of relational algebra. We then ask how big these fragments
need to be to obtain a combined model that is complete. We give a number of such algebraic completion results.

Early on, probabilistic models of databases were studied less intensively than incompleteness models, with
some notable exceptions [5, 4, 18, 7]. Essential progress was made independently in three papers [10, 16, 23]
that were published at about the same time. [10, 23] assume a model in which tuples are taken independently in
a relation with given probabilities. [16] assumes a model with a separate distribution for each attribute in each
tuple. All three papers attacked the problem of calculating the probability of tuples occurring in query answers.
They solved the problem by developing more general models in which rows contain additional information
(“event expressions”,“paths”,“traces”), and they noted the similarity with the conditions in c-tables.

We go beyond the problem of individual tuples in query answers by defining closure under a query lan-
guage for probabilistic models. Then we develop a new model, probabilistic c-tables that adds to the c-tables
themselves probability distributions for the values taken by their variables. Here is an example of such a repre-
sentation that captures the set of instances in which Alice is taking a course that is Math with probability 0.3;

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Physics (0.3); or Chemistry (0.4), while Bob takes the same course as Alice, provided that course is Physics or
Chemistry and Theo takes Math with probability 0.85:

Student Course Condition
Alice x
Bob x x = phys ∨ x = chem
Theo math t = 1

x =

⎧⎨
⎩

math : 0.3
phys : 0.3
chem : 0.4

t =
{

0 : 0.15
1 : 0.85

The concept of probabilistic c-table allows us to solve the closure problem by using the same algebra on c-tables
defined in [14].

We also give a completeness result by showing that probabilistic boolean c-tables (all variables are two-
valued and can appear only in the conditions, not in the tuples) can represent any probabilistic database.

An important conceptual contribution is that we show that, at least for the models we consider, the prob-
abilistic database models can be seen, as probabilistic counterparts of incomplete database models. In an
incompleteness model a tuple or an attribute value in a tuple may or may not be in the database. In its proba-
bilistic counterpart, these are seen as elementary events with an assigned probability. For example, the models
used in [10, 16, 23] are probabilistic counterparts of the two simplest incompleteness models discussed in [19].
As another example, the model used in [7] can be seen as the probabilistic counterpart of an incompleteness
model one in which tuples sharing the same key have an exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for probabilistic c-tables will allow
us to solve the problem of calculating probabilities about query answers for any model that can be defined as a
probabilistic counterpart of the incompleteness models considered in [14, 19].

2 Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [12], in Ch. 19 of [2], and in [21]. A database that
provides incomplete information consists of a set of possible instances. At one end of this spectrum we have the
conventional single instances, which provide “complete information.” At the other end we have the set of all
allowable instances which provides “no information” at all, or “zero information.”

We adopt the formalism of relational databases over a fixed countably infinite domain D. We use the un-
named form of the relational algebra. To simplify the notation we will work with relational schemas that consist
of a single relation name of arity n. Everything we say can be easily reformulated for arbitrary relational
schemas. We shall need a notation for the set of all (conventional) instances of this schema, i.e., all the finite
n-ary relations over D namely N := {I | I ⊆ D

n, I finite}

Definition 1: An incomplete(-information) database (i-database for short), I, is a set of conventional in-
stances, i.e., a subset I ⊆ N .

The usual relational databases correspond to the cases when I = {I}. The no-information or zero-information
database consists of all the relations: N .

Conventional relational instances are finite. However, because D is infinite incomplete databases are in
general infinite. Hence the interest in finite, syntactical, representations for incomplete information.

Definition 2: A representation system consists of a set (usually a syntactically defined “language”) whose
elements we call tables, and a function Mod that associates to each table T an incomplete database Mod(T ).

The classical reference [14] considers three representation systems: Codd tables, v-tables, and c-tables.
v-tables are conventional instances in which variables can appear in addition to constants from D. If T is a
v-table then

Mod(T ) := {ν(T ) | ν : Var(T ) → D is a valuation for the variables of T}
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Codd tables are v-tables in which all the variables are distinct. They correspond roughly to the current use
of nulls in SQL, while v-tables model “labeled” or “marked” nulls. c-tables are v-tables in which each tuple
is associated with a condition — a boolean combination of equalities involving variables and constants. We
typically use the letter ϕ for conditions. The tuple condition is tested for each valuation ν and the tuple is
discarded from ν(T ) if the condition is not satisfied.

Example 1: Here is an example of a c-table.

S :=
1 2 x
3 x y x = y ∧ z �= 2
z 4 5 x �= 1 ∨ x �= y

Mod(S) =
{

1 2 1
3 1 1

,
1 2 2
1 4 5

, . . . ,
1 2 77

97 4 5
, . . .

}

Several other representation systems have been proposed in a recent paper [19]. We illustrate here three of
them and we discuss several others later. A ?-table is a conventional instance in which tuples are optionally
labeled with “?,” meaning that the tuple may be missing. An or-set-table looks like a conventional instance but
or-set values [15, 17] are allowed. An or-set value 〈1, 2, 3〉 signifies that exactly one of 1, 2, or 3 is the “actual”
(but unknown) value. Clearly, the two ideas can be combined yielding another representation systems that we
might (awkwardly) call or-set-?-tables.(In [19] these three systems are denoted by R?, RA and RA

? .)

Example 2: Here is an example of an or-set-?-table.

T :=
1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉

〈4, 5〉 4 5 ?
Mod(T ) =

⎧⎨
⎩

1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3

,

1 2 2
3 1 3
4 4 5

, . . . ,
1 2 2
3 2 4

⎫⎬
⎭

3 Completeness and Closure

“Completeness” of expressive power is the first obvious question to ask about representation systems. This
brings up a fundamental difference between the representation systems of [14] and those of [19]. The presence
of variables in a table T and the fact that D is infinite means that Mod(T ) may be infinite. For the tables
considered in [19], Mod(T ) is always finite.

[19] defines completeness as the ability of a representation system to represent “all” possible i-databases.
For the kind of tables considered in [19] the question makes sense. But in the case of the tables with variables
in [14] this is hopeless for trivial reasons. Indeed, in such systems there are only countably many tables while
there are uncountably many i-databases (the subsets of N , which is infinite). We will discuss separately below
finite completeness for systems that only represent finite database. Meanwhile, we will develop a different
yardstick for the expressive power of tables with variables that range over an infinite domain.

c-tables and their restrictions (v-tables and Codd tables) have an inherent limitation: the cardinality of the
instances in Mod(T ) is at most the cardinality of T . For example, the zero-information database N cannot
be represented with c-tables. It also follows that among the i-databases that are representable by c-tables the
“minimal”-information ones are those consisting for some m of all instances of cardinality up to m (which are
in fact representable by Codd tables with m rows). Among these, we make special use of the ones of cardinality
1:

Zk := {{t} | t ∈ D
k}.

Hence, Zk consists of all the one-tuple relations of arity k. Note that Zk = Mod(Zk) where Zk is the Codd
table consisting of a single row of k distinct variables.

Definition 3: An i-database I is RA-definable if there exists a relational algebra query q such that I = q(Zk),
where k is the arity of the input relation name in q.
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Theorem 4: If I is an i-database representable by a c-table T , i.e., I = Mod(T ), then I is RA-definable.

Hence, c-tables are in some sense “no more powerful” than the relational algebra. But are they “as power-
ful”? This justifies the following:

Definition 5: A representation system is RA-complete if it can represent any RA-definable i-database.

Since Zk is itself a c-table the following is an immediate corollary of the fundamental result of [14] (see
Theorem 11 below). It also states that the converse of Theorem 4 holds.

Theorem 6: c-tables are RA-complete.

We now turn to the kind of completeness considered in [19].

Definition 7: A representation system is finitely complete if it can represent any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other systems is discussed in [19]
where a finitely complete representation system called RA

prop is also given (we do not discuss RA
propfurther here).

Is finite completeness a reasonable question for c-tables, v-tables, and Codd tables? In general, for such tables
Mod(T ) is infinite (all that is needed is a tuple with at least one variable and with an infinitely satisfiable
condition). To facilitate comparison with the systems in [19] we define finite-domain versions of tables with
variables.

Definition 8: A finite-domain c-table (v-table, Codd table) consists of a c-table (v-table, Codd table) T together
with a finite dom(x) ⊂ D for each variable x that occurs in T .

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed, to obtain an or-set table from a
Codd table, one can see dom(x) as an or-set and substitute it for x in the table. Conversely, to obtain a Codd
table from an or-set table, one can substitute a fresh variable x for each or-set and define dom(x) as the contents
of the or-set.

It is easy to see that finite-domain c-tables are finitely complete. In fact, this is true even for the fragment
of finite-domain c-tables which we will call boolean c-tables, where the variables take only boolean values and
are only allowed to appear in conditions (never as attribute values).

Theorem 9: Boolean c-tables are finitely complete (hence finite-domain c-tables are also finitely complete).

If we additionally restrict boolean c-tables to allow conditions to contain only true or a single variable which
appears in no other condition, then we obtain a representation system which is equivalent to ?-tables.

Definition 10: A representation system is closed under a query language if for any query q and any table T
there is a table T ′ that represents q(Mod(T )).

This definition is from [19]. In [2], a strong representation system is defined in the same way, with the significant
addition that T ′ should be computable from T and q. It is not hard to show, using general recursion-theoretic
principles, that there exist representation systems (even ones that only represent finite i-databases) which are
closed as above but not strong in the sense of [2]. However, the concrete systems studied so far are either not
closed, or if they are closed, as in the theorem below, then the proof provides also the algorithm required by the
definition of strong systems. Hence, we see no need to insist upon the distinction.

Theorem 11 ([14]): c-tables are closed under the relational algebra. (The same proof works for finite-domain
c-tables, and even boolean c-tables.)
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4 Algebraic Completion

None of the incomplete representation systems we have seen so far is closed under the full relational algebra.

Proposition 12 ([14, 19]): Codd tables and v-tables are not closed under e.g. selection. Or-set tables and finite
v-tables are also not closed under e.g. selection. ?-tables are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see before Definition 5) {Z1, Z2, . . .},
by relational algebra queries yields equivalence with the c-tables. In this spirit, we will investigate “how much”
of the relational algebra would be needed to complete the other representation systems considered. We call this
kind of result algebraic completion.

Definition 13: If (T , Mod) is a representation system and L is a query language, then the representation system
obtained by closing T under L is the set of tables {(T, q) | T ∈ T , q ∈ L} with the function Mod : T ×L → N
defined by Mod(T, q) := q(Mod(T )).

Theorem 14 (RA-Completion): Closing Codd tables under SPJU queries and closing v-tables under SP
queries produces RA-complete systems in both cases.

We give now a set of analogous completion results for the finite case.

Theorem 15 (Finite-Completion): Closing or-set-tables under PJ queries, closing finite v-tables under PJ or
S+P queries, and closing ?-tables under RA queries produces finitely complete systems.

5 Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database models we will assume that the
domain of values D is finite. Infinite domains of values are certainly interesting in practice; for some examples
see [16, 22, 19]. Moreover, in the case of incomplete databases we have seen that they allow for interesting
distinctions.1 However, finite probability spaces are much simpler than infinite ones and we will take advantage
of this simplicity. We leave for future investigations the issues related to probabilistic databases over infinite
domains.

We wish to model probabilistic information using a probability space whose possible outcomes are all the
conventional instances. Recall that for simplicity we assume a schema consisting of just one relation of arity n.
The finiteness of D implies that there are only finitely many instances, I ⊆ D

n.
By finite probability space we mean a probability space (see e.g. [8]) (Ω,F , P[ ]) in which the set of

outcomes Ω is finite and the σ-field of events F consists of all subsets of Ω. We shall use the equivalent
formulation of pairs (Ω, p) where Ω is the finite set of outcomes and where the outcome probability assignment
p : Ω → [0, 1] satisfies

∑
ω∈Ω p(ω) = 1. Indeed, we take P[A] =

∑
ω∈A p(ω).

Definition 16: A probabilistic(-information) database (or p-database) is a finite probability space whose
outcomes are all the conventional instances, i.e., a pair (N , p) where

∑
I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealistic because there are 2N possible
instances, where N := |D|n, and we would need that many (minus one) probability values. Thus, as in the case
of incomplete databases we define probabilistic representation systems consisting of “probabilistic tables”
(prob. tables for short) and a function Mod that associates to each prob. table T a probabilistic database Mod(T ).
Similarly, we define completeness (finite completeness is the only kind we have in our setting).

1Note however that the results remain true if D is finite; we just require an infinite supply of variables.
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To define closure under a query language we face the following problem. Given a probabilistic database
(N , p) and a query q (with just one input relation name), how do we define the probability assignment for the
instances in q(N )? It turns out that this is a common construction in probability theory: image spaces.

Definition 17: Let (Ω, p) be a finite probability space and let f : Ω → Ω′ where Ω′ is some finite set. The
image of (Ω, p) under f is the finite probability space (Ω′, p′) where2 p′(ω′) :=

∑
f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebra and its sublanguages defined by subsets of
operations.

Definition 18: A probabilistic representation system is closed under a query language if for any query q and
any prob. table T there exists a prob. table T′ that represents q(Mod(T )), the image space of Mod(T ) under q.

6 Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for probabilistic models of databases [23, 10,
11, 6] (they are called “independent tuple representation in [20]). Such tables are the probabilistic counterpart
of ?-tables where each “?” is replaced by a probability value. Example 3 below shows such a table. The tuples
not explicitly shown are assumed tagged with probability 0. Therefore, a p-?-table is a mapping that associates
to each t ∈ D

n a probability value pt.
To define the Mod function we use another common construction from probability theory: product spaces.

Definition 19: Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Their product is the space (Ω1 × · · · ×
Ωn, p) where3 p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn).

Given a p-?-table T := {pt‖t ∈ D
n} consider the finite probability space Bt := ({true, false}, p) where

p(true) := pt and p(false) = 1 − pt and then the product space P :=
∏

t∈Dn Bt.
We can think of its set of outcomes (abusing notation, we will call this set P also) as the set of functions

from D
n to {true, false}, in other words, predicates on D

n. There is an obvious function f : P → N that
associates to each predicate the set of tuples it maps to true and this gives us a p-database, namely the image of
P under f , which we define to be Mod(T ).

We define now another simple probabilistic representation system called probabilistic or-set-tables (p-or-
set-tables for short). These are the probabilistic counterpart of or-set-tables where the attribute values are, instead
of or-sets, finite probability spaces whose outcomes are the values in the or-set. p-or-set-tables correspond to a
simplified version of the ProbView model presented in [16], in which plain probability values are used instead
of confidence intervals.

Example 3: A p-or-set-table S, and a p-?-table T .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each of the spaces that appear as attribute
values, independently. Recall that or-set tables are equivalent to finite-domain Codd tables. Similarly, a p-or-
set-table corresponds to a Codd table T plus for each variable x in T a finite probability space dom(x) whose

2It is easy to check that the p′(ω′)’s do actually add up to 1.
3Again, it is easy to check that the outcome probability assignments add up to 1.
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outcomes are in D. This yields a p-database, again by image space construction, as shown more generally for
c-tables next in section 7.

Query answering The papers [10, 23, 16] have considered, independently, the problem of calculating
the probability of tuples appearing in query answers. This does not mean that in general q(Mod(T )) can be
represented by another tuple table when T is some p-?-table and q ∈ RA (neither does this hold for p-or-
set-tables). This follows from Proposition 12. Indeed, if the probabilistic counterpart of an incompleteness
representation system T is closed, then so is T . Hence the lifting of the results in Proposition 12 and other
similar results.

Each of the papers [10, 23, 16] recognizes the problem of query answering and solves it by developing a
more general model in which rows contain additional information similar in spirit to the conditions that appear
in c-tables (in fact [10]’s model is essentially what we call probabilistic boolean c-tables, see next section). We
will show that we can actually use a probabilistic counterpart to c-tables themselves together with the algebra
on c-tables given in [14] to achieve the same effect.

7 Probabilistic c-tables

Definition 20: A probabilistic c-table (pc-tables for short) consists of a c-table T together with a finite proba-
bility space dom(x) (whose outcomes are values in D) for each variable x that occurs in T .

To get a probabilistic representation system consider the product space V :=
∏

x∈Var(T ) dom(x). The
outcomes of this space are in fact the valuations for the c-table T ! Hence we can define the function g : V →
N , g(ν) := ν(T ) and then define Mod(T ) as the image of V under g.

Similarly, we can talk about boolean pc-tables, pv-tables and probabilistic Codd tables (the latter related
to [16], see previous section). Moreover, the p-?-tables correspond to restricted boolean pc-tables, just like
?-tables.

Theorem 21: Boolean pc-tables are complete (hence pc-tables are also complete).

The previous theorem was independently observed in [20].

Theorem 22: pc-tables (and boolean pc-tables) are closed under the relational algebra.

The proof of this theorem gives in fact an algorithm for constructing the answer as a p-database itself, repre-
sented by a pc-table. In particular this will work for the models of [10, 16, 23] or for models we might invent by
adding probabilistic information to v-tables or to the representation systems considered in [19]. The interesting
result of [6] about the applicability of an “extensional” algorithm to calculating answer tuple probabilities can
be seen also as characterizing the conjunctive queries q which for any p-?-table T are such that the c-table q̄(T )
is in fact equivalent to some p-?-table.

8 Conclusion

We reviewed some old and some new examples of representation systems for incomplete and probabilistic
databases. We discussed notions of expressive completeness, and we gave a new notion of completeness, called
RA-completeness, which makes sense in the case of infinite domains. We introduced the concept of algebraic
completion and gave some results showing that extending weaker models by various fragments of the relational
algebra yields complete models. Finally, we showed how probabilistic representation systems can be seen as
probabilistic counterparts of incomplete representation systems, and as an example we proposed a probabilistic
representation system called pc-tables, which we showed to be closed and complete.
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Query Evaluation on Probabilistic Databases

Christopher Ré, Nilesh Dalvi and Dan Suciu
University of Washington

1 The Probabilistic Data

In this paper we consider the query evaluation problem: how can we evaluate SQL queries on probabilistic
databases? Our discussion is restricted to single-block SQL queries using standard syntax, with a modified
semantics: each tuple in the answer is associated with a probability representing our confidence in that tuple
belonging to the answer. We present here a short summary of the research done at the University of Washington
into this problem.

Consider the probabilistic database in Fig. 1. Productp contains three products; their names and their
prices are known, but we are unsure about their color and shape. Gizmo may be red and oval, or it may be blue
and square, with probabilities p1 = 0.25 and p2 = 0.75 respectively. Camera has three possible combinations of
color and shape, and IPod has two. Thus, the table defines for each product a probability distribution on its colors
and shapes. Since each color-shape combination excludes the others, we must have p1+p2 ≤ 1, p3+p4+p5 ≤ 1
and p6 + p7 ≤ 1, which indeed holds for our table. When the sum is strictly less than one then that product may
not occur in the table at all: for example Camera may be missing from the table with probability 1-p3-p4-p5.
Each probabilistic table is stored in a standard relational database: for example Productp becomes the table in
Fig. 2 (a). For any two tuples in Productp, if they have the same values of the key attributes prod and price
then they are exclusive (i.e. disjoint) probabilistic events, otherwise they are independent events.

The meaning of a probabilistic database is a probability distribution on possible worlds. Productp has
16 possible worlds, since there are two choices for the color and shape for Gizmo, four for Camera (including
removing Camera altogether) and two for IPod. Fig. 2 (b) illustrate two possible worlds and their probabilities.

Productp

prod price color shape p

Gizmo 20 red oval p1 = 0.25
blue square p2 = 0.75

Camera 80 green oval p3 = 0.3
red round p4 = 0.3
blue oval p5 = 0.2

IPod 300 white square p6 = 0.8
black square p7 = 0.2

Order
prod price cust

Gizmo 20 Sue
Gizmo 80 Fred
IPod 300 Fred

Customerp

cust city p

Sue New York q1 = 0.5
Boston q2 = 0.2
Seattle q3 = 0.3

Fred Boston q4 = 0.4
Seattle q5 = 0.3

Figure 1: Probabilistic database

Keys In this paper we impose the restriction that every deterministic attribute is part of a key. Formally,
each probabilistic table R has a key, R.Key, and by definition this set of attributes must form a key in each

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

Partially supported by Suciu’s NSF Career Award IIS-00992955 and NSF Grants IIS-0428168, 61-2252, 61-2103, 0513877.
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Productp

prod price color shape p

Gizmo 20 red oval p1

Gizmo 20 blue square p2

Camera 80 green oval p3

Camera 80 red round p4

Camera 80 blue oval p5

IPod 300 white square p6

IPod 300 black square p7

(a)

Product
prod price color shape

Gizmo 20 blue square
Camera 80 blue oval
IPod 300 white square

p2p5p6

prod price color shape

Gizmo 20 red oval
IPod 300 white square

p1(1-p3-p4-p5)p6

(b)

Figure 2: Representation of a probabilistic table (a) and two possible worlds (b)

possible world. Intuitively, the attributes in R.Key are deterministic while the others are probabilistic. For
example, in Product(prod, price, shape, color) the key Product.Key is {prod, price},
and one can see that it is a key in each of the two possible worlds in Fig. 2 (b). When a probabilistic table has
only deterministic attributes, like in R(A,B), the meaning is that each tuple occurs in the database with some
probability ≤ 1, and any two tuples are independent events.

2 Easy Queries

Q1: SELECT DISTINCT prod, price
FROM Product
WHERE shape=’oval’

Q1(x, y) : − Product(x, y,’oval’, z)

Q2: SELECT DISTINCT city
FROM Customer

Q2(z) : − Customer(x, y, z)

Q3: SELECT DISTINCT *
FROM Product, Order, Customer
WHERE Product.prod = Order.prod
and Product.price = Order.price
and Order.cust = Customer.cust

Q3(∗) : − Product(x, y, z),
Order(x, y, u)
Customer(u, v)

Figure 3: Three simple queries, expressed in SQL and in datalog

We start by illustrating with three simple queries in Fig. 3. The left columns shows the queries in SQL
syntax, the right column shows the same queries in datalog notation. In datalog we will underline the variables
that occur in the key positions. The queries are standard, i.e. they are written assuming that the database
is deterministic, and ignore any probabilistic information. However, their semantics is modified: each tuple
returned has an associated probability representing our confidence in that answer. For example the first query,
Q1, asks for all the oval products in the database, and it returns:

prod price p
Gizmo 20 p1

Camera 80 p3 + p5

In general, given a query Q and a tuple t, the probability that t is an answer to Q is the sum of the probabilities
of all possible worlds where Q returns t. For Q1, the probability of Gizmo is thus the sum of the probabilities
of the 8 possible worlds for Product (out of 16) where Gizmo appears as oval, and this turns out (after
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simplifications) to be p1. In the case of Q1 these probabilities can be computed without enumerating all possible
worlds, directly from the table in Fig. 2 (a) by the following process: (1) Select all rows with shape=’oval’,
(2) project on prod, price, and p (the probability), (3) eliminate duplicates, by replacing their probabilities
with the sum, because they are disjoint events. We call the operation consisting of the last two steps a disjoint
project:

Disjoint Project, πpD
Ā

If k tuples with probabilities p1, · · · , pk have the same value, ā, for their Ā attributes,
then the disjoint project will associated the tuple ā with the probability p1 + · · ·+ pk. The disjoint project
is correctly applied if any two tuples that share the same values of theĀ attributes are disjoint events.

Q1 can therefore be computed by the following plan: Q1 = πpD
prod,price(σshape=’oval’(Product

p)). πpD
prod,price

is correct, because any two tuples in Productp that have the same prod and price are disjoint events.

The second query asks for all cities in the Customer table, and its answer is:

city p
New York q1

Boston 1-(1-q2)(1-q4)
Seattle 1-(1-q3)(1-q5)

This answer can also be obtained by a projection with a duplicate elimination, but now the probabilities p1, p2, p3, . . .
of duplicate values are replaced with 1-(1-p1)(1-p2)(1-p3) . . ., since in this case all duplicate occurrences of the
same city are independent. We call this an independent project:

Independent Project, πpI
Ā

If k tuples with probabilities p1, · · · , pk have the same value, ā, for their Ā attributes,
then the independent project will associated the tuple ā with the probability 1-(1-p1)(1-p2) · · · (1-pk). The
independent project is correctly applied if any two tuples that share the same values of theĀ attributes are
independent events.

Thus, the disjoint project and the independent project compute the same set of tuples, but with different prob-
abilities: the former assumes disjoint probabilistic events, where P(t ∨ t′) = P(t) + P(t′), while the second
assumes independent probabilistic events, where P(t∨ t′) = 1−(1−P(t))(1−P(t′). Continuing our example,
the following plan computes Q2: Q2 = πpI

city(Customer
p). Here πpI

city is correct because any two tuples in
Customerp that have the same city are independent events.

Finally, the third query illustrates the use of a join, and its answer is:

prod price color shape cust city p
Gizmo 20 red oval Sue New York p1q1

Gizmo 20 red oval Sue Boston p1q2

Gizmo 20 red oval Sue Seattle p1q3

Gizmo 20 blue square Sue New York p2q1

. . . . . .

It can be computed by modifying the join operator to multiply the probabilities of the input tables:

Join, �p Whenever it joins two tuples with probabilities p1 and p2, it sets the probability of the resulting tuple
to be p1p2.

A plan for Q3 is: Q3 = Product �p Order �p Customer.
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Schema: R(A),S(A,B),T(B)
H1: SELECT DISTINCT ’true’ AS A

FROM R, S, T
WHERE R.A=S.A and S.B=T.B

H1 : − R(x), S(x, y), T (y)

Schema: R(A,B),S(B)
H2: SELECT DISTINCT ’true’ AS A

FROM R, S
WHERE R.B=S.B

H2 : − R(x, y), S(y)

Schema: R(A,B),S(C,B)
H3: SELECT DISTINCT ’true’ AS A

FROM R, S
WHERE R.B=S.B

H3 : − R(x, y), S(z, y)

Figure 4: Three queries that are #P-complete

3 Hard Queries

Unfortunately, not all queries can be computed as easily as the ones before. Consider the three queries in Fig. 4.
All are boolean queries, i.e. they return either ’true’ or nothing, but they still have a probabilistic semantics, and
we have to compute the probability of the answer ’true’. Their schemas are kept as simple as possible: e.g. in
H1 table R has a single attribute A which forms a key (hence any two tuples are independent events). None of
these queries can be computed in the style described in the previous section: for example, πpI

∅ (R � S � T) is
an incorrect plan because two distinct rows in R � S � T may share the same tuple in R, hence they are not
necessarily independent events. In fact, we have:

Theorem 1: Each of the queries H1,H2,H3 in Fig. 4 is #P-complete.

The complexity class #P is the counting version of NP, i.e. it denotes the class of problems that count the number
of solutions to an NP problem. If a problem is #P-hard, then there is no polynomial time algorithm for it unless
P = NP; in this case none of H1,H2,H3 has a simple plan using the operators in Sec. 1. Both here and in the
following section we assume that all relations are probabilistic, but some results extend to a mix of probabilistic
and deterministic tables. For example H1 is #P-complete even if the table S is deterministic.

4 The Boundary Between Hard and Easy Queries

We show now which queries are in PTIME and which are #P-complete. We consider a conjunctive query q in
which no relation name occurs more than once (i.e. without self-joins). We use the following notations: Head(q)
is the set of head variables in q, FreeVar(q) is the set of free variables (i.e. non-head variables) in q, R.Key
is the set of free variables in the key position of the relation R, R.NonKey is the set of free variables in the
non-key positions of the relation R, R.Pred is the predicate that q applies to R. For x ∈ FreeVar(q), denote qx
a new query whose body is identical with q and where Head(qx) = Head(q) ∪ {x}.

Algorithm 1 takes a conjunctive query q and produces a relational plan for q using the operators described
in Sec. 2. If it succeeds, then the query is in PTIME; if it fails then the query is #P-complete.

Theorem 2:

1. Algorithm 1 is sound, i.e. if it produces a relational plan for a query q, then the plan correctly computes
the output tuple probabilities for q.
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Algorithm 1 FIND-PLAN(q)
If q has a single relation R and no free variables, then return σR.Pred(R).
Otherwise:

1. If there exists x ∈ FreeVar(q) s.t. x ∈ R.Key for every relation R in q, then return:

πpI

Head(q)
(FIND-PLAN(qx))

2. If there exists x ∈ FreeVar(q) and there exists a relation R s.t. x ∈ R.NonKey and R.Key∩FreeVar(q) =
∅, then return:

πpD

Head(q)
(FIND-PLAN(qx))

3. If the relations in q can be partitioned into q1 and q2 such that they do not share any free variables, then
return:

FIND-PLAN(q1) �p FIND-PLAN(q2)

If none of the three conditions above holds, then q is #P-complete.

2. Algorithm 1 is complete, i.e. it does not produce a relational plan for a query only if the query is #P-hard.

As a consequence, every query that has a PTIME data complexity can in fact be evaluated using a relational
plan. Any relational database engine can be used to support these queries, since the probabilistic projections and
joins can be expressed in SQL using aggregate operations and multiplications.

Example 1: In the remainder of this section we illustrate with the following schema, obtained as an extension
of our running example in Sec. 1.

Product(prod, price, color, shape)
Order(prod, price, cust)
CustomerFemale(cust, city, profession)
CustomerMale(cust, city, profession)
CitySalesRep(city, salesRep, phone)

All tables are now probabilistic: for example each entry in Order has some probability ≤ 1. The customers
are partitioned into female and male customers, and we have a new table with sales representatives in each city.
The following query returns all cities of male customers who have ordered a product with price 300:

Q(c) : − Order(x, 300, y),CustomerMale(y, c, z)

Here Head(Q) = {c}, FreeVar(Q) = {x, y, z}. Condition (1) of the algorithm is satisfied by the variable y,
since y ∈ Order.Key and y ∈ CustomerMale.Key, hence we generate the plan: Q = πpI

c (Qy) where the
new query Qy is:

Qy(c, y) : − Order(x, 300, y),CustomerMale(y, c, z)

The independence assumption needed for πpI
c (Qy) to be correct indeed holds, since any two distinct rows

in Qy(c, y) that have the same value of c must have distinct values of y, hence they consists of two in-
dependent tuples in Order and two independent tuples in CustomerMale. Now Head(Qy) = {c, y},
FreeVar(Qy) = {x, z} and Qy satisfies condition (2) of the algorithm (with z ∈ CustomerMale.NonKey
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and CustomerMale.Key = {y} ⊆ Head(Qy)), hence we generate the plan: Q = πpI
c (πpD

c,y (Qy,z)) where
the new query Qy,z is:

Qy,z(c, y, z) : − Order(x, 300, y),CustomerMale(y, c, z)

The disjointness assumption needed for πpD
c,y (Qy,z) to be correct also holds, since any two distinct rows in

Qy,z(c, y, z) that have the same values for c and y must have distinct values for z, hence they represent disjoint
events in CustomerMale. Qy,z satisfies condition (3) and we compute it as a join between Order and
CustomerMale. The predicate Order.Pred is price =′ 300′, hence we obtain the following complete
plan for Q:

Q = πpI
c (πpD

c,y (σprice=′300′(Order) �p CustomerMale))

Recall the three #P-complete queries H1,H2,H3 in Fig. 4. It turns out that, in some sense, these are the only
#P-complete queries: every other query that is #P-complete has one of these three as a subpattern. Formally:

Theorem 3: Let q be any conjunctive query on which none of the three cases in Algorithm 1 applies (hence Q
is #P-complete). Then one of the following holds:

1. There are three relations R, S, T and two free variables x, y ∈ FreeVar(q) such that R.Key contains x but
not y, S.Key contains both x, y, and T.Key contains y but not x. In notation:

R(x, . . .),S(x, y, . . .),T(y, . . .)

2. There are two relations R and S and two free variables x, y ∈ FreeVar(q) s.t. such that x occurs in R.Key
but not in S, and y occurs in R and in S.Key but not in R.Key. In notation:

R(x, y, . . .),S(y, . . .)

3. There are two relations R and S and three free variables x, y, z ∈ FreeVar(q) s.t. x occurs in R.Key
but not in S, x occurs in S.Key but not in R, and y occurs in both R and S but neither in R.Key nor in
S.Key. In notation:

R(x, y, . . .),S(z, y, . . .)

Obviously, H1 satisfies condition (1), H2 satisfies condition (2), and H3 satisfies condition (3). The theorem
says that if a query is hard, then it must have one of H1,H2,H3 as a subpattern.

Example 2: Continuing Example 1, consider the following three queries:

HQ1(c) : − Product(x, v,−,’red’),Orders(x, v, y),CustomerFemale(y, c,−)
HQ2(sr) : − CustomerMale(x, y,’lawyer’),CitySalesReps(y, sr, z)
HQ3(c) : − CustomerMale(x, c, y),CustomerFemale(z, c, y)

None of the three cases of the algorithm applies to these queries, hence all three are #P-complete. The first query
asks for all cities where some female customer purchased some red product; it matches pattern (1). The second
query asks for all sale representatives in cities that have lawyer customers: it matches pattern (2). The third
query looks for all cities that have a male and a female customer with the same profession; it matches pattern
(3).
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Finally, note that the three patterns are a necessary condition for the query to be #P-complete, but they are
sufficient conditions only after one has applied Algorithm 1 until it got stuck. In other words, there are queries
that have one or more of the three patterns, but are still in PTIME since the algorithm eliminates free variables
in a way in which it makes the patterns disappear. For example:

Q(v) : − R(x), S(x, y), T (y), U(u, y), V (v, u)

The query contains the subpattern (1) (the first three relations are identical to H1), yet it is in PTIME. This is
because it is possible to remove variables in order u, y, x and obtain the following plan:

Q = πpD
v (V �p πpD

v,u(U �p T �p πpI
y (R �p S)))

Theorem 3 has interesting connections to several existing probabilistic systems. In Cavallo and Pittarelli’s
system [2], all the tuples in a table R represent disjoint events, which corresponds in our model to R.Key = ∅.
None of the three patterns of Theorem 3 can occur, because each pattern asks for at least one variable to occur
in a key position, and therefore all the queries in Cavallo and Pittarelli’s model have PTIME data complexity.
Barbara et al. [1] and then Dey et al. [4] consider a system that allows arbitrary tables, i.e. R.Key can be any
subset of the attributes of R, but they consider restricted SQL queries: all key attributes must be included in the
SELECT clause. In datalog terminology, R.Key ⊆ Head(q) for every table R, hence none of the three patterns
in Theorem 3 can occur since each looks for at least one variable in a key position that does not occur in the
query head. Thus, all queries discussed by Barbara et al. are in PTIME. Theorem 3 indicates that a much larger
class of queries can be efficiently supported by their system. Finally, in our previous work [3], we consider a
system where R.Key is the set of all attributes. In this case only case (1) of Theorem 3 applies, and one can
check that now the pattern is a sufficient condition for #P-completeness: this is precisely Theorem 5.2 of [3].

5 Future Work

We identify three future research problems. (1) Self joins: we currently do not know the boundary between
PTIME and #P-complete queries when some relation name occurs two ore more times in the query (i.e. queries
with self-joins). (2) Query optimization: the relational operators πpD, πpI , �p and σp do not follow the same
rules as the standard relational algebra. A combination of cost-based optimization and safe-plan generation is
needed. (3) Queries that are #P-hard require simulation based techniques [5], which are expensive. However,
often there are subqueries that admit safe-plans: this calls for investigations of mixed techniques, combining
safe plans with simulations.
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Abstract

We survey some of the recent work on probabilistic graphical models for relational data. The models that
we describe are all based upon ’graphical models’ [12]. The models can capture statistical correlations
among attributes within a single relational table, between attributes in different tables, and can capture
certain structural properties, such as the expected size of a join between tables. These models can
then be used for a variety of tasks including filling in missing values, data summarization and anomaly
detection. Here we describe two complementary semantics for the models: one approach suited to
making probabilistic statements about individuals and the second approach suited to making statements
about frequencies in relational data. After describing the semantics, we briefly describe algorithms for
automatically constructing the models from an existing (non-probabilistic) database.

1 Introduction

There has been a growing interest in probabilistic databases. This growing interest is largely due to expanding
data collection opportunities and capabilities. In addition, recent advances in probabilistic modeling, both in
terms of efficient learning and estimation algorithms and practical inference algorithms have made the use of
these models for large-scale domains practical. In this survey paper, we review some of the work developed in
the probabilistic reasoning and machine learning communities commonly refered to as probabilistic relational
models (PRMs) [11]. PRMs are based on existing probabilistic models (typically Bayesian networks) and extend
them to relational and first-order domains.

Halpern [9] identified two distinct semantics for first-order logics of probability, refered to as the possible-
worlds approach and the domain-frequency approach. In the possible-worlds approach, we put a distribution
over possible worlds. The distribution can be used to answer degree of belief questions such as ‘What is the
probability that a particular person, Joe Smith, has purchased a particular tractor part, Widget Supreme?’. In this
case, the semantics of the formula is defined by summing up the probability over all of the possible worlds in
which Joe Smith has bought Widget Supremes. However, as many have noted [2, 1], there are difficulties with
making statistical assertions, such as ‘75% of the purchases were for widgets’. The second approach, refered to
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as the domain-frequency approach, is appropriate for giving semantics to statistical queries such as, ‘What is the
probability that a randomly chosen individual has purchased a widget?’. In this case the semantics are defined
in terms of a particular world, and are the result of an experiment performed in this world. In this approach,
statements such as ’80% of the purchases are made by men’ make sense. Whereas questions such as, ‘What is
the probability Joe Smith purchased a Widget Supreme?’ do not make sense; the probability of the purchase, in
a particular world, is either 0 or 1.

Here we survey some of the recent work on probabilistic graphical models for relational data and show how
the two semantics are supported. We begin by introducing the syntax for probabilistic graphical models for
relational data. We then describe the two alternate semantics for the models, and describe how they support
the ability to make inferences about missing values and estimate the expected result set size for certain queries.
Then, we briefly describe algorithms for automatically constructing the models.

2 Graphical Models for Relational Data: Syntax

First, we describe common syntactic elements of probabilistic relational models: the relational schema and the
probabilistic schema. After these are introduced, we describe alternate semantics for the models.

2.1 The Relational Language

The relational schema defines the structure of our domain; it defines the tables and the attributes of the tables in
the database. We assume a simple model, which obeys certain basic integrity constraints. In our relational model
each table has a primary key, some descriptive attributes and possibly some foreign keys which are references
to keys into other tables. For simplicity we assume primary keys are a single attribute, but this requirement can
easily be lifted.

Definition 1: A relation schema R consists of a set of tables R = {R1, . . . , Rm}. Each table R is associated
with attributes of three types: a primary key R.K , a set F(R) of foreign keys, and a set A(R) of descriptive
attributes. Each foreign key R.F references a table S ∈ R and its domain, V(R.F ), is a subset of V(S.K),
V(R.F ) ⊆ V(S.K). Each descriptive attribute R.A is associated with a domain of possible values V(R.A).

Definition 2: A database instance D over R consists of a set of tuples D(R) for each table R. For each t ∈
D(R): (1) The primary key t.K is unique within R; (2) For each F ∈ F(R), if F refers to tuples from S, t.F
is the primary key of some tuple in D(S); and, (3) For each A ∈ A(R), t.A is a value in V(R.A).

Note that, for simplicity, we assume referential integrity, but our model can be extended to accommodate
cases where the foreign key may be null, indicating that there is no related tuple.

2.2 The Probabilistic Schema

In a probabilistic schema, we model the conditional dependence of descriptive attributes on other attribute values.
To do this, we use a graphical dependence structure within which we can model local conditional probability
distributions (CPDs) between descriptive attributes. The probabilistic schema gives a template which describes
both the graphical dependence structure of the attributes and the parameters of the local conditional probability
distribution for an attribute. Here, we define a simple generic syntax for the probabilistic schema; as we will see
in the next sections, alternate probabilistic semantics can be defined using the same basic syntax.

Definition 3: A probabilistic schema PS for a relational schema R is a pair (S,Θ). S is a directed graph with
a node for each descriptive attribute R.A in each of the tables in R. For each R.A, S specifies the parents of
each node, denoted Pa(R.A), and Θ specifies a CPD, written P (R.A | Pa(R.A)).
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The parents of a node R.A are defined via a query over the relational schema. In the simplest case, a parent
may be an attribute R.B in the same table, in which case we annotate the edge with σB(R). Another simple case
is one in which a parent is defined via a foreign-key join. Suppose that R.F is a reference to S.K and the values
of attribute R.A are correlated with the corresponding attributes of S.C . In this case, we make S.C to be a parent
of R.A, and annotate the edge with σC(R ��R.F=S.K S). By default, each edge represents the dependence on a
single value. If the relationship between R and S is one-many, we compute an aggregate γ over C , where γ is
any single-valued deterministic function over the multiset. The edge is then annotated with γC(R ��R.F=S.K S).
More complex chains of joins can be used to define parents. Furthermore, rather than specifying each parent as
an independent query, it is also possible, though less common, to define a set of parents via a relational query
and make use of arbitrary user-defined aggregates [6].

Each R.A has an associated CPD; Θ is the entire collection of CPDs. The CPD describes the generic
statistical relationship between each node and its parents. The CPD specifies the distribution over the values of
R.A given any possible assignment of values to its parents.1 Let V(R.A) denote the space of possible values for
R.A and V(Pa(R.A)) denote the space of possible values for the parents of R.A. The CPD is legal if all of the
conditional probabilities are non-negative, and if, for any particular instantiation of R.A, a ∈ V(R.A), the sum
over all possible instantiations of R.A, for any particular instantiation, u, of R.A’s parents is 1, i.e.,∑

a∈V(R.A)

P (R.A = a | Pa(R.A) = u) = 1.

The CPD is a function that may be represented in a number of ways. A common representation is as a
table of multinomials, in which we have a multinomial distribution for each possible instantiation of parents..
Alternatively, the CPD can be represented as a tree [3], where the interior vertices represent splits on the value of
some parent of R.A, and the leaves contain distributions over the values of R.A. In this representation, we find
the conditional distribution over R.A given a particular choice of values Ak1 = a1, . . . , Ak�

= a� for its parents
by following the appropriate path in the tree down to a leaf; when we encounter a split on some variable Akj

,
we go down the branch corresponding to the value of aj; we then use the distribution stored at that leaf. There
are a number of other possible compact functional forms for the distribution such as noisy-or and noisy-max.

3 Semantics

The previous section gave syntax for probabilistic relational models. In this section, we define two distinct
semantics for the models. One, which we call the possible worlds approach, is based on defining a distribution
over possible database instances. We will see that this approach is useful when we are attempting to generalize
from observed data. This is useful for example, if we are trying to infer values for missing attributes in an
incomplete database. The other semantics, which we call the domain frequency approach, is based on the
defining a distribution over a randomly chosen tuple (or a collection of randomly chosen tuples). We will see
that this approach is useful when we are attempting to represent a compact statistical summary of a particular
database instance. The two semantics correspond, respectively, to the Type II and Type I approaches described
in Halpern [9].

3.1 Probabilistic Relational Models: Possible Worlds Semantics

PRMs, as originally introduced [11], can be seen as extending directed graphical models, commonly refered to
as Bayesian networks, to relational domains. The PRM syntax specifies a template for a probability distribution
over a database. The template includes the relational component, that describes the relational schema for our

1Most often we assume that the attribute domains are discrete and finite; continuous domains can also be supported in which case we
must specify conditional density functions.
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domain, and the probabilistic component, that describes, in an abstract manner, the probabilistic dependencies
that hold in the domain.

The possible worlds semantics for PRMs, which we will denote as PRMpw, provides a coherent formal se-
mantics in terms of probability distributions over sets of relational logic interpretations. Given a set of ground
objects, a PRMpw specifies a probability distribution over a set of interpretations involving these objects. A
probabilistic schema, together with a partial database describing tuples and relations, defines a probability dis-
tribution over the unspecified attributes of the tuples. As such, it can be used effectively for representing degree
of belief, which for example can be used when reasoning over missing values is required.

We will refer to a database instance D with no missing or unknown values as a complete instantiation of a
schema. Each of these complete instantiations is considered a possible world, and a PRMpw defines a probability
distribution over database instances. In order to make this probability space well-defined, we need to constrain
the space in some manner. Several different ways of specifying the probability space have been studied, with
varying representational power.

Attribute uncertainty is the simplest way of defining the probability space. Intuitively, we assume that the
set of objects and the relations between them are fixed, i.e., external to the probabilistic model. We specify the
tuples and relations using a relational skeleton. Then, the PRMpw defines a probability distribution over the
assignments to the attributes of the objects in the model.

Definition 4: A relational skeleton Ds of a relational schema is a partial specification of a database instance. It
specifies the value for the primary key R.K and all of the foreign keys F ∈ F(R); however, it leaves the values
of the attributes unspecified.

A PRMpw defines a distribution over the possible worlds consistent with the relational skeleton. The re-
lational skeleton implicitly defines the random variables in our domain; we have a random variable for each
attribute of each object in the skeleton. A PRMpw then specifies a probability distribution over completions D
of the skeleton.

The probabilistic schema defines the qualitative dependency structure, S . As we saw, the dependency struc-
ture associates with each attribute R.A a set of parents Pa(R.A). These correspond to formal parents; for
different objects, the relational skeleton Ds determines the actual parents. In other words, the formal parents are
defined by the probabilistic schema, however the relational skeleton provides the interpretation. The interpreta-
tion tells us which tuples join; this in turn tells us which attributes depend on each other. We will typically use
capital letters to denote the generic attributes, R.A, and use lowercase letters to denote tuple variables, so that
r.A refers to the attribute of a specific tuple.

Definition 5: A probabilistic relational model Πpw for a relational schema R and a probabilistic schema PS =
(S,Θ), with possible worlds semantics is a triple (S,Θ,Ds). The probabilistic schema together with the rela-
tional skeleton induces a “ground” Bayesian network:

• There is a random variable for every attribute of every object r ∈ Ds, r.A.

• Each r.A depends probabilistically on its parents according to the probabilistic schema and the relational
skeleton, PaDs(r.A).

• The CPD for r.A is P (R.A | Pa(R.A)), as specified by the probabilistic schema.

The PRMpw defines the following distribution:

P (D : S,Θ,Ds) =
∏

Ri∈R

∏
r∈Ds(Ri)

∏
A∈A(Ri)

P (r.A | PaDs(r.A))
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This expression is very similar to the chain rule for Bayesian networks. There are three primary differences.
First, our random variables correspond to the attributes of the tuples defined by the relational skeleton. Thus, a
different relational skeleton will result in a distribution defined over a different set of random variables. Second,
the set of parents of a random variable can vary according to the relational context of the object — the set of
objects to which it is related. These are also determined by the relational skeleton. Third, the parameters are
shared; the parameters of the local probability models for attributes of objects in the same class are identical.

As in any definition of this type, we must take care that the resulting function from instances to numbers
defines a coherent probability distribution, i.e., the probability of each instance is between 0 and 1, and the sum
of the probability of all instances is 1. In Bayesian networks, where the joint probability is also a product of
CPDs, this requirement is satisfied if the dependency graph is acyclic: a variable is not an ancestor of itself. A
similar condition is sufficient to ensure coherence in PRMpws as well. Additional details are given in [4].

In the discussion so far, we have assumed that the relational skeleton is external to the probabilistic model.
The PRMpw framework can be extended to accommodate uncertainty about the structural relationships between
objects as well as about their properties [5]. One approach to structural uncertainty we have developed is called
existence uncertainty. Existence uncertainty is a simple approach to modeling the probability that a relationship
exists between any two entities. Suppose we have the relation Purchase(Key, Person, Item,Price). We
add a Boolean attribute, the Exists attribute, and build a probabilistic model for it, just as any other attribute in
our domain. We can model the probability that a person purchases a particular item. This can depend on both
properties of the person and properties of the item. The approach is described more fully in [5]. We have also
investigated the representation and learning of PRMs with class hierarchies. A discussion of these issues can be
found in [4].

3.2 Probabilistic Relational Models: Domain Frequency Semantics

An alternative semantics for PRMs allows them to capture domain frequency information. These semantics
describe a statistical model of a particular database instantiation. The model captures the tuple frequencies in
the database, and in particular it captures the frequencies with which tuples join. We will refer to this flavor
of probabilistic relational models as a PRMdf . These semantics are useful for describing a compact statistical
model of a database. This compact model can then be used to efficiently answer question about the expected
number of tuples that will satisfy a query. What makes PRMdf s unusual is they model correlations across tuples
and they can flexibly answer a wide collection of queries. This has many possible uses, including for use by a
query optimizer in choosing the appropriate query plan, and for use in computing approximate aggregate query
answers. These semantics were first introduced in [8] and their utility for selectivity estimation was shown.
Here, we give an introduction to the semantics, but for full details see [4].

As a simple illustration of the domain frequency semantics that we hope to capture, consider two tables R
and S such that R has a foreign key, R.F , that points to S.K . We define a joint probability space over R and
S using an imaginary sampling process that randomly samples a tuple r from R and independently samples a
tuple s from S. The two tuples may or may not join with each other. We introduce a new join indicator variable
to model this event. This variable, JF , is binary valued; it is true when r.F = s.K and false otherwise.

This sampling process induces a distribution

PD(JF , A1, . . . , An, B1, . . . , Bm)

over the values of the join indicator JF , the descriptive attributes of R, A(R) = {A1, . . . , An}, and the descrip-
tive attributes of S, A(S) = {B1, . . . , Bm}.

Now, consider any query Q over R and S of the form: r.A = a, s.B = b, r.F = s.K (where we abbreviate
a multidimensional select using vector notation). The probability that this query is satisfied by a randomly
chosen tuple r from R and s from S is simply:

PD(A = a,B = b, JF = true).
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In other words, we can estimate the result for any query of this form using the joint distribution PD defined using
our sampling process.

Generalizing from this example to more general select-join queries, let Q be a query over tuple variables
r1, . . . , rk (which may or may not refer to the same tables). Let σQ be the set of equality select clauses in
Q; i.e., σQ = {ri1 .Ai1 = ai1, . . . , ril .Ail = ail} and let ��Q be the set of foreign-key joins in Q; i.e., ��Q=
{rj1 .Fj1 = sj1.K, . . . , rjm .Fjm = sjm.K}. We can write Q as follows:

��Q (σQ(R1 × . . . × Rk)).

We introduce an indicator variable IQ indicating when the equalities in Q hold.

Definition 6: For any query Q over database D, the joins in Q induce a distribution PD(Q) over the attributes
of the tuple variables in Q, R1 × . . . × Rk. The probability that the query is satisfied is:

PD(IQ) =
| ��Q (σQ(R1 × . . . × Rk))|

|R1| × . . . × |Rk|
.

We can also view this joint distribution as generated by an imaginary process, where we uniformly and inde-
pendently sample a sequence of tuples r1, . . . , rk from R1, . . . , Rk, and then select as the values of A1, . . . , An

the values of r.A1, . . . , r.An.
While the expression in Definition 6 is computable for any select-join query, we will find it more useful if

we can define a unique distribution induced by our database. To achieve this, we restrict our attention to a finite,
acyclic collection of foreign-key joins. If there exists a partial ordering ≺ over the tables in our schema R, such
that, for any foreign key R.F with V(R.F ) ⊆ V(S.K), S ≺ R, then we say that R is table-stratified.

Now we can define a new relation U , which is the universal foreign-key closure of a database D with respect
to a table stratification. This relation is never actually materialized, we merely use it as a tool in defining a
unique distribution induced by our database. Intuitively, the query that we construct introduces a tuple variable
for each table in our schema, and has a unique tuple variable for each foreign-key in the schema.

Definition 7: Let D be a database with relational schema R and let ≺ be a table stratification of D. The
universal foreign-key closure of D is defined by the query U we construct below. T (U) will be the set of tuples
variables in our query. Initially, T (U) has one tuple variable for each of the tables that are leaves in ≺. Each
tuple variable is initially marked unprocessed.

We will construct the full set of tuple variables in the query as follows. While there are tuple variables in
T (U) that have not been processed:

• Let r be an unprocessed tuple variable in T (U).

• Suppose r is a tuple from R. For each F ∈ F(R), where R.F refers to S, add a new unique tuple variable
s to T (U). This tuple variable is marked unprocessed. We say that s is the tuple variable associated with
r.F . We also add the join r.F = s.K to ��U .

Let A(U) = {A1, . . . , Am} be the attributes in U (in order to avoid ambiguity, assume attributes are prefixed by
their associated tuple variable), and let T (U) = {t1, . . . , tj} be the tuple variables in the query. U is simply a
query over the cross product of the relations with a new copy of the relation introduced for each tuple variable
that we add.

Given this query U , we can define the probability distribution PU . It is the distribution induced by the
occurrence frequency of different value combinations for the attributes of the tuple variables in U and join events
among the tuple variables. PRMdf s allow us to compactly model PU . A probabilistic schema PS describes a set
of independence assumptions and the local distributions of attributes given their parents. Intuitively, we say that
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a database D is a model of a probabilistic schema PS , D |= PS , if the conditional independence assumptions
made in PS hold in D and if the local distributions match the frequencies in D. This is made more precise in
[4].

Further, PRMdf s allow us to efficiently answer certain frequency queries by constructing a small query-
specific Bayesian network that can be used to compute the desired frequencies. We begin by restricting attention
to a form of select-join queries over multiple tables we call inverted-tree foreign-key-join queries. These queries
are over a subset of the tuple variables of the universal foreign-key closure. Intuitively, they are over an upwardly
closed fragment of the forest defined via the foreign-key joins in U , and may themselves form a forest. We refer
to these as legal queries.

Given a probabilistic schema PS and a legal query Q, the domain frequency semantics are defined as
follows:

Definition 8: Suppose PRMdf consists of PS = (S,Θ) over D and D |= PS . Let Q be a legal query. V ars(Q)
is a set of random variables which includes, for each attribute r.A of every tuple variable r ∈ Q, r.A, and for
each r.F = s.K, it has a random variable r.JF . For every node r.V introduced, r.V has parents Pa(r.V ) defined
by S and the CPD of r.V is as specified in Θ. Then, PS defines the following distribution:

PD(Q) =
∏

Ai∈V ars(Q)

P (Ai | PaAi, J
∗
U (Ai) = T)

J∗
U (Ai) are the join indicator variables that are ancestors of Ai in U .

4 PRM Construction

Now that we have seen the different semantics for PRMs, we have left the question of how the models can be
automatically constructed. It turns out that although the semantics for the models are very different, the learning
algorithms are largely the same and are closely related to the work in learning Bayesian networks [10]. The input
to the construction algorithm is the relational schema, including the possible foreign-key joins between tuples;
and a database instance. Our goal is to find a probabilistic schema PS(S,Θ) that optimizing some scoring
criteria.

We can set this problem up as an optimization problem. There are three important components that need to
be defined: the hypothesis space which specifies which structures are candidate hypotheses that our learning
algorithm can return; a scoring function that evaluates the “goodness” of different candidate hypotheses relative
to the data; and the search algorithm, a procedure that searches the hypothesis space for a structure with a high
score.

Hypothesis Space. A hypothesis PS specifies a set of parents for each attribute R.A. We must restrict attention
to probabilistic schemas which will generate a consistent probability model for any skeleton or query we are
likely to see. We can do this by constructing a dependency graph for the candidate structure and ensuring that
the class graph is acyclic. We maintain the graph during learning, and consider only models whose dependency
structure passes the appropriate test; see [4] for more details.

Scoring. The second key component is the ability to evaluate different structures in order to pick one that fits
the data well. We adapt Bayesian model selection methods to our framework. Bayesian model selection utilizes
a probabilistic scoring function. In line with the Bayesian philosophy, it ascribes a prior probability distribution
over any aspect of the model about which we are uncertain. In this case, we have a prior P (S) over structures,
and a prior P (Θ | S) over the parameters given each possible structure. The Bayesian score of a structure S is
defined as the posterior probability of the structure given the data D:

P (S | D) ∝ P (D | S)P (S)
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where the denominator, which is the marginal probability P (D) is a normalizing constant that does not change
the relative rankings of different structures. This score is composed of two main parts: the prior probability of the
structure, and the probability of the data given that structure. The marginal likelihood is a crucial component,
which has the effect of penalizing models with a large number of parameters. Thus, this score automatically
balances the complexity of the structure with its fit to the data. In the case where D is a complete assignment,
and we make certain reasonable assumptions about the structure prior, there is a closed form solution for the
score.

Search Algorithm. The simplest heuristic search algorithm is greedy hill-climbing search, using our score as
a metric. We maintain our current candidate structure and iteratively improve it. At each iteration, we consider
a set of simple local transformations to that structure, score all of them, and pick the one with highest score.
We restrict attention to simple transformations such as adding, deleting or reversing an edge. We stop when
we have reached a local optimum in the model space. We can make our search procedure more robust by
incorporating any of the standard extensions to greedy search such as random restarts, maintaining a tabu list or
using a simulated annealing form of search algorithm. While this is not guaranteed to find the optimal solution,
it is quite efficient and works surprisingly well in practice.

5 Conclusion

We have presented two approaches to structured statistical models: a possible worlds semantics and a domain
frequency semantics. Experimental results using these models have been presented elsewhere: we have shown
that they are useful for classifying web pages and bibliographic citations [5], for discovering patterns in tuber-
culosis epidemiology [7]; and for selectivity estimation in a variety of real-world domains [8]. Here we have
attempted to present a concise summary of the two approaches, leaving out some of the technical details, in
an effort to make the methods more accessible and to highlight the commonalities and differences between the
approaches, and contrast with some of the other approaches described in this special issue.
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Abstract

The AVATAR Information Extraction System (IES) at the IBM Almaden Research Center enables high-
precision, rule-based, information extraction from text-documents. Drawing from our experience we
propose the use of probabilistic database techniques as the formal underpinnings of information extrac-
tion systems so as to maintain high precision while increasing recall. This involves building a frame-
work where rule-based annotators can be mapped to queries in a database system. We use examples
from AVATAR IES to describe the challenges in achieving this goal. Finally, we show that deriving
precision estimates in such a database system presents a significant challenge for probabilistic database
systems.

1 Introduction

Text analytics is a mature area of research concerned with the problem of automatically analyzing text to extract
structured information. Examples of common text analytic tasks include entity identification (e.g., identifying
persons, locations, organizations, etc.) [1], relationship detection (e.g., person X works in company Y)[9] and
co-reference resolution (identifying different variants of the same entity either in the same document or different
documents) [8]. Text analytic programs used for information extraction are called annotators and the objects
extracted by them are called annotations. Traditionally, such annotations have been directly absorbed into
applications. Increasingly, due to the complex needs of today’s enterprise applications (such as Community
Information Management [3]), there is a need for infrastructure that enables information extraction, manages
the extracted objects and provides an easy interface to applications. Moreover, a very important pre-requisite for
the use of annotations in enterprise applications is high precision.

At the IBM Almaden Research Center we are currently building the AVATAR Information Extraction Sys-
tem (IES) to tackle some of these challenges. Drawing from our experience in building the AVATAR IES
infrastructure, in this paper, we make a case for the use of probabilistic database techniques as the formal under-
pinnings of such information extraction systems.

Annotations and Rules. Annotators in AVATAR IES are classified into two categories based on their input:

• Base annotators operate over the document text, independent of any other annotator.

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: Thresholding annotator precisions

• Derived annotators operate on document text as well as the annotation objects produced by other anno-
tators.

Every annotation object produced by an annotator is characterized by a well-defined set of operations. We
refer to each such operation as a rule. A set of rules within an annotator that together produce an annotation
object is called a meta-rule. As an example, consider a simple base annotator that identifies occurrences of
person names in the text of a document. An example of a meta-rule used by such an annotator would be
(informally) R1: look for the presence of a salutation such as Dr. or Mr. followed by a capitalized word. Meta-
rule R1 would identify “Dr. Stonebraker” as a candidate Person annotation. Since a derived annotation depends
on other annotation objects, the concept of meta-rule history is useful:

Definition 1 (Meta-Rule History): The meta-rule history H(a) of an annotation object a is defined as follows:
If a is a base annotation produced by meta-rule R, then H(a) = 〈R〉; if a is a derived annotation object
produced by a meta-rule R that operates on previously defined (base or derived) annotation objects a1, . . . , ak,
then H(a) = 〈R,H(a1), . . . ,H(ak)〉.

The confidence in the accuracy of an annotation is related to its meta-rule history. For example, the person
annotator mentioned above may use a different meta-rule R2 that looks for capitalized words that may or may not
be person names (e.g., to identify “Bill” as a candidate Person). Intuitively, the annotator has higher confidence
in R1 and therefore, higher confidence in the accuracy of the objects produced by R1. To formalize this intuition,
we characterize the precision of individual annotation objects as follows:

Definition 2 (Annotation Object Precision): The precision prec(a) of an annotation object a is defined as the
confidence value in [0, 1] given by the annotator to all objects that can be produced with the same meta-rule
history as that of a.

Definition 3 (High-precision Information Extraction (HPIE) System): An information-extraction system in
which the precision of all annotation objects are above a threshold α (α close to 1.0)1 is a high-precision
information-extraction system.

In accordance with Definitions 1 and 2, the precision for derived annotations is computed using the entire
meta-rule history of the corresponding base and derived annotators. This approach has two severe drawbacks.
First, the combinatorial explosion in the space of meta-rules renders information-extraction systems of any
reasonable size to be intractable. Second, there is a sparsity problem arising out of the fact that there may not be
enough evidence (i.e., not enough annotation objects) to obtain precision estimates for all meta-rule histories.

1The choice of α will be driven by application requirements.
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Current Implementation in AVATAR IES. The current implementation of AVATAR IES uses the UIMA [6]
workflow engine to execute annotators. Annotations produced in AVATAR IES are stored in an annotation store
implemented using a relational database (DB2). The store allows multiple derived annotators to be executed
without having to re-execute the base annotators.

To overcome problems associated with maintaining meta-rule history, AVATAR IES implicitly assumes
that all α-filtered input objects to a derived annotator are of equal precision. However, this approach has several
problems that we explain below using Figure 1. In this figure, derived annotator (DA1) has inputs from two base
annotators BA1 and BA2. For an application that requires an HPIE system with α = 0.9, the naive approach of
α-filtering the objects of BA1 and BA2 may not be sufficient for DA1 to produce derived objects with α ≥ 0.9.2

The reason is that a derived annotator might require input annotations to be filtered at thresholds different from α
in order to produce derived annotations above α. To account for this, annotators are thresholded differently (the
β’s in Figure 1) for consumption by derived annotators. This process can become complicated if multiple β’s
are required for a single base annotator whose output is consumed by different derived annotators. To minimize
the need to tune a large number of β’s, in the current implementation of AVATAR IES, we only allow two β
settings for each annotator, namely, high and medium.

Motivation for Probabilistic Databases. Even under the simplistic assumptions made in our implementation,
two problems remain. First, as AVATAR IES scales to a large number of annotators, the task of setting β’s can
quickly become intractable.3 Second, the choice of β has a significant impact on the recall of derived annotators.
As an example, consider a derived annotator PersonPhone (see Section 2.2) that uses Person annotations pro-
duced by a base annotator. In AVATAR IES, by switching the β for Person from medium to high, the number
of annotation objects produced by PersonPhone over the Enron email data set [4] drops from 910 to 580.

Below, we motivate the use of probabilistic database techniques [2, 7] as a potential solution to these prob-
lems. Our first step in this direction is to view the precision of an annotation object in probabilistic terms.

Assumption 4: Consider an object a of type type(a). The precision prec(a) of a can be interpreted as a
probability as follows: let ã be drawn at random from the set of annotation objects whose meta-rule histories are
identical to that of a. Then prec(a) equals the probability that ã is truly an object of type type(a)4. Formally,
prec(a) = P (tt(ã) = type(a) | H(a) = H(ã)).

Assumption 5: Let R be a meta-rule in a derived annotator that takes as input k objects of specific types
T1, . . . , Tk. Let the derived annotation object a be produced by R using annotation objects a1, a2, . . . , ak of
types T1, . . . , Tk, respectively, i.e., a = R(a1, . . . , ak). Let ã and ãi correspond to a and ai, for i = 1 . . . k, as
defined in Assumption 4. Then, tt(ã) = T =⇒ ∀ i : tt(ãi) = Ti.

Proposition 6: Using Assumptions 4 and 5, we can express the precision of an annotation object produced by
a derived annotator as

prec(a) = P (tt(ã) = T | H(a) = H(ã))
= P (tt(ã) = T | ã = R(ã1, . . . , ãk), {tt(ãi) = Ti}, {H(ai) = H(ãi)}) (meta-rule-prec)

· P ({tt(ãi) = Ti} | ã = R(ã1, . . . , ãk), {H(ai) = H(ãi)}) (input-prec)

2Indeed for very high α a derived annotator may produce no objects.
3Today AVATAR IES has about a hundred annotators. However, the infrastructure for annotator development is sufficiently powerful

that we expect this number to go up dramatically (potentially to tens of thousands).
4This is the result of an experimental procedure wherein an expert examines each object and determines whether it is truly of the

intended type.
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Figure 2: Annotation Store

In the proposition above, the expression (meta-rule-prec) represents meta-rule precision while the expres-
sion (input-prec) represents the overall input precision (see Section 4.3 for details and examples). While As-
sumption 4 has allowed us to reduce the problem of computing precision of derived object to one of comput-
ing probabilities for meta-rule precision and overall input precision, the expressions in Proposition 6 appear
intractable. To obtain a practical solution, we believe that a better understanding of annotators and their depen-
dencies is essential.

In the rest of the paper we describe the internals of AVATAR IES and connections to probabilistic databases
as appropriate. In Section 2.2, we describe a generic template for AVATAR rule-based annotators. In Section 3,
we consider a simple probability model for base annotators. Finally, in Section 4, we discuss briefly efficiency
issues related to derived annotators.

2 Rule-based Annotators

2.1 Annotator Data Model

Each annotation produced by an IES can be viewed as a structured object with a well-defined type. The overall
output of an IES, called an annotation store, is a collection of such objects as defined below:

Definition 7 (annotation store): An annotation store S = (T ,O) consists of a set of types T , a set of objects
O, and two distinguished types D,S ∈ T , such that :

• there is a special attribute text for type D

• ∀x ∈ O type(x) ∈ T
• ∀x ∈ O such that type(x) �= D, type(x) �= S, there exist attributes doc and span with type(x.doc) = D

and type(x.span) = S.

In this definition, D is called the document type, S is called the span type, and every other type in T is an
annotation type. The special attribute text refers to the raw text of each document. The doc attribute of an
annotation object A points to the source document from which A was extracted. Similarly, the span attribute of
A describes the portion of A.doc.text where A was mentioned. Figure 2 shows a simple annotation store with
one document object of type Email and three annotation objects. Each oval in the figure represents one object
and is labeled as A:B where A is the ID of the object and B is the type. The rectangular boxes represent atomic
attribute values. In this example the span type S contains a pair of integers begin and end that store the character
offsets of the piece of the text corresponding to the annotation.

For the purposes of this paper, we assume that every annotation is extracted from a single document and that
the span is interpreted relative to the text of this document.
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procedure Annotator(d, Ad)
Rf is a set of rules to generate features
Rg is a set of rules to generate candidate annotations
Rc is a set of rules to consolidate the annotations produced by Rg

1. Features = Compute Features(Rf ,d)
2. foreach r ∈ Rg

Candidates = Candidates ∪ Apply Rule(r,Features,Ad)
3. Results = Consolidate(Rc,Candidates)

return Results

Figure 3: Generic Template for a Rule-based Annotator

2.2 Rule-based Annotator Template

Figure 3 is a high-level template that describes the steps involved in a rule-based annotator. The input to the
annotator is a document d and a set of annotation objects Ad such that ∀x ∈ Ad, x.doc = d (Ad = ∅ for base
annotators). A rule-based annotator uses three kinds of rules: feature extraction rules Rf , candidate generation
rules Rg , and consolidation rules Rc. Every rule operates on one or more annotation objects to produce other
annotation objects. However, to distinguish between the objects produced by these different kinds of rules, we
use the terms features, candidates, and result annotations respectively.

In the first step, a rule-based annotator uses the rules in Rf to produce a set of features. Note that all of
the rules in Rf operate on the document and do not involve input annotations. In the second step, each rule in
Rg is independently applied to the features and the input annotations. The output of each such rule is a set of
candidates. Finally, the rules in Rc are used to consolidate candidates to produce a set of Results. Consolidation
rules typically fall into two broad categories: (i) discard rules that discard some candidates, and (ii) merge rules
that merge a set of candidates to produce a result annotation.

In AVATAR IES, the feature extraction rules are deterministic operations over the document that do not
impact the precision of the result annotations. Therefore, the meta-rule for a result annotation A is the set of
candidate generation and consolidation rules (rules from Rg and Rc) that are involved in producing A.

As concrete instantiations of the template in Figure 3, we describe below a base annotator called SimplePerson
and a derived annotator called PersonPhone.

Base Annotator SimplePerson. Base annotator SimplePerson identifies persons using two dictionaries – Du

(containing unambiguous first or last names such as “michael”, “stonebraker”, etc.) and Da (containing am-
biguous first or last names such as “bill”, “gray”). Expressed in terms of the template in Figure 3, SimplePerson
works as follows:

• In the Compute Features step, the input document D is tokenized and each individual token is added to
the set of features Features. Further, for each feature F , an attribute dictU (resp. dictA) is set to true if the
corresponding token matches an entry in Du (resp. Da).

• The set of rules Rg for identifying person names are: (i) ruu: a pair of features that are adjacent to each
other in the document text and both of which are labeled with Du (e.g., michael stonebraker), (ii) rua: a pair
of features that are adjacent to each other in the document text and are labeled with Du and Da respectively
(e.g., james gray), (iii) ru: a feature that is labeled with Du (e.g., michael), and (iv) ra: a feature that is
labeled with Da (e.g., gray).

• Step 3 consists of a single consolidation rule rd that executes the following logic: If two candidates o1 and
o2 are such that the o1.span contains o2.span, discard o2. This rule is applied repeatedly to produce Results.
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Note that SimplePerson is a simple but powerful annotator that we use in this paper to illustrate some key ideas.
In reality, a person annotator will use a significantly larger set of rules that exploit feature attributes such as
capitalization, the presence of salutations (e.g., Dr., Mr.), etc.

Derived annotator PersonPhone. Derived annotator PersonPhone identifies people’s phone numbers from
documents. This annotator takes in as input the document D and a set of Person, Phone and ContactPattern
annotations identified by Base annotators. Here (i) Person annotations are produced by a person annotator such
as SimplePerson, (ii) Phone annotations are produced by an annotator that identifies telephone numbers, and
(iii) ContactPattern annotations are produced by an annotator that looks for occurrences of phrases such as
“at”, “can be (reached|called) at” and “’s number is”. Given these inputs, the PersonPhone annotator is fully
described by the following two rules:

• Candidate generation rule rseq: If a triple 〈Person,ContactPattern,Phone〉 appear sequentially in the docu-
ment, create a candidate PersonPhone annotation. An example instance identified using this rule is shown
in Figure 2.

• Consolidation rule rd as described earlier.

3 Probability Model for Base Annotators

Let us revisit the rules of the SimplePerson annotator that was described in Section 2.2. Since the only consoli-
dation rule in this annotator rd is a discard rule, it does not affect the probability assigned to the result objects.
Therefore, each generation rule in SimplePerson fully describes a meta-rule. For each candidate generation rule
in the SimplePerson annotator, let us assume the corresponding precision values are available to us (e.g., we
are given prec(ruu), prec(rua), etc.). The precision value associated with a rule is a measure of the confidence
that the annotator writer has in the accuracy of that rule. An experimental procedure to compute such precision
values would entail running the annotator on a labeled document collection and setting prec(r) to be the fraction
of objects produced by rule r that indeed turned out to be persons. Irrespective of how such precision values
are computed, we make the same assumption about candidate generation rules as we did in Assumption 4 for
meta-rules.

For example, if o is an object of type Person produced by rule rua upon examining the text “James Gray”,
we have P (tt(o) = Person) = prec(rua). Thus, for annotators with discard-only consolidation rules, knowing
the precision values for generation rules is sufficient to assign probabilities to the result annotations. However,
more complex base annotators use a mixture of merge rules and discard rules to perform consolidation. The
task of computing annotation probabilities for such annotators is significantly more complicated.

To illustrate, let us consider a more sophisticated person annotator ComplexPerson that uses an additional
dictionary Ds containing salutations (such as Dr., Mr., Prof., etc.). Besides the generation and consolidation
rules of SimplePerson, the extended ComplexPerson annotator uses a generation rule rs and a merge rule rm

where:

Rule rs: generate a candidate annotation if there is a pair of features in the document text that are adjacent to
each other and are such that the first one is labeled with Ds and the second one is labeled with either Du

or Da (e.g., “Dr. Michael” and “Dr. Stonebraker” would both be matched by this rule).

Rule rm: given two candidate o1 and o2 such that o1.span overlaps with o2.span, produce a new candidate
object by merging the two spans into a single larger span5

5To fully specify ComplexPerson, we must now specify an order in which the consolidation rules rm and rd are executed.
However, these details are omitted as they are not relevant for the discussion in this section.
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For instance, given the piece of text “Dr. Michael Stonebraker”, rule rs would produce object o1 correspond-
ing to “Dr. Michael”, rule ruu would produce object o2 corresponding to “Michael Stonebraker”, and rule rm
would merge o1 and o2 to produce o3 corresponding to “Dr. Michael Stonebraker”. From our earlier assumption,
we know that P (tt(o1) = Person) = prec(rs) and P (tt(o2) = Person) = prec(ruu). However, to assign a
probability to object o3, we need a meaningful probability model to compute P (tt(o3) = Person), given the
above two probabilities. In general, designing a probability model to handle consolidation rules that involve
merging of candidates to produce new annotation objects is an open problem. Today, in AVATAR, without such
a model, we are forced to manually tune base annotators until we obtain desired precision levels.

4 Derived Annotators

Based on our experiences with AVATAR IES on various applications such as email, IBM intranet and Internet
blogs, the real power is in the extraction of domain-specific derived annotations which are usually very large in
number. As part of our attempts to make AVATAR IES more efficient we try to describe the rules in annotator
template 2.2 as queries over the AVATAR annotation store. Such a view opens the door to exploit appropriate
indices, evaluate alternate plans and in general perform cost-based optimization of Derived annotators.6 We
begin by describing some of our current challenges in mapping rules to queries. We then briefly discuss several
issues that arise in computing precision of Derived annotations in the context of probabilistic databases.

4.1 Rules as Queries

In this section, we give examples that demonstrate that candidate generation and consolidation rules can be
expressed as queries (using the standard Object Query Language (OQL) [5] syntax). For ease of exposition, we
only consider discard rules in the consolidation step.

As our first example, the candidate generation rule rseq for the PersonPhone annotator can be written as
shown below:

Query q1.
CREATE P as person, Ph as phone, span as SpanMerge(P.span, CP.span, Ph.span), doc as P.doc
FROM Person P, ContactPattern CP, Phone Ph
WHERE ImmSucc(P.span,CP.span) AND ImmSucc(CP.span,Ph.span) AND P.doc = CP.doc AND CP.doc = Ph.doc

In the above, ImmSucc(span1,span2) is a user-defined function that returns true if “span2” occurs immediately
after “span1” in the original document text. SpanMerge is another function that produces a new span by concate-
nating the set of spans provided as input. Note that we use a CREATE statement to indicate that a new annotation
object is produced that contains the features P and Ph as attributes “person” and “phone” respectively. Similarly,
rule rd can be written as:

Query q2.
Candidates - (SELECT O2

FROM Candidates O1, Candidates O2
WHERE SpanContains(O1.span, O2.span))

where SpanContains(span1,span2) is a user-defined function that returns true if “span1” contains “span2”. No-
tice how the recursive application of rule rd is captured using set difference.

4.2 Challenges in Modeling Complex Rules as Queries

While the example candidate generation rules presented above map easily to queries - AVATAR IES uses
several more complex rules for which the mapping is not obvious. We present an example below from our suite
of rule-based annotators to extract reviews from blogs - specifically, MusicReview annotator that identifies an

6Note that such queries can also be used to represent base annotator rules but the benefit is most significant for derived annotators.
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informal music review from a blog. A simplistic version of this annotator works as follows. Ad consists of
MusicDescription phrases identified by an earlier annotator (e.g., “lead singer sang well”, “Danny Sigelman
played drums”). The MusicReview annotator identifies contiguous occurrences of MusicDescription (based
on some proximity condition across successive entries), groups them into blocks and marks each block as a
MusicReview.

We now present the candidate generation and consolidation rules for a simplistic version of this annotator,
which is interested in block size up to two, i.e., it identifies occurrences of the pattern MD and 〈MD,MD〉 in
the document (MD is the input MusicDescription annotations).

Rg = {rmd, r2md} is a pair of rules that identifies occurrences of MD and 〈MD,MD〉 respectively. The
corresponding queries are given below.

Query q3.
CREATE MD as first, MD as second
FROM MusicDescription MD

Query q4.
CREATE MD1 as first, MD2 as second
FROM MusicDescription MD1, MusicDescription MD2

WHERE Window(MD1.span, MD2.span, m) AND BeginsBefore(MD1.span, MD2.span)

where Window(span1,span2,m) is a user-defined function that returns true if the two spans are within a distance
of m, and BeginBefore(span1, span2) returns true if “span1” begins before “span2”.

There is a single consolidation rule rd1 given below. This rule discards candidates that are completely
contained in some other candidate, or have another MusicDescription inside them.

Query q5.
Candidates - (SELECT O2

FROM Candidates O1, Candidates O2

WHERE BeginsBefore(O1.first.span, O2.first.span) AND EndsAfter(O1.second.span, O2.second.span)
UNION
SELECT O2

FROM Candidates O1, Candidates O2

WHERE BeginsBefore(O1.first.span,O2.first.span) AND O1.second = O2.second
UNION
SELECT O2

FROM Candidates O1, Candidates O2

WHERE O1.first = O2.first and EndsAfter(O1.second.span, O2.second.span))

For larger block sizes, note that the both the rules become significantly more complex. The following
challenges arise in modeling the rules as queries: (i) ability to express proximity conditions across objects based
on their location in the document (e.g., identify two MD’s appearing adjacent to each other within m characters
and no other MD between them) (ii) ability to group multiple such objects together, where each pair satisfies
some proximity conditions and (iii) ability to retain groups in decreasing order of size.

4.3 Computing Precision of Derived Annotations

The precision of derived annotation objects is given by Proposition 6 in Section 1. In the expression given
in Proposition 6, the precision of a derived annotation is the product of the rule-precision and the precision
of the input objects. The computation of the rule precision for derived annotators is similar to that for base
annotators, therefore all the issues discussed in Section 3 are relevant to derived annotators as well. We now turn
to computing the second term involving the precision of the input objects. Without any additional information,
one reasonable assumption is the following:
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Assumption 8: The overall input precision of the input annotations in Proposition 6 is a product of the preci-
sions of individual input objects and is independent of the rule R. In other words,

P ({tt(ãi) = Ti} | ã = R(ã1, . . . , ãk), {H(ai) = H(ãi)}) =
∏

i

P (tt(ãi) = Ti | H(ai) = H(ãi))

Although the above assumption allows us to account for the overall input precision, this assumption is invalid
for most derived annotators. In particular, we believe that most derived annotator rules enhance our confidence
in the precision of the input annotations. For example, let us revisit the PersonPhone annotator described in
Section 2.2. This annotator has a candidate generation rule rseq that operates on annotations generated by three
base annotators, namely, Person, ContactPattern and Phone. Consider the example annotation identified by
this rule shown in Figure 2. The regular expressions used in the ContactPattern annotator and the sequencing
condition (ImmSucc) in the rule rseq have a strong correlation with the average precision of the Person anno-
tation. In fact, in the current implementation of this annotator in AVATAR IES, the precision of the Person
annotations that satisfy this additional constraint is 97.5% – significantly higher than the overall precision of
Person annotations under β = medium setting. Since Assumption 8 assumes that P (tt(Per1) = Person) is
independent of {H(PP1)} and the rule rseq, this significantly lowers the computed precision for PersonPhone
objects, and results in lowering the recall of the PersonPhone annotator.

The combination of mapping rules to queries and accounting for the dependencies as described above
presents a significant challenge for probabilistic database systems. This is the focus of our ongoing work in
this area. We believe that this requires enhancing the existing semantics for probabilistic database query evalua-
tion, and will lead to a fresh set of open problems for efficient query evaluation under these enhanced semantics.

References

[1] H. Cunningham. Information extraction - a user guide. Technical Report CS-97-02, University of Sheffield, 1997.

[2] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864–875, 2004.

[3] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M. Sayyadian, and W. Shen. Community
information management. In IEEE Data Engineering Bulletin, March 2006.

[4] Enron Dataset. http://www-2.cs.cmu.edu/ enron/.

[5] O. Schadow et. al. The Object Data Standard: ODMG 3.0. Morgan Kauffman, 2000.

[6] D. Ferrucci and A. Lally. UIMA: An architectural approach to unstructured information processing in the corporate
research environment. Natural Language Engineering, June 2004.

[7] N. Fuhr and T. Roelleke. A probabilistic relational algebra for the integration of information retrieval and database
systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[8] J. F. McCarthy and W. G. Lehnert. Using decision trees for coreference resolution. In IJCAI, pages 1050–1055, 1995.

[9] K. Nanda. Combining lexical, syntactic and semantic features with maximum entropy models for extracting relations.
In Proc. of the 42nd Anniversary Meeting of the Association for Computational Linguistics (ACL04), 2004.

48



Towards Activity Databases: Using Sensors and Statistical Models
to Summarize People’s Lives

Tanzeem Choudhury1,2, Matthai Philipose,1 Danny Wyatt,2 Jonathan Lester1,2

1Intel Research Seattle, 1100 NE 45th Street (6th Floor), Seattle, WA 98105.
2Univ. of Washington, Seattle, WA 98195

{tanzeem.choudhury,matthai.philipose}@intel.com
danny@cs.washington.edu, jlester@ee.washington.edu

Abstract

Automated reasoning about human behavior is a central goal of artificial intelligence. In order to engage and
intervene in a meaningful way, an intelligent system must be able to understand what humans are doing, their
goals and intentions. Furthermore, as social animals, people’s interactions with each other underlie many aspects
of their lives: how they learn, how they work, how they play and how they affect the broader community. Under-
standing people’s interactions and their social networks will play an important role in designing technology and
applications that are “socially-aware”. This paper introduces some of the current approaches in activity recog-
nition which use a variety of different sensors to collect data about users’ activities, and probabilistic models and
relational information that are used to transform the raw sensor data into higher-level descriptions of people’s
behaviors and interactions. The end result of these methods is a richly structured dataset describing people’s
daily patterns of activities and their evolving social networks. The potential applications of such datasets include
mapping patterns of information-flow within an organization, predicting the spread of disease within a commu-
nity, monitoring the health and activity-levels of elderly patients as well as healthy adults, and allowing “smart
environments” to respond proactively to the needs and intentions of their users.

1 Introduction

For computers to become increasingly useful and capable of independently assisting human beings, they need
to be given a richer understanding of how humans behave “in the world.” The more a computer knows about the
environment in which its user exists, the better it will be able to respond to and meet a user’s needs. Example
uses of such new understanding cover a wide range of applications, from a messaging application that does not
interrupt its user when she is a giving talk, to a surgical assistant application that follows a doctor’s motions and
suggest diagnoses and actions.

Even if a system cannot fully model a user’s beliefs, desires, and intentions, it can still be useful if it
can simply recognize her activities. The recognition of human activities is becoming a central component to
a many of the pervasive computing usage models and applications, such as activity-aware actuation in smart
environments, embedded health assessment, assistive technologies for elder-care, task monitoring and prompting
in the workplace, enhancing workplace efficiency and information flow, surveillance and anomaly detection, etc.
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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For these applications to be practical, the underlying activity recognition module often needs to detect a wide
variety of activities (people may routinely perform dozens to hundreds of relevant activities a day, for instance)
performed in many different manners, under many different environmental conditions, and across many different
individuals. The particular aspects of the activity that are of interest also vary widely across applications (e.g.,
user motion, whom the user interacts with, task progress, object usage or space usage). Hence, robust recognition
across a variety of activities and individuals and their variations has proved to be difficult to engineer.

The current methods available for tracking activities are time and resource consuming manual tasks, relying
on either paid trained observers (i.e., a job coach who periodically monitors an individual performing their job or
a nurse monitoring an elderly patient) or on self-reporting, namely, having people complete an activity report at
the end of the day. However, these methods have significant deficiencies in cost, accuracy, scope, coverage, and
obtrusiveness. Paid observers such as job coaches and nurses must typically split their time among several clients
at different locations. Also, extensive observation causes fatigue in observers and resentment in those being
observed; in addition the constant involvement of humans makes the process very expensive. Self-reporting is
often inaccurate and of limited usefulness due to patient forgetfulness and both unintentional and intentional
misreporting, such as a patient reporting more fitness activities than they actually completed.

An automatic activity recognition system would help not only to reduce the errors that arise from self-
reporting and sparse observational sampling, but also to improve the quality of service that coaches and care-
givers can provide, as they would spend less of their time performing bookkeeping duties. In addition, unob-
trusive monitoring enables people to go about their daily lives in an unimpeded manner, while providing their
caregivers with a more accurate assessment of their real life activities, rather than of a small sample. An accu-
rate automated system does has another clear benefit over existing methods such as surveys, in that it provides a
continuous activity log along with times and durations for a wide range of activities.

Activity recognition is also an important component for modeling group-level behavior and social dynam-
ics. Large businesses have long been interested in the flow of information within their organization, as the
difference between success and bankruptcy can depend on how well information flows between different groups
of employees. Although people heavily rely on email, telephone and other virtual means of communication,
highly complex information is primarily exchanged through face-to-face interactions [1]. An understanding
of these face-to-face interactions and the social networks in which they take place would enable businesses to
determine bottlenecks and breakdowns in communication before they become serious problems. Another real-
world problem in which social networks play a central role is the spread of disease. An infectious outbreak in
a self-contained village community would exhibit a completely different propagation pattern than an outbreak
in a busy metropolitan city. Knowing the social networks in these communities can have enormous practical
benefits, from predicting the rate of propagation of a given disease to determining where it will spread to next.
This information would enable doctors to curb the further spread of a disease and begin treatment of those likely
to be infected, long before they might be aware of their illness. Wearable sensing combined with statistical
reasoning techniques can play an important role in discovering and modeling face-to-face interactions.

2 Building an Activity Recognition System

An activity recognition system typically has three main subcomponents: (i) A low-level sensing module that
gathers relevant information about activities, e.g., camera, microphone, acceleration, RFID etc. (ii) A feature-
processing and feature-selection module that processes the raw sensor data into features that can help discrim-
inate between activities. Features can be low-level information such frequency content or correlation coeffi-
cients, or higher level information such as objects detected or the number of people present in a scene. The
third subcomponent, (iii), is a computational model that uses these various features to infer the activity that an
individual or a group of individuals are engaged in, e.g., walking, talking, making tea, having a conversation etc.
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Figure 1: A typical activity recog-
nition system.

Because human activities are complex and sensor signals have varying
amounts of noise, these activity models are almost always probabilistic.

One has also to consider and specify the requirements for an activity
recognition system that may determine the choice of sensors, form-factor,
and the complexity of the models needed for inference. The aspects to
consider are (i) functionality: whether the system will be used for logging
and classifying activities (e.g., for a doctor or to understand the usage of
space) or for taking an action based on inference (e.g., an application that
reminds someone to take their medicine), (ii) speed: real-time inference is
necessary for prompting but not necessary for logging, (iii) resolution and
timescale, e.g., whether the system needs to detect number of steps a person
or takes or how long a person spends at work, and (iv) accuracy: how well
the inference system has to perform in order to be useful will depend on
the application (e.g., a trade off might exist between allowing more false
alarms but preventing more potentially harmful false negatives in medical
domains). For an activity recognition system to be widely deployable and
useable, it will need to support queries that are meaningful to the user of
the system, and to provide the user with the right level of summarization of
a person’s life.

3 Sensing

The most common sensing approach is to use a few very rich sensors (typically one per room or user) such as
cameras and microphones, which can record very large quantities of data about the user and their environment.
For example, originally most of the research in activity recognition was done using vision and audio sensors
[2, 3]. Although in principle the data captured by these sensors should be as useful as that captured by the key
human senses of sight and hearing, in practice the task of extracting features from rich low-level representations
has proved to be challenging in unstructured environments [4, 5].

An increasingly popular alternative approach is to use personalized sensors (one set of sensors per user)
such as accelerometers and location beacons to get precise information about a particular small set of features
related to the user, such as limb-movement and user location. The majority of research using wearable devices
has concentrated on using multiple sensors of a single modality, typically accelerometers on several locations
on the body [6, 7]. The placement of sensors in multiple pre-defined locations can be quite obtrusive and is one
of the limitations of such an approach. As a result, a single sensing device that can be integrated into existing
mobile platforms, such as a cell phone, would be more appealing to users and is likely to garner greater user
acceptance. In our work, we have shown that incorporating multiple sensor modalities (e.g., accelerometer,
audio, light, barometric pressure, humidity, temperature, and compass) will offset the information lost by using
a single sensing device. Furthermore, multiple modalities will be better suited to record the rich perceptual cues
that are present in the environment, cues that a single modality often fails to capture.

Recent advancements in miniaturization and wireless communication have seen the emergence of a third
approach to sensing that may be termed dense sensing. In this approach, sensors are directly attached to many
objects of interest. These sensors are either battery-free wireless stickers called Radio Frequency Identification
(RFID) tags [8] or small wireless sensor nodes powered by batteries [9]. The sensors transmit to ambient
readers the usage of the objects they are attached to by detecting either motion or hand-proximity to the object.
Since each sensor has a unique identifier, fixed metadata about the object (such as its color, weight or even
ownership), which would conventionally have to be discerned by sensors, can be easily associated in a directly
machine-readable way with the object. The reliable sensing of detailed object-use that is enabled by dense

51



sensing has several advantages: (i) for many day-to-day activities, the objects used serve as a good indicator of
the activity being performed (ii) objects used remain fairly invariant across the different manners of performing
these activities (iii) since the sensors detect the features quite well regardless of most environmental conditions,
activity recognition can be robust to changes in the environment or individual. Finally, knowing the class of
objects being used can serve as a powerful cue to constrain the search space of possible activities.

4 Feature Extraction

For an automated system to recognize people’s behavior accurately, the choice of features is critical. The useful-
ness of certain features will depend on the application and the activities that need to be inferred. For example,
frequency information from acceleration is important in determining activities such as walking, running and
related gait. The periodicity of the auditory signal is useful in determining speech and whether someone is
talking or not. The overall visual shape of objects appearing in an image can be used to detect the presence
of a person. Some of the features may be deterministic transformations of the raw sensor data (e.g., frequency
content), while others can be a probability measure (e.g., the likelihood that an image contains a human shaped
blob or likelihood of a person being in a certain location). The time-scale at which features are computed also
impacts recognition, e.g., human speech is usually analyzed at millisecond resolution whereas a variety of phys-
ical activity models use features computed at 0.1 to 10Hz, and contextual information about behavior is often
computed over minutes or even hours.

It is conceivable that in the near future many people will be logging information about their activities and
interactions continuously, for a variety of different purposes. The need for generating reliable databases that store
features and support various types of queries over time, space and other sensor attributes will be increasingly
important. Example queries may be of the form, “get audio features from all the people who were in the computer
science building at time t” or “get camera information from a specific location when there are more than 5 people
present with at least 80% certainty.”

5 Models

The two main approaches that are used for classification in machine learning are: (i) generative techniques
that model the underlying joint probability distribution P(X,Y) of the classes/activities (Y) and features (X),
e.g., Naı̈ve Bayesian models, Hidden Markov models, Dynamic Bayesian networks etc. and (ii) discriminative
techniques that focus on learning the class boundaries [10] or only the class posterior probability P(Y|X), e.g.,
support vector machines, logistic regression and conditional random fields. Both of these approaches have been
used extensively for recognizing various human behaviors and activities. Although discriminative techniques
sometimes outperform generative approaches in classification tasks, generative models are necessary for synthe-
sis (e.g., if a robot has to perform an instance of an activity), in anomaly detection, or in circumstances where
the discovery of the underlying process is a goal. Another recently developed class of models, called probabilis-
tic relational models and relational Markov networks, incorporate relational structure within the probabilistic
framework [11, 12]. In relational models, the properties of a certain entity can depend probabilistically on the
properties of other entities (e.g., a person’s role can depend on the roles of other individuals in his social network
as well as his own attributes). As a result these models have been successfully applied to activity recognition
and social network modeling tasks. Another dimension along which techniques vary is the manner in which the
models are learned. A conventional approach is to label traces of sensor data collected during the performance
of a set of activities one wants to recognize, and use the labeled examples to learn the structure and parameters of
the model; this is referred to as supervised learning. The other approach is unsupervised, where the underlying
structure and associated parameters are learned automatically given only the sensor traces[13]. Semi-supervised
techniques use sparsely labeled data to seed the parameters of unsupervised models [14].
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No matter what kinds of model and learning techniques are used, sensor data has significant variability across
instances and individuals, and it is nearly impossible for automated activity classification systems to recognize
every event with absolute certainty. Thus, most of the time classifiers are probabilistic or have confidence values
associated with them, especially when the activities being modeled are complex or the number of activities being
recognized is large. Consequently, activity databases will also need to support probabilistic entries and queries.
For example, a typical query may be, “what is the expected time spent walking for person A on a weekday?.”

6 Sensing and Modeling Activities at Different Granularities

Human activities naturally fall into two categories: (i) activities that an individual does by himself (e.g., brushing
teeth) and (ii) activities that he engages in with others (e.g., conversation). When it comes to probabilistic
representation, joint activities require explicit modeling of the relationships between individuals and how they
affect each other. Another aspect of activities that influences the choice of models is the time-scale, we currently
break them into (a) short time-scale activities, where the pattern or regularity in the sensor data is present
within a short time window (on the order of seconds, e.g., walking) and (b) long time-scale activities which
have regularities at a longer time window (on the order of minutes and hours, e.g., attending a meeting). For
short-time scale activities, static models are often sufficient (i.e., no temporal constraints), whereas for longer
time-scale events temporal models are usually required. Most approaches to constructing models suffer from
what may be termed as the model completeness problem: models have observations that are either missing or
that have inappropriate probabilities. Incomplete models can, of course, result in faulty inference. For example a
model for making tea may have probabilities of various objects being used, e.g., “kettle”, “teabag”, teacup” and
“sugar”, but may mention neither “coffee cup” nor “honey”. Similarly, given the inconvenience of generating
labeled examples of all (or most) possible ways to execute an activity, it is likely that probabilities associated with
certain observations will be under-represented. Below we give a brief overview of the work done by our group
in the following areas: (i) representation of individual-level activities using multi-modal sensing (ii) automated
approaches to handling model incompleteness (iii) multi-person sensing and modeling of group interactions.

Figure 2: For a forty minute segment of data (a) the likelihood of the
different activities over time and (b) the final output of the activity classifi-
cation system in blue (based on the class that has maximum likelihood) and
the ground truth in red.

Representation of individual-level activ-
ities: Advances in the development of multi-
modal wearable sensors enable us to gather
rich datasets of human activities. However,
the problem of automatically identifying the
most useful features for modeling such activi-
ties remains largely unsolved. We have devel-
oped a discriminative approach based on boost-
ing [15] to select the most useful features and
learn a weighted set of static classifiers (deci-
sion stumps) that can be additively combined
to recognize different activities. During train-
ing we provide a set of labeled examples to the
system, which it uses to learn the most discrim-
inative features and the model parameters. A
trained system will then use the selected fea-
tures to output a probability score that a given
data point or data sequence is generated by a
specific activity. To capture the temporal smoothness of activities, a first-order probabilistic Markov-model (a
hidden Markov model, or HMM [16]) is trained using the output of the static classifiers, where the observation
sequence of the HMM consists of the probabilities from the static classification step. This combination lever-
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ages the good discriminative qualities of the decision stumps with the temporal smoothness of the HMM. By
automatically inferring the features that were most useful, we discovered that two modalities in particular (out of
seven) yielded the most discriminative information for our activities: the audio and accelerometer sensors. These
two modalities provide complementary information about the environment and the wearer. The audio captures
the sounds produced during the various activities, whereas the accelerometer data is sensitive to the movement
of the body. In addition, other sensors yielded more specific types of information for certain activities, such as
the barometric pressure sensor being sensitive enough to detect the activity of riding in an elevator[17, 18].

Automated approaches to handling model incompleteness: Learning from data requires labeling, and
since the amount of data is large it is impractical to expect an appreciable portion of it to be labeled. However,
although activities are varied and idiosyncratic, they have common features that most people recognize, i.e., they
have a generic “common sense” aspect that often suffices to recognize them. Furthermore, many daily activities
are performed using objects that can be easily recognized if they have RFID tags on them. We have developed
techniques for mining from the web simple but useful discriminative models of numerous object-based activities,
which can be applied to segment and label object-use traces (thereby avoiding the need for hand-labeling). These
segments can then be used to effectively bootstrap the learning of better model parameters for activities.

Given a set of activities A, we mine from the web a set of objects O used for each activity a in A and their
associated usage probabilities p(o ∈ O | a ∈ A). The mining process proceeds in four distinct steps. First, for each
activity in A, we identify web pages that describe that activity being performed. Second, having identified these
pages, we extract phrases from them that describe the objects used during the performance of the activity. Third,
once the set of pages and phrases have been found, co-occurrence statistics for the pages and phrases are used to
estimate the object-use probabilities. Finally, we use the mined information to assemble a Hidden Markov Model
(HMM) capable of recognizing activities in traces of object data; the hidden states of the HMM correspond to
the various activities, and the observation probabilities of the HMM are the object-use probabilities. Now, given
a set E of unlabeled traces (a trace is a sequence of sensed objects), we use the mined models as a basis for
learning an improved or more customized model. To train this customized model from the generic mined model,
we first apply the most probable labeling for the traces E (using the Viterbi algorithm [16]) given the model.
We then re-estimate the model parameters according to the labeled trace. If certain parts of the model are not
observed then their parameters are not changed, and remain set to the mined probabilities [8].

The use of objects as the underlying features being modeled suggests another simple approach to countering
models with missing information. Intuitively, we can exploit common-sense information about which objects
are functionally similar. If the model ascribes very different probabilities to two very similar objects, we can
“smooth” these probabilities into more similar values. As a degenerate case, if the model omits an object
while incorporating very similar ones, we can postulate that the omitted object is likely to be observed in the
model. We have developed a completely unsupervised approach to realizing this idea. By using auxiliary
information, called an ontology, about the functional similarities between objects, we mitigate the problem of
model incompleteness. The similarity information is extracted automatically from WordNet, a large, relevant
ontology of lexical reference system for the English language, and incorporated into our models by using a
statistical smoothing technique, called shrinkage [19].

Multi-person sensing and modeling of group interactions: The structure and dynamics of face-to-face
social networks are of critical importance to many social phenomena, ranging from organizational efficiency to
the spread of knowledge and disease. Research in face-to-face networks has an abundance of interesting and
important questions, but has been faced with a paucity of data rich enough to answer many of these questions.
We believe better models of social network and organizational dynamics will facilitate efficient means of collab-
oration and information propagation. Virtually all of the datasets are collected manually by human observers or
via surveys, which are very labor intensive and yield only a small number of observations, sparsely spread over
time. In our work, we have demonstrated the feasibility of learning social interactions from raw sensor data. We
collected a large repository of wearable sensor data that includes auditory features (raw audio signal is not stored
for privacy reasons) for several hours everyday over several weeks from multiple individuals (more than twenty
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people). We have developed a framework for automatic modeling of face-to-face interactions, starting from data
processing and going all the way up to capturing the structure and dynamics of social networks, by analyzing
whom we talk to and how we talk to them. The micro-level inter-relationship between individuals is modeled
via a coupled probabilistic model of turn-taking during conversations. The coupled model allows us to estimate
how much influence an individual has in the overall turn-taking that occurs during conversations. Furthermore,
we were able to show how this measure of “influence” correlates significantly with betweenness centrality [20],
an independent measure of an individual’s importance in a social network. This result suggests that micro-level
measures such as conversational influence can be predictive of more macro-level social influence [21, 22].

Figure 3: Some information of interest about social networks. (a) Interaction matrix, I, of a face-to-face network. Each row corresponds
to a different person. I(i,j) is the fraction of person i’s total interaction with person j. (b) A given person’s interaction likelihood with
other people in the network. The x-axis is time in minutes (6 hours) and the y-axis numbers are the IDs of people in the network. (c)
Speech activity over the course of the day, averaged over all subjects. (d) Interaction network diagram, based on multi-dimensional
scaling of geodesic distances. Node numbers represent the subject IDs.

7 Conclusion

This paper provides a brief introduction to the sensing and statistical reasoning techniques used in building
systems that reason about human activities and interactions. The approaches outlined here are common to many
systems, although the illustrative examples given in the paper have been drawn mostly from our own work.

Databases for storing the output of activity inference systems need to meet several challenges. They must be
able to to support a variety of activity-based queries, while also protecting raw sensor data and sensitive private
information. It is important that different users can be given different levels of access privilege to specific types
of query. For example, the raw sensor data should be accessible only to a minimal set of individuals, whereas
a broader set of users may be able to compute deterministic features or issue probabilistic queries. Privacy
protection is even more important when answers to a query require access to the data from multiple individuals
(e.g., “Did A and B have a conversation today?”). Social network information or any relational data can often
destroy anonymity, so queries need to support varying levels of anonymity.

An activity database will certainly be probabilistic, as both entries and answer to queries will often be
probabilistic. Such databases will also need to be able to deal with sporadically missing data, and with combining
data from sensors that record at varying rates — the data from real-world activity recognition systems are all
too rarely uniform or complete. The statistical techniques used in activity-recognition modeling already offer
potential methods for handling missing information. Such tools may be applicable in ranking queries and in
dealing with inconsistent data in probabilistic databases. Finally, these databases will also need to deal with
temporal queries about people’s behavior. For example, a query may ask not what an individual was doing at a
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particular instant, but instead what their pattern of behavior was over the course of a day.
Sensors are being embedded more and more into the everyday objects around us: phones and watches con-

tain cameras, microphones and GPS, and objects in shops, factories and hospitals are being tagged with RFID.
Powerful computer processors are being incorporated into previously “dumb” consumer products. However,
such technology will do little to improve usability if it is not sensitive to people’s needs, and these needs vary
as a function of the activities that people are engaged in. We therefore believe that the need for activity recogni-
tion, and for the management and retrieval of information about activities, will present important new research
challenges for a long time to come.
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Abstract

The wide deployment of wireless sensor and RFID (Radio Frequency IDentification) devices is one of the key en-
ablers for next-generation pervasive computing applications, including large-scale environmental monitoring and
control, context-aware computing, and “smart digital homes”. Sensory readings are inherently unreliable and
typically exhibit strong temporal and spatial correlations (within and across different sensing devices); effective
reasoning over such unreliable streams introduces a host of new data management challenges. The Data Furnace
project at Intel Research and UC-Berkeley aims to build a probabilistic data management infrastructure for per-
vasive computing environments that handles the uncertain nature of such data as a first-class citizen through a
principled framework grounded in probabilistic models and inference techniques.

1 Introduction

Pervasive Computing is an area that has seen significant interest since it was first identified by the late Mark
Weiser over a decade ago, with research contributions from a breadth of computer science disciplines including
distributed and mobile systems, machine learning, and human-computer interaction. The broad challenge in
pervasive computing is the creation of environments that embed computation and communication in a way that
organically interacts with humans to enhance or ease their daily behavior. One typical scenario for pervasive
computing is in the design of “smart digital homes”, which are instrumented to observe, learn, and facilitate the
typical behaviors of occupants. As one concrete example, smart homes can automate control of utilities like
lighting, heating and cooling, with the goal of minimizing energy usage without adversely impacting occupant
comfort.

Recent advances in distributed sensing and wireless communication enable pervasive applications that are
quite information-rich, capturing and utilizing large numbers of potentially high-bandwidth streams of data.
This raises a number of interesting research opportunities at the nexus of database management, stream query
processing, sensor networks, machine learning, and human-computer interaction. We highlight some of the
challenges of data-intensive pervasive computing in what follows.
• Diverse Data Sources. A wide variety of sensors can be reasonably deployed in pervasive applications, from
richly semantic, high-bandwidth sensors like video cameras, to simple boolean sensors like door-ajar switches,
with a variety of sensing modalities in between (audio, motion, temperature, etc.).
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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• The Realities of Sensory Data. Data from sensors is different from what is typically seen in enterprise data-
bases. First, sensor data is typically a very noisy, uncertain representation of the phenomena it is intended to
capture, due to issues like miscalibration and sensitivity to environmental factors. This can make sensor data
hard to “trust”. On the other hand, many physical phenomena represented by sensor data can exhibit significant
spatial and temporal correlation, and this structure in the data can be exploited both for efficiency and for better
understanding the true properties of the underlying physical phenomena.
• Streams and Storage. Pervasive applications typically have a “real-time” nature, since they are intended to
interact with human behaviors. On the other hand, in order for pervasive applications to build good temporal
models of human behavior and use those models for prediction, they may need to track significant volumes of
archival data. Hence, the underlying data-management infrastructure needs to support both rich, continuous
queries/triggers over streams, as well as offline mining/learning of useful patterns from archival data.
• Integration of Probabilities and Logic. Traditional interfaces and languages for data management have strong
roots in logic. By contrast, pervasive applications that deal with sensory data most often operate with proba-
bilistic methods, which must reason about uncertainty for a variety of reasons: to model the true phenomena
generating the sensor readings, to model future states of the environment, to predict human desires or behaviors,
and so on. As is well known in the database literature, data-intensive applications perform better by pushing
computation into data access, rather than extracting data and shipping it to computations. Hence, the uncertain,
probabilistic nature of the data needs to be a first-class citizen across all layers of the data-management sys-
tem: the data model (both logical and physical), the query processing techniques, triggering engines, pattern
detection, etc.
• Complex Modeling. There is often a significant semantic gap between sensed data (e.g., a sequence of plumb-
ing usage, power consumption, and certain sound signatures) and meaningful human activities (e.g., “making
a cup of tea”). This gap needs to be bridged by a modeling framework that can capture specifications of high-
level “complex” events in terms of lower-level sensed events. These specifications may be generated manually,
automatically, or semi-automatically, but in any case there needs to be a modeling framework to capture them.
Moreover, this modeling framework has to interact meaningfully with the uncertainty and correlations present
in the base sensory data, as well as with other, more conventional data sources.

The Data Furnace. In our work at Intel Research and UC Berkeley, we are embarking on an effort to de-
velop information-rich infrastructure for pervasive computing, suitable to applications like the Digital Home.
In that spirit, we refer to our system as a Data Furnace: a low-maintenance, low-profile, but critical piece of
infrastructure that provides general-purpose data management infrastructure for pervasive computing applica-
tions. Briefly, the Data Furnace aims to manage data uncertainty as a first-class citizen through a principled
probabilistic framework, and provide a uniform, declarative means for higher-level applications to store, query,
and learn from such probabilistic data. In this paper, we outline some of the unique research challenges that
arise in the context of the Data Furnace, and discuss some of the basic ideas underlying our approach.

2 A Motivating Application Scenario: The “Smart Home”

Harper [9] defines the term “smart home” as “a residence equipped with computing and information technology
which anticipates and responds to the needs of the occupants, working to promote their comfort, convenience,
security and entertainment through the management of technology within the home and connections to the
world beyond”. The recent revolutions in personal digital media and sensing technologies has rendered such
“futuristic” visions much more credible, and the home is currently one of the most frequently targeted markets
for these new technologies.

Data management plays a critical role in the smart-home vision. Overwhelming amounts of data float
around in our home today, such as music, movies, contact lists, calendars, photos, financial data, news arti-
cles, web pages, e-mail messages, and so on. The smart home of the future will only exacerbate the situation
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with the addition of many more devices and systems, including hundreds of sensors (of different modalities)
and RFID readers/tags for sensing several different physical phenomena and activities. Through such sensory
(input) devices as well as additional control (output) mechanisms, smart homes will be able to support richer,
real-time interactions with their users; for instance, energy management and demand-response applications
(http://dr.berkeley.edu) can employ motion sensors to track context information for Alice and appropri-
ately actuate electric devices like lighting and water heating. A different application might require correlating
sensory readings and actuation with more conventional information sources in the home or even historical pat-
terns of user behavior; for example, a security subsystem sensing motion patterns and activities that do not match
any known historical patterns for the home users, might choose to take some precautionary action (e.g., notify
Bob or start video-recording the “suspect” individual).

Allowing future smart homes to support such rich user-interaction models over streaming, uncertain sensor
data (of various modalities) raises a number of novel data-management challenges. Providing persistent storage
and querying (that, of course, satisfies all other traditional database requirements of availability, consistency,
security/privacy, etc.) for diverse, heterogeneous data-types has received attention recently through different re-
search projects, such as MyLifeBits [8]. Still, as our discussion above indicates, this is only part of the equation:
data-management infrastructures for the smart home will also have to effectively combine and correlate large
streams of low-level, uncertain sensory data (possibly, in real time) to accurately track and react to higher-level
events and activities. We use motivating examples from the smart-home setting in the remainder of this paper.

3 The Data Furnace System: Architecture and Challenges

Figure 1: The Data Furnace Architecture.

We envision our Data Furnace system as the center-
piece of the data-centric architecture for pervasive appli-
cations. The Data Furnace serves as the central repos-
itory for application data and metadata, and offers a
number of diverse services at different layers of abstrac-
tion (ranging from device and web connectivity, to data
archiving, to pattern learning and probabilistic reason-
ing). The high-level logical architecture of the Data
Furnace is depicted in Figure 1. In a nutshell, the
Data Furnace architecture comprises three broad lay-
ers: (1) The Hardware Layer manages physical system
resources, such as processing, storage, and communica-
tion. (2) The Metadata Layer serves as the repository for
environment metadata, including, for instance, “schema”
information for the application context (e.g., home archi-
tecture, floorplans, wiring and pipe layouts), data on the
users and (possibly) their routines, as well as informa-
tion on devices, events, and API definitions; this layer
defines the basic Data Furnace interface with the physi-
cal world and higher-level applications. (3) The Service
Layer is the heart of the Data Furnace engine, essen-
tially providing the key information-management func-
tionality for our target application scenarios, including
query processing and optimization, data archiving, com-
plex event processing, pattern and model learning, probabilistic reasoning, and so on.

Given the inherently uncertain nature of several of its key data sources, as well as the complexity of hu-
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man behavioral patterns and automated recognition of higher-level activities, it is clear that uncertain data and
probabilistic information will play a central role in our Data Furnace system. We now outline some of the
key probabilistic data management challenges for the Data Furnace engine, and briefly discuss some of the
basic ideas underlying our approach. (Pervasive computing environments such as the smart home also raise sev-
eral other challenging database and system-design issues with respect to multi-device integration, availability,
privacy, self-management, longevity, unobtrusiveness/invisibility, and so on; while acknowledging their impor-
tance, we do not focus on these concerns in this short paper.)

Voluminous Streams of Uncertain, Low-Level, Correlated Sensory Data. Raw readings from sensing and
RFID devices are inherently unreliable and subject to various physical-world phenomena, such as battery-power
fluctuations, noise, and interference. As a result, the streams of readings emanating from such devices are
uncertain (to various degrees), with several missing and/or inaccurate values. For instance, the observed read
rates (i.e., percentage of tags in a reader’s vicinity that are actually reported) in real-world RFID deployments is
often in the 60− 70% range [10, 12] (i.e., over 30% of the tag readings are routinely dropped); even higher drop
rates are possible depending on environmental characteristics (e.g., in the presence of metal [5]).

Sensor and RFID readings also tend to exhibit strong correlation patterns, a fact that has already been ex-
ploited in the area of acquisitional query processing in sensornet deployments [1, 4]. Such correlation patterns
include both (1) spatial correlations, where sensing devices in close physical proximity capture the same phys-
ical event or highly-correlated readings (for instance, temperature and light readings in the same room); and,
(2) temporal correlations, where correlated sequences of events are often sensed together (for instance, turning
on the stove is typically followed by turning on the hood fan). Causality relationships are also quite common
in sensor data streams; for example, detecting a person at the door can be causally connected to the event “Bob
returning home from work”.

Due to their highly unreliable nature, raw, low-level readings streams are often useless for the purposes
of providing useful knowledge to higher-level applications (e.g., accurate inventory or people tracking). In-
stead, such applications are interested in more concise, semantically-rich events that can be inferred (with some
level of probabilistic confidence) from the base sensing data. This implies that a probabilistic data-management
framework is needed in the Data Furnace engine. And, of course, capturing the (possibly, complex) corre-
lation and causality patterns in such data is a crucial requirement for both efficient and accurate probabilistic
inference — base-tuple independence assumptions typically employed in earlier work on probabilistic database
systems (e.g., [2, 3]) are rarely valid in our setting and almost certainly will lead to poor probabilistic esti-
mates for higher-level events. Continuing with our earlier example, it is clear that the conditional probability
Pr [Bob returning from work|person at the door] is likely to be very different from Pr [Bob returning from work]
(while the two are equal assuming independence); similarly, probabilistic computations across, say, sensors in
the same room, also need to account for such strong correlations. Thus, effectively capturing probabilistic (base
and derived) data correlations is an important requirement for the Data Furnace engine.

Our basic approach here is to accurately model both the probabilistic nature of the sensor data and the
underlying correlation/causality patterns by incorporating statistical learning techniques and probabilistic mod-
els [11, 13, 14] as first-class citizens in the Data Furnace engine. The Data Furnace can learn such models
either incrementally (over the input data streams) or off-line (from archived data), and employ probabilistic-
inference methods to efficiently query these models at run-time. Model learning is a computationally-intensive
process [11], so maintaining our probabilistic models over continuous streams from possibly hundreds of sen-
sory streams poses difficult technical challenges; we intend to exploit semantic knowledge (such as floorplan
and sensor-layout information) to enable scalable incremental learning.

Definition and Real-Time Tracking of Complex, Hierarchical Probabilistic Events. Effective real-time
monitoring and management of the target pervasive-computing environment (e.g., smart home or supply chain)
is an important requirement, and mechanisms for composing and tracking complex events (in real time) can
address this need. Such events typically require correlating (e.g., through joins or aggregation) multiple uncertain
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sensing streams under intricate notions of time, space, ordering, and Boolean connections.
In addition to the uncertain nature of Data Furnace’s sensor inputs, in most real-life scenarios, meaningful

definitions of high-level, semantically-rich events over sensor readings are inherently probabilistic in nature.
For instance, a “making tea” event might be connected with “stove usage” 70% of the time and “microwave
usage” 30% of the time. In general, such events can be thought of as “occurrences of significance” defined in a
hierarchical manner using appropriate (probabilistic) rules for composing several streams of real-time sensing
data, and perhaps other (lower-level) events. Detecting such an occurrence (with some appropriate level of
confidence) can, in turn, trigger higher-level events or appropriate actions. As an example, detecting Bob in the
living room and room-temperature readings below 60oF with confidence, say, above 95% can lead to the system
automatically turning on the heat in the living room; similarly, stationary readings from Alice in the TV room
over a window of time combined with a “TV on” event can trigger a higher-level event “Alice is watching TV”,
with some level of confidence.

Abstractly, at any point in time, the state of the system can be seen as a probability distribution over possible
states and high-level events, and the Data Furnace engine needs to support effective mechanisms for (1) defining
hierarchies of complex probabilistic events that are of interest to users/applications, and (2) accurately tracking
such events (and corresponding confidences) in real time over numerous sensor and RFID streams. Obviously,
accurate probabilistic estimations are needed to avoid erroneous inferences that can potentially result in event
false positives/negatives and improper actions; for instance, the environment might overreact in response to low-
confidence sensed user activity, thus defeating the purpose of calm computing. And, again, principled techniques
for modeling existing correlation/causality patterns within and across base data and events are needed for correct
probabilistic reasoning. Semantically-rich probabilistic events also provide a fairly clean, natural abstraction
for higher-level applications that wish to employ Data Furnace services (Figure 1), without worrying about the
details and uncertainties of raw sensor readings. Our initial design of the Probabilistic Complex Event Triggering
(PCET) subsystem (Section 4) addresses several of these challenges.

Efficient Querying and Learning over both Probabilistic and Deterministic Information. Uncertain and
probabilistic information needs to co-exist in the Data Furnace engine with more traditional (relational and non-
relational) data. Event and query processing techniques must be able to effectively reason with both types of
data and provide reasonable performance to higher-level applications. For instance, both complex event tracking
and ad-hoc queries over streams from smart-home sensors and RFID readers may require direct correlation with
home metadata, such as floorplans and users’ daily schedules. In addition to continuous monitoring and ad-
hoc query processing, it is also important to effectively mine the information collected from both probabilistic
and conventional data sources for longer-term trends and patterns at different time and/or space granularities;
for example, learning users’ daily or weekly routines is critical for effective energy management or detecting
“suspicious” behavior in the smart home.

Effective querying and mining of uncertain, probabilistic data (perhaps in combination with other, deter-
ministic information) raises a host of new challenges for the Data Furnace. Efficiency, in particular, is an
important concern, given the recent negative results of Dalvi and Suciu for general query processing over prob-
abilistic data tuples [2]. We believe that, through the effective use of rich probabilistic models (which can, in
a sense, be seen as concise approximations of the possible-worlds distribution [2, 3]), the Data Furnace query
processor can avoid such inherently intractable problems. The granularity of the probabilistic information is
a key parameter here — while earlier probabilistic-database work that focuses on integration and/or lineage
problems [2, 3, 15] connects probabilities with individual tuples or even attribute values, it is not clear that
such fine-grain information is needed in our settings. For instance, it may be possible to associate probabilistic
noise or dropped-readings models for individual sensing devices, which can essentially be tied to all readings
(tuples) from a given physical device. This leads to more concise probabilistic representations and, hence, more
efficient (albeit, approximate) techniques for probabilistic query processing and event tracking through model
inference. Of course, for sizeable data collections and complex probabilistic models incorporating notions of
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time and space, the Data Furnace needs to support efficient methods for approximate probabilistic inference
(e.g., particle filtering [14]) and approximate query processing (e.g., histograms, wavelets, sketches [6, 7]). De-
signing appropriate query and data-definition languages for such rich, diverse data collections also raises several
interesting research challenges.

System Support for Managing, Maintaining, and Reasoning over a Multitude of Probabilistic Models.
Managing large collections of probabilistic models (perhaps built for different inferencing tasks) is a crucial re-
quirement for our Data Furnace architecture. Supporting a variety of such models as first-class citizens brings up
a number of interesting systems issues, including appropriate declarative interfaces and data structures (e.g., in-
dexes) for probabilistic-model maintenance and inference (querying). Data Furnace models can also be viewed
as probabilistic views built over the base data, and can be supported (as either virtual or materialized structures)
to model the state of the pervasive-computing environment at potentially different levels of abstraction (e.g.,
at the sensor-readings layer or at the user-activities layer). As with traditional view materialization, the key
tradeoff lies in the view maintenance cost vs. its query-processing benefits; of course, the probabilistic nature of
our model views makes the problem somewhat unique. Similarly, multiple inferencing tasks over probabilistic
models can possibly share processing costs, leading to interesting (probabilistic) multi-query optimization is-
sues. This is only a small sample of the interesting optimization questions arising in the query/event-processing
engine of the Data Furnace.

4 The Probabilistic Complex Event Triggering (PCET) Subsystem

We are currently building a first incarnation of the PCET subsystem of the Data Furnace, which aims to provide
a general probabilistic event triggering service over uncertain sensory data. In this section, we briefly touch
upon some of the key elements of the PCET logical architecture (Figure 2).

Figure 2: The PCET Subsystem.

The Probabilistic Inference Engine (PIE) essentially employs
statistical learning techniques to build, maintain, and run infer-
ences over probabilistic models that capture correlations across
base-level events (i.e., individual sensor readings), as discussed in
Section 3. For our initial implementation, we plan to use paramet-
ric (e.g., Gaussian) models to model sensor noise and a variant of
dynamic Bayesian networks [14] as our basic probabilistic model;
we also plan to explore ways of capturing and exploiting spatial in-
formation (e.g., home floorplans) in PCET’s learning and modeling
tools. PCET’s Application Layer Interface employs probabilistic
events, perhaps with associated confidence thresholds (e.g., Bob is
in the living room with probability ≥ 90%), as the key abstraction
for communicating with higher-level applications. Through this
simple interface, applications can hierarchically define and sub-
scribe to new complex events based on either base-level events
(e.g., sensor readings exceeding a certain value) or other event-
tracking “services” already offered within or on top of PCET. For
instance, basic smart-home services, such as a “People Tracker”
that tracks the location of individual users in the home can be pro-
vided as part of the Data Furnace distribution with an easy-to-use
customization GUI; other, higher-level applications like a “Person-
alized Environment Controller” can be built using both base sensor
readings and “People Tracker” events.

PCET supports the definition of new complex events through a small, yet expressive composite-event algebra
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that includes: sequencing (e1; e2), conjunction (e1&e2), disjunction (e1|e2), negation (!e), and temporal ({e}t)
as well as location (e@loc) constraints. Of course, events at different levels of abstraction can be defined by
referencing previously-defined events, as shown in the following simple example:

LightOn := LightSensor1=’ON’
LightSwitchedOn := !LightOn ; LightOn
PersonEntry := {Motion@Outside ; DoorOpen ; DoorClose ; Motion@Hall}10s
Cooking := {StoveOn | MicrowaveOn}10m

PCET’s Event Processing Engine (EPE) is responsible for (1) compiling event definitions into self-contained
execution plans that are continuously run over the input data streams; and, (2) possibly tracking the current
“state” of the environment (based on observed events) using what we term a Probabilistic Finite Automaton
representation. Naturally, EPE employs the probabilistic inference services provided by PIE to ensure that
probabilistic beliefs are correctly propagated through the composite-event definitions.

5 Conclusions

We have discussed some of the unique probabilistic data management challenges arising in pervasive-computing
environments, and provided a quick overview of our proposed approach for the Data Furnace system, which
aims to provide a general data-management infrastructure for pervasive applications. Our current research
agenda includes building a first prototype of the probabilistic-event tracking subsystem and exploring differ-
ent alternatives and algorithms for capturing and querying probabilistic information in the Data Furnace.
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Abstract

We introduce CIMple, a joint project between the University of Illinois and the University of Wisconsin.
CIMple aims to develop a software platform that can be rapidly deployed and customized to manage
data-rich online communities. We first describe the envisioned working of such a software platform
and our prototype, DBLife, which is a community portal being developed for the database research
community. We then describe the technical challenges in CIMple and our solution approach. Finally, we
discuss managing uncertainty and provenance, a crucial task in making our software platform practical.

1 Introduction

There are many communities on the Web, each focusing on a specific set of topics. Examples of communi-
ties based on common interests include communities of movie goers, football fans, database researchers, and
bioinformaticians. Other common examples include communities with a shared purpose, such as organization
intranets and online technical support groups. Community members often want to query, monitor, and discover
information about various entities and relationships in the community. For example, database researchers might
be interested in questions such as these:

• Is there any interesting connection between two researchers X and Y (e.g., sharing same advisor)?
• In which course is this paper cited?
• Find all citations of this paper in the past one week on the Web.
• What is new in the past 24 hours in the database research community?

Answering such questions often requires retrieving the raw, largely unstructured data from multiple disparate
sources (e.g., home pages, conferences, DBLP, mailing lists), then inferring and monitoring semantic informa-
tion from the data. Examples of such inference and monitoring include recognizing entity mentions (e.g., “J.
Gray”, “SIGMOD-04”), deciding if two mentions (e.g., “J. Gray” and “Jim Gray”) refer to the same real-world
entity, recognizing that a certain relationship (e.g., co-authoring, advising, giving a talk) exists between two
entities, detecting that a new entity (e.g., workshop) has appeared, and inferring that a current relationship (e.g.,
affiliation with a university) has ceased to exist.

The above inference and monitoring tasks are recognized as being challenging [10, 14, 29]. As communi-
ties proliferate, the problem of developing effective solutions to support their information needs is becoming
increasingly important. We call this problem community information management, or CIM for short.
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Figure 1: How CIMple infers a semantic entity-relationship graph from the raw unstructured data of the database research
community, then leverages the inferred graph to provide a host of user services.

In this paper we describe CIMple1, a joint project between the University of Illinois and the University
of Wisconsin, that addresses the CIM problem. Our goal is to develop a software platform that a specific
online community can quickly deploy and customize to effectively manage its data. CIMple can be valuable for
communities in a broad range of domains, ranging from scientific data management, government agencies, and
enterprise intranets, to those on the World-Wide Web.

We now briefly explain the envisioned working of CIMple, using the community of database researchers
as an example (see Figure 1). First, a community expert provides CIMple with a set of relevant data sources
(e.g., home pages of database researchers, DBworld mailing list, conference pages, etc.; see Figure 1.a), domain
knowledge about entities and relationships of interest, and possibly hints on extracting relevant mentions from
the listed data sources. CIMple then crawls the sources at regular intervals to obtain data pages (Figure 1.b),
then marks up mentions of relevant entities (denoted by * in Figure 1.c). Examples of mentions include people
names (e.g., “J. Gray”, “James N. Gray”), conference names, and paper titles. Next, CIMple matches mentions
and groups them into entities (Figure 1.d). CIMple then discovers relationships among the entities, in effect
transforming the raw data into a semantic entity-relation (ER) data graph (Figure 1.e). CIMple then provides
a broad variety of user services over the ER data graph, including browsing, keyword search, structured query-
ing, summarization, and mining. It also maintains and tracks the ER graph over time, as the underlying raw data
evolves. Such temporal tracking allows CIMple to provide interesting notification services. Finally, CIMple em-
ploys a novel approach called mass collaboration to evolve and maintain the inferred ER graph and the provided
services. Specifically, it leverages the entire user community, by providing carefully crafted functionalities that
are valuable to users, then learning from users’ interactions to identify and address a broad range of problems.

Developing the CIMple platform is a long-term goal that we are working toward. As a concrete first step,
we are building a prototype community of the kind that CIMple is eventually intended to support. The prototype
system, called DBLife, is aimed at the database research community, and the features being developed include
monitoring and reporting of interesting events, such as “SIGMOD-06 has posted the list of accepted papers,”
“researcher X is giving an invited talk at institution Y ,” and “student S has graduated and moved to department
D.” To this end, each day we crawl a set of data sources in the database community (e.g., researcher homepages,
group pages, conferences, etc.; currently we have collected 1,158 such sources and are adding more). We retrieve
Web pages from the sources (on average 11 pages per source, for 20+ MB of data per day), and parse the data
to mark up mentions of interesting entities (e.g., researchers, publications, conferences), using hand-crafted
rules. We then match the mentions, and group matching mentions into entities. For example, we match roughly
114,400 people mentions per day, and group them into 5,400+ entities. If we see a mention of an entity X on
the seminar page of a department Y , then we can infer that X probably is giving a talk at Y . DBLife will be
released as an extension of the current DBworld service from the University of Wisconsin.

In the rest of this paper, we briefly describe related work, discuss the technical challenges in developing
CIMple and then consider the problem of managing uncertainty and provenance in the CIM context.

1The acronym stands for CIM PLatform. The final “e” is an acronym-friendly mistake that we expect our readers to catch.
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Related Work: Our work is related to the wealth of research on information extraction and integration (e.g.,
[1, 22, 16, 4], see [10, 29, 21] for recent tutorials), mention matching, a.k.a. record linkage, entity resolution,
fuzzy tuple matching (e.g., [15, 8, 34], see [14] for a brief recent survey), relationship discovery [28], uncertainty
and provenance [3, 30, 35, 12, 11, 5]. Many more works exist on these topics than our limited space can list here.
Many recent works have also considered the problem of inferring and exploiting semantic information on the
World-Wide Web [16], the Semantic Web [33], in personal information management [15], business intelligence
(with significant efforts in the AVATAR project [20] and the UIMA framework [17]), text management [19], and
most recently, in building data space support platforms (DSSPs), a new unifying data management abstraction
for diverse applications [18].

CIMple differs from this body of work in several important ways. First, we focus on community settings,
where we often have significant domain knowledge about the entities and relationships involved, and hence can
address the extraction and integration challenges sufficiently well to enable useful solutions. Second, we seek
to build an end-to-end solution to CIM, which requires us to address several important problems that have not
received much attention so far. One example is the need to maintain extracted information over time, as the
underlying raw data evolves. Third, given a particular community, we want to rapidly deploy and customize
our end-to-end solution. Toward this goal, we aim to make our solutions as declarative as possible, so that the
community builder and users can rapidly enter, debug, and modify domain knowledge that guides the extraction
and integration process. Fourth, we must address scalability issues to make our solution practical. To do so, we
place a strong emphasis on being able to quickly compile declarative and procedural knowledge (as supplied by
a builder and potentially users) into an optimized execution plan, taking cues from optimization technologies in
relational contexts. Finally, we add a novel “people” aspect to CIM in particular and information management
in general with our use of mass collaboration to improve and maintain data extraction and integration.

2 Technical Challenges

We now discuss four key challenges for CIM: how to extract structure, exploit structure, maintain structure, and
provide effective mass collaboration. Our discussion also highlights the sources of uncertainty in CIM contexts.
Section 3 then discusses managing uncertainty and the related topic of provenance in more detail.

2.1 Extracting Structure

To deploy CIMple, we propose that the community builder supply a set of seed Web data sources, an ER-like
semantic schema and a set of extractors. Since the builder is an expert on the target community, he or she can
quickly assemble a set of community data sources to serve as a seed. In the database community, for example,
data sources include researcher home pages, DBworld, DBLP, conferences, project pages, etc. CIMple can
“bootstrap” from the seed sources to discover other related Web sources.

The builder must also specify an ER-like semantic schema whose entities and relationships capture the
underlying semantic structure of the domain. For example, in the database domain, entities include person,
paper, and conference, and relationships include advise, co-author, and write. A person entity instance has
attributes such as name, affiliation, and email. This schema can be specified in its entirety, or in a piecemeal
fashion, e.g., some entities and relationships are described first, then some more are added later.

Finally, the builder supplies a set of extractors, each of which specifies a way to extract instances of entities
or relations of the ER schema from the raw data. Many extraction techniques have been developed (in the areas of
information extraction, named entity recognition, wrapper construction, and text segmentation [10, 29, 21]), and
many implementations are available commercially, or publicly. The builder thus can create extractors that either
directly implement the techniques or adapt off-the-shelf “blackbox” implementations to the target community.

Using the above extraction-related knowledge, CIMple crawls the specified data sources at regular intervals
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(e.g., daily) to retrieve data pages, then applies extractors to these pages to construct an ER graph of entity and
relationship instances that conform to the given ER schema. Conceptually this graph is generated as follows.
First, CIMple applies the extractors to the retrieved data pages to extract mentions of entities. Example men-
tions are “J. Gray” and “James N. Gray” for persons and “SIGMOD-04” and “The ACM SIGMOD Conf” for
conferences. These mentions are often ambiguous in that different ones can refer to the same real-world entity,
and conversely the same mention can refer to different real-world entities. CIMple therefore must disambiguate
and partition the mentions such that all mentions in a partition refer to the same real-world entity. These entities,
denoted as E1, . . . .En, form the nodes of the ER graph. In the next step, CIMple applies relation extractors
to discover possible relations between the entities. If a relation R exists between two nodes Ei and Ej , then
CIMple adds to the ER graph an edge that connects these nodes and corresponds to R.

As described, constructing the ER graph poses two major challenges. First, we must solve the mention
disambiguation problem outlined above. Numerous solutions have been proposed to variants of this problem,
but they suffer from limited accuracy in the CIM context (as we recently found out when experimenting with
the prototype DBLife system), because they typically employ just a single matching technique and thus fail to
exploit the varying degree of semantic ambiguity in the data. In recent work [32], we have proposed a solution
to this problem, which builds on the observation that different data sources within a community often vary
significantly in their level of semantic ambiguity, thus requiring different matching methods.

The second challenge in ER graph construction is that CIMple can apply the mention extractors and mention
matchers in many different ways, each of which forms an execution plan (analogous in a sense to execution plans
in relational databases). These plans often vary significantly in run time and matching accuracy. Hence, finding
an optimal or near-optimal execution plan is critical. We are studying the space of such plans, and developing
optimizers to find good execution plans, drawing from query optimization insights in relational databases. Our
initial work on this topic is described in [32].

2.2 Exploiting Extracted Structure

Once the ER graph has been constructed, CIMple can exploit it to provide many useful services. Services that
we are developing or plan to develop include:

• Keyword search: Given a keyword query, we return matching data pages, entity instances, relation
instances, as well as matching fragments of the ER graphs. We are building on our recent work in keyword
search over structured databases [31] to develop this search service.

• Entity profiling in “Super Homepages”: We create a “super homepage” for each entity E, which displays
all information CIMple gathers about that entity, including all mentions of E together with brief explanations.
For example, it may say that E’s name appeared recently in a conference homepage because E authored a paper
in that conference, on a database group homepage because E gave an invited talk, and so on.

• Notification: A related functionality is to monitor mentions of an entity, and alert the user when inter-
esting mentions appear. For example, E may want to monitor when a certain paper P will be read by a class or
cited in a new paper.

• ER graph browsing: Users can browse the ER graph easily, in a manner similar to browsing the citation
graph of CiteSeer. For example, starting with a researcher’s super homepage, they can follow a paper to a
journal in which the paper is published, or follow a community service, e.g., “PC member, SIGMOD-06”, to a
conference, and so on.

• Community daily newsletter: Every morning CIMple will generate an “executive summary” of what
interesting events happened in the past 24 hours in the community. For example, the summary may state that
X just mentioned on his or her homepage that he or she will serve on SIGMOD-07, or that the list of papers
accepted to ICDE-06 has just been posted on DBworld.

• Structured querying: We are studying how to formulate SQL-like structured queries over the extracted
ER graph, what the syntax and semantics of the results should be, and how to execute such queries efficiently. As
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a first step, [24] describes our recent work on interactive SQL querying of Web data generated from structured
templates (e.g., Amazon.com and DBLP pages).

• Temporal keyword search and structured querying: We will develop temporal query capabilities. For
example, the user can pose a query over only the data crawled in the past two weeks, or ask CIMple to rank
answers in chronological order. Note that this is a key advantage of CIMple over general search engines. Such
search engines cover the entire World-Wide Web and hence cannot archive it, e.g., on a daily basis, in order to
provide effective temporal querying.

• Service modules for one-click capabilities in context: We will allow community builders to use the full
range of search, query, alert and reporting capabilities to associate stored versions (of searches, queries, etc.)
with different entity and relationship types. When a page displays entities or relationship instances of these
types, the associated capabilities are then made available to users. Thus, even casual users can ask sophisticated
queries through a single click in context.

2.3 Maintaining Extracted Structures

After creating an ER graph and associated services for a community, we must monitor and adjust the ER graph
as the underlying data sources evolve. Sources on the Web are often highly dynamic [23, 9]. Consequently,
maintaining the extracted ER graph is a labor intensive undertaking, and developing techniques to reduce the
maintenance cost is critical.

The first maintenance challenge is how to efficiently update the extracted ER graph. We can simply re-crawl
the sources at regular intervals (e.g., daily), then apply the methods discussed previously to rebuild the ER
graph from scratch. Indeed, we apply this solution in the current DBLife prototype. However, this solution has
two major limitations (as confirmed painfully by our experience with the prototype). First, rebuilding the ER
graph from scratch is quite time intensive. We must extract afresh all entity mentions, match the mentions, and
rediscover the various relations. All of these tasks are time consuming [10, 29, 21]. Thus, for highly dynamic
communities (e.g., auction or finance) that require updating the ER graph every few hours, this approach will
probably not scale. Second, if we rebuild the ER graph from scratch at every re-crawl, we loose the temporal
dimension associated with entities and relationships. Consider an entity E that we have inferred from the
raw data on Day 1. If we re-crawl and rebuild the ER graph again on Day 2, which of the newly created
entities correspond to E? Establishing the correspondence is crucial for tracking E over time, and for answering
temporal queries. To remove these limitations, we are currently developing a solution to incrementally update
the ER graph.

The second challenge that we must address is how to detect and repair broken extractors. Consider for
example a price extractor that always returns as a price the third number in the first italics line of a page. This
extractor will break if data pages change the formatting rule used to display prices. Given the central role
extractors play in CIMple it is important that we detect and repair broken extractors, or adjust to them in some
way when repair has not been carried out. We have developed an initial solution called Maveric for detecting
broken extractors [23], and are developing a solution that attempts to repair a broken extractor or makes repair
suggestions to the builder.

2.4 Mass Collaboration

We have described how a builder can use CIMple to quickly develop and deploy a first-cut data portal for a com-
munity. Next, we propose a set of novel techniques that leverages community users—instead of the builder—to
help refine the extraction and integration logic used by CIMple. We consider three specific techniques: person-
alized data spaces, reputation incentives, and “payment” schemes.

• Personalized data spaces: To illustrate the idea of leveraging personalized data spaces for the common
good, consider the Internet Movie Database (IMDB, at imdb.com). When a new movie is added to IMDB,
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within a few days it receives a score (say 7.6 out of 10), averaged over scores given by thousands of movie
goers. How can IMDB convince so many people to score the movie? It turns out that the vast majority of
scores come from registered users. These users maintain private movie collections in their IMDB accounts,
i.e., personalized versions of the public IMDB movie collection. Many users then score the movies in their
collections only so that they can search later, e.g., “list all action movies in my collection that I gave a score
of 7 or higher”, using the IMDB search engine. IMDB, however, can aggregate these private scores to provide
public scores for movies. Our idea is to similarly allow users to personalize and manage private versions of the
public data space in their CIMple accounts, then learn from the private actions (in a way that protects individual
privacy and has their consent) to improve the public data space. We will consider a range of “personalization”
actions that users can carry out in their private CIMple accounts, design simple interfaces to facilitate them, then
develop techniques to leverage personalization activities to improve the public data portal.

• Reputation incentives: There were cases where researchers corrected mistakes in their DBLP homepages
by contacting the DBLP owners, because they felt that these homepages form an important part of their public
image. This is similar to the experience of many community portals; e.g., at QUIQ [26], people answered
hundreds (in some cases, thousands) of technical support questions posed by other users solely to gain greater
visibility in the community through a variety of mechanisms. We therefore plan to design CIMple such that users
will have sufficiently strong “reputation incentives” to correct mistakes in the publicly viewable (extracted and
integrated, and therefore possibly incorrect) information that they believe may adversely affect them. This raises
several challenges that we plan to examine: First, how can we authenticate a user vis a vis the corresponding
person entity? Second, if different users edit related data (e.g., co-authors edit the same paper), their changes
may conflict. How should we reconcile the changes? Finally, how can we provide sufficiently strong incentives?

• Payment schemes: For certain CIM services, we can make users “pay” for using them, by answering
relatively simple questions. We then leverage the answers to improve the services. For example, suppose that
CIMple has compiled a query processing bibliography B, and that employing learning techniques, it has found a
paper P that may be relevant to B. Then when a user U wants to access B, CIMple may show U the paper P and
ask “Is P about query processing?” Once the user has answered, he or she is allowed to access B. If a sufficient
number of users answer yes, then CIMple may decide to include P in bibliography B, thereby expanding
B. To realize the above idea, we must address several challenges—the most important is merging multiple,
often noisy, user answers into a single answer. Users may disagree and there may not even be a single correct
answer. We discuss these challenges and preliminary solutions in [25, 27, 26]. The QUIQ experience [27, 26]
and experiments on small user communities (10-130 users) [25] suggest the potential of the mass collaboration
approach.

3 Managing Uncertainty and Provenance

We now discuss uncertainty and provenance problems in CIMple, and sketch our solutions. We highlight in
particular the ideas of making CIM services interactive and leveraging mass collaboration to reduce uncertainty.

3.1 Uncertainty

All major CIM steps—extraction and integration, data evolution, and mass collaboration—generate uncertainty.
Techniques for extracting mentions, tagging them (e.g., as people names, conferences, etc.), and matching them
are well-known to be imperfect. In addition, the evolution of the data often invalidates the assumptions made by
extractors, causing errors, thus adding yet another source of uncertainty. Finally, mass collaboration generates
uncertainty since people do not contribute in a perfect fashion, and malicious or ignorant users often provide
incorrect feedback.
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To handle such uncertainties, we consider three directions: (a) understand the nature of the uncertainty
involved, (b) model and reason using uncertain data, and (c) reduce uncertainty.

Understanding Uncertainty: In CIM contexts, we have encountered primarily two types of uncertainty: con-
fidence score and multi-value, though additional types are certainly possible. The first type arises when an
extractor (or a mention matcher) operates on domain knowledge or heuristics that are typically (though not
always) true. In such cases the CIM module can make qualified predictions, such as “the mention Madison
in a text document U is a last name with confidence 0.8” or “mentions Madison and J. Madison match with
confidence 0.9.” Most current extractors generate this type of uncertainty.

The second type of uncertainty, multi-value, arises when an extractor operates on correct, but underspecified
domain knowledge. For instance, given a text document U and the knowledge “there is a publication year in U
and it is of numeric type” (e.g., supplied by the user [24]), an extractor may extract the set of all numeric values
from U , say {23, 4, 2001, 1998, 135}, and specify that publication year takes a value in this set. As another
example, if values are organized into a domain hierarchy (e.g., time might be specified as days, weeks, and
years), we might not always know a value at the finest granularity. Thus, we might know that a sale occurred in
2006, but not know the specific week or day. Multi-value uncertainty, specifically the form arising from domain
hierarchies, is referred to as imprecision in [6].

Reasoning with Uncertainty: We are developing methods to provide services such as keyword search and
SQL querying over extracted uncertain data. We have studied confidence-score uncertainty in the context of
keyword search over multiple disparate and heterogeneous structured data sets. Given a user query Q, the goal
is to return a ranked list of answers, where each answer “glues” together a set of data fragments taken from
the same or different data sets [31]. Since the structured data sets are heterogeneous, matching mentions (e.g.,
“D. Smith” vs. “David Smith”) and matching schema elements (e.g., pname vs. researcher-name) can be
predicted only with some confidence score. Our solution is to incorporate such scores directly into the overall
score of each answer for the keyword query. This work suggests that IR-style ranking can be a very natural tool
for handling multiple types of uncertainties.

For the second type of uncertainty (i.e., multi-value), we have developed a solution to provide SQL querying
over extracted data with multi-value uncertainty [24]. Our solution provides a superset semantics, i.e., it always
produces a superset of the correct results. A key idea underlying the solution is that it is interactive: it allows
the user to quickly pose SQL queries, obtain initial results, then iterate to get increasingly better results. In each
iteration, the system asks the user 1-2 relatively simple questions, designed to solicit structural information to
reduce the uncertainty associated with multiple values. It then leverages the user answers to refine the query
results.

In joint work with the Avatar project at IBM [20], we have also developed a principled approach to defining
semantics for OLAP queries over imprecise data [6] based on allocation of imprecise facts, and are developing
efficient implementation techniques for allocation [7].

Reducing Uncertainty: We reduce uncertainty via two mechanisms: user interaction and mass collaboration.
For many CIM services (e.g., keyword search, SQL querying), we consider how to make them interactive, so
that the service can learn from the user, and provide increasingly better results (in a sense this strategy can be
viewed as a variant of relevance user feedback, see [31, 24]). Our preliminary work on this topic in the context
of keyword search is described in [31], and an interactive solution for SQL querying over multi-valued data is
described in [24].

In CIMple, we also apply mass collaboration to reduce uncertainty, a solution that, to the best of our knowl-
edge, has not been considered in the context of data extraction or integration. As discussed in Section 2.4, we
will develop this solution in two steps. First, we allow each user to take extracted data provided by automatic
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solutions as a starting point, then manually correct the data or interact with CIMple to improve the data. Second,
we develop solutions to learn from what each user is doing, and apply the results to help other users.

3.2 Provenance

In CIM contexts, we found that provenance serves two goals. First, it helps the user understand and reduce
uncertainty. Second, it provides a way for the user to express certain information needs using provenance-related
criteria (e.g., find only answers that originate from sources X and Y ).

Toward the first goal, we are designing CIMple to provide a justification for any answer it produces in
response to a user query. The justification lists all data pages that contribute to the answer, and all operations
(extraction, mention matching, etc.) that have been invoked along the path from the raw data to the answer.
Thus, in effect we provide a “derivation (a.k.a., provenance) tree” that explains how the answer was produced.
The user can follow the derivation tree to the original data pages for further verification. We also plan to develop
a “what-if” facility. When examining the derivation tree, the user can ask hypothetical questions, such as “What
if I state that these two mentions do not match?” The idea is that CIMple will show how the answers look if the
proposed assumption holds. Such a facility would help evaluate the robustness of the original answers, thereby
increasing user confidence in those answers. We have developed justification mechanisms previously for schema
matching [13] and logic program inference [2]. We are building upon this work, as well as results on managing
provenance (e.g., [3, 12, 5]) to develop justification and “what-if” mechanisms for CIMple. Toward the second
goal of serving provenance-related information needs, we will adopt results from current work on languages for
querying provenance (e.g., [3, 5]) to the CIM context, on an “as-needed” basis.

4 Concluding Remarks

We have introduced the CIMple project that develops a software platform to extract and integrate information
for online communities. In general, information extraction is taking on an increasingly larger role in how we
seek to organize and analyze text corpora. By its nature, extracted information has associated uncertainty, and
the CIM setting offers many novel opportunities and challenges for dealing with this uncertainty, as we have
tried to illustrate in this brief overview of CIMple.
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